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Abstract

A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that
decisions be made in the presence of uncertainty. Uncertainty, for instance, governs the prices of fuels, the availability of electricity, and the
demand for chemicals. A key difficulty in optimization under uncertainty is in dealing with an uncertainty space that is huge and frequently
leads to very large-scale optimization models. Decision-making under uncertainty is often further complicated by the presence of integer
decision variables to model logical and other discrete decisions in a multi-period or multi-stage setting.

This paper reviews theory and methodology that have been developed to cope with the complexity of optimization problems under
uncertainty. We discuss and contrast the classical recourse-based stochastic programming, robust stochastic programming, probabilistic
(chance-constraint) programming, fuzzy programming, and stochastic dynamic programming. The advantages and shortcomings of these
models are reviewed and illustrated through examples. Applications and the state-of-the-art in computations are also reviewed.

Finally, we discuss several main areas for future development in this field. These include development of polynomial-time approxima-
tion schemes for multi-stage stochastic programs and the application of global optimization algorithms to two-stage and chance-constraint
formulations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the second half of the 20th century, optimization
found widespread applications in the study of physical
and chemical systems, production planning and scheduling
systems, location and transportation problems, resource al-
location in financial systems, and engineering design. From
the very beginning of the application of optimization to
these problems, it was recognized that analysts of natural
and technological systems are almost always confronted
with uncertainty.

This paper grew out of an earlier work(Sahinidis, 2003)
with the main purpose to provide a short overview of op-
timization under uncertainty. It is beyond the scope of the
paper to provide a detailed coverage of the field. Instead,
we will give pointers to the literature that can be used as
starting points for further study. For additional details and
information, we refer the reader to the recent textbooks of
Bertsekas and Tsitsiklis (1996), Birge and Louveaux (1997),
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Kall and Wallace (1994), Prékopa (1995), andZimmermann
(1991), and the very informativeStochastic Programming
Community Home Page (2003).

Beginning with the seminal works ofBeale (1955),
Bellman (1957), Bellman and Zadeh (1970), Charnes and
Cooper (1959), Dantzig (1955), and Tintner (1955), opti-
mization under uncertainty has experienced rapid develop-
ment in both theory and algorithms. Today, Dantzig still
considers planning under uncertainty as one of the most
important open problems in optimization(Horner, 1999).

Approaches to optimization under uncertainty have fol-
lowed a variety of modeling philosophies, including ex-
pectation minimization, minimization of deviations from
goals, minimization of maximum costs, and optimization
over soft constraints. The paper begins with an overview
of the main approaches to optimization under uncertainty:
stochastic programming (recourse models, robust stochas-
tic programming, and probabilistic models), fuzzy pro-
gramming (flexible and possibilistic programming), and
stochastic dynamic programming. Then, we review appli-
cations and the state-of-the-art in computations, as well as
important algorithmic developments by the process sys-
tems engineering community. Finally, we draw connections
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between models for optimization under uncertainty and
global optimization. Throughout the presentation, we point
out the fundamental differences of different modeling
philosophies in optimization under uncertainty.

2. Stochastic programming

2.1. Programming with recourse

Under the standard two-stage stochastic programming
paradigm, the decision variables of an optimization problem
under uncertainty are partitioned into two sets. Thefirst-
stagevariables are those that have to be decided before the
actual realization of the uncertain parameters. Subsequently,
once the random events have presented themselves, further
design or operational policy improvements can be made by
selecting, at a certain cost, the values of thesecond-stage,
or recourse, variables. Traditionally, the second-stage vari-
ables are interpreted as corrective measures or recourse
against any infeasibilities arising due to a particular real-
ization of uncertainty. However, the second-stage problem
may also be an operational-level decision problem follow-
ing a first-stage plan and the uncertainty realization. Due to
uncertainty, the second-stage cost is a random variable. The
objective is to choose the first-stage variables in a way that
the sum of the first-stage costs and the expected value of the
random second-stage costs is minimized. The concept of
recourse has been applied to linear, integer, and non-linear
programming.

2.1.1. Stochastic linear programming
A standard formulation of the two-stage stochastic linear

program is (cf.Birge & Louveaux, 1997; Kall & Wallace,
1994):

min ctx + Eω∈Ω[Q(x, ω)], s.t. x ∈ X, (1)

with

Q(x, ω) = minf(ω)ty,

s.t. D(ω)y ≥ h(ω) + T(ω)x, y ∈ Y, (2)

whereX ⊆ Rn1 andY ⊆ Rn2 are polyhedral sets. Here,
c ∈ Rn1, ω is a random variable from a probability space
(Ω,F,P) with Ω ⊆ Rk, f : Ω → Rn2, h : Ω → Rm2, D :
Ω → Rm2×n2, T : Ω → Rm2×n1. Problem (1) with vari-
ablesx constitute the first stage which needs to be decided
prior to the realization of the uncertain parametersω ∈ Ω.
Problem (2) with variablesy constitute the second stage.

Under the assumption of discrete distributions of the un-
certain parameters, the problem can be equivalently formu-
lated as a large-scale linear program which can be solved
using standard linear programming technology. Convexity
properties of the recourse functionQ(·) (Wets, 1966, 1974)
have been effectively used in decomposition-based solution
strategies(Birge & Louveaux, 1988; Van Slyke & Wets,

1969). For continuous parameter distributions, these proper-
ties have been used to develop sampling-based decomposi-
tion and approximation schemes(Birge & Louveaux, 1988;
Higle & Sen, 1991; Infanger, 1994; Ruszczyński, 1986;
Shapiro & Homem-de-Mello, 1998; Van Slyke & Wets,
1969)as well as gradient-based algorithms(Ermoliev, 1983;
Shapiro & Wardi, 1996).

The two-stage formulation is readily extended to a multi-
stage setting by modeling the uncertainty as a filtration pro-
cess. Under discrete distributions, this reduces to a scenario
tree of parameter realizations. Decomposition schemes that
partition the time stage(Birge, 1985)as well as those that
partition the scenario space(Rockafellar & Wets, 1991)have
been developed for multi-stage linear programs.

For an extensive discussion of stochastic linear program-
ming, the reader is referred to standard textbooks on stochas-
tic programming(Birge & Louveaux, 1997; Infanger, 1994;
Kall & Wallace, 1994; Prékopa, 1995).

2.1.2. Stochastic integer programming
Stochastic integer programming addresses instances of

(1) and (2), where the setY contains integer restrictions.
Much of the early work in this area has been on the design
and analysis of heuristics for two-stage stochastic integer
programs(Dempster et al., 1981; Spaccamela, Rinnooy
Kan, & Stougie, 1984; Stougie, 1985). Exact algorithmic
approaches are more recent and include extensions of the de-
composition strategies for stochastic linear programs(Carøe
& Tind, 1998; Laporte & Louveaux, 1993), Lagrangian
relaxation schemes(Carøe & Schultz, 1999; Takriti, Birge,
& Long, 1996), algebraic enumeration(Schultz, Stougie, &
van der Vlerk, 1998), convexification(Higle & Sen, 2000;
Sherali & Fraticelli, 2002), and decomposition combined
with branch-and-bound(Ahmed, Tawarmalani, & Sahinidis,
2003).

For problems where the second-stage possesses a spe-
cial structure known assimple recourse, Klein Haneveld,
Stougie, and van der Vlerk (1995, 1996)proposed solution
schemes based upon the construction of the convex hull
of the second-stage value function. For more general re-
course structures,Laporte and Louveaux (1993)proposed
a decomposition-based approach for stochastic integer pro-
grams when the first-stage variables are pure binary. This
restriction allows for the construction of optimality cuts that
approximate the non-convex second-stage value function
at only the binary first-stage solutions (but not necessarily
at other points). The authors proposed a branch-and-bound
algorithm to search the space of the first-stage variables for
the globally optimal solution, while using the optimality
cuts to approximate the second-stage value function. Finite
termination of the algorithm is obvious since the number of
first-stage solutions is finite. The method has been success-
fully used in solving two-stage stochastic location-routing
problems (Laporte, Louveaux, & Mercure, 1989, 1992,
1994; Laporte, Louveaux, & van Hamme, 1994). Unfortu-
nately, the algorithm is not applicable if any of the first-stage
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variables are continuous.Carøe and Tind (1998)general-
ized this algorithm to handle cases with mixed-integer first-
and second-stage variables. The method requires the use
of non-linear integer programming dual functions to ap-
proximate the second-stage value function in the space of
the first-stage variables. The resulting master problem then
consists of non-linear (possibly discontinuous) cuts and no
practical method for its solution is currently known.

Carøe (1998), Carøe and Schultz (1999), andCarøe and
Tind (1997)used the scenario decomposition approach of
Rockafellar and Wets (1991)to develop a branch-and-bound
algorithm for stochastic integer programs. This method
solves the Lagrangian dual, obtained by dualizing the
non-anticipativity constraints, as the lower bounding prob-
lem within a standard branch-and-bound framework. The
subproblems of the Lagrangian dual correspond to the
second-stage scenarios and are difficult to solve as they
include integer constraints. Furthermore, although the La-
grangian dual provides very tight bounds, its solution
requires the use of subgradient methods and is computa-
tionally expensive. A potential limitation of this approach
is that finite termination is guaranteed only if the first-stage
variables are purely discrete, or if anε-optimal termination
criterion with ε > 0 is used.

Recently,Schultz et al. (1998)proposed a finite scheme
for two-stage stochastic programs with discrete distributions
and pure-integer second-stage variables. For this problem,
Schultz et al. (1998)observe that only integer values of the
right-hand side parameters of the second-stage problem are
relevant. This fact is used to identify a finite set in the space
of the first-stage variables containing the optimal solution.
Schultz et al. (1998)propose complete enumeration of this
set to search for the optimal solution. This set may be very
large and evaluation of each of its elements requires the
solution of second-stage integer subproblems. Thus, this
approach is, in general, computationally prohibitive.

The above papers assume discrete probability distri-
butions for the uncertain parameters. Except for simple
cases that afford closed form solutions, sampling is re-
quired when dealing with continuous distributions of the
problem parameters. Thus, convergence proofs for the re-
sulting algorithms have to be probabilistic. For continuous
distributions, Norkin, Ermoliev, and Ruszczyński (1998)
developed a branch-and-bound algorithm that makes use of
stochastic upper and lower bounds and proved almost sure
convergence.

More recently, stochastic integer programming is receiv-
ing increased attention from the point of view of convex-
ification. Higle and Sen (2000)and Sherali and Fraticelli
(2002) have proposed algorithms that invoke ideas from
lift-and-project(Balas, Ceria, & Cornuèjols, 1993)and the
reformulation–linearization technique(Adams & Sherali,
1990) in the context of Benders-like decomposition ap-
proaches. These approaches are in their formative stages
and no implementations have yet been reported. By ex-
ploiting some of the structural properties of stochastic

integer programs,Ahmed et al. (2003)develop a finite
branch-and-bound scheme for a class of stochastic inte-
ger programs and present some encouraging computational
results on small problems.

2.1.3. Stochastic non-linear programming
Non-linear versions of the linear and integer programs

considered in this paper have many applications, especially
in engineering design, as well as planning and scheduling.
For example, two-stage non-linear stochastic programming
addresses the problem:

min f(x) + Eω∈Ω[Q(x, ω)], s.t. g(x) ≤ 0,

with

Q(x, ω) = minF(ω, x, y), s.t. G(ω, x, y) ≤ 0, y ∈ Y,

whereX ⊆ Rn1, Y ⊆ Rn2, ω is a random variable from
a probability space(Ω,F,P) with Ω ⊆ Rk, and the real
functionsf , g, F , andG have conformable dimensions.

Most of the algorithms developed for stochastic linear
programming carry over to the non-linear case. However,
non-linearities may give rise to non-convexities and local
optima. We refer the reader to the thesis ofBastin (2001)
for a more detailed discussion of non-linear stochastic
programming.

2.1.4. Robust stochastic programming
The recourse-based model (1) makes a decision based

on present first-stage and expected second-stage costs,
i.e., based on the assumption that the decision-maker is
risk-neutral. To capture the notion of risk in stochastic pro-
gramming,Mulvey, Vanderbei, and Zenios (1995)proposed
the following modification of the objective function of (1):

min ctx + Eω∈Ω[Q(x, ω)] + λf(ω, y)

wheref is a variability measure, such as variance, of the
second-stage costs andλ is a non-negative scalar that rep-
resents the risk tolerance of the modeler. Large values ofλ

result into solutions that reduce variance while small values
of λ reduce expected costs.

Applications of this, so-called robust stochastic program-
ming, framework and its variants have been reported in
power systems capacity expansion(Malcolm & Zenios,
1994), power dispatch(Beraldi, Musmanno, & Triki, 1998),
chemical process planning(Ahmed & Sahinidis, 1998),
telecommunications network design(Bai, Carpenter, &
Mulvey, 1997; Laguna, 1998), and financial planning(Bai
et al., 1997; Kouwenberg & Zenios, 2001; Mulvey et al.,
1995).

Various examples demonstrate that a straight forward
deterministic reformulation of robust models may result in
second-stage solutions that are suboptimal for the recourse
problem (King, Takriti, & Ahmed, 1997; Sen & Higle,
1999). This is a highly undesirable property as it may
lead to an underestimation of the recourse costs.Takriti
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and Ahmed (2003)proposed sufficient conditions on the
variability measure to remedy this problem.

2.2. Probabilistic programming

The recourse-based approach to stochastic program-
ming requires the decision-maker to assign a cost to re-
course activities that are taken to ensure feasibility of the
second-stage problem. In essence, the philosophy of this
approach is that infeasibilities in the second stage are al-
lowed at a certain penalty. The approach thus focuses on
the minimization of expected recourse costs. In the proba-
bilistic or chance-constraint approach, the focus is on the
reliability of the system, i.e., the system’s ability to meet
feasibility in an uncertain environment. This reliability is
expressed as a minimum requirement on the probability of
satisfying constraints.

Consider the classical linear programming model:

max ctx, s.t. Ax ≥ b, x ≥ 0,

wherec andx aren-vectors,b is anm-vector, andA is an
m×n matrix. Assume that there is uncertainty regarding the
constraint matrixA and the right-hand side vectorb, and that
the system is required to satisfy the corresponding constraint
with a probabilityp ∈ (0,1). Then, the probabilistic linear
program corresponding to the classical (deterministic) linear
program can be stated as follows:

max ctx, s.t. P(Ax ≥ b) ≥ p, x ≥ 0. (3)

Consider the case whenm = 1, i.e., the case of a single
constraintP(atx ≥ b) ≥ p. Further, assume that the vector
a is deterministic while the right-hand sideb is a random
variable with cumulative distributionF . Let β be such that
F(β) = p. Then, the constraintP(atx ≥ b) ≥ p can be
written asF(atx) ≥ p or atx ≥ β. In this simple case,
the probabilistic program is equivalent to a standard linear
program.

For the case when the matrixA is deterministic and the
vectorb has a log-concave multivariate probability density
function,Prékopa (1971)has shown that the feasible set of
(3) is convex. Other standard cases in which probabilistic
constraints can be converted to standard constraints are sum-
marized inPrékopa (1995). However, in general, the feasible
set of(3) may be non-convex. This issue is discussed later
in this paper.

3. Fuzzy mathematical programming

Like stochastic programming, fuzzy programming also
addresses optimization problems under uncertainty. A prin-
cipal difference between the stochastic and fuzzy optimiza-
tion approaches is in the way uncertainty is modeled. In
the stochastic programming case, uncertainty is modeled
through discrete or continuous probability functions. On the

other hand, fuzzy programming considers random parame-
ters as fuzzy numbers and constraints are treated as fuzzy
sets. Some constraint violation is allowed and the degree
of satisfaction of a constraint is defined as the membership
function of the constraint. For example, consider a linear
constraintatx ≤ β in terms of the decision vectorx and as-
sume that the random right-hand sideβ can take values in
the range fromb to b + "b, with "b ≥ 0. Then, the linear
membership function,u(x), of this constraint is defined as:

u(x) =


1, if atx ≤ b,

1 − atx − b

"b
, if b < atx ≤ b + "b,

0, if b + "b < atx.

Although other types of membership functions are also pos-
sible, the above linear membership function is typically used.
Objective functions in fuzzy mathematical programming are
treated as constraints with the lower and upper bounds of
these constraints defining the decision maker’s expectations.

Many of the developments in the area of fuzzy mathemati-
cal programming are based on the seminal paper byBellman
and Zadeh (1970). The field has been recently popularized
by the work ofZimmermann (1991). Two types of fuzzy
programming will be considered here: flexible programming
and possibilistic programming. Flexible programming deals
with right-hand side uncertainties while possibilistic pro-
gramming recognizes uncertainties in the objective func-
tion coefficients as well as in constraint coefficients. In both
types of fuzzy programming, the membership function is
used to represent the degree of satisfaction of constraints,
the decision-maker’s expectations about the objective func-
tion level, and the range of uncertainty of coefficients.

3.1. Flexible programming

Consider the classical linear programming model:

max ctx, s.t. Ax ≤ b, x ≥ 0, (4)

wherec andx aren-vectors,b is anm-vector, andA is anm×
n matrix. Let us suppose that there is uncertainty regarding
the exact values of the coefficients and some violation of the
constraints is acceptable within a certain range. This means
that some parts of(4) can be fuzzy. When the elements of
A, b, or c are treated as fuzzy numbers rather than crisp
numbers, constraints can be represented by fuzzy sets rather
than by crisp inequalities, and objective functions can be
represented by a fuzzy goal rather than a crisp objective
function. We usẽα to indicate that the parameterα is fuzzy.
Similarly, atx≤̃b means thatat should be essentially smaller
than or equal tob, i.e., that this constraint is a soft constraint
for which some violation is allowed. The tolerance or spread
of the fuzzy parameterα will be denoted by"α.

A flexible programming problem can then be written as
(Tanaka, Okuda, & Asai, 1974; Zimmermann, 1991):

m̃ax ctx, s.t. Ax≤̃b, x ≥ 0. (5)
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Let us denote(cj, a1j, . . . , amj)
t and (v, b1, . . . , bm)

t

by (â0j, â1j, . . . , âmj)
t and (b̂0, b̂1, . . . , b̂m)

t , respectively.
Then, problem(5) can be rewritten as follows:

Findx, s.t. Âx≤̃b̂, (6)

where Â is an (m + 1) × n matrix and b̂ is an (m + 1)
vector. It is assumed that the fuzzy constraints and fuzzy goal
are subjectively defined by the decision-maker. Letui(x)

denote the membership for theith constraint of(5), i =
1, . . . , n. Also, let u0(x) denote the membership function
of the objective of(5). In addressing problem(6), Bellman
and Zadeh (1970)define an optimal fuzzy decision to be:

x∗ = arg max
x≥0

min
i=0,... ,n

ui(x).

According to this definition, the optimal solution of problem
(6) can be obtained by solving the non-linear programming
problem:

max
x≥0

min
i=0,... ,n

1 − Âix − bi

"bi
.

By introducing one new variableλ, Zimmermann (1978)
showed that, if all membership functions are linear, then(5)
can be reduced to a classical linear program:

maxλ, s.t. Āx + λ ≤ b̄, x ≥ 0, 0 ≤ λ ≤ 1, (7)

where the elements of̄A and b̄ are āij = âij/"bi and b̄i =
1 + (b̂i/"bi), respectively.

Problem (7) includes one more variable and one more
constraint than the original problem(5). Although a linear
membership function is only a very rough approximation
of the knowledge of the decision-maker about the member-
ship function,Delgado, Herrera, Verdegay, and Vila (1993)
showed that the optimal solution obtained by using a linear
membership function is often of the same quality as the so-
lution obtained using a complicated non-linear membership
function. Therefore, the use of linear membership provides
an efficient way to solve fuzzy programs and obtain solu-
tions of good quality.

Note that the spread of the objective function,"b0,
must be provided by the decision-maker. It expresses the
decision-maker’s aspiration in regard to the objective func-
tion value."b0 can be estimated as the difference of the
potential upper and lower bounds for the objective function
(Zimmermann, 1991).

3.2. Possibilistic programming

When(4) involves uncertainty in constraint coefficients,
the fuzzy program is called possibilistic(Tanaka & Asai,
1984). A possibilistic linear programming problem can be
written as follows:

m̃ax c̃tx, s.t. Ãx ≤ b̃, x ≥ 0. (8)

Let aij and "aij , respectively, represent the center and
spread of the fuzzy number̃aij . Similarly, let cj and"cj

denote the center and spread of the fuzzy numberc̃j. Now,
consider the following membership functions:

ui(x) =


1, if Aix ≤ bi,

1 − Aix − bi

"Aix + "bi
, if bi<Aix<bi+"Aix+"bi,

0, otherwise,

and

u0(x) =


1, if b0 ≤ ctx,

1 − b0 − ctx

"b0 + "ctx
, if b0−"b0−"ctx<cx<b0,

0, otherwise,

where [b0 − "b0, b0] denotes the aspiration range for the
objective. Then, the Bellman–Zadeh decision-making cri-
terion leads to the following equivalent of the possibilistic
program after the introduction of a new variableλ:

max λ, s.t. ctx + "ctx(1 − λ) ≥ b0 − "b0(1 − λ),

Ax− "Ax(1 − λ) ≤ b + "b(1 − λ), x ≥ 0, 0 ≤ λ ≤ 1.

(9)

The possibilistic programming problem(8)has been reduced
into the non-linear programming problem(9). Here,b0 and
"b0 can be calculated by interval linear programming(Tong,
1994). In general,(9) has a non-convex feasible space.

4. Stochastic dynamic programming

Dynamic programmingis the termed coined by Bellman to
describe his mathematical theory of dealing with multi-stage
decision processes(Bellman, 1957). From the very begin-
ning, uncertainty was recognized as an integral part of the
dynamic environment. Consider a discrete-time system that
evolves overN time periods. At time instantk, we usexk,
uk, andwk, to denote, respectively, the state of the system, a
control action, and a random parameter such as disturbance
or noise. It is assumed that, in periodk, the present state of
the system is fully determined by its recent history:

xk = fk−1(xk−1, uk−1, wk−1), k = 1, . . . , N,

whileuk is selected with knowledge of the present state from
a set of allowable control actions:

uk ∈ Uk(xk),

and the uncertaintywk follows some distribution that de-
pends only on the current state and control action:

Pwk
(xk, uk).

The decision-maker wishes to minimize an additive cost
function over the entire time horizon:

min
uk∈Uk(xk), k=0,... ,N−1

Ew

{
gN(xN) +

N−1∑
k=0

g(xk, uk, wk)

}
.
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Consider now thetail subproblem of minimizing the
cost-to-gofrom time i to timeN:

min
uk∈Uk(xk), k=i,... ,N−1

Ew

{
gN(xN) +

N−1∑
k=i

g(xk, uk, wk)

}
.

Bellman’s principle of optimality states that, no matter how
we arrived at statei, the remaining decisions must be optimal
for the tail subproblem. Dynamic programming first solves
all tail subproblems of the final stage. Then, at a generic step
k = N − 2, . . . ,0, it solves all tail subproblems of length
N−k using the solution of all the tail subproblems of shorter
time length. Obviously, the original problem is solved at the
last step of this process by utilizing the solutions of all tail
subproblems.

Suitable algorithms must be employed to solve the tail
problems. For example, non-linear or other stochastic pro-
gramming algorithms may be invoked. In addition, as all
tail subproblems must be solved by the algorithm, the pro-
cedure is very intensive computationally and suffers from
the curse of dimensionalityas the computational time and
storage requirements grow exponentially in the number of
state and control variables. These difficulties have led to the
development of several approximation techniques, includ-
ing the approximation of the optimal cost-to-go function by
that of a related simpler problem, through simulation, or
through a heuristic learning scheme such as neuro-dynamic
programming. The class of neuro-dynamic programming
algorithms, in particular, combines techniques from re-
inforcement learning to systematically approximate the
cost-to-go functions in order to obtain suboptimal policies
for dynamic programming problems(Bertsekas & Tsitsiklis,
1996).

5. Applications and computations

5.1. Applications of stochastic programming

The original applications of stochastic programming in-
cluded agricultural economics in Iowa under land and labor
constraints(Tintner, 1955), the allocation of aircraft to routes
with penalties for lost passengers(Ferguson & Dantzig,
1956), and the production of heating oil with constraints
on meeting sales and not exceeding capacity(Charnes,
Cooper, & Symonds, 1958). More recent applications have
included:

• production planning(Bitran, Haas, & Matsuo, 1986;
Dempster et al., 1981; Escudero, Kamesam, King, &
Wets, 1993; Lenstra, Rinnooy Kan, & Stougie, 1983);

• scheduling(Birge & Dempster, 1996; Dempster, 1982;
Dempster et al., 1983; Tayur, Thomas, & Natraj, 1995);

• routing (Laporte et al., 1989, 1992; Spaccamela et al.,
1984);

• location(Laporte et al., 1994);

• capacity expansion(Ahmed, King, & Parija, 2003;
Berman, Ganz, & Wagner, 1994; Bienstock & Shapiro,
1988; Davis, Dempster, Sethi, & Vermes, 1987; Eppen,
Martin, & Schrage, 1989; Malcolm & Zenios, 1994;
Sherali, Soyster, Murphy, & Sen, 1984);

• energy investment and electricity production(Carøe,
Ruszczýnski, & Schultz, 1997; Louveaux, 1980; Morton,
1996; Pereira & Pinto, 1991; Takriti et al., 1996);

• environmental management and control(Birge & Rosa,
1996; King, Rockafellar, Somlyody, & Wets, 1988;
Norkin et al., 1998; Pinter, 1991; Somlyody & Wets,
1988; Wagner, Shamir, & Marks, 1994; Watanabe &
Ellis, 1993);

• water management(Dupǎcová, Gaivoronski, Kos, &
Szantai, 1991);

• agriculture(Helgason & Wallace, 1991; Shukla & Gupta,
1989);

• telecommunications(Laguna, 1998; Tomasgard et al.,
1998);

• design and optimization of chemical processing systems
(Acevedo & Pistikopoulos, 1998; Clay & Grossmann,
1997; Gupta & Maranas, 2000; Liu & Sahinidis, 1996);

• finance(Carino & Ziemba, 1998; Dert, 1995; Kallberg,
White, & Ziemba, 1982; Kouwenberg & Zenios, 2001;
Mulvey & Vladimirou, 1992).

5.2. Applications of fuzzy programming

Applications of fuzzy programming have spanned an
equally impressive number of diverse fields, and have in-
cluded:

• production planning(Inuiguchi, Sakawa, & Kum, 1994;
Miller, Leung, Azhar, & Sargent, 1997);

• transportation problems(Bit, Bisswal, & Alam, 1993a,
1993b; Chalam, 1994; Chanas, Kolodziejczyk, & Machaj,
1984; Chanas & Kuchta, 1998; Li & Lai, 2000; Sakawa,
Nishizaki, & Uemura, 2002);

• water supply planning and resource management(Nayak
& Panda, 2001; Slowinski, 1986; Wu, Huang, & Guo,
1997);

• forest management(Pickenss & Hof, 1991);
• capacity expansion(Liu & Sahinidis, 1996, 1997b);
• bank management(Lai & Hwang, 1993a, 1993b);
• portfolio selection(Parra, Terol, & Uria, 2001);
• pattern classification(Nakayama & Kagaku, 1998);
• environmental management(Chang, Chen, Shaw, & Yang,

1997; Huang, Baetz, Huang, & Liu, 2002).

5.3. Applications of stochastic dynamic programming

Applications of stochastic dynamic programming can be
found essentially in all areas of multi-stage decision-making.
Some recent applications have included:

• economics and finance(Tsitsiklis & Van Roy, 1999; Van
Roy & Tsitsiklis, 2001; Zimmerman & Carter, 2003);
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• design of experiments(Ben-Gal & Caramanis, 2002);
• biological and agricultural sciences(Kirby, Fiksen, &

Hart, 2000; Richter et al., 2003; Sernland, Olsson, &
Holmgren, 2003; Yalcin & Stott, 2000);

• production planning (Cheng, Subrahmanian, &
Westerberg, 2003), scheduling(Bertsekas & Castañon,
1999; Mo, Gjelsvik, & Grundt, 2001; Shen & Leachman,
2003), and supply chain management(Bitran, Caldentey,
& Mondschein, 1998);

• airline management(Chen, Gunther, & Johnson, 2003);
• environmental management(Danielsson, 2002);
• workforce management(Anderson, 2001).

5.4. State-of-the-art in computations

As of the time of this writing, there do not exist any
widely-available general-purpose software implementa-
tions of fuzzy mathematical programming or stochastic
dynamic programming. In certain instances, these method-
ologies lead to formulations that can be solved with tra-
ditional mathematical programming software. In other
cases, their implementation requires problem-specific al-
gebraic manipulations that make difficult the develop-
ment of general-purpose software. On the other hand,
commercial software for stochastic programming have re-
cently emerged(IBM Stochastic Solutions, 2002; Infanger,
2003).

The purpose of this subsection is to discuss what might
be within the capabilities of stochastic programming algo-
rithms and software. Stochastic programs are much more
difficult than their deterministic counterparts. Yet, signifi-
cant progress has been made towards their exact and approx-
imate solution.

Exact solution of deterministic equivalents of stochas-
tic linear programs relies on decomposition. In a recent
review paper,Birge (1997)reports the exact solution, on
parallel computers, of stochastic linear programs with
up to one million variables in their deterministic equiv-
alents. Much larger problems are typically solvable by
sampling-based rather than decomposition methods. Im-
pressive computational results on a computational grid
are reported byLinderoth, Shapiro, and Wright (2002)
on stochastic linear programs with up to 1081 scenar-
ios. These problems were solved using sample-average
approximations.

Much smaller stochastic programs have been reported
solved for the integer case. Exact solutions have been re-
cently obtained for relatively small problems as reported
by Ahmed et al. (2003). We refer the reader toVerweij,
Ahmed, Kleywegt, Nemhauser, and Shapiro (2002)for a re-
cent application of sampling-based methods to a stochastic
routing problem with 21694 scenarios within an estimated
1% of optimality.

Finally, we refer the reader to theStochastic Programming
Community Home Page (2003)for links to software as well
as test problem collections for stochastic programming.

6. Developments by the process systems engineering
community

The process systems engineering community has long
been involved in the development of tools for the solution
of design and operational problems under uncertainty. These
efforts have been motivated by applications and, in many
cases, yielded general-purpose algorithms. In this section,
we review some of these developments.

6.1. Flexibility analysis and optimization

Considerable effort has been devoted to design and oper-
ational problems under uncertainty where the objective is to
identify or maximize theflexibility, which is defined as the
range of uncertain parameters that can be dealt with by a
specific design or operational plan. Systematic optimization
tools have been developed for measuring flexibility and ana-
lyzing the trade-offs between cost and flexibility (cf.Bansal,
Perkins, & Pistikopoulos, 1998; Floudas, Gümüç, &
Ierapetritou, 2001; Pistikopoulos & Grossmann, 1989a,
1989b; Pistikopoulos and Mazzuchi, 1990; Straub &
Grossmann, 1993; Swaney & Grossmann, 1985).

6.2. Aggregation–disaggregation algorithm for two-stage
stochastic linear programming

Clay and Grossmann (1997)address the two-stage
stochastic linear programming program with discrete prob-
ability distributions for the uncertain parameters. In recog-
nition of the fact that the complexity of the problem stems
from the large number of scenarios of uncertainty, these
authors propose an aggregation of the probability space
followed by successive disaggregation. Lower and upper
bounds on the optimal objective function of the original
problem were then developed over partition elements of
the probability space. A sensitivity analysis was also devel-
oped for guiding the disaggregation process. The algorithm
was applied to stochastic planing models from the process
industries and was demonstrated to require only few parti-
tions for the bounds to converge. Problems with millions
of rows and columns in the deterministic equivalent were
successfully solved with this approach.

6.3. Multiparametric programming approach for
mixed-integer quadratic programming

When the number of uncertain variables is relatively
small, it is possible to obtain closed-form solutions of op-
timization problems in terms of the values of the uncertain
parameters.Dua, Bozinis, and Pistikopoulos (2002)ob-
tain such solutions for mixed-integer quadratic programs
with a few uncertain parameters. The basic idea is to uti-
lize parametric non-linear programming tools to system-
atically characterize the space of parameters by a set of
regions of optimality. The algorithm developed by these
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authors was applied to model predictive and hybrid control
problems.

In general, parametric programming algorithms can be
used to obtain, in closed-form, the solution of an optimiza-
tion problem as a function of a few uncertain parameters.
Once uncertainty presents itself, the analytical solutions can
be looked up to identify and implement the optimal strategy
without a need to solve an optimization problem. This can
lead to efficient on-line implementations.

6.4. Exact branch-and-bound algorithm for two-stage
stochastic integer programming

Ahmed et al. (2003)address a general class of two-stage
stochastic integer programs with integer recourse and dis-
crete distributions. By restating the problem in terms of
the so-calledtender variables, the discontinuities associated
with the value function of the second-stage integer problem
become orthogonal to the variable axes. The authors then
develop a branch-and-bound algorithm to solve this prob-
lem. This scheme departs from previous literature in that it
avoids explicit enumeration of the search space while guar-
anteeing finiteness.

6.5. An approximation scheme for multi-stage stochastic
integer programs for capacity expansion

In a recent line of research,Ahmed and Sahinidis (2000,
2003), Furman and Sahinidis (2003), andLiu and Sahinidis
(1997a)proposed linear programming based heuristics for
operational and design problems in process systems engi-
neering. The distinguishing feature of this solution paradigm
is the analytical derivation of bounds for the quality of the
solutions obtained by heuristics that run in polynomial time.
In particular,Ahmed and Sahinidis (2003)address the ap-
proximate solution of large-scale multi-stage stochastic inte-
ger programs arising from capacity expansion in the process
industries. The presence of integer variables in every stage
makes this problem very challenging. Through a suitable
rounding of the linear programming relaxation and bundling
of the capacity expansion decisions, these authors obtain a
feasible integer solution to this problem. Through a prob-
abilistic analysis, the authors prove that the optimality gap
of the solution thus obtained almost surely vanishes asymp-
totically as the number of stages increases. Computational
experience demonstrates that the proposed approach yields
near-optimal solutions even for small problem sizes.

7. Connections between global optimization and
optimization under uncertainty

The purpose of this section is to demonstrate that many
optimization programs under uncertainty are very difficult
to solve as they correspond to multi-extremal non-linear
optimization problems even when this is not directly appar-

ent, as is the case in seemingly linear formulations. For this
purpose, we present two examples, the first from stochas-
tic integer programming and the second from probabilistic
programming. Other classes of stochastic programs that
give rise to multiextremal global optimization problems are
possibilistic programs(Liu & Sahinidis, 1997b), stochastic
programs with decision-dependent uncertainties(Ahmed,
2002), and robust stochastic programs(King et al., 1997).
Recent developments in the area of global optimization
(Tawarmalani & Sahinidis, 2002)are thus very likely to play
a major role towards the solution of optimization problems
under uncertainty.

7.1. Two-stage stochastic integer programming

Consider the following four-scenario version of a
two-stage stochastic integer program that has been consid-
ered bySchultz et al. (1998):

EX1 : min − 1.5x1 − 4x2 +
4∑

s=1

psQs(x1, x2),

s.t. 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5,

whereQs(x1, x2) is defined as the optimal objective function
value of:

min − 16y1 − 19y2 − 23y3 − 28y4,

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ωs
1 − 1

3x1 − 2
3x2 6y1

+y2 + 3y3 + 2y4 ≤ ωs
2 − 2

3x1 − 1
3x2, yi ∈ {0,1},
i = 1, . . . ,4,

and (ω1, ω2) ∈ {5,15} × {5,15} with uniform probability
(i.e.,ps = 1/4 for s = 1, . . . ,4).

There are only two degrees of freedom in this exam-
ple: the first-stage variablesx1 and x2. Once their values
are specified, they-variables are determined by solving the
second-stage integer optimization problem. This allows us
to plot the objective function value of EX1 in the space
of x1 − x2 (Fig. 1 from Ahmed, 2002). The objective is
piecewise polyhedral with several local minima. The unique
global minimum is at (0, 3).

7.2. Probabilistic programming

Consider the following probabilistic program in terms of
two variables and two probabilistic constraints:

EX2 : max ctx, s.t. P

(
x1 + x2 ≥ b1

x1 + 3x2 ≥ b2

)
≥ 0.5,

x1 ≥ 0 x2 ≥ 0,

where b1 and b2 are dependent random variables with
P(b1 = 2, b2 = 4) = 0.5 andP(b1 = 3, b2 = 0) = 0.5.
Clearly, any(x1, x2) satisfyingx1+x2 ≥ 2 andx1+3x2 ≥ 4
is feasible to EX2. Let this polyhedral set be denoted by
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P1. Similarly, let P2 denote the polyhedral set of points
satisfying x1 + x2 ≥ 3 and x1 + 3x2 ≥ 0. The union of
P1 and P2 provides the complete feasible set of EX2. This
union is not convex as shown in Fig. 2. A similar example
is provided by Sen and Higle (1999).

8. Conclusions

Several modeling frameworks have been proposed in the
literature for optimization under uncertainty. Along with
them, a variety of algorithms have been developed and used
successfully in many applications.

The current state-of-the-art in this field allows ap-
proximate solution of very large-scale problems with
sampling-based methods and other approximations of the
cost functions. Exact solution of deterministic equivalents
is much harder and requires the use of advanced computer
architectures.

There are several challenges and opportunities in the area
of optimization under uncertainty. Here, we mention a few:

• There is a notable need for systematic comparisons be-
tween the different modeling philosophies. A small step
in this direction has been taken by Liu and Sahinidis
(1996) who compared stochastic programming and fuzzy
programming as applied to chemical process planning.

• While significant progress has been made towards the so-
lution of two-stage stochastic programs, the multi-stage
case represents a significant challenge. In the case of
stochastic integer programming with integer variables in
stages other than the first, this represents a conceptual in
addition to computational challenge. Deeper understand-
ing of problem structure and properties is required in
order to devise applicable algorithms.

• Contrary to the linear case, the integer and non-linear
cases have received limited attention. Computational re-
sults abound for the linear case but are somewhat limited
for the integer and non-linear cases. It appears unlikely
that general-purpose algorithms will solve such prob-
lems exactly. Instead, we anticipate the development of
problem-specific approximation schemes for integer and
non-linear problems such as the asymptotically optimal
approximation scheme recently proposed by Ahmed and
Sahinidis (2003) for capacity expansion of chemical
processes.

• In the past, stochastic dynamic programming was used
mostly to obtain closed-form solutions of analytically
tractable models and numerical solutions to relatively
small problem instances. With the recent developments in
approximations, especially neuro-dynamic programming,
this methodology offers the potential of dealing with
problems that for a long time were considered intractable
due to either a large state space or the lack of an accurate
model.
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• As Section 6 illustrated, there are several opportunities
for the development and application of global optimiza-
tion algorithms to solve optimization problems under
uncertainty.
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