

EA 044 Planejamento e Análise de Sistemas de Produção

Modelos de Otimização Discreta

Tópicos

- 1-Introdução
- 2-Carga ótima de alto forno (blending)
- 3-Problema da mochila (knapsak)
- 4-Modelos de packing, cobertura e partição
- 5-Modelos de atribuição
- 6-Modelos de sequenciamento (scheduling)

1-Introdução

- Modelos de programação dinâmica (PD)
 - resolvem modelos lineares/não lineares, discretos/contínuos
 - requerem separabilidade
 - computacionalmente exigente em problemas complexos
- Maioria dos problemas
 - não possuem estrutura conveniente para PD
- Neste capítulo
 - exemplos e classes de problemas de otimização discreta

2-Carga ótima de alto forno (blending)

		Composição(%)			Disponibilidade	Custo
	Carbono	Niquel	Cromo	Molibidênio	(kg)	(\$/kg)
Escória primária	0.80	18	12	-	75	16
Escória secundária	0.70	3.2	1.1	0.1	250	10
Escória terciária	0.85	-	-	-	ilimitada	8
Escória quaternária	0.40	-	-	-	ilimitada	9
Niquel	-	100	-	-	ilimitado	48
Cromo	-	-	100	-	ilimitado	60
Molibidênio	-	-	-	100	ilimitado	53
Mínimo	0.65	3.0	1.0	1.1		
Máximo	0.75	3.5	1.2	1.3		

- Cargas de 1000 kg
- Restrições de composição química
- Escórias primária e secundária: utilizar o total disponível se for o caso
- Carga de custo mínimo ?

Requisitos do tipo "tudo ou nada" de uma grandeza

$$x_j = u_j \text{ ou } x_j = 0$$

1-introduzir uma variável (binária) $y_j = 0$ ou 1

2-fazer
$$x_j = u_j y_j$$

Custo de setup/cargas fixas

$$\theta(x) \Delta \begin{cases} 1 & \text{se } x_j > 0 \\ 0 & \text{caso contrário} \end{cases}$$

1-introduzir variável y_j com coeficiente = custo fixo de x_j

$$y_j = \begin{cases} 1 & \text{se } x_j > 0 \\ 0 & \text{caso contrário} \end{cases}$$

2-restrições de *switching* para $x_j \ge 0$

$$x_j \le u_j y_j$$

 u_j = valor dado ou limitante superior de x_j

Exemplo: tudo ou nada

$$\begin{array}{lll} \min \; 16(75) \, y_1 + 10(250) \, y_2 + 8 x_3 + 9 x_4 + 48 x_5 + 60 x_6 + 53 x_7 \\ \mathrm{sa} \; \; 75 \, y_1 + 250 \, y_2 + x_3 + x_4 + x_5 + x_6 + x_7 & = 1000 \\ 0.0080(75) \, y_1 + 0.0070(250) \, y_2 + 0.0085 x_3 + 0.0040 x_4 \geq 6.5 \\ 0.0080(75) \, y_1 + 0.0070(250) \, y_2 + 0.0085 x_3 + 0.0040 x_4 \leq 7.5 \\ 0.180(75) \, y_1 + 0.032(250) \, y_2 + 1.0 x_5 & \geq 30 \\ 0.180(75) \, y_1 + 0.032(250) \, y_2 + 1.0 x_5 & \leq 35 \\ 0.120(75) \, y_1 + 0.011(250) \, y_2 + 1.0 x_6 & \geq 10 \\ 0.120(75) \, y_1 + 0.011(250) \, y_2 + 1.0 x_6 & \leq 12 \\ 0.001(75) \, y_2 + 1.0 x_7 & \geq 11 \\ 0.001(75) \, y_2 + 1.0 x_7 & \leq 13 \\ x_3, x_4, x_5, x_6, x_7 \geq 0 \\ y_1, y_2 = 0 \; \text{ou} \; 1 & y_j = \begin{cases} 1 & \text{esc\'oria} \; j \; \text{escolhida} \\ 0 & \text{caso contr\'ario} \end{cases}$$

Exemplo: custo de setup

- Cargas de 1000 kg
- Restrições de composição química
- Custo de setup
 - ingredientes 1, 2, 3 e 4 só podem ser usados
 - depois de etapa de injeção: custo \$350,00 cada
- Carga de custo mínimo considerando custo set-up?

min
$$16x_1 + 10x_2 + 8x_3 + 9x_4 + 48x_5 + 60x_6 + 53x_7 + 4550y_1 + 350y_2 + 350y_4 + 350y_5$$

sa
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 1000$$

$$0.0080x_1 + 0.0070x_2 + 0.0085x_3 + 0.0040x_4 \ge 6.5$$

$$0.0080x_1 + 0.0070x_2 + 0.0085x_3 + 0.0040x_4 \le 7.5$$

$$0.180x_1 + 0.032x_2 + 1.0x_5 \ge 30$$

$$0.180x_1 + 0.032x_2 + 1.0x_5 \le 35$$

$$0.120x_1 + 0.011x_2 + 1.0x_6 \ge 10$$

$$0.120x_1 + 0.011x_2 + 1.0x_6 \le 12$$

$$0.001x_2 + 1.0x_7 \ge 11$$

$$0.001x_2 + 1.0x_7 \le 13$$

$$x_1 \leq 75y_1$$

$$x2 \le 250y_2$$

$$x_3 \le 1000 y_3$$

$$x_4 \le 1000 \, y_4$$

$$x_1, \dots, x_7 \ge 0$$

$$y_1, \dots, y_4 = 0$$
 ou 1

$$y_{j} = \begin{cases} 1 & \text{se } setup \ j \\ 0 & \text{caso contrário} \end{cases}$$
$$j = 1, \dots, 4$$

3-Problema da mochila (knapsack)

- Problema da mochila
 - modelos lineares inteiros puros
 - uma única restrição principal
- Problemas de orçamento (budgeting)
 - knapsak multidimensional
 - seleciona valor máximo de projetos/investimentos
 - restrições de orçamento e recursos consumidos

Exemplo: knapsak

			Característ	ica, <i>j</i>		
	1	2	3	4	5	6
Custo (\$1000)	10.2	6.0	23.0	11.1	9.8	31.6
D (km/h)	8.0	3.0	15.0	7.0	10.0	12.0

$$\max \quad 8x_1 + 3x_2 + 15x_3 + 7x_4 + 10x_5 + 12x_6 \qquad \text{ganho}$$
 sa
$$10.2x_1 + 6.0x_2 + 23.0x_3 + 11.1x_4 + 9.8x_5 + 31.6x_6 \le 35 \qquad \text{orçamento}$$

$$x_1, \cdots, x_6 = 0 \text{ ou } 1$$

Alternativamente

min
$$10.2x_1 + 6.0x_2 + 23.0x_3 + 11.1x_4 + 9.8x_5 + 31.6x_6$$
 custo sa $8x_1 + 3x_2 + 15x_3 + 7x_4 + 10x_5 + 12x_6 \ge 30$ ganho $x_1, \dots, x_6 = 0$ ou 1

Exemplo: budgeting

				Orçamento	(\$)				
	Missão	2000/04	2005/09	2010/14	2015/19	2020/24	Valor	Não com	Depende de
1	satélite comunicação	6	-	-	-	-	200	-	-
2	microondas orbital	2	3	-	-	-	3	-	-
3	Io lander	3	5	-	-	-	20	-	-
4	órbita Urano 2020	-	-	-	-	10	50	5	3
5	órbita Urano 2010	-	5	8	-	-	70	4	3
6	exploração Mercúrio	-	-	1	8	4	20	-	3
7	exploração Saturno	1	8	-	-	-	5	-	3
8	imagem infravermelha	-	-	-	5	-	10	11	-
9	base satélite terrestre	4	5	-	-	-	200	14	-
10	estruturas orbitais	-	8	4	-	-	150	-	-
11	imagem colorida	-	-	2	7	-	18	8	2
12	tecnologia médica	5	7	-	-	-	8	-	-
13	plataforma orbital polar	-	1	4	1	1	300	-	-
14	satélite geo-síncrono	-	4	5	3	3	185	9	-
	Orçamento	10	12	14	14	14			

Selecionar missões (projetos, investimentos, etc.) que maximizem o valor, respeitando a dotação orçamentária e limitação de recursos, se for o caso.

Variáveis de decisão

$$x_j = \begin{cases} 1 & \text{se missão } j \text{ \'e selecionada} \\ 0 & \text{caso contrário} \end{cases}$$

Restrições de orçamento

$$\begin{aligned} 6x_1 + 2x_2 + 3x_3 + 1x_7 + 4x_9 + 5x_{12} & \leq 10 & 2000\text{-}2004 \\ 3x_2 + 5x_3 + 5x_5 + 8x_7 + 5x_9 + 8x_{10} + 7x_{12} + 1x_{13} + 4x_{14} & \leq 12 & 2005\text{-}2009 \\ 8x_5 + 1x_6 + 4x_{10} + 2x_{11} + 4x_{13} + 5x_{14} & \leq 14 & 2010\text{-}2014 \\ 8x_6 + 5x_8 + 7x_{11} + 1x_{13} + 3x_{14} & \leq 14 & 2015\text{-}2020 \\ 10x_4 + 4x_6 + 1x_{13} + 3x_{14} & \leq 14 & 2020\text{-}2024 \end{aligned}$$

■ Exclusão mútua $\sum x_j \le 1$

$$x_4 + x_5 \le 1$$

$$x_8 + x_{11} \le 1$$

$$x_9 + x_{14} \le 1$$

■ Dependência $x_j \le x_i$ escolha de j depende de i

$$x_{11} \le x_2$$

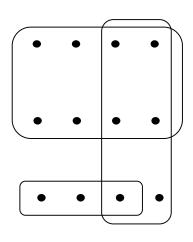
$$x_4 \le x_3$$

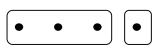
$$x_5 \le x_3$$

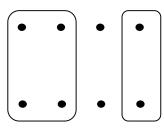
$$x_6 \le x_3$$

$$x_7 \le x_3$$

4-Modelos de packing, cobertura e partição







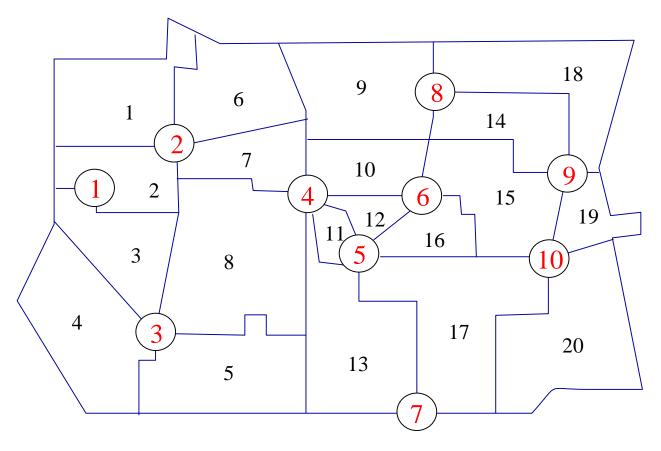
Cobertura

$$\sum_{j \in J} x_j \ge 1$$

$$\sum_{j \in J} x_j = 1$$

$$\sum_{j \in J} x_j \le 1$$

Exemplo: cobertura



- Alocação de postos de atendimento médico de emergência (AME)
 - 20 distritos
 - 10 locações candidatas

 x_{10}

≥ 1

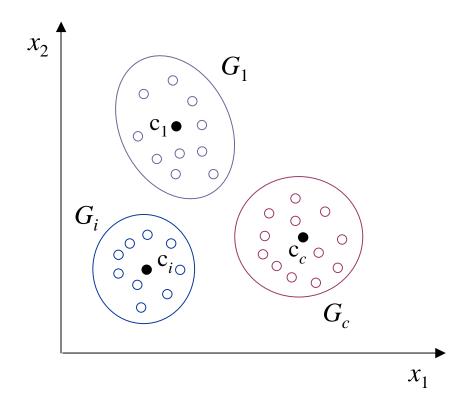
D20

$$x_1, \dots, x_{10} = 0$$
 ou 1

D10

 $x_4 + x_6 \ge 1$

Exemplo: partição



$$\min \sum_{i=1}^{c} \left(\sum_{k, \mathbf{X}_{k} \in G_{i}} \|\mathbf{X}_{k} - \mathbf{c}_{i}\|^{2} \right)$$

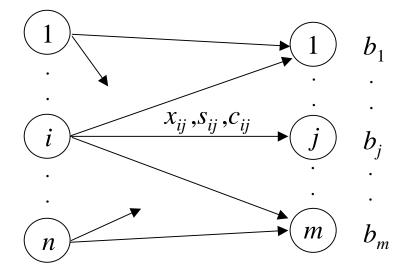
$$\operatorname{sa} \sum_{i=1}^{c} u_{ij} = 1, \quad j = 1, \dots, n$$

$$\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} = n$$

$$u_{ij} = \begin{cases} 1 & \text{se } \mathbf{X}_{j} \in G_{i} \\ 0 & \text{caso contrário} \end{cases}$$

k-means

5-Modelos de atribuição



$$\begin{split} x_{ij} &= 0 \text{ ou } 1 \\ b_j \text{ capacidade de } j \\ s_{ij} \text{ quantidade de } j \text{ consumida quando } i \text{ \'e alocado \'a } j \\ c_{ij} \text{ custo (benefício) de atribuir } i \text{ \`a } j \end{split}$$

Modelo de atribuição generalizado

min (max)
$$\sum_{i} \sum_{j} c_{ij} x_{ij}$$
sa
$$\sum_{j} x_{ij} = 1 \qquad \forall i$$

$$\sum_{j} s_{ij} x_{ij} \le b_{j} \qquad \forall j$$

$$x_{ij} = 0, 1 \qquad (i, j) \in S$$
(1)

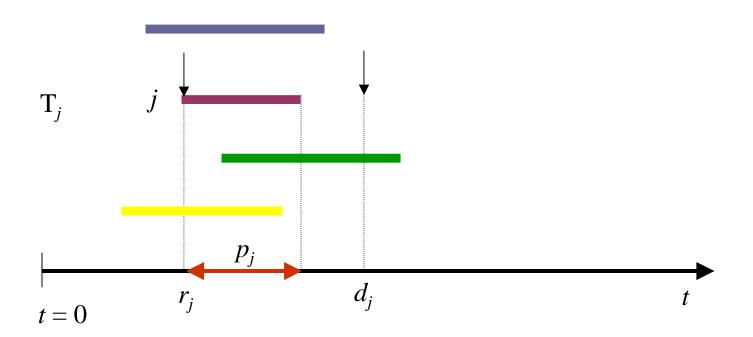
$$s_{ij} = 1 \text{ em (2)} \implies \sum_{i} x_{ij} = 1, \forall j$$
 (pairing)

Exemplo: atribuição generalizado

		Distrito i						
Navio	j	1	2	3	4	5	6	
N1	Custo	130	30	510	30	340	20	
	Tempo	30	50	10	11	13	9	
N2	Custo	460	150	20	40	30	450	
	Tempo	10	20	60	10	10	17	
N3	Custo	40	370	120	390	40	30	
	Tempo	70	10	10	15	8	12	

- Atribuição de navios guarda-costa à distritos
- Navios tem bases distintas
- Cada navio disponível 50 semanas/ano
- $x_{ij} = 1$ se N_j atribuido ao distrito $i, x_{ij} = 0$ caso contrário

6-Modelos de sequenciamento (scheduling)

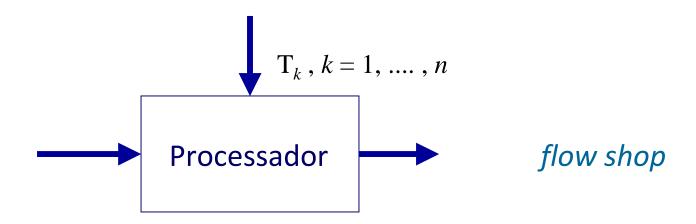


 r_j instante em que a tarefa T_j está pronta para processamento

 p_j tempo processamento de T_j

 d_j data de entrega de T_j

Sequenciamento em processador único



- x_j instante de início de processamento da j-ésima tarefa
- $x_i \ge \max[0, r_i]$
- restrições disjuntivas: $x_j + p_j \le x_k$ ou $x_k + p_k \le x_j$

$$\begin{cases} x_j + p_j & \leq x_{j'} + M (1 - y_{jj'}) \\ x_{j'} + p_{j'} \leq x_j + M y_{jj'} \end{cases} \qquad y_{jj'} = \begin{cases} 1 & \text{se } j \text{ precede } j', j > j' \\ 0 & \text{caso contrário} \end{cases}$$

■ Função objetivo: minimizar

1) max
$$\{x_j + p_j\}$$

2)
$$1/n \{ \Sigma_j (x_j + p_j) \}$$

3)
$$\max \{x_j + p_j - r_j\}$$

4)
$$1/n \{ \Sigma_j (x_j + p_j - r_j) \}$$

5) max
$$\{x_j + p_j - d_j\}$$

6)
$$1/n \{ \Sigma_j (x_j + p_j - d_j) \}$$

7)
$$\max_{i} \{ \max [0, x_i + p_i - d_i] \}$$

8)
$$1/n \{ \sum_{j} (\max [0, x_j + p_j - d_j]) \}$$

tempo máximo de fabricação tempo de fabricação médio

tempo máximo de permanência

tempo de permanência médio

lateness máximo

lateness médio

tardiness máximo

tardiness médio

Exemplo: minimizar *lateness*

			Tarefa <i>j</i>			
	1	2	3	4	5	6
tempo processamento p_j	12	8	3	10	4	18
instante que está pronta r_j	-20	-15	-12	-10	-3	2
data de entrega d_j	10	2	72	-8	-6	60

min max
$$\{(x_1 + 12 - 10), (x_2 + 8 - 2), (x_3 + 3 - 72), (x_4 + 10 + 8), \Rightarrow (x_5 + 4 + 6), (x_6 + 18 - 60)\}$$

min
$$f$$

sa $f \ge (x_1 + 2)$
 $f \ge (x_2 + 6)$
 $f \ge (x_3 - 69)$
 $f \ge (x_4 + 18)$
 $f \ge (x_5 + 10)$
 $f \ge (x_6 - 42)$

$\min f$

sa
$$f \ge (x_1 + 2)$$

$$f \ge (x_2 + 6)$$

$$f \ge (x_3 - 69)$$

$$f \ge (x_4 + 18)$$

$$f \ge (x_5 + 10)$$

$$f \ge (x_6 - 42)$$

$$y_{ii} = 0$$
 ou 1, $\forall i, j$

$$x_1 + 12 \le x_6 + M(1 - y_{16})$$

$$x_6 + 18 \le x_1 + M \ y_{16}$$

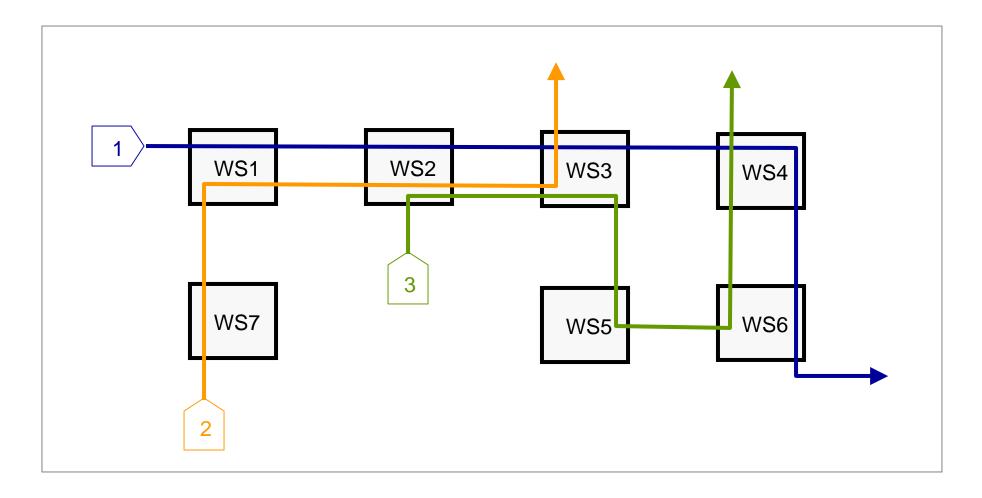
$$x_2 + 8 \le x_6 + M(1 - y_{26})$$

$$x_6 + 18 \le x_2 + M \ y_{26}$$

$$x_1 + 12 \le x_2 + M(1 - y_{12})$$

$$x_2 + 8 \le x_1 + My_{12}$$

Sequenciamento de múltiplos processadores (job shop)



Exemplo: job shop scheduling

	Tempo Processamento								
Job	WS1	WS2	WS3	WS4	WS5	WS6	WS7		
1	3	10	8	45	-	1	-		
2	6	11	6	-	-	-	50		
3	-	5	9	25	2	1			

- x_{jk} tempo início de processamento do job j no processador k
- Objetivo: minimizar tempo máximo de fabricação (makespan)

Função objetivo

min max
$$\{(x_{16}+1), (x_{23}+6), (x_{34}+25)\}$$

■ Restrições de precedência

$$x_{jk} + p_{jk} \le x_{jk}$$

Job 1Job 2Job 3
$$x_{11} + 3 \le x_{12}$$
 $x_{27} + 50 \le x_{21}$ $x_{32} + 5 \le x_{33}$ $x_{12} + 10 \le x_{13}$ $x_{21} + 6 \le x_{22}$ $x_{33} + 9 \le x_{35}$ $x_{13} + 8 \le x_{14}$ $x_{22} + 11 \le x_{23}$ $x_{35} + 2 \le x_{36}$ $x_{14} + 45 \le x_{16}$ $x_{36} + 1 \le x_{34}$

■ Restrições para evitar conflitos entre *jobs* em um processador

$$x_{jk} + p_{jk} \le x_{j'k} + M(1 - y_{jj'k})$$

 $x_{j'k} + p_{j'k} \le x_{jk} + M y_{jj'k}$

$$y_{jj'k} = \begin{cases} 1 & \text{se } j \text{ \'e sequenciado antes } j' \text{ no processador } k \\ 0 & caso \ contr\'ario \end{cases}$$

Conflito entre jobs 1 e 2 no processador 1

$$x_{11} + 3 \le x_{21} + M(1 - y_{121})$$

$$x_{21} + 6 \le x_{11} + M y_{121}$$

Conflito entre jobs 1 e 2 no processador 2

$$x_{12} + 10 \le x_{22} + M(1 - y_{122})$$

$$x_{22} + 11 \le x_{12} + M \ y_{122}$$

Conflito entre jobs 1 e 3 no processador 2

$$x_{12} + 10 \le x_{32} + M(1 - y_{132})$$

$$x_{32} + 5 \le x_{12} + M y_{132}$$

Conflito entre jobs 2 e 3 no processador 2

$$x_{22} + 11 \le x_{32} + M(1 - y_{232})$$

$$x_{32} + 5 \le x_{22} + M y_{232}$$

Observação

Este material refere-se às notas de aula do curso EA 044 Planejamento e Análise de Sistemas de Produção da Faculdade de Engenharia Elétrica e de Computação da Unicamp. Não substitui o livro texto, as referências recomendadas e nem as aulas expositivas. Este material não pode ser reproduzido sem autorização prévia dos autores. Quando autorizado, seu uso é exclusivo para atividades de ensino e pesquisa em instituições sem fins lucrativos.

33

©DCA-FEEC-Unicamp