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1 Introduction

Traditional optimization techniques and methods have been successfully applied for years to
solve problems with a well-defined structure/configuration, sometimes known as hard systems.
Such optimization problems are usually well formulated by crisply specific objective functions
and specific system of constraints, and solved by precise mathematics. Unfortunately, real
world situations are often not deterministic. There exists various types of uncertainties in
social, industrial and economic systems, such as randomness of occurrence of events, imprecision
and ambiguity of system data and linguistic vagueness, etc. which come from many ways[1],
including errors of measurement, deficiency in history and statistical data, insufficient theory,
incomplete knowledge expression, and the subjectivity and preference of human judgement,
etc. As pointed out by Zimmermann[2], various kinds of uncertainties can be categorized as
stochastic uncertainty and fuzziness.

Stochastic uncertainty relates to the uncertainty of occurrences of phenomena or events.
Its characteristics lie in that descriptions of information are crisp and well defined, however,
they vary in their frequency of occurrence. Systems with this type of uncertainty are the
so-called stochastic systems, which can be solved by stochastic optimization techniques using
probability theory. In some other situations, the decision-maker (DM) does not think the
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commonly-used probability distribution is always appropriate, especially when the information
is vague, relating to human language and behavior, imprecise/ambiguous system data, or when
the information could not be described and defined well due to limited knowledge and deficiency
in its understanding. Such types of uncertainty are categorized as fuzziness which can be
further classified into ambiguity or vagueness. Vagueness here is associated with the difficulty
of making sharp or precise distinctions, i.e. it deals with the situation where the information
cannot be valued sharply or cannot be described clearly in linguistic term, such as preference-
related information. This type of fuzziness is usually represented by membership function which
reflects the decision-maker’s subjectivity and preference on the objects. Ambiguity is associated
with the situation in which the choice between two or more alternatives is left unspecified, and
the occurrence of each alternative is unknown owing to deficiency in knowledge and tools.
It can be further classified into preference-based ambiguity and possibility-based ambiguity
from the viewpoint of the ways the ambiguity comes from. The latter is sometimes called
imprecision. If the ambiguity arises from the subjective knowledge or objective tools, e.g.
‘the processing time is around 2 minutes’, it is a preference-based ambiguity, and is usually
characterized by a membership function. If the ambiguity is due to incompleteness, e.g. ‘the
profit of an investment is about 2 dollars, or 1.9–2.1 dollars’, it is a possibility-based ambiguity
and is usually represented by ordinary intervals, and hence it is characterized by possibility
distribution, which reflects the possibility of occurrence of an event or an object. A system with
vague and ambiguous information is so-called a soft one in which the structure is ill-defined
and it reflects human subjectivity and ambiguity/imprecision. It cannot be formulated and
solved effectively by traditional mathematics-based optimization techniques nor probability-
based stochastic optimization approaches. However, fuzzy set theory[3,4] which was developed
by Zadeh in 1960’s and fuzzy optimization techniques[2,5] provide a useful and efficient tool for
modelling and optimizing such systems. Modelling and optimization under a fuzzy environment
is called fuzzy modelling and fuzzy optimization.

The study on the theory and methodology of the fuzzy optimization has been active since
the concept of fuzzy decision and the decision model under fuzzy environments were pro-
posed by Bellman and Zadeh in 1970’s[6]. Various models and approaches to fuzzy linear
programming[7−16], fuzzy multi-objective programming[17,18], fuzzy integer programming[19,20],
fuzzy dynamic programming[21], possibilistic linear programming[22−26] and fuzzy nonlinear
programming[27−30] have been developed over the years by many researchers. In the meantime,
fuzzy ranking[31], fuzzy set operation, sensitivity analysis[32] and fuzzy dual theory[33], as well
as the application of fuzzy optimization to practical problems also represent important topics.
Recent surveys on the advancement of the fuzzy optimization have been found in Delgado &
Verdegay[34], Fedrizzi[35], Inuiguchi[36,37], Kacprzyk[38], Luhandjula[39]. Especially the system-
atic survey on the fuzzy linear programming has been made by Rommelfanger[40]. The surveys
on other topics of fuzzy optimization like discrete fuzzy optimization and fuzzy ranking have
been conducted by Chanas[19] and Bortolan[31], respectively. The classification of uncertainties
and of uncertain programming has been made by Liu[41,42]. The latest survey on fuzzy linear
programming is provided by Inuiguchi & Ramik[36] from a practical point of view. The pos-
sibilistic linear programming is focused and its advantages and disadvantages are discussed in
comparison with stochastic programming approach using examples. There are fruitful litera-
tures and broad topics in this area, it is not easy to embrace them all in one paper, hence the
above surveys can just introduce and summarize some advancement and achievements of the
fuzzy optimization under special cases.

This paper aims to present brief summary of the theory and methods on fuzzy optimization
and tries to give readers a clear and comprehensive understanding of knowledge, from the view-
point of fuzzy modelling and fuzzy optimization, classification and formulation for the fuzzy
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optimization problems, models and some well-known methods. The importance of interpreta-
tion of the problem and formulation of optimal solution in a fuzzy sense are emphasized.

2 Fuzzy Modelling And Fuzzy Optimization

To understand and solve a complex problem under a fuzzy environment effectively, two tasks
should be accomplished, i.e. fuzzy modelling and fuzzy optimization. Fuzzy modelling aims to
build an appropriate model based upon the understanding of the problem and analysis of the
fuzzy information, whereas the fuzzy optimization aims at solving the fuzzy model ‘optimally’ by
means of optimization techniques and tools on the basis of formulation of the fuzzy information
in terms of their membership functions and/or possibility distribution functions, etc. Generally
speaking, these tasks represent two different processes, however, there are no precise boundaries
between them. The whole process for applying fuzzy optimization to solve a complex problem
can be decomposed into seven stages as follows:

S1 Understanding the problem. In this stage, the state, constraints and goals of the system,
as well as the relationships among them are understood clearly and expressed by sets.

S2 Fuzziness analysis. On the basis of understanding of the background of the problem, such
questions, like which kind of fuzzy information (elements) is involved and what the po-
sition(e.g. fuzzy goal, fuzzy system of constraints, fuzzy coefficients) it takes, as well as
the way (e.g. ambiguity/imprecision in quantity, vagueness in linguistic) in which it is
expressed, should be analyzed and summarized. In this stage the fuzzy information is
usually expressed in a semantic way.

S3 Development of fuzzy model. Based upon the sub-stages S1 and S2, an appropriate fuzzy
optimization model will be built by adopting some mathematical tools, catering for the
characteristics of the problem. There are two methods for developing fuzzy models, i.e.
using the principles of cause-and-effect and those of transition, and using ordinary equa-
tions to express the cause-and-effect relationships. During model development, sets and
logic relationships are first established and fuzzified. The optimization model may take
the form of fuzzy linear programming, fuzzy nonlinear programming, fuzzy dynamic pro-
gramming, fuzzy multi-objective programming, or possibilistic linear programming.

S4 Description and formulation of the fuzzy information. On the basis of the stage S2, the fuzzy
information including ambiguity and vagueness has been distinguished. What remains to
do is to quantify the information in terms of appropriate tools and theory using fuzzy
mathematics. In light of the nature and the ways the fuzzy information is expressed, a
membership function or a possibility distribution function can be selected to formulate
it. The membership function is subjectively determined, and preference-based, which
reflects the decision-maker’s preference on the objects. It usually applies to the situations
involving the human factor with all its vagueness of perception, subjectivity, goals and
conception, e.g. fuzzy goals with aspiration, fuzzy constraints with tolerance. Such goals
and constraints are expressed vaguely without sharp and thresholds to give the necessary
flexibility and elasticity. Nevertheless, the possibility distribution function expresses the
possibility measure of occurrence of an event or an object, and it can be constructed
in an objective or subjective way. It usually applies to the cases where ambiguity in
natural language and/or values is involved, e.g. ambiguous coefficients/parameters in the
objective function and/or the system of constraints. These coefficients are considered as
possibilistic variables restricted by a possibility distribution. The membership function
or the possibility distribution function may take a linear or non-linear form, reflecting the
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decision-maker’s preference and understanding of the problem. This substage takes care
of the transition from fuzzy modelling to fuzzy optimization.

S5 Transformation of the fuzzy optimization model into an equivalent or an approximate crisp
optimization model. It consists of three procedures, i.e. determination of types of the
optimal solution, interpretation and transformation. First of all, the type of the optimal
solution is determined, depending on the understanding of the problem and the preference
of the decision-makers. That is to say, selection of the type of the optimal solution
to a fuzzy model depends absolutely on understanding and definition of the optimal
solution in a fuzzy sense. The subsequent task is to propose an appropriate interpretation
method and some new concepts to support the understanding and definition of the optimal
solution, based on theories and principles on fuzzy mathematics,such as fuzzy ranking,
extension principle, fuzzy arithmetics, etc. The interpretation procedure is important for
the following procedures. Some well-known interpretations are reviewed in [36]. Finally,
the fuzzy model is transformed into an equivalent or approximate crisp optimization
model on the basis of the interpretation. For a fuzzy model, different forms of crisp
optimization models may be built depending on different types of the optimal solution
and interpretations applied.

S6 Solving the crisp optimization model. In light of the characteristics of the crisp optimization
model, such as linear or nonlinear; single objective or multiple objectives; decision vari-
able with continuous, discrete or mixed mode, appropriate optimization techniques and
algorithms, e.g. traditional heuristic algorithm or intelligent optimization techniques like
Genetic Algorithm (GA) [16,29,43], rule-based system approaches [44] or hybrid algorithms,
can be adopted or developed for solving the model.

S7 Validity examination. As indicated in [36], the obtained optimal/efficient solution in S6 is
not always acceptable, so there is a need to check its validity. If the solution is unreason-
able, the fuzzy modelling process and/or the subsequent optimization process should be
improved iteratively.

Among the above sub-stages, S4–S6 indicate that the basic procedure of fuzzy optimization is
to transform a fuzzy model into a deterministic/crisp optimization one, and the most important
task is how to make this transformation. During the transformation, the first thing to do
is to understand the problem and then to determine the type of optimal solution, e.g. a
deterministic solution or a fuzzy solution, according to the understanding. Then, an appropriate
interpretation and some concepts for supporting the understanding and definition of the optimal
solution are proposed, and finally a transformation approach can be developed based on the
interpretation. The selection of a particular approach to a fuzzy optimization problem depends
on several factors including the nature of the problems, decision-maker’s preference and the
ranking of the objective as well as its evaluation.

3 Classification of a Fuzzy Optimization Problem

An optimization problem consists of two fundamental elements, i.e. a goal or a utility
function and a set of feasible domains. As indicated by Dubois & Prade [44], fuzzy optimization
refers to the search for extremum of a real-valued function when the function is fuzzily valued,
and/or when the domain is fuzzily bounded. With this understanding, a fuzzy optimization
problem (FOP) can be described as follows.

Let universe X = {x} be a set of alternatives, X1 a subset or a fuzzy subset of X . The
objective/utility function is a mapping f : X1 → L(R), where L(R) is a subset or a class of
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fuzzy subsets of real value set R, the feasible domain is described by a subset or a fuzzy set
C ⊂ X , with a membership function µC(x) ∈ [0, 1], which denotes the degree of feasibility of
x. In this case, a fuzzy optimization problem may be generally expressed as (FOP)[35,38]:

f(x, r) −→ max
x∈C

(1)

where r is either a crisp constant or a fuzzy coefficient. Formula (1) means that to find an x
‘belonging’ to domain C such that f(x, r) can reach a possibly ‘maximum’, i.e. in a fuzzy sense
which can be interpreted in various ways, e.g. the way as explained by Zimmermann[45].

How to interpret the term “belonging” and “maximum” in a fuzzy sense in the formula (1)
constitutes the diversity of the FOP, which will be clarified and focused in the section. Hence,
the formula (1) is just a sketch of the FOP.

Similarly to deterministic optimization problems, in general, the FOP may be classified into
two different types, namely, fuzzy extremum problems and fuzzy mathematical programming
problems. This paper mainly discusses the fuzzy mathematical programming problems.

3.1 Classification of the fuzzy extremum problems

The fuzzy extremum problems, i.e. extremum of fuzzy function, are also known as uncon-
strained fuzzy optimization problems, in which the domain C equals X . The fuzzy extremum
problems generally can be described in the following two forms, depending on the definition of
the fuzzy function[46].

1) Fuzzy extremum based on the fuzzy function defined from a fuzzy domain to a fuzzy
domain. It has the following form:

Ỹ = f(X̃, r) −→ max / min (2)

where X̃ ⊂ X is a fuzzy set in X ; f : X → R is a classical real-valued function from the fuzzy
domain X̃ to the fuzzy domain Ỹ ⊂ R. The f(X̃, r) is a fuzzy function, hence a subset of R.

The membership function of the fuzzy function f(X̃, r) satisfies:

µ
Ỹ

(y) = sup
f(x,r)=y

µ
X̃

(x). (3)

Formula (2) means that there exists an x in the fuzzy domain X̃ of X , at which the crisp
function attains “extremum”.

2) Fuzzy extremum based on the fuzzy function defined from a crisp domain to a fuzzy
domain. It has the form as follows:

f̃(x, r) −→ max / min (4)

where X, Y are the universes, P̃ (Y ) is the set of all fuzzy sets in Y , f̃ : X → P̃ (Y ) is a fuzzy
function, defined by the membership function µ

f̃(x,r)
(y) = µ

R̃
(x, y), and µ

R̃
(x, y), ∀(x, y) ∈

X ∗ Y is the membership function of a fuzzy relation. (4) aims to find an x in X such that the

function f̃(x, r) defined by a fuzzy relation reaches “maximum” or “minimum”. The coefficients
r in the fuzzy function are usually fuzzy numbers, and the fuzziness of the function comes from
the coefficient. Hence this type of fuzzy function is denoted by f(x, r̃) in what follows for the
sake of convenience.

In any forms of the fuzzy extremum problems, the extremum of the function is not a unique,
and there are no unique relationships between the extremum of the objective function and the
notion of the optimal decision. The solution to the fuzzy extremum problem depends on the
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ways in which the extremum of the function is interpreted. Possible interpretations of the fuzzy
extremum can be found in Dubois and Prade[46]. The concepts of maximizing set[2], maximum
and minimum of fuzzy numbers and some integral methods for fuzzy ranking can be applied to
solve the fuzzy extremum problems.

3.2 Classification of the fuzzy mathematical programming problems

Fuzzy mathematical programming (FMP) problems are also known as constrained fuzzy
optimization problems. It can be generally expressed in the following forms:

f(x, r) −→ max

s.t. x ∈ C = {x ∈ X | gi(x, s)≤̃0, i = 1, 2, · · · , m}.
(5)

In this case, the domain C may be formulated as crisp system of constraints or fuzzy system
of constraints in terms of fuzzy equations, fuzzy inequalities, inequalities/equations with fuzzy
coefficients, whereas the f(x, r) may be either a crisp objective function or an objective function
with fuzzy coefficients. The goal of the problem, C0, is expressed by f(x, r) −→ max, which
may be a fuzzy goal denoted by m̃ax or a crisp one.

Recently many methods have been proposed for classifying fuzzy mathematical program-
ming. Zimmermann[47] classified the fuzzy mathematical programming into symmetric and
asymmetric models. Luhandjula[39] categorized the fuzzy mathematical programming into flex-
ible programming, fuzzy stochastic programming and mathematical programming with the
fuzzy coefficients. Inuiguchi and Ramik[36] further classified the fuzzy mathematical program-
ming into the following three categories in view of the kinds of uncertainties involved in the
problems:

• fuzzy mathematical programming with vagueness, i.e. flexible programming;

• fuzzy mathematical programming with ambiguity, i.e. possibilistic programming; and

• fuzzy mathematical programming with vagueness and ambiguity, i.e. robust program-
ming.

In authors’ opinion, the formulation and classification of the fuzzy mathematical program-
ming problems depend on what and where the fuzziness are involved. The fuzziness may emerge
in the following possible ways:

a) fuzzy goal, i.e. the goal which is expressed vaguely, and usually with an aspiration level,
and the target value of the objective function has some leeway, e.g. the target value of the
objective function f(x, r) is achieved as ’maximum’ as possibly.

b) fuzzy constraints, which represent the system of constraints with tolerances or elasticities
in terms of ≤̃, ≥̃ or =̃.

c) fuzzy coefficients in the objective function and/or the system of constraints.
From the viewpoint of the way the fuzziness emerges and the coefficients involved in the

objective function and/or the system of constraints in the problems, fuzzy mathematical pro-
gramming problems are classified into FMP with crisp coefficients and the FMP with fuzzy
coefficients, including:

FMP1-FMP with fuzzy goals C0 and fuzzy constraints C, i.e.

{
m̃ax f(x, r)
s.t. x ∈ C.

(6)
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FMP2-FMP with fuzzy constraints C, i.e.

{
max f(x, r)
s.t. x ∈ C.

(7)

FMP3-FMP with fuzzy constraints C and fuzzy coefficients in the objective function f(x, r̃),
i.e. {

max f(x, r̃)
s.t. x ∈ C.

(8)

FMP4-FMP with fuzzy goal C0 and fuzzy coefficients in the system of constraints C(x, s̃),
i.e. {

m̃ax f(x, r)
s.t. x ∈ C(x, s̃).

(9)

FMP5-FMP with fuzzy coefficients in the objective function f(x, r̃), i.e.

{
max f(x, r̃)
s.t. x ∈ C(x, s).

(10)

FMP6-FMP with fuzzy coefficients in the system of constraints C(x, s̃), i.e.

{
max f(x, r)
s.t. x ∈ C(x, s̃).

(11)

FMP7-FMP with fuzzy coefficients in the objective function f(x, r̃) and the system of con-
straints C(x, s̃). {

max f(x, r̃)
s.t. x ∈ C(x, s̃).

(12)

Here the problems FMP1, FMP3, FMP4 and FMP7 are referred to as symmetric ones, while
the FMP2, FMP5 and FMP6 as asymmetric problems, with regard to fuzziness. That means a
problem is classified as symmetric or asymmetric from the viewpoint of fuzziness involved in the
goal (or objective function) and/or the system of constraints. The symbol f(x, r̃) representing
the objective function with the fuzzy coefficients is used to distinguish from the fuzzy goal C0.
The notation C(x, s̃) is used to represent the system of constraints with the fuzzy coefficients
in order to distinguish from the fuzzy constraints C. This classification is adopted in the rest
of the paper.

The fuzzy goal and fuzzy constraints are characterized by a preference-based membership
function. In comparison with the category by Inuiguchi and Ramik[36], FMP1 and FMP2 are
in the category of flexible programming problems. The fuzzy coefficients in the objective func-
tion and in the system of constraints may be characterized by a preference-based membership
function and a possibility distribution function. When a fuzzy coefficient is formulated by a pos-
sibility distribution function, it is viewed as a possibilistic variable restricted by the possibility
distribution. In this case, FMP5, FMP6 and FMP7 are the so-called possibility programming
problems, denoted by PMP5, PMP6 and PMP7 respectively hereafter, and FMP3 and FMP4
are robust programming problems, denoted by PMP3 and PMP4 respectively.

3.3 Classification of the fuzzy linear programming problems

Owing to the simplicity of linear programming formulation and the existence of some devel-
oped software for optimization, linear programming has been an important and most frequently
applied Operations Research technique for real life problems. Since the introduction of fuzzy
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sets theory into traditional linear programming problems by Zimmermann[45] and the fuzzy
decision concept proposed by Bellman and Zadeh[6], the fuzzy linear programming (FLP) has
been developed in a number of directions with successful applications. It has been an important
area of the fuzzy optimization. Hence, classification of the fuzzy linear programming problems
is emphasized as follows. Traditional linear programming problems can be presented in the
following general form:

max cTx s.t. Ax ≤ b, x ≥ 0, (13)

where cT = (c1, c2, · · · , cn), A = (Aij)mn, b = (b1, b2, · · · , bm)T, x = (x1, x2, · · · , xn)T are benefit
coefficient vector, technical coefficient matrix, resources vector and decision variable vector,
respectively.

The formulation of a linear programming problem under fuzzy environment depends on
what and where the fuzziness is introduced. In general, fuzziness may be initiated in fuzzy
linear programming problems in the following ways:

(a) the fuzzy goal, i.e. the maximum of the linear objective function is expressed vaguely
and usually with an aspiration level, and it has flexibility, e.g. the target value of the objective
function cTx is deemed ‘maximum’ as possible and pursues an aspiration level.

(b) the fuzzy constraints, i.e. linear system of constraints expressed by fuzzy relations in
terms of fuzzy equations or/and fuzzy inequalities.

(c) the objective function with the fuzzy benefit coefficients c̃i, and

(d) the linear system of constraints with the fuzzy technical coefficients Ãij and/or fuzzy

resources/thresholds b̃i.
Based on the above cases, the fuzzy linear programming problems can be categorized as

follows.
Category I– FLP with crisp coefficients. In this type of the FLP, the goal and/or

the system of constraints is/are formulated by decision-makers in a vague and subjective way.
The goal and the system of constraints are called the fuzzy goal and the fuzzy constraints
respectively. This type of FLP includes.

FLP1-FLP with the fuzzy goals and the fuzzy constraints, i.e. the goal of the objective
function is formulated vaguely, e.g. in terms of m̃ax, and the linear system of constraints are
defined by fuzzy relations (≤̃) with tolerances, e.g. FLP as defined by Zimmermann[44].

FLP2-FLP with the fuzzy constraints, i.e. the linear system of constraints are defined by
fuzzy relation (≤̃) with tolerances.

Category II–FLP with fuzzy coefficients. In this type of the FLP, some or all of the
coefficients are ambiguous, and can usually be expressed by fuzzy numbers. This type of the
FLP comprises the backbone of a FLP, and it includes

FLP3-FLP with fuzzy constraints and fuzzy objective coefficients c̃i,
FLP4-FLP with fuzzy goal and fuzzy technical coefficients Ãi and/or the fuzzy resources/

thresholds b̃i,
FLP5-FLP with fuzzy objective coefficients, i.e. the benefit coefficients c̃i in the objective

function are fuzzy numbers,
FLP6-FLP with fuzzy technical coefficients and fuzzy thresholds, i.e. the technical coeffi-

cients Ãi and threshold b̃i are fuzzy numbers, and
FLP7-FLP with fuzzy coefficients, i.e. the benefit coefficients, technical coefficients and

resources/thresholds, are all fuzzy numbers.
The detailed formulation of the above classes of the FLP is given in [5]. In the sense

that fuzzy constraints are defined as fuzzy inequalities with tolerances, they are equivalent to
fuzzy resources/thresholds in FLP. If fuzzy coefficients are modelled by possibility distribution,
the corresponding FLP is a possibility linear programming (PLP) problem. Under this cir-
cumstance, corresponding to the classification by Inuiguchi[36], FLP1-FLP2 are the so-called
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the flexible programming, FLP3-FLP4 are the robust programming, and FLP5-FLP7 are the
possibilistic programming.

Other methods of classification of FLP can be found in [36, 39, 40]. In this paper fuzzy
linear programming is distinguished from the possibilistic linear programming.

4 Brief Summary of Solution Methods for FOP

Since the concept of the fuzzy decision was proposed by Bellman and Zadeh[6], fuzzy opti-
mization has received much attention, and various models and methods have been proposed by
many researchers. Recent surveys on fuzzy optimization techniques can be found in [34, 36, 38,
39, 40, 44], focusing on special category of the fuzzy mathematical programming. Owing to the
increasing work on the fuzzy mathematical programming, it is impossible to embrace all of the
techniques in a paper, hence we will just have a brief summary on the techniques for FMP with
vagueness and FMP with the fuzzy coefficients characterized by the membership functions.
The approaches to the possibilistic programming problems POP5–POP7 have been summa-
rized in [36]. This brief summary tries to emphasize the understanding and interpretation of
the problem and the optimal solution in a fuzzy sense.

4.1 Symmetric approaches[6,39,45,48]

Symmetric approach is an important approach to the fuzzy optimization problems, especially
for FMP1. The word “symmetric” used here comes originally from the symmetric model by
Zimmermann[45]. The symmetric approaches here cited by many researchers[39] usually refer to
the approaches proposed by Bellman and Zadeh[6], Tanaka[48] and Zimmermann[45] to FMP1
firstly, and they are then extended to represent a type of approaches to symmetric mathematical
programming models in the sense that the goals and the system of constraints involved in the
problem are dealt with in a symmetric way with regard to fuzziness. It means that the scope of
the symmetric and the asymmetric approach is made from the perspective of the ways in which
the goal and the system of constraints are treated, and not from the viewpoint of the problem
itself. The symmetric/asymmetric way in which the goals and the system of constraints are
treated is understood to be the same concept as symmetric/asymmetric model. In this sense,
the symmetric or asymmetric approach is named according to the symmetric or asymmetric
model, and not to the symmetric or asymmetric problem. Symmetric approaches based on
fuzzy decision and on the concept of non-dominated relation are summarized as follows.

4.1.1 Symmetric approaches based on the fuzzy decision[6]

This type of approaches are developed originally to deal with decision making problems
with fuzzy goals and fuzzy constraints, i.e. FMP1, based on the concept of the fuzzy decision,
as proposed by Bellman and Zadeh[6]. In the viewpoint of Bellman and Zadeh, a symmetry
between the goals and the constraints is an important feature in decision making under fuzzy
environment, and the fuzzy goals and the fuzzy constraints can be considered to play the same
roles in the problem, and hence can be dealt with symmetrically. The fuzzy decision is defined
as a fuzzy set of alternatives resulting from the intersection of the goals and the constraints. By
introducing the fuzzy decision D, the solution to FMP1 can be interpreted as the intersection
of the fuzzy goal C0 and the fuzzy constraints C, i.e. D = C0 ∩ C, where ∩ is a conjunctive
operator, which have different alternatives and different meanings in practical situations. In
terms of the membership function, the fuzzy decision can be formulated as:

µD(x) = µC0
(x)

⋂
µC(x), ∀x ∈ X, (14)
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where µC0
and µC are the membership functions of the fuzzy goals and the fuzzy constraints

respectively, and preferences are involved.
A maximizing decision x∗ is then defined to be an alternative with the highest membership

in the fuzzy decision D, i.e. µD(x∗) = maxµD(x), ∀x ∈ X.
More generally, maximizing decision x∗ can be determined by

µD(x∗) =
⋃

x∈X

µD(x). (15)

The maximizing decision x∗ is the optimal solution in a sense that it can be interpreted in
different ways, depending on the definitions of the operators ∩ and ∪. The operator ∩ may be
extended to various forms of conjunctive operators, such as minimum operator, weighted sum of
the goals and the constraints, multiplication operator, mean value operator, bounded product,
Hamacher’s min operator, etc., and ∪ can be substituted by algebraic sum, bounded sum,
Yager’s max operator[49], etc. which are summarized in [5] in detail. Among these operators,
the Max-Min operator is commonly used in practice. The selection of the operators depends
on the preference of the decision-maker and the problem-context and semantic interpretation.

This approach provides a framework for solving fuzzy optimization problems with fuzzy goals
and fuzzy constraints, and it is well known as the fundamental of decision making under a fuzzy
environment. Since then, various forms of symmetric approaches[2,15,29,45,48,50,51] have been de-
veloped by applying different combinations of the operators. Among them, Tanaka[48] extended
Bellman and Zadeh’s approach to tackle multiobjective fuzzy mathematical programming prob-
lems. The tolerance approach proposed by Zimmermann[45] is one of the most important and
practical approaches. By using piecewise linear membership functions to represent fuzzy goal
and fuzzy constraints, the original problem can then be translated into a linear programming
model. A maximizing decision among the fuzzy decision set can be achieved by solving the
linear programming. In addition, the decision-maker may capture some essential features on
other solutions in the neighborhood of the maximizing decision. Along this line, Verdegay[33]

and Chanas[52] propose parametric programming techniques to obtain the whole fuzzy decision
set and complete fuzzy decision set respectively.

Apart from FMP1, this type of approaches can also apply to the symmetric problems FMP3,
FMP4 and FMP7, in which fuzzy coefficients are characterized by membership functions. These
fuzzy coefficients are embedded into the objective function and/or the system of constraints,
and their membership functions µ

r̃
and µ

s̃
reflect the preference of the decision-maker. When

applying the symmetric approaches to these problems, the fuzzy objective function and the
fuzzy system of constraints are treated as the fuzzy goal and the fuzzy constraints respectively
in a symmetric way. Firstly, µ

f(x,̃r)
and µ

C(x,̃s)
, the membership functions of the fuzzy objective

function and the fuzzy system of constraints, can be obtained via µ
r̃

and µ
s̃

using the extension
principle, and then similar procedures can be applied by substituting µC0

and µC with µ
f(x,̃r)

and µ
C(x,̃s)

respectively. In addition, this approach can apply to the solution of asymmetric

problem FMP2. Werners [51] developed a symmetric approach to linear programming problems
with fuzzy resources by treating the goal of the problem in the same way as the fuzzy constraints
are treated.

This approach can be applied to the cases with single objective or multiple objectives, in
the forms of linearity or nonlinearity. The types of optimal solutions to these approaches can
be expressed in different forms, such as the fuzzy decision[6], maximizing decision[45,51], fuzzy
optimal solution[15,16,29,50], depending on the operators and the interpretation applied.

4.1.2 Symmetric approach based on non-dominated alternation

This approach is developed for solving FMP1, in which the fuzzy goal is expressed in a
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fuzzy utility function ϕ(x, y) : X ∗Y −→ [0, 1], and the fuzzy constraints are expressed in fuzzy
preference relations, denoted by µ : Y ∗ Y −→ [0, 1], where X and Y are a set of alternatives
and a universal set of estimates respectively based on the concept of fuzzy strict preference
relations and non-dominated alternatives[53,54]. In this case, given an alternative x ∈ X , the
function ϕ gives the corresponding utility value ϕ(x, y) in the form of a fuzzy set in Y . The
basic rationale of this approach is as follows: Firstly, ∀x̄ ∈ X, x̄ 6= x, a fuzzy strict preference
relation Rs in X is defined using the original fuzzy relation µ in Y . The membership function
µs

R(x̄, x) of Rs, representing the degree that x̄ is strictly preferred to x, is defined as follows:

µR(x̄, x) = sup
y1,y2∈Y

min{ϕ(x̄, y1), ϕ(x, y2), µ(y1, y2)}, (16)

µs
R(x̄, x) = max{0, µR(x̄, x) − µR(x, x̄)}, (17)

where µR is a fuzzy preference relation induced in X . The elements of the general scheme are
given as

e(x, C0, C) = µs
R(x̄, x), (18)

K(e(x, C0, C)) = 1 − sup
x̄∈X

µs
R(x̄, x) = µND(x), (19)

TK(x) = µND(x), (20)

where µND(x) is the degree to which x is non-dominated by any other elements x̄, e.g. for
some x such that µND(x) = α, it means that this element is dominated by other elements to a
degree not higher than α.

In this sense, the original FMP is stated as the following problem

max
x∈X

µND(x), (21)

which can be solved by transforming it to an equivalent semi-infinite programming model. The
optimal solution is understood in the sense of non-dominated alternatives.

It can be seen from the (16)–(21) that the fuzzy goal and fuzzy constraints are treated in the
same way as indicated in Bellman and Zadeh’s approach, and hence it is a symmetric approach.

4.2 Asymmetric approaches[14,39,53,55]

In contrast to the symmetric approaches, the asymmetric approaches here refer to the type of
approaches to the asymmetric mathematical model in the sense that the goals (or the objective
functions) and the system of constraints are treated in an asymmetric way with regard to the
fuzziness, i.e. only one of the two constituents is treated as fuzziness is and the counterpart
as crispness no matter what fuzziness involved in the problems. In this sense, the asymmetric
approaches can not only solve the asymmetric problem FMP2, FMP5 and FMP6, but also solve
the symmetric problems FMP1, FMP3, FMP4 and FMP7, in which the goals and the system
of constraints are treated in an asymmetric way. We first focus our attention to the approaches
to FMP1. When solving the FMP1, the asymmetric approaches treat the fuzzy goal C0 and the
fuzzy constraints C in an asymmetric way, and usually via the following asymmetric form[39]:

max
x∈C

µC0
(x), (22)

where µC0
(x) is a crisply defined compatibility function. Similarly, the other symmetric prob-

lems FMP3, FMP4 and FMP7 can be treated in the same way (22) by substituting the µC0

and/or C with µ
f(x,̃r)

and C(x, s̃) respectively. On the other hand, the asymmetric problems
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FMP2 and FMP6 have the same form as (22), and the fuzzy dual problem of FMP5 can also
be expressed in the form of (22). Hence, the approaches here for FMP1 can also be applied to
the problems FMP2–FMP7.

The problem (22) is meaningless in mathematics, and hence the optimal solution of this
problem should be understood in a fuzzy sense, which constitutes the fundamental part of the
approaches. One possible interpretation is by the concept of maximizing set, which is a fuzzy set
and reflects the compatibility of elements in the support of the feasible domain C with the fuzzy
goal C0. Other possible ways of interpretation and definition of the optimal solution include
fuzzy maximizing decision, maximum decision, fuzzy solution, α-optimal solution and fuzzy
optimal solution set. Various approaches are available depending on the possible interpretation
and the definition of the optimal solution, some of which are summarized as follows:

1) Fuzzy maximizing decision approach. According to the definition of the maximizing set,
a maximizing set M is a fuzzy set, the membership function of which reflects the compatibility
degree of the fuzzy goal C0 and the support set SC of the fuzzy feasible set C. The fuzzy
maximizing decision M is a maximizing set and can be characterized by µM (x) as follows:

µM (x) =
µC0

(x) − inf
x∈SC

µC0
(x)

sup
x∈SC

µC0
(x) − inf

x∈SC

µC0
(x)

(23)

where SC is a support set of the fuzzy set C. In comparison with the problem (22) and (2), one
can see that (22) is a special case of the fuzzy extremum problem. Hence, this approach can also
be applied to the fuzzy extremum problem (2). The fuzzy maximizing decision M is regarded
as the optimal solution in the sense of a fuzzy set, the membership function of which reflects
the compatibility degree of the fuzzy goal and the support set of the fuzzy constraints. The
fuzzy maximizing decision approaches are commonly applied to solve asymmetric problems
like FMP2, FMP6 and fuzzy extremum problems. It can also be applied to FMP5 through
transformation into its dual problem.

2) Crisp maximum decision approach. This approach originally is developed to solve asym-
metric problems, and it comes from the idea that the objective should be also fuzziness owing
to the fuzziness involved in the feasible domain. Hence, symmetric approach based on the fuzzy
decision can be also applied to (22) by regarding the fuzzy maximizing decision as the fuzzy deci-
sion. It aims to achieve the maximum degree of intersection between the fuzzy maximizing deci-
sion M and the fuzzy feasible set C. The alternatives with the highest degree in the fuzzy max-
imizing decision are interpreted as the optimal solutions, i.e. µM (x∗) = max{µM (x), | x ∈ SC}.
They are crisp solutions.

When applying the fuzzy maximizing decision approach and the crisp maximum decision
approach to solve the FMP2 and FMP6, the solution can be obtained by substituting µC0

and
C with f(x, r) and C(x, s̃) respectively.

3) Fuzzy solution approach[14,53,54,55]. This approach is applied when one wants to know
the extent to which the uncertain solution reflects the uncertainty of the problem’s setting,
especially to the asymmetric problems with respect to the fuzziness, i.e. FMP2, FMP5 and
FMP6. An important concept of the approach is the fuzzy solution which is a fuzzy set. Fuzzy
solution can be expressed in various forms depending on the formulation of the membership
function which results in various forms of the fuzzy solution approaches. Among them, Orlovski
[53,54] firstly proposed the concept of fuzzy solution to the problems (22), and two methods are
developed to formulate the fuzzy solutions denoted by Sol1 and Sol2 using an α-level cut set
of the fuzzy feasible domain and the Pareto optimal solution, respectively. The concrete forms
of the fuzzy solutions are defined by the membership functions in the form of (24) and (27)
respectively. Verdegay[55,56] investigated a fuzzy solution for fuzzy mathematical programming
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problems FLP2 and FLP5 based on the concept of α-optimal solution. The fuzzy solution is
understood as the optimal solution in the sense that it optimizes the objective function under
a preferred level set of the fuzzy constraints, i.e. α-optimal solution to the sub-problem defined
on the α-level cut set of the fuzzy domain C. Werners proposed a formulation for the fuzzy
solution to FLP2 and FLP6, and named it fuzzy set ‘decision’[2]. It is interpreted as a fuzzy
optimal solution set, which is a union of the sets of α-optimal solutions to the sub-problem,
and it has a different formulation from that of Verdegay’s. Tanaka and Asai[14] developed fuzzy
solution for fuzzy LP with fuzzy coefficients in the system of constraints using α-level cut set.
The fuzzy solution with the widest spread is understood as the optimal solution in the sense
that it satisfies the system of constraints to a given degree. In general, the fuzzy solutions can
be obtained using parametric programming techniques or multiobjective programming. The
possibility and necessity optimal solution sets[36] can take the form of fuzzy solutions. The
fuzzy solution expressed in various forms is regarded as the optimal solution in this approach.

µSol1 =

{
µC0

(x) if x ∈
⋃

k∈[0,1] V (k),

0 else.
(24)

where

V (k) = {x ∈ X | µC0
(x) = max

t∈Dk
µC0

(t)}, (25)

Dk = {x ∈ X | µC(x) ≥ k}. (26)

µSol2 =

{
µC0

(x) if x ∈ E,
0 else,

(27)

where E is a set of efficient solutions of the multiobjective programming

max
x∈X

{µC0
(x), µC(x)}.

4.3 Possibility and necessity measure-based approaches[36,57]

The symmetric and asymmetric approaches are summarized mainly on the fuzzy optimiza-
tion problems with vagueness and fuzzy coefficients characterized by membership functions.
The approaches to solving the possibilistic mathematical programming (PMP) problems can
be found in the survey[36] and the Chapter 4 in [5]. Among them, the approaches based on pos-
sibility and necessity measures are important approaches to PMP. They are briefly summarized
as follows.

As indicated in the previous section, the fuzzy coefficients in the possibilistic programming
problems are viewed as the possibilistic variables restricted by the possibility distributions.
Under this circumstance, no matter how the objective or the system of constraints with the fuzzy
coefficients is possibilistic function, its values are also ambiguous, and could not be determined
uniquely. Hence, how to formulate and how to measure these values in an appropriate way are
important constituents of the approaches to solving this category of problems. To do this, a
specific interpretation should be introduced and developed based on the possibility theory[4,57].
The possible interpretations are summarized by Inuiguchi and Ramik in a recent survey[36].
Among the interpretations, two basic concepts are the possibility measure and the necessity
measure.

Given a possibilistic variable a restricted by a fuzzy set A with a possibility distribution µA,
the possibility measure and the necessity measure, denoted by πA(B) and NA(B) respectively,
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represent the possibility degree and the necessity degree of the event that a is in the fuzzy set
B, i.e. the extent of possibility and the extent of certainty that a is in the fuzzy set B. They
are defined as follows [36]:

πA(B) = sup
a

min(µA(a), µB(a)), (28)

NA(B) = inf
a

max(1 − µA(a), µB(a)). (29)

Based on these two concepts, two possibilistic function values, or a possibilistic function value
and a real value can be ranked with an index, e.g. Pos(a ≤ g) or Nes(a ≤ g) in the sense of the
possibility degree or the certainty degree. Here the indices Pos(a ≤ g) and Nes(a ≤ g) defined
as follows indicate the degree of possibility and the degree of certainty to which the value a
restricted by the possibility distribution µA is not greater than g. Pos(a ≥ g) and Nes(a ≥ g)
can be defined and understood in a similar way. The selection of the indices depends on the
form of the goal (e.g. max or min), the inequality relations involved in the system of constraints
and the decision-maker’s attitude.

Pos(a ≤ g) = πA((−∞, g)) = sup{µA(r), r ≤ g}, (30)

Nes(a ≤ g) = NA((−∞, g)) = 1 − sup{µA(r) | r > g}. (31)

Using these indices, the possibilistic objective function and the system of constraints can be
formulated by an appropriate interpretation. This interpretation reflects the decision-maker’s
preference on the degree of possibility and certainty, and the attitude to the treatment of the
objective function and the system of constraints. From an attitude point of view, i.e. the
symmetric attitude or the asymmetric attitude to the treatment of the objective function and
the system of constraints, the approaches to solve the PMP can be classified into asymmetric
and symmetric approaches, which are introduced briefly as follows.

4.3.1 Asymmetric approaches to PMP5 & PMP6

These approaches are developed to solve the PMP5 and the PMP6, in which the fuzzy
objective function and the system of constraints are treated separately. When applying this
type of approaches, firstly define an appropriate index based on the possibility measure and the
necessity measure. The succeeding procedure is to understand the problem and try to find an
appropriate interpretation so as to transform the possibilistic programming model into a crisp
one using the concepts. Different interpretations result in various approaches to the problem.

1. Fractile approach to PMP5

The fractile approach originates from the Kataoka’s model[58] for solving stochastic pro-
gramming problems, and it can be applied to the treatment of the possibilistic objective func-
tion and the system of constraints. The two important concepts of the fractile approach are
p-possibility fractile and p-necessity fractile, which are defined as the smallest values of u sat-
isfying Pos(a ≤ u) ≥ p and Nes(a ≤ u) ≥ p respectively.

If the decision-maker has more interest in the objective function, i.e. one pursues a maximum
objective function with a high certainty, then the maximum objective function with a high
certainty can be interpreted as a p-necessity fractile in the following equivalent form:

Nes(f(x, r̃) ≥ u) ≥ p, (32)

where the p is a preferred value reflecting the decision-maker’s desire or preference on the
certainty degree of the objective function.
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In this case, PMP5 can be solved by transforming (32) into the following equivalent model:

max u
s.t. Nes(f(x, r̃) ≥ u) ≥ p,

x ∈ C(x, s).
(33)

The solution to (33) is an optimal solution to PMP5 in the sense of p-necessity fractile that
the objective function is not less than u∗ at a certainty degree with p.

2. Asymmetric approach to PMP6

Similarly, in the case where the decision-maker goes towards more to a higher degree of
satisfaction of the constraints, it can be interpreted that the problem aims to pursue a maximum
objective at a higher certainty degree of satisfying the constraints. This certainty degree is not
the one in the sense of p-necessity fractile. With this interpretation, PMP6 can be solved by
transforming it into an equivalent crisp model as follows:

max f(x, r)

s.t. Nes(C(x, s̃)) ≥ p,
(34)

where p is a preferred value reflecting the decision-maker’s preference on the certainty degree
of the system of constraints.

The solution to (34) is an optimal solution to PMP6 in the sense that the system of con-
straints are satisfied with a certainty degree not less than p.

Similarly, the objective function can be treated with p-possibility fractile, and the system of
constraints can also be treated in terms of the possibility degree, when dealing with the PMP5
and PMP6, respectively.

Apart from the fractile approach to the FMP5, the modality approach[36] can also treat the
objective function such that the decision-maker puts more emphasis on a maximum certainty
degree of which the objective function is not less than a preferred level.

4.3.2 Symmetric approaches to the PMP7

The fractile approach can not only be applied to solve asymmetric problems, i.e. the PMP5
and the PMP6, but it can also work with the symmetric problem PMP7 using an appropriate
interpretation. In some cases, the decision-maker not only pursues the objective, but also is
concerned with the satisfaction with the system of constraints. It can be interpreted that the
problem aims to pursue a maximum objective with a high possibility degree at a higher certainty
degree of satisfying the constraints. The possibility degree and the certainty degree can be un-
derstood in the way of p-possibility(necessity) fractile. Owing to various combination of the
possibility measures and the necessity measures involved in the interpretation, various symmet-
ric models and approaches can be developed to solve PMP7. For simplicity, the p-possibility
fractile and the necessity degree are used to treat the objective function and the system of
constraints respectively, while PMP7 can be solved by transforming it into the following model:

max u

s.t. P os(f(x, r̃) ≥ u) ≥ p1,

Nes(C(x, s̃)) ≥ p2,

(35)

where p1 and p2 are the preferred levels by the decision-maker.
If neither of the possibility degree nor the necessity degree is the one in the sense of p-fractile,

and the objective function is treated as in the modality approach, PMP7 can be understood in
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terms of
max p

s.t. P os(f(x, r̃) ≥ u) ≥ p,

Nes(C(x, s̃)) ≥ p,

(36)

where u is the preferred level of the objective function.

4.4 Interactive satisfying solution approach[17,59,60,61]

The interactive satisfying solution approach is an important type of approaches to the fuzzy
optimization problems, especially to fuzzy multi-objective programming problems through an
interactive fuzzy optimization procedure. The satisfying solution, compromise solution and
Pareto optimal solution are understood as the optimal solutions to these problems. With this
approach, the solution is determined step by step in an interactive process. Many procedures
of this type of approach can be found in [17, 60, 61].

4.5 Generalized approach by Angelov

The generalized approach, originally proposed by Angelov[62], is viewed as a new approach
to fuzzy optimization problems on the basis of the generalization of Bellman-Zadeh’s concept[6].
It directly solves the fuzzy optimization problems through a parametric generalization of inter-
section of fuzzy sets and a generalized defuzzification procedure called BADD[63] without the
step of transforming the model into a crisp one. It can be outlined as follows.

Step 1 Specifying α and β, where α ∈ [0,∞) reflects the credibility of every fuzzy solution,
and β ∈ [0,∞) is the degree of strength of the flexible conjunction.

Step 2 Construction of fuzzy decision D as

µD(x) =
µC0

(x)µC(x)

β + (1 − β)(µC0
(x) + µC(x) − µC0

(x)µC(x))
. (37)

Step 3 Determination of a crisp solution x0 as

x0 =

N∑

j=1

µα
Dj

(xj)
∑N

i=1 µα
Di

(xi)
xj , N = Card(x). (38)

With these procedures, a family of parametric crisp solutions of the FOP can be obtained,
via the variations of α and β; whereas in Bellman-Zadeh’s method, the decision with maximal
degree of membership is taken. In this sense, Bellman-Zade’s approach can be considered as a
special case of this approach. The fuzzy solutions and the crisp solutions can be understood as
the optimal solution to the FOP.

4.6 Fuzzy genetic algorithm

Buckley[64] proposes a fuzzy genetic algorithm to solve the following type of fuzzy maximum
problems approximately

max F (X̃), (39)

where X̃ is any type of fuzzy subset in [0, M ], M > 0 and F is a crisply defined map.
The fundamental of the fuzzy genetic algorithm is that, first of all, define a measurement

function m(F (ỹ)) = θ; and then discretize X̃, i.e.

X̃ = (x0, x1, x2, · · · , xN ), xi = µ
X̃

(zi)
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zi = i ∗ M/N, i = 0, 1, 2, · · · , N.

Under this circumstance, the original fuzzy optimization problem (39) may be stated as how to
determine xi, i = 0, 1, 2, · · · , N such that m(f(x̃)) = θ → max, to which a Genetic Algorithm
can be applied, and an approximate optimal solution can be achieved.

4.7 Genetic-based fuzzy optimal solution method

Based on the method proposed by Zimmermann[45], a genetic-based fuzzy optimal solution
([15, 16, 29, 50]) is interpreted as the neighboring domain of an optimal solution, in which every
solution is acceptable, i.e. it is an optimal solution in a fuzzy sense. Using this method a family
of solutions with acceptable degree of membership can be found through genetic search, and
the solutions preferred by the decision maker under different criteria can be achieved by means
of the human-computer interactions. This method has been applied to fuzzy linear, quadratic
and nonlinear programming problems of the types FMP1 and FMP4. Recently some other
intelligent-based fuzzy optimization approaches[43] have been found popular.

4.8 Penalty function based approach[28,65]

This approach is first proposed by Lodwick and Jamison[65] to solve fuzzy constrained op-
timization problems. The penalty functions are imposed on the objective as a penalty when
the fuzzy constraints are ‘violated’. It is useful in computation and reflects the practical scene.
The authors[28] consider the penalty in the fuzzy nonlinear programming problems with fuzzy
resources, and suggest some properties on the fuzzy optimal solution set of this model. A
genetic-based approach for finding the maximum decision is developed.

Apart from the above approaches to the fuzzy optimization problems, parametric
techniques[66], dual approach[33], fuzzy dual decompose approach[18] and differential equation
approach[67] are also proposed by many researchers. In addition, convergence analysis, stability
analysis and sensitivity analysis of the algorithm for the FOP are also applied for the fuzzy
optimization.

5 Concluding Remarks

On the basis of our previous paper [68], an extensive study on fuzzy optimization is conducted
in this paper, which leads to the following concluding remarks that the basic procedure of fuzzy
optimization problems is to transform a fuzzy model into a crisp one, and the most important
thing is how to make this transformation have an appropriate and reasonable interpretation.
During the transformation, the first thing to do is to understand the problem and interpret the
optimal solution, and then try to find an appropriate interpretation, and propose some concepts
and theory to support the interpretation, and finally transform the fuzzy model into a crisp
one. The interpretation and formulation are the key constituent parts of the approaches, and
they also bridge the gap between the fuzzy optimization and the application in solving practical
problems.

It is noted that owing to limitation of the author’s knowledge and the space it allows,
this paper could not list a huge number of literatures, among which some invaluable ones are
neglected.

Acknowledgement The authors are greatly indebted to contributors of the invaluable liter-
atures, particularly to the comments and suggestions from Profs Verdegay, Inuiguchi, Slowinski
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