

EA 044 Planejamento e Análise de Sistemas de Produção

Dualidade e Análise de Sensibilidade em Programação Linear

Tópicos

- 1-Introdução
- 2-Análise de sensibilidade em PL
- 3-Sensibilidade e dualidade
- 4-Relações entre modelos primal e dual
- 5-Modelos ilimitados e infactíveis
- 6-Análise de resultados computacionais

1-Introdução

- Interpretação de modelos de PL
 - função objetivo: custo, benefício
 - restrições ≥ : demanda
 - restrições ≤ : oferta
 - restrições = : oferta = demanda
 - não negatividade: natureza das variáveis
- Lado direito das restrições
 - não negativo (mais natural)
- Variáveis de decisão
 - nível de atividade

Modelo programação linear geral

$$x \in \mathbb{R}^n$$
 $c \in \mathbb{R}^n$

$$F \in \mathbb{R}^{n \times mb}$$
 $G \in \mathbb{R}^{n \times mr}$ $H \in \mathbb{R}^{n \times md}$

nível de benefício (custo)/ atividade unidade de atividade

$$b \in R^{mb}$$
 $r \in R^{mr}$ $d \in R^{md}$

tecnologia

Exemplo

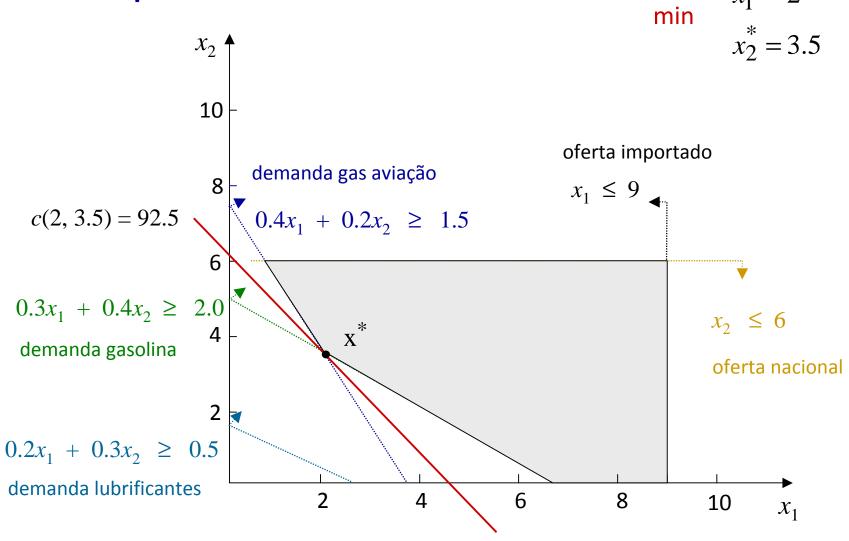
cada unidade da atividade x_1 consome 10 unidades do recurso 3 para produzir 1 unidade do recurso 1; cada unidade da atividade x_2 consome 6 unidades do recurso 3 e 1 unidade do recurso 4 para produzir 3 unidades do recurso 1; etc.

Exemplo

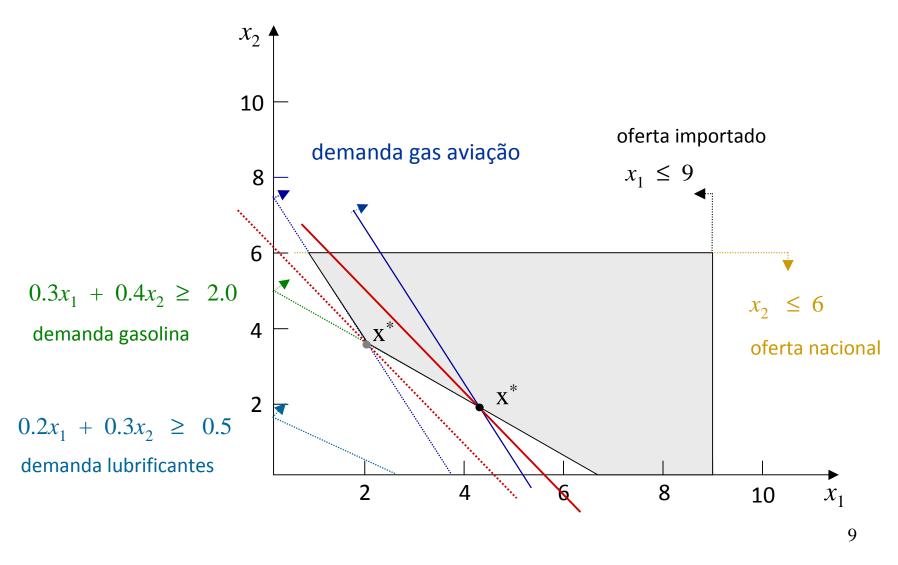
Modelo da Refinaria de Petrolinea

min	$20x_1 + 15x_2$	custo
sa	$0.3x_1 + 0.4x_2 \ge 2.0$	demanda gasolina
	$0.4x_1 + 0.2x_2 \ge 1.5$	demanda gas aviação
	$0.2x_1 + 0.3x_2 \ge 0.5$	demanda lubrificantes
	$x_1 \leq 9$	oferta petróleo importado
	$x_2 \leq 6$	oferta petróleo nacional
	$x_1, x_2 \ge 0$	não negatividade

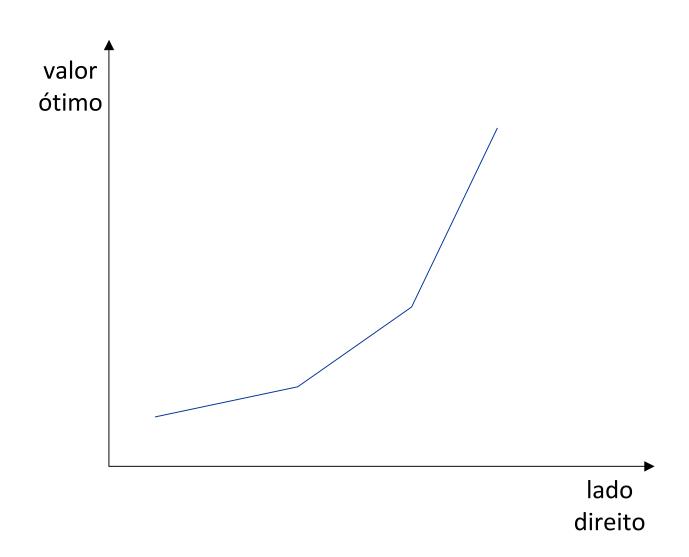
cada unidade da atividade x_1 requer 1 barril de petróleo importado para produzir 0.2 barril de lubrificante, 0.4 de gas de aviação e 0.3 barril de gasolina.

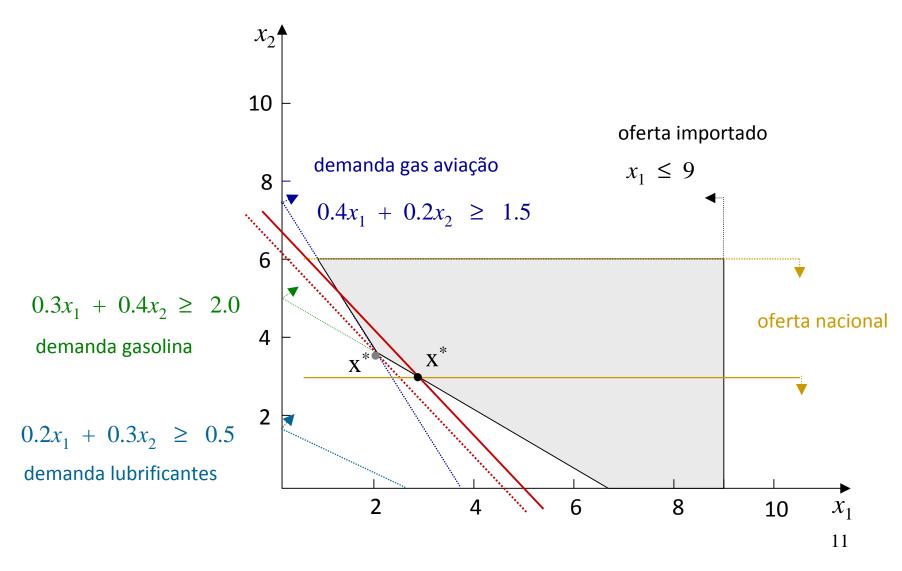

2-Análise de sensibilidade em PL

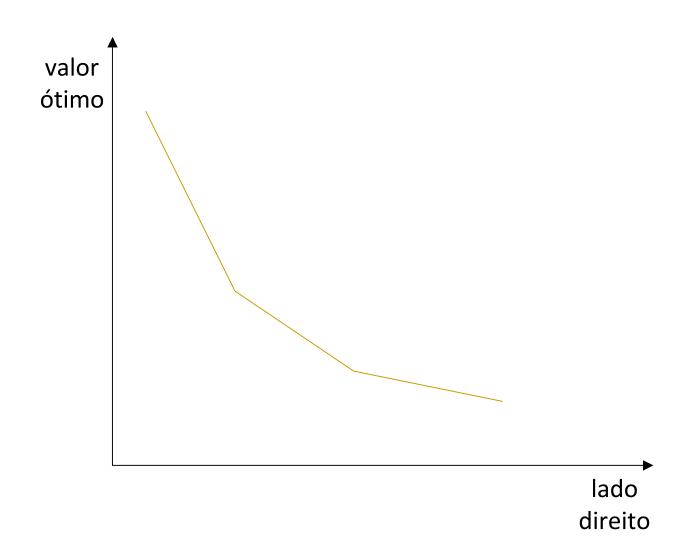
Como variações nos parâmetros afetam a solução ótima

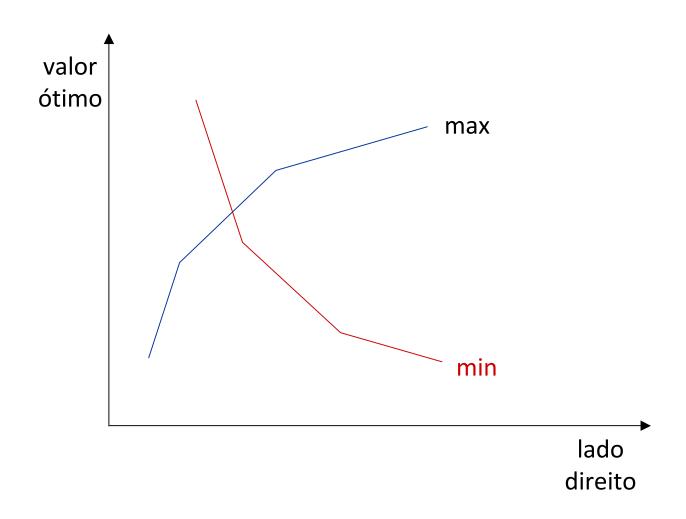

Exemplo: Modelo da Refinaria de Petrolinea

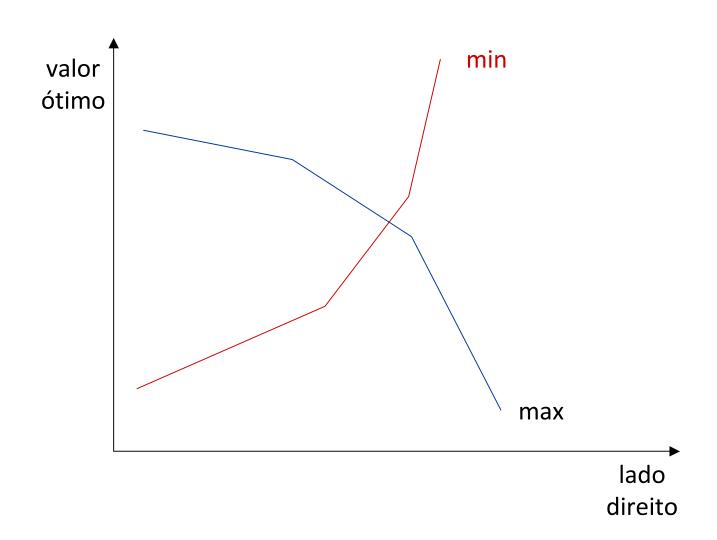
$$\begin{array}{lll} \min & 20x_1 + 15x_2 \\ \mathrm{sa} & 0.3x_1 + 0.4x_2 \geq 2.0 & \mathrm{demanda\ gasolina} \\ 0.4x_1 + 0.2x_2 \geq 1.5 & \mathrm{demanda\ gas\ avia} \\ 0.2x_1 + 0.3x_2 \geq 0.5 & \mathrm{demanda\ lubrificantes} \\ x_1 & \leq 9 & \mathrm{oferta\ petr\'oleo\ importado} \\ x_2 \leq 6 & \mathrm{oferta\ petr\'oleo\ nacional} \\ x_1, x_2 \geq 0 \end{array}$$

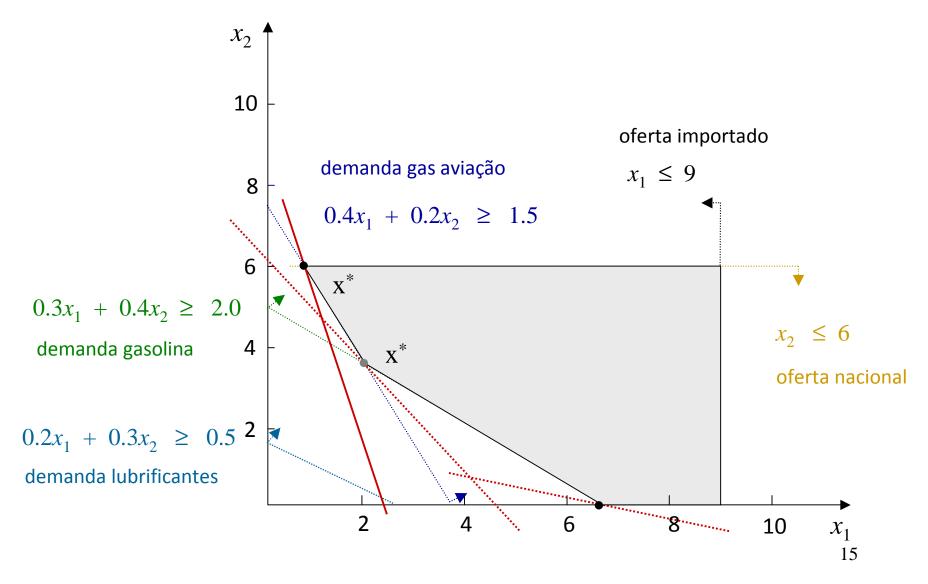

Exemplo

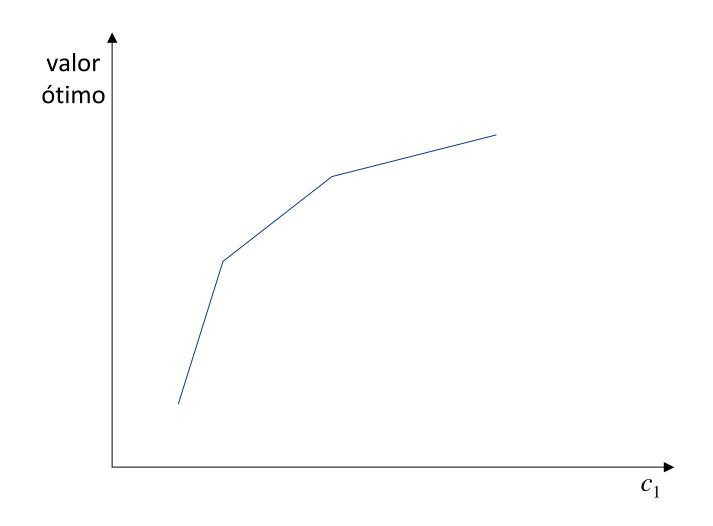

Variação de demanda: Exemplo

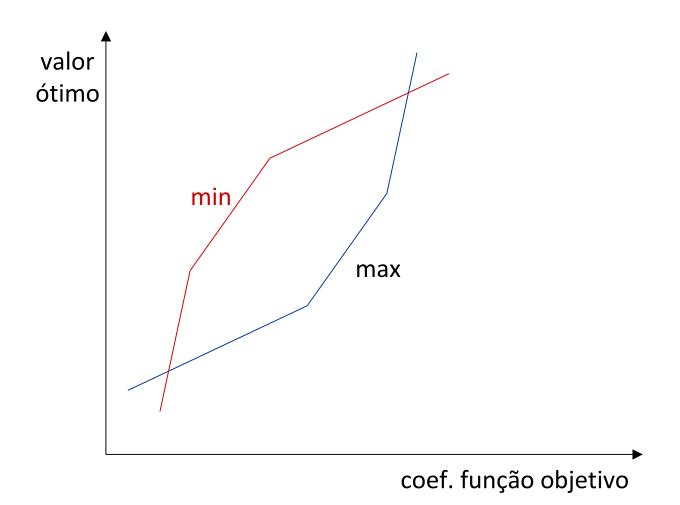

Variação de demanda


Variação de oferta: Exemplo


Variação de oferta: Exemplo


Em geral: Variação de oferta (≤)


Em geral: Variação de demanda (≥)


Variação função objetivo: Exemplo (custo)

Variação no coeficiente c_1 : Exemplo

Em geral: Variação coeficiente

3-Sensibilidade e dualidade

- Modelo primal: modela a aplicação de interesse
- Modelo dual : modelo auxiliar que caracteriza sensibilidade dos resultados do modelo primal com relação a variação nos parâmetros do modelo
- Variáveis duais
 - uma (v_i) para cada restrição (i) do primal
 - taxa de variação do valor ótimo primal/unidade lado direito
 - aumentando valor de um dos parâmetros (b_i)

Tipo Restrição	Aumenta lado direito	Diminui lado direito
Oferta (≤)	Relaxa	Aperta
Demanda (≥)	Aperta	Relaxa

- Relaxa restrições
 - valor ótimo melhora ou permanece o mesmo
 - maior (max)
 - menor (min)
- Aperta restrições
 - valor ótimo piora ou permanece o mesmo
 - menor (max)
 - maior (min)

Variável dual v_i

Primal	min	max
<i>i</i> é ≤	$v_i \le 0$	$v_i \ge 0$
i é \geq	$v_i \ge 0$	$v_i \le 0$
i é $=$	irrestrita	irrestrita

i-ésima restrição

Exemplo

 v_1 (1000\$/1000 barris): custo implícito para produzir 1000 barris adicionais de gasolina quando a demanda é de2000 barris (preço marginal da gasolina)

 v_4 (1000\$/1000 barris): valor de 1000 barris adicionais de petróleo importado quando o nível oferta é 9000 barris v_4

Formulação modelo dual

$$\min \sum_{j} c_{j} x_{j} \qquad \max \sum_{i} b_{i} v_{i}$$

$$\operatorname{sa} \sum_{j} a_{ij} x_{j} \geq b_{i} \qquad \operatorname{sa} \sum_{i} a_{ij} v_{i} \leq c_{j}$$

$$x_{j} \geq 0 \qquad v_{i} \geq 0$$

Primal Dual

Exemplo

$$\begin{array}{lll} \min & 20x_1 + 15x_2 \\ \mathrm{sa} & 0.3x_1 + 0.4x_2 \geq 2.0 & \mathrm{demanda\ gasolina} \\ 0.4x_1 + 0.2x_2 \geq 1.5 & \mathrm{demanda\ gas\ aviação} \\ 0.2x_1 + 0.3x_2 \geq 0.5 & \mathrm{demanda\ lubrificantes} \\ x_1 & \leq 9 & \mathrm{oferta\ petr\'oleo\ importado} \\ x_2 & \leq 6 & \mathrm{oferta\ petr\'oleo\ nacional} \\ x_1, x_2 \geq 0 \end{array}$$

Primal

max
$$2v_1 + 15v_2 + 0.5v_3 + 9v_4 + 6v_5$$

sa $0.3v_1 + 0.4v_2 + 0.2v_3 + 1v_4 \le 20$
 $0.4v_1 + 0.2v_2 + 0.3v_3 + 1v_5 \le 15$
 $v_1, v_2, v_3 \ge 0; v_4, v_5 \le 0$

Dual

Características do modelo dual

- Variáveis duais: fornecem preços implícitos de uma unidade marginal do recurso modelado por cada restrição quando o limite do lado direito é atingido
- Valor marginal implícito (minimização) ou preço (maximização) de uma unidade de atividade (variável primal) j devido à variável dual v_i é $\sum_i a_{ij} v_i$, onde a_{ij} é o coeficiente da atividade j no lado esquerdo da i-ésima restrição
- A cada atividade x_i corresponde a restrição dual

$$\sum_i a_{ij} v_i \le c_j$$
 minimização

$$\sum_i a_{ij} v_i \ge c_j$$
 maximização

4-Relações entre modelo primal e dual

- Se primal possui solução ótima então $\sum_j c_j x_j^* = \sum_i b_i v_i^*$
- Folga complementar primal
 - ou a solução primal ativa a i-ésima restrição primal, ou $v_i=0$
- Folga complementar dual
 - ou solução ótima primal é $x_i=0$, ou v_i ativa j-ésima restrição dual

$$\left(\sum_{j} a_{ij} x_{j} - b_{i}\right) v_{i} = 0 \qquad \left(c_{j} - \sum_{i} v_{i} a_{ij}\right) x_{j} = 0$$

■ Dualidade fraca: para qualquer valor factível de x_j e v_i :

$$\sum_{j} c_{j} x_{j} \geq \sum_{i} b_{i} v_{i}$$

primal é minimizar

$$\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} v_{i}$$

primal é maximizar

$$\begin{split} \sum_{j} c_{j} x_{j} - \sum_{i} b_{i} v_{i} &= \sum_{j} c_{j} x_{j} \left(-\sum_{i} \sum_{j} v_{i} a_{ij} x_{j} + \sum_{i} \sum_{j} v_{i} a_{ij} x_{j} \right) - \sum_{i} b_{i} v_{i} \\ &= \left(\sum_{j} c_{j} x_{j} - \sum_{i} \sum_{j} v_{i} a_{ij} x_{j} \right) + \left(\sum_{i} \sum_{j} v_{i} a_{ij} x_{j} - \sum_{i} b_{i} v_{i} \right) = \\ &= \left(\sum_{j} c_{j} x_{j} - \sum_{i} \sum_{j} a_{ij} v_{i} x_{j} \right) + \left(\sum_{i} \sum_{j} a_{ij} x_{j} v_{i} - \sum_{i} b_{i} v_{i} \right) = \\ &= \sum_{j} \left(c_{j} - \sum_{i} v_{i} a_{ij} \right) x_{j} + \sum_{i} \left(\sum_{j} a_{ij} x_{j} - b_{i} \right) v_{i} \end{split}$$

 Dualidade forte: se o ou primal ou o dual possui uma solução ótima, então ambos possuem solução ótima e

$$\sum_{j} c_{j} x_{j}^{*} = \sum_{i} b_{i} v_{i}^{*}$$

$$vB = (c_{1st}, c_{2nd}, \cdots c_{mth})$$

$$\overline{c}_j = c_j - \sum_i a_{ij} v_i \ge 0$$
 (supondo minimização)

Se simplex revisado pára com uma solução ótima, então $v=cB^{-1}\,$ é solução ótima para o modelo dual correspondente

1 - Se v satisfaz condições de otimalidade, então é solução factível do dual

se
$$\overline{c}_j = c_j - \sum_i a_{ij} v_i \ge 0$$
 \forall variáveis j (forma padrão)

então
$$\sum_{i} a_{ij} v_i \le c_j$$
 (supondo minimização)

2 - Valor da função objetivo do modelo dual para v que satisfaz condição de otimalidade do modelo primal é idêntico ao valor da função objetivo do modelo primal

$$1-c_{j}-\sum_{i}a_{ij}v_{i}\geq0\implies\sum_{i}a_{ij}v_{i}\leq c_{j}$$

$$a_{kj}=\begin{cases} +1\ k=i\ e\ i\ e\ do\ tipo\leq\\ -1\ k=i\ e\ i\ e\ do\ tipo\geq\end{cases}$$
 (para as variáveis de folga/excesso)
$$0\ caso\ contrário$$

se
$$\leq$$
 então $-(+1v_i) \geq 0 \implies v_i \leq 0$

se
$$\geq$$
 então $-(-1v_i) \geq 0 \implies v_i \geq 0$

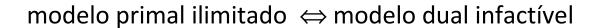
$$2 - \sum_{i} b_{i} v_{i} = (c_{1st}, c_{2nd}, \dots, c_{mth}) B^{-1} b$$

$$(x_{1st}, x_{2nd}, \dots, x_{mth}) = B^{-1}b$$
 (componentes não nulas são básicas)

$$\sum_{j} c_{j} x_{j}^{*} = c_{1st} x_{1st} + c_{2nd} x_{2nd} + \dots + c_{mth} x_{mth} = (c_{1st}, c_{2nd}, \dots, c_{mth}) B^{-1} b$$

$$\sum_{j} c_{j} x_{j}^{*} \geq \sum_{i} b_{i} v_{i} \quad (dualidade \ fraca) : \sum_{j} c_{j} x_{j}^{*} = \sum_{i} b_{i} v_{i}^{*}$$

Folga complementar ótimo primal e dual


$$0 = \sum_{j} c_{j} x_{j}^{*} - \sum_{i} b_{i} v_{i}^{*} =$$

$$= \sum_{j} \left(c_{j} - \sum_{i} v_{i}^{*} a_{ij} \right) x_{j}^{*} + \sum_{i} \left(\sum_{j} a_{ij} x_{j}^{*} - b_{i} \right) v_{i}^{*}$$

$$\Rightarrow \left(c_j - \sum_i v_i^* a_{ij}\right) x_j^* = 0 \quad \text{e} \quad \left(\sum_j a_{ij} x_j^* - b_i\right) v_i^* = 0$$

5-Modelos ilimitados e infactíveis

$$\sum_{j} c_{j} x_{j} \ge \sum_{i} b_{i} v_{i} \qquad \text{(dualidade fraca)} \quad \min$$

6-Análise de resultados computacionais

Modelo Petrolinea no solver Excel

Produto	Importado	Nacional	Objetivo	Tipo		
Quantidades (1000 barris)	2	3,5	92,5			
Custos (\$)	20	15				
Restrições	Recurso		Total		Lado direito	Folga
Demanda Gasolina	0,30	0,40	2	<u>></u>	2	0
Demanda Gas Aviação	0,40	0,20	1,5	<u>></u>	1,50	0
Demanda Lubrificante	0,20	0,30	1,45	<u>></u>	0,50	-0,95
Oferta Importado	1,00	0,00	2	<u><</u>	9	7
Oferta Nacional	0,00	1,00	3,5	<u><</u>	6	2,5

Microsoft Excel 8.0 Sensitivity Report Worksheet: [PetrolineaSolver.xls]

Report Created: 07/09/03 22:37:52

Adjustable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$3	Quantidades (1000 barris) Importado	2	0	20	10	8,75
\$C\$3	Quantidades (1000 barris) Nacional	3,5	0	15	11,66666667	5

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$9	Oferta Importado Total	2	0	9	1E+30	7
\$D\$10	Oferta Nacional Total	3,5	0	6	1E+30	2,5
\$D\$6	Demanda Gasolina Total	2	20	2	0,625	0,875
\$D\$7	Demanda Gas Aviação Total	1,5	35	1,5	1,166666667	0,5
\$D\$8	Demanda Lubrificante Total	1,45	0	0,5	0,95	1E+30

Observação

Este material refere-se às notas de aula do curso EA 044 Planejamento e Análise de Sistemas de Produção da Faculdade de Engenharia Elétrica e de Computação da Unicamp. Não substitui o livro texto, as referências recomendadas e nem as aulas expositivas. Este material não pode ser reproduzido sem autorização prévia dos autores. Quando autorizado, seu uso é exclusivo para atividades de ensino e pesquisa em instituições sem fins lucrativos.

34

©DCA-FEEC-Unicamp