EA044 - Planejamento e Análise de Sistemas de Produção

Lista 4 - Modelos Lineares

Exercício 1

Uma pequena empresa, CI - Computação Inteligente LTDA, possui 3 engenheiros seniores disponíveis para trabalhar em 4 projetos nas próximas 2 semanas. Cada engenheiro possui 80 horas para compartilhar entre os projetos. A tabela abaixo fornece uma pontuação elaborada pelos gerentes da CI (0 = nulo, 100 = perfeito) para caracterizar o potencial de cada engenheiro em contribuir com cada projeto. A tabela também mostra o número de horas necessárias para cada projeto. O gerente deseja alocar os engenheiros aos projetos de forma a maximizar o potencial da equipe.

	Projeto			
Engenheiro	1	2	3	4
1	90	80	10	50
2	60	70	50	65
3	72	40	80	85
Nº de horas necessárias	70	50	85	35

- a) Formular um modelo de programação linear para alocar os engenheiros.
- b) Resolver o modelo com o software de otimização de sua preferência.

Exercício 2

A tabela abaixo mostra o consumo de energia observado durante diferentes níveis de operação de uma fábrica.

Nível	2	3	5	7
Energia	1	3	3	5

Os engenheiros da indústria desejam estimar os parâmetros α e β (não negativos) de um modelo que relaciona a energia com o nível de operação da seguinte forma:

energia =
$$\alpha + \beta \cdot \text{nível}$$

O modelo deverá minimizar a soma dos valores absolutos dos desvios entre os valores por ele previstos e os valores observados.

- a) Formular um modelo linearizado para determinar os parâmetros α e β .
- b) Resolver o modelo utilizando o software de sua preferência.
- c) Determinar, a partir da solução do item b) o valor absoluto do desvio para cada valor observado.

Exercício 3

Uma ferrovia utiliza equipes de maquinistas em escalas de trabalho que duram 5 dias sucessivos durante os 7 dias da semana, com dois dias sucessivos de descanso. Por exemplo, uma equipe poderia cobrir o trabalho de domingo a quinta, com descanso na sexta e sábado. Um total de 6 equipes deve trabalhar na segunda, terça, quarta e quinta. 10 equipes são necessárias na sexta e no sábado, 8 no domingo. Deseja-se atender estas necessidades com o menor número de equipes possível.

- a) Formular um modelo de otimização para determinar uma escala ótima de trabalho.
- b) Determinar as restrições de cobertura deste modelo.
- c) Resolver o modelo utilizando o software de sua preferência.

Exercício 4

Uma empresa de mineração explora fosfato, armazenado em pilhas $i=1,\ldots,8$, e as mistura para atender especificações de qualidade de contratos de exportação com os clientes $k=1,\ldots,25$. O lucro é de p_{ik} \$/ton. A medida crítica de qualidade do fosfato é o BPL. As pilhas contém fosfato com diferentes valores médios b_i de BPL por tonelada, cada um deles valendo a_i por tonelada, com lucro líquido de r_{ik} por tonelada, e níveis iniciais h_i de estoque. A quantidade esperada de fosfato que chegarão das minas é q_i . Cada contrato requer um mínimo de l_k e um máximo de u_k toneladas, com um mínimo de l_k e um máximo de m_k BPL médio para ser embarcada. A empresa deseja planejar a mistura e as vendas para maximizar o lucro total e o valor do estoque total final. Formular um modelo de programação linear para este propósito.

 x_{ik} = ton de fosfato da pilha i a ser embarcada para atender o contrato k g_i = estoque final da pilha i