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Abstract

Heuristic optimization algorithms seek good feasible solutions to optimization problems in circumstances where
the complexities of the problem or the limited time available for solution do not allow exact solution. Although
worst case and probabilistic analysis of algorithms have produced insight on some classic models, most of the
heuristics developed for large optimization problem must be evaluated empirically—by applying procedures to a
collection of specific instances and comparing the observed solution quality and computational burden.

This paper focuses on the methodological issues that must be confronted by researchers undertaking such
experimental evaluations of heuristics, including experimental design, sources of test instances, measures of
algorithmic performance, analysis of results, and presentation in papers and talks. The questions are difficult, and
there are no clear right answers. We seek only to highlight the main issues, present alternative ways of addressing
them under different circumstances, and caution about pitfalls to avoid.
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1. Introduction

Heuristic optimization algorithms (heuristisicsfor short) seek good feasible solutions to
optimization problems in circumstances where the complexity of the problem or the limited
time available for its solution do not allow exact solution. The formal intractability, in
the sense ofNP-hardness (Garey and Johnson, 1979), of many commonly encountered
optimization problems and the growing use of real-time control have made the development
of heuristics a major area within the field of operations research.

Unlike exact algorithms, where time-efficiency is the main measure of success, there
are two burning issues in evaluating heuristics: how fast can solutions be obtained and how
close do they come to being optimal. One body of research, beginning with Graham’s inves-
tigations of heuristics for parallel processor scheduling problems (Graham, 1969), demands
polynomially bounded time and seeks provable limits on the worst-case or maximum de-
viation of a heuristic from the optimal solution value. Another, pioneered by Karp (1977),
tries to compute the expected deviation from optimality, assuming polynomial time and a
probabilistic structure for the problem instances considered.

Both these approaches have yielded significant insights into a number of heuristics and
problems, and both have the appeal of mathematical certainty. Still, their analytical dif-
ficulty, which makes it hard to obtain results for most realistic problems and algorithms,
severely limits their range of application. Also, a worst-case result, which is by definition
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pathological, may not give meaningful information on how a heuristic will perform on
more representative instances. Stochastic analyses attempt to discount such low probabil-
ity pathologies, but very simple underlying distributions on instances usually have to be
assumed to get results.

As a consequence of these difficulties, most of the many heuristics developed for large
optimization problems are evaluatedempirically—by applying the procedures to a collec-
tion of specific instances and comparing the observed solution quality and computational
burden. While this has been done in the literature one way and another for decades, learning
by experimentation does not come as naturally to algorithm designers, who are trained in
the mathematics culture, as it does to investigators in other branches of engineering and the
sciences. It is still comparatively rare, given the large volume of literature on heuristics,
to encounter well designed computational experiments that produce real insights for either
practitioners or researchers.

There has been a long series of papers trying to set out guidelines for empirical research
on algorithms (Ahuja and Orlin, 1996; Crowder et al., 1979; Lin and Rardin, 1980; Barr
et al., 1994; Golden and Stewart, 1985; Golden et al., 1986; Greenberg, 1990; Jackson
et al., 1991; Lee et al., 1993; Hooker, 1994 and 1995; McGeogh, 1996), most implicitly
addressed to the testing of exact optimization methods. Although many of the issues that
arise are similar to those encountered in evaluating exact procedures, the nature of heuristic
optimization presents a number of unique challenges. In particular, we must often evaluate
the quality of solutions when an exact optimum, or even a credible estimate of one, is
unavailable.

Our intent with this paper is to focus squarely on empirical evaluation of heuristic
optimization methods. The questions are difficult, and there are no clear right answers.
We seek only to highlight the main issues and present a number of alternative ways
of addressing them under different circumstances, as well as a number of pitfalls to
avoid.

We begin in Section 2 by differentiating contexts within which one may perform experi-
mentation on heuristics that we think should shape how the investigation is conducted. Next,
Section 3 outlines the basic issues of computational experiment design. Sections 4 and 5
follow with detailed treatment of the two special challenges that confront heuristic investi-
gators: obtaining suitable test instances and constructing performance measures. We offer
a case study in Section 6 to to illustrate some of the issues already discussed and provide
a setting for later analysis. Sections 7 and 8 then discuss the analysis and presentation of
experimental results, including when and how we think statistical analysis can contribute.
Finally, Section 9 provides some brief conclusions.

2. Evaluation contexts

Experimental investigations of heuristics are conducted for many reasons, and the manner
in which they should be carried out depends on the context. Before beginning our discussion
of design and analysis issues, it is useful to dwell on three of the most important contextual
distinctions: research vs. development, design vs. planning vs. control applications, and the
life cycle of the problem under study.



HEURISTIC OPTIMIZATION ALGORITHMS 263

2.1. Research vs. development

Heuristics are tested for two rather distinct purposes, depending upon the goals of the
investigator.Researchtesting is primarily addressed to discovering new technologies for
existing problems or applying existing technology in creative ways to new problems. For
example, investigators may be exploring a new approach to vehicle routing or an innovative
scheme for facilities layout. The goal should be to gain insight into what works, what does
not, and why this is so, at a level where the insights are transferable beyond the domain of
the specific problem under study.

Testing in thedevelopmentphase of heuristic development is quite different. The goal
is to evolve the most efficient solution procedure for a specific environment. For example,
experimenters may be adapting a well-known machine scheduling algorithm to a particular
manufacturing setting, or refining a new piece of commercial software using a standard
library of benchmark problems from the literature. Software implementation details and
specifics of the application domain become much more central because the focus is on
how to implement the algorithm efficiently and how to tune its parameters to yield the best
results in the intended application.

Most of the algorithm testing done for scholarly publication is of the research type.
Only rarely do such experiments lead immediately to implementation or commercializa-
tion. Still, researchers too often spend an enormous amount of effort on detailed issues
of computer implementation. We agree with Hooker (1994) that excessive emphasis on
such development issues during the research phase has diverted time and effort much
better spent on the real goal of research—learning about the problem and algorithm under
study.

2.2. Design, planning and control applications

Optimization tasks differ dramatically in the time available for solution and importance of
getting the answer right. At one extreme are what we will calldesignproblems which are
solved relatively infrequently and seek answers that cover an extended time period. This
definition encompasses a host of long-term problems such as telecommunication network
design, group technology cell formation, and capacity expansion. With each, we will be
spending a lot of money and living with our mistakes for a long time to come.

With such problems, exact algorithms are almost never available for instances of realistic
size. However, there is usually a significant amount of time available to develop a good
heuristic solution, and computation times up to several hours or even days are manageable.
Time is just an order of magnitude question in evaluating corresponding algorithms. Quality
is critical.

At the other extreme arecontrol problems that must be solved frequently and involve
decisions over a relatively short horizon. Examples are shop-floor scheduling, dispatching
of automated guided vehicles in a manufacturing system, and transmitting multimedia data
through a computer network. Heuristics are usually used for these problems even if exact
algorithms are available because answers must be obtained in near real time. Algorithms
must run in fractions of a second, but quality matters somewhat less.
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Planningproblems, such as aggregate production planning, shift scheduling and meeting
timetabling, occupy an intermediate position in terms of frequency of solution and available
solution time. An answer must be obtained in a short time for it to be useful, which often
renders available exact procedures impractical. Still, quality is much more important than
time in evaluating heuristic performance.

2.3. Problem life cycle

Problems studied by optimization researchers tend to follow a certain life cycle, and a
different level of experimentation is appropriate at different stages. For many problems,
consistently being able to construct a feasible solution is a challenge in itself, and the devel-
opment of heuristics that are able to do this is a significant achievement. This was particularly
true in the early days of computers when the amount of computational experimentation that
could be performed was severely limited by available hardware and software. Early papers
on heuristics, such as those of Fisher and Thompson (1963) on dispatching rules for job
shop scheduling, King (1980) on group technology cell formation, Kilbridge and Wester
(1966) on assembly line balancing and Lin and Kernighan (1973) on the Traveling Salesman
Problem fall into this category. Presenting the logic behind the heuristic as well as one or
two illustrative applications on small data sets was quite adequate. The contribution lies in
developing a workable algorithm for a problem for which there was no practical algorithm
before.

Once a body of algorithms for the problem has emerged, simply demonstrating that an
algorithm is possible is no longer a research question. This is particularly true in the case of
metaheuristics like tabu search and simulated annealing. It is possible to adapt these methods
to a wide variety of problems relatively trivially, making the demonstration that such an
algorithm is feasible an uninteresting question. At this point in the problem life cycle, a
useful contribution must either produce an insight that was not gleaned from preceding
approaches, or exhibit an algorithm that outperforms existing methods on some relevant
performance measure. Experimentation needs to be much more comprehensive, exposing
the proposed heuristic to a wide variety of instances to test its performance under different
conditions and in comparison to other algorithms.

New models and problems are continually introduced from a variety of application do-
mains as well as more abstract research. In contrast to problems like the Traveling Sales-
man Problem, Job Shop Scheduling, the Knapsack Problem and Assembly Line Balancing,
which have been studied for decades, new problems such as scheduling of multimedia data
through distributed computer networks are continually emerging for which developing a
reliable algorithm to obtain near-optimal solutions is a challenge. The life cycle begins
anew.

3. Design of computational experiments

Throughout this paper we follow the usual convention of defining aproblemto be a generic
form such as the Traveling Salesman Problem or the Job Shop Scheduling Problem and an
instanceto be a particular numerical case. Every computational experiment involves running
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Figure 1. Basic instances vs. algorithms design.

one or more algorithms on a chosen population of instances and measuring responses. We
begin here with the easiest design issues of experimentalformator layout—what cases to
run—leaving for Sections 4 and 5 the more vexing questions of how to obtain instances and
how to measure performance when the experiment involves heuristics.

3.1. The basics: Instances vs. algorithms

We can start thinking about virtually any computational experiment by visualizing it as a
simple matrix like figure 1. Rows correspond to problem instances and columns to algo-
rithms being tested. Each cell represents the running of a particular algorithm on a specific
instance. The instances may be completely independent, but more commonly they are
grouped by structural characteristics such as size. The algorithms may be truly different
procedures, but they often include variations on a single idea.

In order to construct such a conceptual experimental design, one starts with a set of
questions about the heuristics under study that need to be answered. These are almost always
related to how different problem characteristics (e.g., problem size, number and nature
of constraints), and algorithm components or parameters (e.g., stopping criteria, search
neighborhoods and move selection) affect the performance of the heuristics being tested.
In development experiments the instances may consist of a fairly fixed list of library test
problems. Only the algorithm dimension requires careful design. In research investigations,
far more thought needs to be given to what problem characteristics should be tested. One
does not want to be misled by experimenting in only a small part of the problem domain.
Discovering how problem characteristics affect performance should also be an important
goal of the research.

Suppose, for example, that we are working on a genetic algorithms-based heuristic for
designing a telecommunications, wastewater or distribution network. An instance consists
of a graph of candidate links, each of which has a fixed cost if it is used at all, plus a variable
or congestion cost applied to flow. Specified supplies and demands detail requirements
at sources and sinks. Test instances may be characterized by any number of parameters:
number of nodes, number of links, relative size of fixed and variable costs, distribution of
source, sink and transshipment nodes, size and variability of supplies and demands, and
many more.

Combinations of any or all such parameters would be arrayed along the instance dimen-
sion of an experiment to see how the subject algorithms perform on various types of input.
But each combination is a choice of problem parameter values, not a specific instance. We
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would normally wish to test several distinct instances orreplicatessharing each parameter
combination to avoid being misled by an aberrant case.

The genetic algorithms in our example operate by maintaining a “population” of solution
vectors. At each step a randomly chosen pair of solutions is “crossed over” by cutting the
solutions at one or more randomly chosen points and reassembling two “children” with
parts taken alternately from the two “parents”. If parents are chosen in a way that favors
solutions with the best objective value, replacing current members of the population with
one or both children tends to improve the overall quality of the population.

Completely different procedures could be included in the experiment as baselines, but the
algorithms dimension of our computational experiment on genetic algorithms might consist
of nothing more than combinations of alternatives for implementing the concept. How
big should the population be? How are parents selected for crossover? How many places
should solutions be cut? How many and which children should replace members of the
current population? A complete implementation also requires a mechanism for maintaining
diversity in the population, a rule for terminating the search, and much more.

There is an extra consideration when testing on randomized procedures like genetic
algorithms. Even for a single instance and a single algorithm implementation, successive
trials can produce quite different outcomes because of the impact of random choices along
the way. Severalrunswill usually need to be made, with different random number seeds
controlling the evolution of computation, to get a sense of the robustness of the procedure.

Often experimental factors in both the instance and the algorithm dimension are run at
only two levels: “high” and “low”. This at least allows the researcher to determine whether
the factor makes a difference, but results obviously depend on what levels are chosen and
how far apart they are. Also, it is only possible to determine whether an effect is linear or
nonlinear if at least three levels are included.

In our genetic network design example, we could easily have 8 problem parameter factors,
which yields 28 = 256 combinations, even if we have only 2 levels per factor. Using 3
replicates sharing each parameter combination leads to 256·3= 768 instances. Even three
algorithm factors at 2 levels would produce 23 = 8 variations on the algorithm dimension,
and with a randomized procedure, we would run each instance-algorithm combination say
5 times with different random seeds. The result is 768·8·5= 30, 720 runs. Clearly, the
innocuous looking instance-algorithm conceptualization of figure 1 carries the potential for
an explosively growing experiment size.

If the problem of interest is a design problem such as our network example, it is likely
that the algorithms are quite time-consuming, and the execution of a large experiment with
so many cases would be impractical. Something must be done to limit experiment size.
On the other hand, for control problems such as short-term scheduling of jobs on a single
machine, a heuristic must necessarily be very fast in order to be useful. Thousands of runs
may take only a few minutes to complete.

3.2. Refining experimental designs

The approach to experimental design we have outlined above is an extremely simplistic
one, which consists of identifying all possible problem and algorithm characteristics which
might conceivably be of interest, running all combinations and inspecting the results to see
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what we can learn. We believe laying out factors in this way can be a useful basis for initial
thinking about the design of a computational experiment, but a great deal of refinement is
usually necessary before it is time to actually make the runs.

Exploratoryorpilot studies over a few well chosen instances can be invaluable in honing a
final experimental design. Such preliminary tests often demonstrate that some of the factors
initially thought important have minimal effect, or at least that there is a single best level
that can be fixed in all main runs. They may also suggest how two or more initial factors
can be collapsed into a single one without missing effects that really matter. Where two or
more levels of a factor do seem to be required, pilot testing is the main tool for deciding how
many and what levels to use in determining whether the factor has practical significance.
Finally, pilot testing give us an idea of how much variability we can expect in outcomes,
i.e., how much replication and repeat running of randomized algorithms will be necessary
to obtain reliable results.

Pilot studies also offer the opportunity to engineer many details of the algorithm dimen-
sion of an experiment as factors and levels are being refined. Candidate stopping rules, for
example, often emerge from ad hoc testing on an early list of instances. Preliminary tests
may also show that, say, the size of a genetic algorithm populationp should grow with
instance sizen. Rather than formal testing over all combinationsp andn, the algorithm
can simply be redesigned to use a varying population related parametrically to instance size
(e.g.,p = 10

√
n).

Of course there are dangers in tuning an algorithm to work well on a specific set of
instances. Results may not generalize to the full problem population. One of the advantages
of not testing over all instances from the start is that algorithm engineering at early stages
will not unduly compromise this validity of final results.

Even when the formal testing stage is reached, an experiment need not be a single
monolith.Sequentialor multipledesigns may be much more efficient. For example, a first
round of experiments might include all problem and algorithm factors at two levels with
little or no replication. Analysis of these first results may suggest that many of the problem
parameters and algorithms can be discounted in a second, focused around employing heavy
replication on a few algorithms and factors that have emerged as central to the goals of
the investigation. Similarly, if early experiments show some algorithms are simply not
competitive in certain parts of the problem domain, separate experiments can be conducted
in different problem categories, with only the appropriate algorithms tested in each.

With the cost of computer experiments being low in comparison to those on physical and
biological systems, most formal computational experiments, whether single or multiple,
run all algorithms on all instances. In the terminology of experimental design, these are
calledfull factorial designs.

There is a wide literature offractional factorialdesigns in statistics which seek to assess
the same effects without running all combinations (see for example, Montgomery (1991)). A
carefully chosen subset of factors and levels balances observations to avoid confusing main
effects. When no other technique is available to squeeze the size of an experiment within
available resources, such fractional designs can be helpful. However, many experiments
on heuristics require replication—not one but several observations in each cell. Fractional
designs are not appropriate in such settings.
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3.3. Blocking on instances

Most computational experiments, at least most research-type experiments, use problem fac-
tors like size and cost structure, rather than specific instances along the instance dimension
of figure 1. For each combination of problem factors and each algorithm, one or more
specific instances must be chosen for testing.

This poses a dilemma with regard to therandomizationstandard in statistical experimental
design which posits that all factors not explicitly controlled in the experiment should be set
randomly (a classic example is the sequence in which observations are taken). Strict appli-
cation of this randomization principle would mean different instances should be randomly
chosen for each algorithm.

Common sense argues for the alternative ofblocking, i.e., running all algorithms against
the same collection of instances. Sound theoretical support of this approach can be found
in Lin and Rardin (1980), which demonstrates that differences among algorithms are more
likely to be detected statistically if the same instances are solved by all. For these reasons,
well designed computational experiments almost always block on instances. However, some
adjustments must be made in any statistical analyses of the results to account for the effect
of blocks (see Section 7.4).

3.4. Balancing time and quality

We have noted earlier in this paper that one of the unique features of experiments on
heuristics is the need to address tradeoffs between time to obtain solutions and how near
they are to optimal. A bit of creativity is often required to deal with such tradeoffs in
experimental designs.

Consider, for example, an experiment comparing a straight-forward local search to a
much more complicated tabu or simulated annealing algorithm. The latter maintain the
neighborhood structure of the local search but allow long sequences of non-improving
moves. Not surprisingly, they can obtain much higher quality solutions at the cost of a
dramatically longer run times.

In such a circumstance the experiment can often be made fairer by allowing the simpler
method to be run more than once. That is, the local search is repeated from different
random starts until a fixed limit on run time or number of objective function evaluations
is reached. The tabu or simulated annealing algorithm is then run to the same limit, and
results compared.

The principle is that all algorithms are allowed to consume the same amount of computa-
tional resources, with distinctions being based on the quality of solutions obtained. This is
often the most effective way to fairly compare dramatically different heuristic algorithms.

4. Sources of test instances

One of the greatest practical challenges in conducting any computational experiment is as-
sembling the required test instances. No matter how carefully we structure the experimental
design, it cannot be implemented without sufficient quantities of realistic test instances that
have the size and variety to span all problem characteristics of interest.
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4.1. Real world data sets

At least in development experiments, the best test instances are probably those taken from
real application. A host of hidden patterns and relationships between the details of the
instance are automatically represented. No parametric description of problem characteristics
can go as far to assure that inferences drawn from experiments will hold up in the real
application of interest.

Sadly, it is rarely possible to obtain more than a few real data sets for any computational
experiment. Proprietary considerations lead organizations that have the data to be reluctant to
make them public, although they can sometimes be convinced if information is sanitized by
changing names and rescaling constants. Also, collecting a real data set is a time consuming
and tedious effort that may take longer than experimenters can wait. (See Fargher and Smith
(1994) for an interesting discussion of development testing of a complex heuristic using
both artificial and real data.)

Especially in the context of research-oriented experiments, real world data also have
severe methodological limitations. They necessarily represent systems now in place. Tests
on concepts not yet implemented may require information that does not exist in any actual
application. Similarly, real world data sets rarely span all problem characteristics of interest.
If experimenters are to test the limits of viability of a heuristic, they need instances of every
size and type.

4.2. Random variants of real data sets

An alternative, which we believe is too little used, expands the power of a few available real
data sources by testing on random variations. The macro-structure of the actual application
is preserved, but details are randomly changed to produce new instances.

In its most elementary form, this approach fixes structural characteristics of a known
instance and varies some of the numerical constants. For example, testing of a vehicle routing
algorithm might leave unchanged the locations of depots and customer sites. However, many
new test instances could be obtained from a single topology by randomly varying customer
demands within ranges observed in practice or artificially introducing transportation delays
along some highway links.

Ovacik and Uzsoy (1997) employed a more extensive implementation of the same idea
to develop a random problem generator for scheduling instances in a semiconductor testing
facility. Extensive data was collected from the shop floor of an actual test facility. This data
included lot sizes, due date characteristics and processing times from the actual machinery.
After statistical distributions were fit to the lot sizes, the distributions were used to generate
the lot processing times and due dates for an experiment on heuristics.

4.3. Published and online libraries

As mentioned above, problems pass through a life cycle from new ones for which there is no
viable algorithm to mature and well studied topics with sometimes hundreds of alternative
methods proposed and tested. Investigations done early in the life cycle often contain
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relatively small instances used to support the main contribution of the paper—construction
of an algorithm capable of generating at least feasible solutions where none could be had
before.

As research in these areas continues, the problem sets used by pioneering researchers
tend to coalesce into collections of classic benchmarks used by all investigators working on
the same problem. In a number of cases, early benchmarks have also been supplemented
by a variety of larger instances assembled by different researchers along the way.

With the advent of the Internet, this ad hoc collecting of benchmark problems has blos-
somed into a host of online libraries which are readily available to interested researchers.
For example, Bixby and Reinelt (1990) offer aTSPLIBof Traveling Salesman Problem test
instances on the Internet, and Demirkol, Mehta and Uzsoy (1998) do something similar for
Job Shop Scheduling problems. Such libraries are an invaluable tool in heuristic testing.
Still, they introduce subtle biases that need to be recognized.

• Although the earliest of these benchmarks were usually based on real applications, the
lineage of more recent additions is often much less clear. There is no particular reason to
believe some of the posted instances closely model any real world environment.
• Some of the test instances found in texts and pioneering papers are not intended to be

representative of applications at all. They may serve merely to put an algorithm through
all of its steps, or worse, they may be specifically designed to illustrate pathological
behavior.
• Researchers who post test instances can be expected to favor those on which their al-

gorithms have been successful. There is nothing unethical about this; the experiments
most likely to justify formal documentation and publication are those that the researcher
considers a success. Still, this may produce a hidden bias against alternative algorithms
better adapted to different problem characteristics.
• Availability of standard libraries may draw too much effort to making algorithms perform

well on the specific benchmark problems available. This blurs the distinction between
research and development studies to the deteriment of both (Hooker, 1994, 1995). Re-
search effort is better redirected to learning more about the various algorithms and how
their performance is impacted by problem characteristics.

4.4. Randomly generated instances

When none of the other sources discussed above provide an adequate supply of test in-
stances, or even when they do yield enough data sets but we wonder about hidden biases,
the remaining alternative is pure random generation. Instances are synthesized entirely
artificially, although their properties may be controlled by broad parameters and their gen-
eral form inspired by applications.

Random generation is certainly the quickest and easiest way to obtain a rich supply of
test instances, but is also the most controversial. Some critics rightly argue that testing on
casually generated random instances may seriously mislead investigators. (We will deal
with some of those pitfalls shortly.)

Harder to understand is a general hesitation among optimizers, raised in certainty of the
mathematics culture, to credit tests on synthetic data at all. If the same sort of thinking were
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applied, say in biological experimentation, medical science would still be in the Dark Ages.
Investigations there that are ultimately aimed at developing drugs or insights for the human
population almost always begin on fruit flies, mice or bacteria. This is not because results on
these laboratory models provide the most accurate indication of how things will work with
humans, but because tests on fruit flies, mice and bacteria are dramatically cheaper, quicker
and freer of ethical limitations than experiments on human subjects. Just as important, long
experience has shown that insights gleaned from tests on such laboratory models often hold
up in later trials on humans. In short, the science advances more quickly and relatively little
validity is lost. We see no reason why computational experiments should be any different.

The conveniences of randomly generated instances in computational testing of heuristics
are many:

• Problem characteristics are explicitly under the researcher’s control if the generator is
properly designed to produce instances with specified parametric characteristics (e.g.,
size, density, variability, etc.). This allows a good random generator to produce an ex-
tremely diverse population of instances, encompassing parts of the problem space that
may not be represented in available real data or library benchmarks.
• If a generator is properly documented, the characteristics of the instances it generates are

completely known to all future users. This is in contrast to many library data sets, whose
origins may be somewhat obscure.
• Once a suitable generator has been written, the supply of instances it can provide is

unlimited. Each new random seed produces a new data set with the same parametric
characteristics. This is particularly valuable in high-variance situations where researchers
need heavy replication to understand the behavior of an algorithm.
• Instances produced by random generators are extremely portable. Only the code and the

parametric input need to be known to recreate a possibly enormous data set.
• For some classic problems, generators have been developed that yield instances for which

an optimal solution is known upon completion of the generation process. (See Section 5.1
below.) With a known optimum in hand, a researcher can evaluate precisely how close
heuristics come to optimality on instances of virtually any size.

4.5. Pitfalls of random generation

The very freedom to produce data sets with arbitrary characteristics with random generators
also raises a number of interesting and potentially disturbing concerns. Are the problems
we have generated suitably difficult or representative, or is there some hidden structure
that makes them especially easy (or hard) for specific algorithms? Given that a procedure
performs well on the experimental data sets, how likely is it to perform well in another
environment?

These issues need to be addressed systematically by every researcher in the design of
random generators. Failure to do so may introduce confusion into the experimental results
which can, in extreme cases, invalidate all the results of the study and cause its authors and
subsequent researchers considerable wasted time.

One dilemma posed by the power to generate instances of any specified parametric char-
acteristics is that we have to decide what parameter values to try. Often, corresponding
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values found in real data will be unknown or undocumented. The only choice is extended
pilot testing followed by an expanded experimental design where poorly understood char-
acteristics are vaired systematically.

Another concern is that random generators do not always control what they seem to, which
leads to faulty analysis of the effects of different problem parameters. A good example is
the issue of generating precedence graphs, which are acyclic digraphs with arcs fixing what
nodes must come before what others.

A standard descriptor of a precedence graph is the density of the graph, i.e., the fraction
of all possible node pairs that actually are linked by an arc. At first sight, if we want to
generate a precedence graph with a given density, we could proceed by simply assigning
a probability to each node pair and creating an arc between nodes of that pair with the
given probability. However, Hall and Posner (1996) point out that this approach ignores
the transitivity of precedence relationships; ifA precedesB, and B precedesC, then A
implicitly precedesC. Hence, the density value suggested by the probability of having an
arc between nodes of a given pair severely underestimates the true precedence density in
the generated graph.

In our experience, the most subtle and insidious of random generation pitfalls arise from
the very randomness of the instance creation process. We can illustrate with a simple ex-
ample. Suppose we want to randomly generate instances of then-point Traveling Salesman
Problem (TSP), i.e.,n by n symmetric matrices of point-to-point distances/times/costsci, j .
Almost everyone’s first idea of how to do the generation would be something like the
following:

Fill the upper triangle of an n by n cost matrix with ci, j generated randomly(indepen-
dently and uniformly) between 0 and 20. Then complete the instance by making cj,i = ci, j

in the lower triangle and setting ci,i = ∞ along the diagonal.

Think carefully about at the instances we would produce by such a generator. Each cell
of the matrix is an independent realization of theUniform (0, 20) distribution, which has
meanµ= (20− 0)/2= 10 and standard deviationσ = (20− 0)/

√
12≈ 5.774. The length

of any feasible tour will be the sum ofn of these independent cell values. Thus, the mean
tour length will grow linearly inn asµn, and the standard deviation of tour length will
increase with

√
n asσ

√
n.

Suppose we decide to test our heuristics on really big instances from this generator, say
n = 5000 points. Tours will average 10(5000) = 50,000 in length with standard deviation
5.774

√
5000 ≈ 408. Using the central limit theorem, this means nearly every feasible

solution will have length within±3(408) of 50,000. These are hardly typical TSP’s! Almost
any random guess will yield a good solution.

The difficulty here is too much independence. Constants in a randomly generated problem
must have enough internal consistency, or correlation to present something like the same
challenge to a heuristic that a real data set would produce. In the case of our TSP’s, we
would be much better off to generate costs out of some sense of spacial distance: randomly
place points in space, and let theci, j be the implied distance from pointi to point j . Points
need not be spread uniformly—we can introduce random clusters—and distance metrics
need not be as simple as Euclidean. Still, the resultingci, j will yield much more useful test
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results because values in different cells of the matrix are correlated in something like the
way they would be in real data.

The manner in which different problem parameters are correlated with each other (or
uncorrelated) has been shown to have a critical effect on the performance of algorithms
in many other cases. For example, Coffman et al. (1988) discuss a variety of settings
where simple algorithms are asymptotically optimal with increasing size if the problem
population is sufficiently random. In processor scheduling problems, job release times and
due dates correlated so that a job which is released earlier is due earlier (agreeable release
times and due dates) render a normallyNP-Hard problem polynomially solvable (Lenstra,
1977). Hill and Reilly’s (1996b) studies of two-dimensional knapsack problems show that
instances where the objective function coefficients and constraint coefficients are correlated
in certain ways are much harder, both for exact solution algorithms and for a heuristic, than
those where these coefficients are independent. Furthermore, different types of correlation
affect different algorithms in different ways.

It seems to us that given the many difficulties of obtaining and analyzing large numbers
of problem instances based on any other source, randomly generated test problems will,
faute de mieux, be with us for a long time to come. While there are risks, both obvious and
subtle, they can be avoided to a great extent by thoughtful design of problem generators.
Test instances cannot be an incidental concern addressed only at the last stage of research.
Instead, investigators should expect to devote nearly as much time and energy to their
experimental methods as they do to the algorithms themselves.

5. Performance measurement

The choice of performance measures for experiments on heuristics necessarily involves both
solution quality and computation time. Time has actually received far more attention in the
literature than quality, due to the need to reconcile results obtained from different computers
using different hardware and software technology. Extensive discussions of factors to be
considered while evaluating computation time and the need to describe them in detail can
be found in Barr et al. (1995), Jackson et al. (1991), and Crowder et al. (1979). The arrival
on the computing scene of different parallel computing architectures has added another
dimension of complexity here, as discussed by Barr and Hickman (1993).

In this paper we have taken the position that highly accurate measurements of computation
time are required chiefly in the development stage of heuristic development, when the basic
algorithms have been designed and one is aiming at effective implementations for a specific
setting. Running time is an order-of-magnitude question in most other experiments on
heuristics. In addition, the issues in tracking CPU times differ little between exact and
approximate algorithms.

5.1. Solution quality

The real challenge is evaluating solution quality. Except in control applications, where
heuristics may still be used when orders-of-magnitude slower exact algorithms are available,
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the problems to which heuristics are addressed are almost always hard, usuallyNP-Hard.
Exponential algorithms like branch and bound may be available for tiny cases, but the
instances on which we should be using heuristics are beyond any practical hope of computing
an exact solution in the time available for experimentation. Even available bounds on optimal
solution values are not likely to be very sharp. If they were, a satisfactory branch and bound
algorithm would probably make heuristics unnecessary.

Timetabling problems, which abound in scheduling the offerings of classes in every
kind of teaching institution or large conference, illustrate what heuristic researchers usually
confront. Details vary, but most such problems are variants of Quadratic Assignment—
choosing room/time slots for each event under quadratic costs that can only be assessed
after pairs of events are scheduled. Timetabling problems are ideal targets for heuristic
research because of their wide application, intractability to exact algorithms, and
natural interchange neighborhoods for improving search. Still, there is no hope of com-
puting a guaranteed optimum on instances of even moderate size, and there are no good
lower bounds available for large instances because of the quadratic nature of the objective.

How are experimenters to evaluate heuristic solution quality on problems like these?
The truth is that there is no satisfactory answer. Still, some are better than others. The next
several subsections review the possibilities.

Exact solution of small instances: One of the most commonly used approaches is our
least favorite (except in testing high speed control heuristics). Exact optimal solutions to a
number of small instances are obtained, usually at the cost of high computation times, and
the solutions from heuristics are compared. Then, the heuristic is applied to the dramatically
larger instances of practical interest, and the performance measured on exact-solvable cases
is assumed to carry over. Put simply, we look for results where they are easy to get, and
hope they turn out to be representative.

We think there are many good reasons to doubt the underlying premise that heuristic
behavior on small instances extends to more realistic cases. First, asymptotically optimal
heuristics are known for some problems—the larger the instance becomes, the better the
chances of the heuristic producing a good solution. An extreme example is the Quadratic
Assignment Problem, which is the prototypical hard combinatorial problem at small and
medium size. Burkard and Fincke (1983) prove it becomes easy for every heuristic as the
size approaches infinity.

For small instances of any combinatorial problem, there are likely to be a limited number
of feasible solutions, which can produce erratic heuristic performance. A tabu search or a
genetic algorithm is able to search a large fraction of the solution space in a short period of
time, making it very likely to find a high quality solution. Results are misleadingly good.
On the other hand, one or two wrong decisions by a constructive, one-pass heuristic may
result in a solution differing dramatically from the optimum of a small case. Outcomes are
atypically bad.

All these large and small case phenomena suggest that if algorithms are evaluated on the
basis of exactly-solvable small instances, researchers may be seriously misled. Effort spent
developing and testing the exact method for small examples would be more productively
used to find better heuristics.
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Bounds on optimal values: To an investigator schooled in discrete optimization, bounds
on the optimal solution value are a natural retreat from exact optimal values. We compute
a bound on the optimal value and compare with the solution produce by the heuristic.

The advantage of this approach is that it gives us a provable upper bound on the deviation
from optimality of the heuristic solution. Still, there are obvious disadvantages. If the bound
is loose, it is not clear how much of any measured deviation from optimal is due to the poor
performance of the heuristic and how much to the inadequacy of the bound. On the other
hand, computing tight bounds is often an intellectually complex and computationally intense
(sometimes evenNP-hard) exercise in itself. After all, if we could compute sharp bounds
easily, we could probably use branch and bound methods in the first place. As a result,
a considerable part of the investigators time and effort may be diverted to implementing
bound computations, all to more accurately assess heuristic performance.

Clearly, it is also possible to combine the last two approaches—compute optimal solutions
for small instances, compare these to the bounds, and assume the measured bound error
carries over to larger cases. This approach has the same disadvantages as generalizing
heuristic performance from results on small instances. Gaps between bound and optimum
may disappear as the number of feasible solutions explodes with instance size, or they may
become worse.

Built in optimal solutions: A number of researchers have shown how instances of classic
combinatorial problems can be randomly generated so that an optimal solution is known
upon completion of the generation process. These include Pilcher and Rardin (1992), Arthur
and Frendewey (1988), and Moscato and Norman (1998) for Traveling Salesman problems;
Krishnamurthy (1987) for Graph Partitioning problems; Khoury, Pardalos and Du (1993) for
Steiner Tree problems; and Sanchis (1994, 1995) for Vertex Packing, Maximum Clique and
other graph problems. With a known optimum in hand, a researcher can evaluate precisely
how close heuristics come to optimal on instances of arbitrary size.

Obviously, randomly generated instances with known optimal solutions must contain
hidden structure that assures optimality of the reported solution. For example, the Pilcher
and Rardin generators use polyhedral combinatorics, constructing a solution that is linear-
programming-optimal over the original model plus a collection of randomly selected extra
linear constraints.

To see the idea, suppose the problem of interest can be written as the integer linear
program

min cx

s.t. Ax = b

x ≥ 0 and integer

and that a large family of other valid inequalities

Gx ≥ h

are known to hold for every integer-feasible solution. Such families have been documented
for many classic combinatorial problems, e.g., Gr¨otschel and Padberg (1979, 1985) for the
Symmetric Traveling Salesman Problem.
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We construct an instance with a built in optimum as follows:

1. Randomly generate constraint coefficientsA andb, along with an integer feasible solu-
tion x∗

2. Randomly select a samplēGx ≥ h̄ of the valid inequalities, being careful to include
only ones satisfied as equality atx∗

3. Randomly generate nonnegative dual multipliersu≥ 0 on the main constraints,v≥ 0 on
the sampled valid inequalities, andw≥ 0 on the primal variables, withwj = 0 for all j
with x∗j > 0

4. Compute cost vectorc= uA + vḠ+ w
5. Discard the duals and valid inequalities before returning instance (A, b, c) with provable

optimal solutionx∗

The constructed integer solution is optimal because it is optimal in the linear-progra-
mming relaxation with the main constraints and valid inequalities. However, there is no
particular reason to believe it will be easy for heuristics. Outputs have been shown to
be valid for evaluating non-polyhedral heuristics in Pilcher and Rardin (1987), and the
full population of obtainable instances can beNP-Hard (Rardin, Tovey andPilcher, 1993;
Sanchis, 1990).

What limits wider application of these approaches to building in optimal solutions is their
deep dependence on problem-specific information. For example, the polyhedral approaches
outlined above depend on availability of both a rich class of known valid inequalities for
the problem and a procedure for sampling from among those that are active at a particular
solution. Both might be within reach for many classic combinatorial problems, but it is
unrealistic to expect such techniques to extend to more applied models.

Statistical estimation of optimal values: Combinatorial optimization problems usually
have an enormous number of feasible solutions. The idea of statistical estimation techniques
for optimal values (Klein, 1975; Dannenbring, 1977; Golden, 1977, 1978; Golden and Alt,
1979; Los and Lardinois, 1982; Derigs, 1985) is to use a sample of solutions to predict
where the true optimum may lie.

Some research attempts to work with assumed distributions of the full set of feasible so-
lution values (e.g., Boender et al., 1982), but the foundation for the most popular estimation
methods is a classic result due to Fisher and Tippett (1928) about the distribution of least
values:

The least of m random variables with a common distribution on real numbers greater
than or equal to a is, under mild assumptions, asymptotically distributed(as m→∞)
Weibull with cummulative distribution function F(z) = 1− exp(−[(z− a)/b]c)

Here, the distribution lower limita is the location parameter of theWeibulldistribution,b is
the scale parameter, andc characterizes its shape. Quite a largem is required for the result
to hold with any precision.

Optimal solution prediction methods (for minimization problems) exploit this result
by thinking of objective function values for feasible solutions to an optimization model as
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points from an objective-value distribution. Assuming we can equate the continuous random
variables of the Fisher-Tippett result with this many-valued, but discrete distribution, the
minimum of any large collection ofmsuch solution values should be approximately Weibull.
If we taken independent samples of this sort from the same instance, they can be combined
to estimate the parameters of the asymptotic distribution. In particular, they can approximate
the location parametera, which is the optimal solution value of the instance we need to
evaluate heuristic performance.

There are many alternative ways to estimate the Weibull parameters (see Zanakis, 1977,
1979; Zanakis and Mann, 1982), but satisfactory results have been obtained with a very
simple one. Letz1, z2, . . . , zn be then independent group minima, and sort them so that

z[1] ≤ z[2] ≤ · · · ≤ z[n]

Then the location parameter or optimal valuea can be estimated as

â = z[1]z[n] − (z[2])
2

z[1] + z[n] − 2z[2]
(1)

A reliable estimate of the true optimum would be valuable in itself, but Golden and Alt
(1979) introduce more certainty by computing a lower confidence limitz` which should be
less than or equal to the optimal valuez∗ with high probability. Specifically, they estimate
Weibull scale parameterb from â as

b̂ = z[b0.63n+1c] − â (2)

and then compute

z` = â− b̂ (3)

In theory, this interval should cover the optimal valuez∗ with probability approximately
(1− e−n).

A common way of obtaining the sample minimazi required in such estimates is to select
n random initial solutions to the combinatorial problem under consideration and pursue
each to a local optimum with some naive improving search. Thesen local minima, each of
which is the best of many solutions in its neighborhood, are then used as thezi . Random
starts keep thezi independent.

Many other implementations are possible. Ovacik, Rajagopalan and Uzsoy (2000) use
zi that are minima of long sequences of solutions visited by a simulated annealing heuris-
tic. Hypothesis tests establish that these sample points are approximately independent.
Ghashghai and Rardin (1998) follow an even simpler approach. The thousands of random
solutions evaluated as part of their genetic algorithms search are divided into large groups,
and group minima used as thezi .

We believe these estimation techniques have considerable promise and warrant much
more research. The effort required to compute optimal value estimates and confidence limits
is relatively modest, and the techniques offer real hope of obtaining reliable information on
optimal solution values that is independent of problem domain.
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Still, the few tests that have been published to date show rather mixed results. For example
Derig’s (1985) experiments on published Traveling Salesman Problems gave good estimates
â and confidence intervals that always covered the true optimum. However, tests in the same
study on Quadratic Assignment instances were somewhat less satisfactory. Our sample
experience in Section 6.7 is similar, showing both good and bad outcomes. Estimation must
be viewed as promising work in progress.

Best known solution: When other methods cannot be applied, or as a supplement to them,
almost every computational experiment on heuristics compares performance to the best
known feasible solution for each test instance. Sometimes, as in the case of published
benchmark libraries, the best known solution comes from other researcher’s work. Many
may have tried to solve the same instance and kept track of their best results. When this is
the case, it is not unreasonable to assume the best known solution is optimal or nearly so.

Another source of best known solutions is long runs. A local search heuristic might be
applied many times from different starts to obtain a good approximation to the optimal
value, or a continuing method like Tabu Search might be run long beyond the stopping
point that would be implemented in main experiments. Very large computation times can
be justified if they are needed only once on each instance, and long runs can usually be
obtained without many modifications in the algorithms of interest in the research.

A final way to find a best known solution is to record the best found by any of the
algorithms in the current experiment. When the design solves the same instances by many
procedures, especially when the tested methods follow fundamentally different strategies,
these best solution value encountered by any algorithm may also be close to optimal. Still,
we should be skeptical. If the instance was solved only a few times by substantially the
same method, there is real reason to doubt whether we have any real idea how good an
answer can be obtained.

5.2. Adjusted ratios

Even if a reasonable approximation to the optimal solution values of test instances can
be obtained, the results of a computational study can often be influenced by exactly how
heuristic and optimal solutions are converted into a quality measure. Usually, we wish
to form the ratio of heuristic to optimal solution values, or equivalently, the fraction error
obtained by dividing the difference between optimal and heuristic by the optimum. However,
Zemel (1981) shows that details of the computation can change the result.

In many cases, the confusion has to do with adding a constant to both the numerator and
denominator of the ratio. For example, adding a constant of 100 to every edge cost of a
Traveling Salesman Problem instance onn cities has no effect on the ranking of feasible
solutions; every solution value will be increased by the same 100n. Still, the change adds
100n to both the numerator and the denominator of the performance ratio, which makes the
two more alike and diminishes the measured error.

The cynical will see that one can achieve any given level of measured precision by simply
adding a sufficiently large constant to all test instances objectives. Often the confusion arises
from much more innocent thinking.
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Consider the problem of schedulingn jobs on a single machine to minimize total comple-
tion time subject to job arrivals over time. Each jobi has a processing timepi and becomes
available for processing at release timerri . Then for any jobi , completion time is given by

Ci = ri + pi +Wi ,

whereWi denotes the time the job spends waiting in the queue before it begins processing.
Notice that computed total completion time

∑
i Ci for any job sequence includes constant∑

i (ri + pi ). We will measure a considerably smaller percent error if we form ratios of this
inflated

∑
i Ci as opposed to the truly controllable

∑
i Wi .

Even more difficult issues arise when the objective function may have a negative value.
For example, Ovacik and Uzsoy (1997) evaluated heuristics for scheduling a semiconductor
testing facility in terms of maximum lateness

Lmax= max
i
{Ci − di }

whereCi is the completion time anddi the due date of jobi .
If due dates are sufficiently loose,Lmax can easily be negative, and heuristic-to-optimal

ratios make no sense. This anomaly can be remedied by adding a sufficiently large constant
(e.g., min{di }) to all Lmax values. But then the size of the added constant changes the
performance error measured.

Each of these ratio formation difficulties must be dealt with the in context of the particular
problem being studied. An obvious rule of thumb, however, is to be conservative: form the
ratios that will show the biggest percent error.

6. One machine scheduling case

To make some of the issues treated so far more concrete, as well as to provide a setting for
illustrating analysis methods to come, we now include a brief case example. The problem is
the scheduling of a single machine to minimize maximum lateness (completion time minus
due date) for all jobs. Jobs may be taken up in any order, but sequence-dependent setup
times add to processing times according to which job comes immediately before.

Like so many other combinatorial problems, most of what we can learn about the problem
must derive from computational experiments. Still, the single processor maximum lateness
problem without setups has been extensively examined, and earliest due date sequence
produces an optimal schedule (Pinedo, 1995). Uzsoy, Lee and Martin-Vega (1992) investi-
gate many theoretical aspects of the extension with sequence dependent setups, noting that
the problem inNP-hard in the strong sense. They also exhibit a one-pass heuristic for the
case where setup times do not exceed process times and prove it has worst case performance
3L∗ + 2dmax whereL∗ is the optimal lateness when setups are taken as zero, anddmax is
the greatest due date.

Our case will deal with instances where jobs to be processed are organized into product
groups. Setup times are applicable only upon changeovers between product groups. Recent
work by Baker (1997), Baker and Magazine (1997), and Hariri and Potts (1997) has proposed
and tested new heuristic algorithms for this setting.
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Table 1. Algorithms tested in case.

Identifier Strategy

EDD plus Earliest due date followed by local search

Multistart EDD Plus followed by repeated local search from
random starts

Tabu 6 Tabu search prohibiting change of a swapped job
for 6 moves

Tabu 12 Tabu search prohibiting change of a swapped job
for 12 moves

Tabu 24 Tabu search prohibiting change of a swapped job
for 24 moves

6.1. Heuristic algorithms

We began our thinking about algorithms with three possibilities:

• A one-pass, earliest due date (EDD) heuristic which is optimal when there are no setups.
• A local search starting from the EDD solution and making the best swap of two adjacent

jobs in the sequence until no such move improves the solution value.
• A tabu search starting from the EDD solution and paralleling the local search in adopting

the best available swap of adjacent jobs in the sequence. However, chosen moves need not
be improving, and the most recently swapped jobs are excluded from consideration for
a fixed number of moves to prevent immediate backtracking unless the forbidden move
would produce the best solution found so far.

This initial list of three strategies evolved into the five algorithms of Table 1 through a
combination of adding detail and pilot testing. First, we decided from pilot results like figure
2 to omit the pure EDD method in main testing. Its performance was much worse than all

Figure 2. Pilot results on EDD.
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competitors, and its erratic behavior confused analysis of problem parameter effects. For
example, bars in figure 2 compare average performance (percent error versus the best known
solution) on instances generated under different setup time assumptions 0 and 1. Only EDD
showed much impact.

The EDD followed by local search alternative (EDD Plus) posed a different issue. Since
it runs so quickly, it is plausible (see Section 3.4) that repeated use of the search from
random starts would do better than the tabu methods if run for the same amount of time.
We added the Multistart algorithm of Table 1 to test this idea. Local searches were restarted
from random starts until the move limit of tabu alternatives was exhausted.

The tabu strategy has many specific implementations depending on the stopping rule
employed and the number of moves a job stays on the tabu list (is forbidden to swap).
Pilot testing evolved a stopping rule of terminating after 60 times the number of jobs
moves with no improvement in the best known solution which seemed to work well in
all cases. The effect of the number of moves a job remains on the tabu list was less clear
in preliminary experimentation. Thus, three alternatives were formally tested, yielding the
three tabu variations of Table 1.

6.2. Instance generation

Although some randomly generated instances of our problem could be obtained from other
studies, there are essentially no reference benchmarks available. Thus we developed our
own random instance generator for this study.

The list of controlled parameters in the generator is detailed in Table 2. Generation begins
by choosing the process time for each of then jobs uniformly over the interval [p`, pu] and
then picking setup times uniformly between multipless̀ andsu of process time.

To avoid the tendency to have too much independence in data sets, we imposed two
structuring elements on setups. First, setup optionδ changes the process time base from
which individual setups are chosen. Withδ = 0 that base is the same midpoint of the process
time range for all jobs; individual job setup times are independent of corresponding process
times. Withδ = 1 the base is the actual process time for the job, which should introduce a
correlation.

Table 2. Parameters controlled by the random generator.

Parameter Levels

n The number of jobs Fixed= 80

pl , pu Lower and upper limits on process times Fixed= 1 and 500

sl , su Lower and upper fractions of process Fixed= .25 and .75
times for setup times

δ Setup option Fixed= 1

g Setup group fraction Levels 0.1, 0.3 and 0.9

τ Tardiness factor Levels 0.3 and 0.6

w Due date spread parameter Levels 0.5 and 2.5



282 RARDIN AND UZSOY

More important are the setup groups controlled by group fractiong. Many applications
have product groups that require the same machine setup, so that no changeover time is
needed when one member of a group is followed on the machine by another member of
the same group. Furthermore, it can be shown (Monma and Potts, 1989) that the optimal
schedule subsequence for members of any such group is EDD, which links grouping to
our selection of algorithms. Group fractiong is the number of such groups generated as a
fraction of the total number of jobs, so thatg = 1 corresponds to no grouping andg = 0
to no setups. For 0< g< 1, jobs are randomly assigned to the specified number of groups
and setup times set= 0 between members of the same group.

The other required data element for instances of our problem is due dates. They could be
chosen completely randomly, but this would be another case of too much independence and
leave due date tightness beyond our control. Proceeding instead on the assumption that due
dates should be scaled to the time work can actually be finished, we begin their generation
by computing a typicalmakespanor final completion time as

(makespan)≈ (total processing time)+√g(total average setuptime)

Here setup times are averaged over all possible predecessors and a
√

g reduction (sug-
gested by preliminary testing) is applied to account for the nonlinear saving realized with
setup groups. Then actual due dates are randomly chosen between(1− τ)(1−w/2) and
(1− τ)(1+ w/2) times the estimated makespan. Varyingτ controls the tightness of due
dates, and changingw scales their variance.

6.3. Response variable

As in most investigations of heuristics, our main interest in this experiment is how close
the algorithms come to producing an optimal schedule (percent error versus the optimal
solution value). Unfortunately, no satisfactory lower bounds are available for the problem
being investigated, and the random generator does not produce guaranteed optima.

This left us with two reasonable options from the list in Section 5.1 for approximating
the optimal solution value: statistical estimation and using the best value encountered by
any algorithm. We replied most heavily on the best known solution, but estimators (1) were
computed for comparison from local minima of the Multistart algorithm alternative.

The lateness measure of our study also illustrates the difficulty discussed in Section 5.2
of expressing solution quality ratios, or equivalently percent errors, when an objective value
can be negative. We dealt with this concern by adding the maximum due date to lateness
values in both numerator and denominator of ratios. Since no job can ever be more early
that the magnitude of its due date, this eliminates negative values. Still, resulting rations are
skewed toward 1.000 by the transformation, thus understating the percent error of heuristic
solutions.

6.4. Picking levels of problem parameters

We chose to try two problem sizes in our illustrative experiment, with numbers of jobs
n = 80 andn = 40 respectively. Also, we wanted significant variability in process times,
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Figure 3. Pilot study of spread factorw.

so their range was fixed fromp` = 1 to pu = 500. Experience with real applications in
Uzsoy et al. (1992) suggested setup times betweens̀ = .25 andsu = .75 of process.

The impacts of other parameters in Table 2 were less predictable, particularly the nu-
merical ones like tardiness and spread which have a wide array of possible values. This
is a circumstance where pilot studies are appropriate to help choose factor levels. EDD,
EDD-Plus and two variants of tabu were tested on 5 replicates each atn = 40 jobs, setup
optionδ = 0 and 1, group fractiong = 0.1 and 0.9, tardiness factorτ = 0.6, and spread
factorw = 0.5, 1.5, 2.5, 3.5.

Figure 2 shows average results for algorithms versus setup optionδ. After deciding to
delete the EDD procedure from later experiments, setup option could be fixed atδ = 1.

Figure 3 shows similar results for due date spread factorw. Results show a clear effect,
especially for the EDD algorithm, but it dissipates afterw= 2.5. Thus,w= 0.5 andw= 2.5
were chosen as the two levels to be used in the main experiment. Similar pilot testing and
experience in Ovacik et al. (1994) settled the levels of the tardiness factor atτ = 0.3 and
τ = 0.6.

The impact of setup groups was a major interest of the study and its effect was exp-
ected to be nonlinear, but pilot results were inconclusive. Thus we chose to try more
than two levels in the main experiment. Values 0.1, 0.3 and 0.9 were selected to pro-
duce equal spacing on a logarithmic scale and span the possible range from 0.0
to 1.0.

6.5. Blocking and replication

Consistent with our discussion of blocking in Section 3.3, we solved each instance by all
five algorithms of the main experiment. None of the algorithms make random choices,
but we were still confronted with a decision on how many instances to run at each com-
bination of problem factor levels. At least three such replicates are needed if results are
to give any idea of algorithm robustness, since one tells us nothing about reliability and
two gives us no clue which is more typical. Since run times were modest, on the order
of one minute or less, we chose to test ten instances at each combination of problem
characteristics.
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Table 3. Average percent errors for main experiment.

Number Group Tardiness Spread
jobs fraction factor factor EDD plus Multistart Tabu 6 Tabu 12 Tabu 24

40 0.1 0.3 0.5 20.7 0.0 16.6 11.4 16.2

2.5 11.5 11.0 6.8 0.5 7.6

0.6 0.5 18.4 0.0 15.6 10.7 14.5

2.5 11.2 3.9 7.1 1.7 6.4

0.3 0.3 0.5 16.5 0.1 12.9 7.8 15.5

2.5 34.4 34.4 13.9 0.0 18.4

0.6 0.5 24.2 0.0 20.1 14.7 20.6

2.5 16.7 16.7 11.7 0.0 14.4

0.9 0.3 0.5 10.5 7.3 7.0 0.6 7.4

2.5 1.9 1.9 0.3 0.0 0.0

0.6 0.5 10.3 1.3 6.9 1.1 7.5

2.5 53.3 53.3 5.9 2.7 46.9

80 0.1 0.3 0.5 27.2 0.0 25.4 23.8 17.4

2.5 17.7 17.7 15.5 11.5 0.0

0.6 0.5 27.0 0.0 26.1 22.7 18.5

2.5 14.9 2.0 12.6 10.9 3.6

0.3 0.3 0.5 23.0 0.0 20.8 18.3 12.0

2.5 118.7 118.7 92.1 26.0 0.0

0.6 0.5 26.4 0.0 24.7 22.0 17.7

2.5 14.3 14.3 12.2 8.3 0.0

0.9 0.3 0.5 8.4 8.4 6.0 3.0 0.1

2.5 0.0 0.0 0.0 0.0 0.0

0.6 0.5 10.2 0.0 9.3 6.9 4.0

2.5 36.3 36.3 23.2 11.3 3.8

Overall average 23.1 13.6 16.4 9.0 10.5

Overall worst 909.0 909.0 658.2 204.7 290.8

Overall best 0.0 0.0 0.0 0.0 0.0

6.6. Main experiment results

Tables 3 and 4 summarize results for our main case experiment. In all

(3g′s)(2τ ′s)(2w′s)(10 replicates) = 120 instances

were solved by each of the 5 algorithms.
Each cell of Table 3 is an average over the ten instances tried. Table 4 provides more

detail on the effects of each problem factor versus algorithms. Average errors are
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Table 4. Percent errors for problem factors versus algorithms.

EDD plus Multistart Tabu 6 Tabu 12 Tabu 24 Overall

Number jobs

40 Average 19.1 10.8 10.4 4.3 14.6 11.8

Worst 290.8 290.8 30.6 18.2 290.8 290.8

Best 0.0 0.0 0.0 0.0 0.0 0.0

80 Average 27.0 16.5 22.3 13.7 6.4 17.2

Worst 909.0 909.0 658.2 204.7 34.7 909.0

Best 0.0 0.0 0.0 0.0 0.0 0.0

Group fraction

0.1 Average 18.6 4.3 15.7 11.6 10.5 12.2

Worst 34.2 34.2 31.3 28.0 22.4 34.2

Best 0.0 0.0 0.0 0.0 0.0 0.0

0.3 Average 34.3 23.0 26.1 12.1 12.3 21.6

Worst 909.0 909.0 658.2 204.7 65.2 909.0

Best 0.0 0.0 0.0 0.0 0.0 0.0

0.9 Average 16.4 13.6 7.3 3.2 8.7 9.8

Worst 290.8 290.8 112.4 72.9 290.8 290.8

Best 0.0 0.0 0.0 0.0 0.0 0.0

Tardiness factor

0.3 Average 24.2 16.6 18.1 8.6 7.9 15.1

Worst 909.0 909.0 658.2 204.7 65.2 909.0

Best 0.0 0.0 0.0 0.0 0.0 0.0

0.6 Average 21.9 10.7 14.6 9.4 13.2 14.0

Worst 290.8 290.8 112.4 72.9 290.8 290.8

Best 0.0 0.0 0.0 0.0 0.0 0.0

Spread factor

0.5 Average 18.6 1.4 16.0 11.9 12.6 12.1

Worst 31.5 11.4 31.1 28.0 26.0 31.5

Best 5.1 0.0 1.0 0.0 0.0 0.0

2.5 Average 27.6 25.9 16.8 6.1 8.4 16.9

Worst 909.0 909.0 658.2 204.7 290.8 909.8

Best 0.0 0.0 0.0 0.0 0.0 0.0

provided for each level of each problem factor, both overall and by algorithm. The sin-
gle worst and best performance observed on any instance is also given for each com-
bination. Most of the rest of this paper will focus on analyzing and presenting such
results.
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Figure 4. Comparison of estimated and best found solution values.

6.7. Estimated optimal values

The repeated local minima produced by the Multistart algorithm in our experiment afford
an opportunity to test Golden-Alt optimal solution value estimators of equation (1). Figure
4 arrays results for the 240 instances, comparing best found and estimated optimal values.

The large number of points near the diagonal in figure 4 demonstrates promise. For these
instances, the estimate was very close to the best solution found. Of course, the best solution
found is only an upper bound on a true optimum.

Unfortunately, many of the points in figure 4 fall above the diagonal, indicating instances
for which the estimated optimal value was not even as small as the best known solution,
which may itself be higher than the true optimal value. These results certainly raise concerns
about the hazards of estimating optimal values.

We conjecture that a part of the difficulties may be a consequence of our problem having a
minimax rather than a minisum objective. All prior tests of the estimators with which we are
familiar dealt with the minisum form. Minimax problems may be more problematic because
it is common that large numbers of solutions have exactly the same objective value. Thus
underlying assumptions that the distribution of optimal values is essentially continuous may
not hold. (See Garfinkel and Gilbert (1978) for some evidence.)

7. Analysis

After one or more computational experiments have been conducted, the typical researcher
is confronted with a daunting array of numbers—performance measures computed while
solving a usually large number of instances by a variety of algorithms. Now what?
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We think it is useful to distinguish two stages of the processing that must follow.Analysis,
the stage we consider in this section, is highly exploratory. Guesses and false starts are fine;
pages are unlimited. We seek only to discover as much as we can about the stories the
numbers have to tell while taking precautions to be sure we are not deceived by apparent
phenomena that may not prove real.

Thepresentationstage, which is the topic of Section 8, aims to illuminate and assess the
importance of major results in a concise way suitable for reporting and publication. Details
matter; balance and completeness are essential.

7.1. Randomness in experiments on heuristics

Statistics, as opposed to statistical methods, are nothing more than aggregate numbers that
summarize the central tendencies and variability of sets of numbers. If, for example, we are
testing a variety of (nonrandom) heuristics on a fixed set of benchmark instances, we might
calculate the average and standard deviation of the resulting measures of solution quality
for each algorithm to help compare performance.

Notice that there is no error in these statistics. The population of instances is fixed, and
we have data for all its members. There might be some measurement error in solution times,
which can vary with the competing load on the computer, but for the solution quality mea-
sures central to research on heuristics, results would be unchanged if we ran the algorithms
again on the same instances. None of the parts of statistical methods addressed to sampling
uncertainty are either needed or appropriate to analyze our results.

When does uncertainty have to be confronted in analyzing computational experiments:
whenever results can be viewed as a random sample from a much larger, often essentially
infinite population. Without being able to test the whole population, we can benefit from
statistical methods to get an idea how much the results we have can be trusted.

Such randomness definitely arises (i) when instances are produced by a random genera-
tor, and/or (ii) when algorithms make random decisions as they search. In our case study,
for example, results for the 10 instances tested at each level of the problem factors con-
stitute a random sample of the population of outcomes that could arise as we change the
random number seeds. Similarly, any collection of measured performances on a given in-
stance by genetic or simulated annealing algorithms, which make random decisions at each
step, are only a sample of the infinite population of outcomes for each algorithm-instance
combination.

The notion of a sample can sometimes be stretched to encompass data sets taken from
real application. If the instances were collected in a sufficiently random way, we might be
willing to assume they constitute a random sample of all possible inputs. Still, statistical
methods that account for randomness have to be applied cautiously in such cases because
any biases in the sampling are likely to be reflected in the results.

7.2. Statistical vs. practical significance

When computational results can be taken as a random sample from a larger population, any
analysis must be alert to the possibility that apparent effects in the results are nothing more
than statistical accidents. Could another sample or a bigger one yield different conclusions?
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This is the issue ofstatistical significance—determining whether an observed affect is
likely to be due to sampling error. Most authors who have written recently on computational
experimentation (Hooker, 1994 and 1995; Golden and Stewart, 1985; Barr et al., 1995;
McGeoch, 1996) advocate more use of formal tests of statistical significance as a way of
introducing more scientific precision into empirical investigations of algorithms.

We certainly agree that a part of every analysis of data drawn from a sample should
be some assessment of whether apparent effects could be due to sampling error. Still, we
believe it is critical to keep in mind the limitations of formal tests of statistical significance.

First, every such test is built on a series of assumptions about the underlying distri-
butions and the sampling process. As we will illustrate in our discussion of some of the
more familiar methods below, such assumptions can often be questioned when dealing
with experiments on heuristics. Certainly, formal statistics cannot yield much useful ed-
ification unless they are done carefully and correctly. Researchers, especially those like
us who are much more expert in optimization than in statistical methods, are well ad-
vised to seek guidance from colleagues with more sophisticated knowledge to avoid novice
errors.

A more fundamental concern is that statistical significance is too often confused with
practical significance—whether an observed effect is large enough to matter. The tiniest
of effects can be statistically significant if enough points are sampled to make the likely
random error even tinier. That does not mean the effect is important, or even worth re-
porting in a formal presentation of experimental results. A practically significant effect
should not be claimed unless it is statistically significant, because it may be a random
accident, but a demonstration of statistical significance does not prove practical impor-
tance. Analysts must take care not to let formal statistical tests dominate their investi-
gations or substitute for their judgment and insight about the problems and algorithms
addressed.

7.3. Two-way tables of sample means

Whether or not randomness is present in experimental results, almost any analysis of heuris-
tic tests will begin by examining displays of average results like Table 3. Just by looking at
overall results we can draw a preliminary conclusion that tabu algorithms usually produce
better quality results than the others tested, although all methods do very poorly on some
instances. Similarly, Multistart does seem to improve on average over the much quicker
EDD Plus.

Two-way aggregations like Table 4 provide a first look at how various problem para-
meters affects performance. With algorithms our primary interest, each other factor is
displayed versus algorithms. We can immediately see, for example, that tardiness factor
τ seems to have little impact on average, but others make considerable difference.

Two-way tabulations also make it easy to isolate cases where algorithm effectiveness is
affected in disparate ways at different levels of some problem characteristics. For example,
we can readily conclude that the gain from multiple local searches after EDD Plus is
dramatic (18.6% to 1.4%) when due dates are similar (spreadw= 0.5) but becomes much
less pronounced with more variable due dates (w = 2.5)
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7.4. Analysis of variance (ANOVA)

Although we have already warned against relying too heavily on formal statistical methods,
there is a convenient tool for more comprehensive screening of effects that is widely available
in standard statistical software: theAnalysis of Varianceor ANOVA.We believe ANOVA
calculations can both help sort out the stories our results have to tell and provide some
protection against being misled by effects probably due to sampling error.

The underlying notion of ANOVA (see for example Montgomery, 1991) is to assume
that all the nonrandom variation in experimental observations is due to differences in mean
performance at alternative levels of the experimental factors. For example, a computational
experiment with problem parameter levelsp = 1, . . . , P and algorithmsa = 1, . . . , A
might begin by assuming responses can be expressed

ypak= µ+ τp + βa + εpak (4)

whereypak is the measured response on replicatek ∈ {1, . . . , K } of tests at levelp of the
problem factor and levela of the algorithms. Hereµ is the overall mean;τp is the incremental
effect of the problem factor at levelp assuming

∑
p τp = 0; βa is the corresponding

incremental effect of algorithma assuming
∑

a βa = 0; andεpak is the random error in
thepakobservation. (For the moment we are ignoring the issue of blocking by solving the
same instances with all algorithms.)

ANOVA proceeds by estimating each of the various means and partitioning the totalsum
of squares, or squared deviation from the sample global mean into separate parts due to
each experimental factor and to error. For example in simple model (4)

SStotal =
P∑

p=1

A∑
a=1

K∑
k=1

(ypak− ȳ···)2

= A
P∑

p=1

(ȳp.. − ȳ...)
2+ P

A∑
a=1

(ȳ.a. − ȳ...)
2

+
P∑

p=1

A∑
a=1

K∑
k=1

(ypak− ȳp.. − ȳ.a. + ȳ...)
2

= SSproblems+ SSalgorithms+ SSerror

where bars denote sample means and dots indicate the subscripts over which averages
were computed. After dividing by the number of degrees of freedom in each effect, the
resultingmean squaresindicate the relative importance of the various factors in explaining
experimental outcomes.

Besides the fact that most computational experiments will have more than one problem
parameter factor, two extensions arise in many cases. First, it is not unusual to findinterac-
tionsbetween factors. That is, the effect of say algorithma in our simple example may vary
with the level of problem factorp. Neither problem nor algorithm means by themselves tell
the whole story. Such interactions are accommodated in ANOVA model (4) by introducing
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new offsetsγpa for eachpacombination to obtain

ypak= µ+ τp + βa + γpa+ εpak (5)

with the added conventions that
∑

p γpa = 0 for eacha and
∑

a γpa = 0 for eachp.
The other extension almost always needed in analyzing experiments on heuristics is

an adjustment forblockingon problem instances. As noted in Section 3.2, there are both
common sense and theoretical reasons to test all algorithms on the same instances, which
is a form of blocking.

Blocking is accommodated in ANOVA models by introducing yet another linear term
φpk for each instancek at each problem parameter levelp. For example (5), the result is

ypak= µ+ τp + βa + γpa+ φpk+ εpak (6)

with added requirements
∑

k φpk = 0 for all p. Instancesk become a new “instance” factor
in the experiment which isnested, in the terminology of experimental design, because it
cannot be compared across levels of problem factorsp.

Up to this point in our discussion of the Analysis of Variance, we have presumed merely
that nonrandom variation is due solely to differences in means and that effects add as in
Eqs. (4)–(6). The normality and common error variance assumptions usually associated
with ANOVA come into play only when we try to assign statistical significance to whether
a particular mean square is large relative to the error mean square.

There is sometimes reason to doubt at least the equal variance assumption of ANOVA
significance testing in the heuristic experimentation context. For example, problem size is
often a factor in tests of heuristics. We have already discussed in Section 5.1 how heuristic
results can become either more consistent or more variable as size grows. Either way the
error variance is not constant over different size levels.

When researchers are determined to make formal tests of significance, but doubt the
common variance assumption, the remedy most often recommended (Montgomery, 1991;
Conover, 1980) is to transform experimental responses. One effective way to accomplish
this is usingranks, i.e., replacing the best response value by 1, the next best by 2, etc., with
duplicate ranks allowed in the case of identical responses.

In the heuristic research context of this paper, ranking would typically be based on
solution quality ratios or percents error. Results for each problem instance would be ranked
in increasing (for a minimize model) ratio sequence, with the most effective algorithm on
the instance scored 1, the next most effective given a 2, etc. Since the variation among a
sequence of consecutive integers is predictable, the effect is to stabilize the variation within
instance blocks. Then running ANOVA on the rank numbers may produce more reliable
indications of factor significance.

7.5. Exploratory analysis using ANOVA

Having reviewed the main ideas of the Analysis of Variance, we are ready to demonstrate
how we think it can be productively employed in computational experiments: helping to
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Table 5. Analysis of variance for case study.

Source DF AnovaSS MeanSquare FValue Pr>F

Alg 4 29700 7425 6.93 0.0001

Jobs 1 8576 8576 8.00 0.0048

Grpfrac 2 30852 15426 14.39 0.0001

Tardy 1 375 375 0.35 0.5541

Spread 1 7048 7048 6.58 0.0105

Inst(Jobs*Grpfrac*Tardy*Spread) 225 1411572 6273 5.85 0.0001

Alg*Jobs 4 15000 3750 3.50 0.0076

Alg*Grpfrac 8 17008 2126 1.98 0.0455

Alg*Tardy 4 4502 1125 1.05 0.3800

Alg*Spread 4 36777 9194 8.58 0.0001

Jobs*Grpfrac 2 14083 7041 6.57 0.0015

Jobs*Tardy 1 8376 8376 7.82 0.0053

Jobs*Spread 1 1512 1512 1.41 0.2351

Grpfrac*Tardy 2 40988 20494 19.12 0.0001

Grpfrac*Spread 2 22101 11050 10.31 0.0001

Tardy*Spread 1 1674 1674 1.56 0.2116

Error 936 1003134 1072

structure the exploratory, analysis phase of investigation. Table 5 displays the ANOVA for
our case study of Section 6.

Values in Table 5 assess all the main effects in the 1200 observations (240 instances
against 5 algorithms) included in our experiment, including algorithms, number of jobs,
group setup fraction, tardiness factor and spread, as well as potential two-way interactions
among all these factors. The most important information is the rightmost column which
estimates the probability that the factor has no effect. We do not have to accept these values
as exact to believe that smallest values indicate the more interesting source of variation.

Notice that an instance factor has also been included as a nested effect within all the
problem factors to account for blocking on problem instances. Such a nested factor cannot
interact with problem characteristics, because it is not comparable across different problem
levels, and we adopt the usual assumption that it is also not interacted with algorithms in
order to have an estimate of random error.

Main effects showing significance: The most obvious clues in ANOVA results are the main
experimental factors that seem to have greatest statistical significance. In Table 5 there are
several: algorithms, problem size, group fraction, and possibly due date spread. These are
the ones likely to consume most of our future analytic attention.

An indication of statistical significance is only an initial signal, not a final conclusion of
the investigation. We need to see where the effects are occurring, and whether they have
practical as well as statistical significance.



292 RARDIN AND UZSOY

Figure 5. Algorithm means bar chart.

First we might produce a simple bar chart like figure 5. Differences averaging several
percent do seem to be large enough to be practically important, but these are only means.

A different view comes from looking more closely at the 240 actual observations for
each algorithm. Figure 6 provides histograms of the frequencies of different levels of error
experienced for each of the algorithms. Multistart and the last two tabus stand out, but it is
much less clear which we would prefer.

Negligible effects: For factors not involved in significant interactions, the next thing we
can tell from ANOVA results is whether they seem to be negligible. A low level of factor
significance suggests differences among the various levels are not even statistically dis-
tinguishable, let alone practically important. Any factors falling into this category can be
aggregated (summed over) to simplify later presentation.

In our experiment of Table 5, the tardiness factor regulating tightness of due dates seems
to have little importance. Before neglecting tardiness altogether, however, it might be ap-
propriate to take a look at a frequency plot like figure 6.

Figure 6. Algorithm error histograms.
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Figure 7. Graphical investigation of an interaction.

Interactions: One of the most useful sources of information in an ANOVA like Table 5 is
the interactions which mean the impact of a first factor depends on the level of the second.
The ANOVA setting, which makes it easy to estimate and examine such interactions, helps
us to avoid overlooking phenomena that could easily be lost in a display of means like
Table 3.

Table 5 lists several interactions that seem to be important, and each should be examined.
Again, this is often best done graphically. Figure 7 illustrates two most obvious choices.
The first compares results in bars, and the second in lines. Both show the impact of spread
is quite different for some algorithms than others. Multistart does best when spread is small
(due dates are similar). The tabu algorithms seem to prefer highly variable due dates.

7.6. Comparison of means

If there are only two levels of an experimental factor and an ANOVA on original or
transformed responses shows the factor relatively significant, the two levels probably have
distinguishable means. But what if there are three or more levels, as for example, is usu-
ally the case with the algorithms dimension of a computational experiment? An indication
of factor significance merely says something is going on that does not seem to be due to
chance. What we really want to know is which means are distinct, e.g., which algorithms
are distinguishable from which others.

Graphic analysis like figures 5 and 6 can provide insight, but there is a standard extension
of ANOVA, Duncan’s Multiple Range Test, that adds statistical precision. As with all
ANOVA tools it is an element of most commercial statistical software.
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Table 6. Duncan’s multiple range output for case study.

Duncan Grouping Mean N Algorithm

A 23.066 240 EDD Plus

B 16.371 240 Tabu 6

C B 13.638 240 Multistart

C B 10.523 240 Tabu 24

C 8.993 240 Tabu 12

The Duncan output for the algorithms factor in our experiment is displayed in Table 6.
The results show that the EDD-Plus mean performance can be distinguished from the others,
and the best tabu (list length 12) from the worst (length 6). Otherwise, differences seem to
be within the noise of random variation.

Being built on ANOVA’s normality and common variance assumptions, Duncan’s test
should probably not be taken as definitive in an exploration of computational experiment
results. Still, the test is more precise than pairwise analyses because it explicitly accounts
for simultaneous comparisons of several sample means. The consequence is that effects are
more likely to be seen as indistinguishable, which is probably wise in experiments where
the underlying assumptions are somewhat in doubt.

Goldsman and Nelson (1998) develop a whole series of alternative methods for comparing
means from Monte Carlo simulation experiments working outside the ANOVA context.
Unlike the Duncan goal of just determining which means are distinct, they try to pick the
best of several alternatives, or at least a subset containing the best, based on experimental
results.

These methods can accommodate blocking on problem instances (common random num-
bers in the simulation context), so they could be employed to say pick the best of several
algorithms based on results for a collection of instances solved by all procedures. Unfortu-
nately, they explicitly assume that all results for each algorithm are drawn from a common
probability distribution. This limits their application in the heuristic testing context to identi-
fying the best algorithm under a particular combination of problem parameter factors rather
than the best overall.

7.7. Exploring time quality tradeoffs

To this point our discussion of exploratory analysis has presumed the main interest is
solution quality—how close the heuristics come to optimal. However, tradeoffs between
solution time and solution quality are sometimes relevant, especially when some of the
subject algorithms run dramatically more rapidly than others (see Section 3.4).

Figure 8 illustrates the simple graphic display we find most instructive in studying such
behavior. The horizontal axis is time, or equivalently, objective function evaluations. The
vertical is solution value. A plot line tracks the sequence of objective function values visited
as the search proceeds. In this example, which is one of the tabu searches in our case, we
can clearly see how the algorithm wanders, but continues to find better and better solutions.
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Figure 8. Plotting time quality tradeoffs.

The example in figure 8 displays only one search of one particular instance. However,
multiple algorithms can easily be included if different line symbols are used. Also, multiple
instances can be collected in a single graph if we standardize by making the vertical axis
the ratio of current to optimal solution value.

8. Presentation of results

Unlike the highly exploratory analysis phase of examining experimental results, the presen-
tation stage must get right to the point. Time and pages do not allow endless digressions,
and we want significant findings to be communicated clearly.

8.1. Documentation and reproducibility

One unexciting but necessary part of every presentation should be background on how
the experiment was conducted. It is essential that enough information be provided for a
reader/listener to independently judge whether the experiment was conducted correctly and
results are to be believed.

Great controversy has raged over how detailed such background needs to be. Standards
proposed by Crowder, Dembo and Mulvey (1978), and later by Jackson et al. (1991), call
for great precision about the computer environment in which the experiment was conducted
and similar details that might affect performance. Others argue for a less formal discussion
like our Section 6 (with some of the tutorial elements deleted).

At the heart of the controversy is the question ofreproducibility. Should we demand that
enough detail be provided for another researcher to reproduce the results presented in a
published computational study?
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We are inclined to say both “yes” and “no”. There is no reason for published reports to
include all the detail needed to reproduce a study. Still, those details should be documented
somewhere. A working paper, a research memorandum, or a graduate thesis should have
all the details needed to recover results. This means, for example,

• Results for every individual run, even though only summaries and averages may be
published
• Details on every instance tested, either in the form of the actual data sets or of the

parameter settings (including random number seeds) used in random instance generation
• Specification of what options, tolerances and other controls of algorithms were employed

in experimentation
• Computer codes for both random instance generation and all tested algorithms

Some of these detail items may very well be proprietary, so we are not demanding that
they be made public. But we do support the Crowder et al. (1978) minimum standard that
at least the researchers themselves should be able to replicate the results.

We would also advocate at least including some comprehensive tabulation like Table 3
in the published report of the experiment. Discussion may quickly lead to discounting of
the factors that have proved uninteresting, and some averaging has already been performed.
Still, the reader is entitled to see as many details as can be captured in one or two summary
tables before results are narrowed too much.

8.2. Table and figure readability

With most tables and graphs included in a report of empirical research, investigators will
be using every idea they can come up with to get more information into limited space. Too
often, readability suffers.

To illustrate, we invite the reader to compare our Table 3 with bad example Table 7. Some
of the common flaws the latter illustrates include the following:

• Tiny print. Especially when a table is going to be used in an oral presentation, it is
abundantly obvious that the numbers must be large enough to be read. Too often the
quest to include more and more results leads to a vanishing font size.
• Cryptic titling. Far too frequently labels in tables and graphs are so cryptic that they cannot

be understood without either a code book or constant reference back to the preceding
text. Why not keep them as self-explanatory as possible? A good rule is that exhibits
should be able to stand alone, independent of the surrounding text.
• Lack of highlighting. Not all numbers in an exhibit are of equal importance, and modern

spreadsheets offer many tools for focusing on the most significant.

8.3. Significant digits

The bad example of Table 7 also illustrates another flaw often encountered when resear-
chers do not think enough about their exhibits: meaningless digits. Modern calculators
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Table 7. Bad example of a large table of results.

n g τ w A1 A2 A3 A4 A5

40 0.1 0.3 0.5 0.20660502 0 0.166305605 0.113796015 0.161847745

2.5 0.114575438 0.109884701 0.067820095 0.004981718 0.075661086

0.6 0.5 0.183687679 0 0.155879886 0.107167513 0.144702577

2.5 0.111863398 0.039172852 0.071041119 0.016784564 0.064287894

0.3 0.3 0.5 0.165178582 0.001061966 0.12898659 0.077529698 0.155110865

2.5 0.343673654 0.343673654 0.138760641 0 0.18420094

0.6 0.5 0.242220079 0 0.20128551 0.146797204 0.205816344

2.5 0.166634557 0.166634557 0.116904669 0 0.144438247

0.9 0.3 0.5 0.104667556 0.072595897 0.070278664 0.005824373 0.074009393

2.5 0.019031543 0.019031543 0.003256142 0 0.000204499

0.6 0.5 0.103421393 0.013312008 0.069346525 0.010594223 0.075072388

2.5 0.533276251 0.533276251 0.059187526 0.026848865 0.468598607

80 0.1 0.3 0.5 0.271848878 0 0.254081079 0.23794587 0.173537096

2.5 0.176902243 0.176902243 0.155389401 0.115310772 0

0.6 0.5 0.269993431 0 0.260633789 0.226987261 0.185020519

2.5 0.148636471 0.020357532 0.12613682 0.108566216 0.36446661

0.3 0.3 0.5 0.230256466 0 0.208331871 0.182938675 0.120443426

2.5 1.186935702 1.186935702 0.921054089 0.260031409 0

0.6 0.5 0.26419497 0 0.247264753 0.220447992 0.176865614

2.5 0.143135805 0.143135805 0.12169825 0.082827913 0

0.9 0.3 0.5 0.083524671 0.083524671 0.059956387 0.030398271 0.001168031

2.5 0.000101215 0.000101215 0.000101215 0 0.000101215

0.6 0.5 0.101919132 0 0.092893654 0.069396146 0.040039464

2.5 0.363450146 0.363450146 0.232377383 0113188118 0.03801273

and spreadsheets love digits, lots of digits. In the interest of both readability and scientific
validity, researchers need think about the number of digits they should present.

We suggest that one of the simplest ways to focus attention on distinctions that matter,
while at the same time beginning to deal with any sampling errors, is to systematically
round such averages to a defensible number of significant digits before presenting results.

The first issue to consider ispractical significance—how much of a difference in aver-
age response would be consider important enough to investigate further. For example, if
responses are ratios of heuristic to optimal solution values (of a minimize problem), raw
averages will be numbers like 27.349682. This particular number represents about a 27.3%
error. One could argue whether another algorithm that averaged 27.2% is really any better,
but one-hundredths of a percent certainly make no practical difference. Thus we would
begin by rounding this and all other averages to at most one decimal place.

When computed averages involve random sampling, Song and Schmeiser (1994) offer a
scheme for dealing withstatistical significanceor sampling error, in a similar digit-based
manner. Their notion is elegantly simple: do not report anyrandom digits, i.e., ones that
could plausibly take on any of the ten possible values. To be more precise, they construct
an approximate confidence interval around each sample mean and eliminate the 10p digit if
the width of the confidence interval is at least 10p+1. (See Yoneda (1996) for an extension).

The easiest case is cell sample means that average only across the runs or the replicates
of a given algorithm on problems with a fixed set of characteristics. In our case of Section 6,
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that could be the heuristic errors for replicatesk = 1, . . . ,10 (different random instances)
with sayn = 80 jobs, group fractiong = 0.3, tardiness= 0.6, spreadw = 2.5, solved by
the EDD Plus algorithm. The actual values observed for that cell, which we denoteyk, are

10.0, 16.5, 17.1, 24.1, 8.8, 18.4, 17.8, 10.9, 10.7, 8.7

The sample mean and standard deviation for theseK = 10 replicates can be computed as

µ̂ = 1

K

K∑
k=1

yk = 14.3

σ̂ =
√√√√ 1

k− 1

K∑
k=1

(yk − µ̂)2 = 5.17

Thus, if we are willing to assumêµ is approximately normally distributed, elementary
statistics tells us a confidence interval that would cover the true mean approximately 95%
of the time is

µ̂± tK−1,.975
σ̂√
K
= 14.3± 3.70

wheretK−1,.975 is the classict-statistic withα = .025 andK − 1 degrees of freedom. With
10≥ 2(3.70) ≥ 1, we would conclude that all decimal places of the cell mean are random.
This average would best be reported simply as 14%.

The same idea can be applied with a bit more effort to sample means formed across cells
of the experiment, or within cells when we have both multiple instances and multiple runs.
For example, we might be interested in the mean solution quality yielded by the EDD Plus
algorithm across all problem characteristics. The difference here arises from the fact that,
if problem characteristics have any effect, the numbers being averaged are independent but
from distributions with distinct means. This makes it less straightforward to estimate the
standard deviation̂σ needed for a confidence interval.

If we are willing to assume the true error variance is the same for all observations in the
experiment, such an estimate can be obtained from the Mean Square for Error(MSE) of a
standard Analysis of Variance (see Section 7.4). Then an approximate confidence interval
is

µ̂± td fE,.975

√
MSE

N

whered fE is the number of degrees of freedom inMSE, N is the number of values averaged
in µ̂, and td fE,.975 is the usualt-statistic. For the EDD Plus average of 23.1% in Table
4, N = 240, and (from ANOVA Table 5)d fE = 936 andMSE = 1072. This produces
a confidence interval half length of 4.15 which again indicates that only whole percents
should be reported in the average.
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8.4. Reporting variability

Sample means like those of Table 3 do a good job of showing central tendencies, but nearly
every such average hides some degree of variability among the individual observations
summarized. We believe the investigator is just as obligated to report such variability in a
published summary of the experiment as he or she is to include a comprehensive table of
averages like Table 3. But how can it be done succinctly?

Table 8 illustrates the four most common alternatives for a row of our experimental
results. The first two approaches focus on the individual observations themselves. Part (a)
uses standard deviations of the numbers averaged, and part (b) presents the best and worst
single value encountered. Both alternatives still omit most of the detail. Still, we think either
is adequate in a summary of results.

Parts (c) and (d) take a different tack. Instead of merely summarizing the actual data
points observed, they attempt to depict how much sampling error may be present in the
stated average. Alternative (c) reports the standard error of the average (standard deviation
divided by

√
N), and (d) shows a confidence interval.

Methods described in the above discussion of significant digits could be used to obtain
either form when data points are a sample from a much larger distribution (see Section
7.1). Given our skepticism about formal statistics, however, we would prefer the more
straightforward presentations of parts (a) and (b), combined with rounding away random
digits.

When a result is going to be one of the main findings of the experiment, we would argue
for more. None of the methods of Table 8 can really do an adequate job of depicting the
variability. In such cases, we suggest a more detailed graph. One way to do this is the
frequency diagram of figure 6.

Table 8. Including variability in tables.

EDD Plus Multistart Tabu 6 Tabu 12 Tabu 24

(a) Standard Deviations

Sample Mean 11.5% 11.0% 6.8% 0.5% 7.6%

Standard Deviation 7.0% 7.2% 4.5% 1.6% 7.1%

(b) Ranges

Sample Mean 11.5% 11.0% 6.8% 0.5% 7.6%

Worst 26.8% 26.8% 16.1% 5.0% 22.4%

Best 0.0% 0.0% 0.0% 0.0% 0.0%

(c) Standard Errors of Means

Sample Mean 11.5% 11.0% 6.8% 0.5% 7.6%

Standard Error of Mean 2.2% 2.3% 1.4% 0.5% 2.3%

(d) Confidence Intervals

Sample Mean 11.5% 11.0% 6.8% 0.5% 7.6%

95% Confidence Interval 11.5± 5.0% 11.0± 5.1% 6.8± 3.2% 0.5± 1.1% 7.6± 5.1%
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8.5. Plots and graphs

One reason formal statistics may not be as central to presentation of experiments today as
they were in earlier times is that so many options are available in modern spreadsheets and
statistical software for displaying results graphically. We would argue that virtually every
finding in a formal presentation of experimental results should be accompanied by a graphic
display that makes it easy for readers or listeners to grasp what is being said. The whole
purpose of empirical research is to discern patterns in numerical outcomes that are clouded
by various forms of noise, and well-conceived graphic displays do more than any other
presentation form to accentuate what matters.

We have consciously aimed at using a number of different types of simple plots and graphs
through the last several sections of this paper to emphasize their effectiveness in presenting
the results of empirical studies. Line graphs are good for illustrating how a response variable
varies as a function of an experimental factor. Multiple lines can be used as in figure 7(b) to
include the effects of a second factor. Bar graphs dramatize comparisons such as the average
errors for different algorithms depicted in figure 5. An extremely useful type, which we think
has been underutilized, is the frequency histogram illustrated in figure 6. They succinctly
depict much more of the details for individual instances, and thus can reveal many effects
that are obscured when aggregate statistics like averages and standard deviations are used
alone. Scatter diagrams such as figure 4 do the same, although with less concentration and
focus.

There are a number of excellent works on presenting quantitative information in graphical
form, such as those by Tukey (1977), Tufte (1983, 1990), Jones (1996) and Wolff and
Yaeger (1993). Still, the most practical approach to developing simple graphs and tables
after running an extensive experiment is to download the results into a spreadsheet such as
Microsoft Excel, which has easy-to-use statistical and graphing tools built in. While there
are more sophisticated graphics packages available, such asDelta GraphandMathCad, the
resources inExcelshould be enough for all but the most sophisticated experimenter.

9. Conclusions

No one who has ever tried it thinks conducting empirical research on heuristics is easy, but
it cannot be avoided. In all but the most structured of cases, experimental evaluation is the
only tool available.

We do not claim to have the best answers to every challenge, or even to have listed all
the possibilities. Still, we hope we have put the emphasis where it belongs. The toughest
technical challenges are finding (or generating) suitable test instances, and assessing how
close heuristic algorithms come to optimal. No investigation can hope to produce useful
results if these matters are not addressed early and intensively.

We believe the rest of the procedures for conducting, analyzing and reporting empirical
results can usually be boiled down to fairness and common sense. Formal statistics may
help some analyses, but a well-conceived graph can do just as well. If adequate thought and
effort is devoted to understanding what the research is about, what results are hidden in the
experimental outcomes, and how these findings can be fairly and effectively communicated,
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every study can contribute something to the critical but still underdeveloped science of
heuristic algorithms.
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