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Abstract-The aim of this paper is to give a tutorial presentation of the main questions concerning the 
fuzzy linear programming problems. The key idea is that fuzzy set theory allows concise characterization 
of an environment within which an agent operates. Depending on the specific requirements the fuzzy 
description can be converted into a deterministic model. The methods of how to translate such a fuzzy 
description into a concrete mathematical model are the main theme of the paper. Interpretative aspects 
of the resulting models are discussed. 

1. INTRODUCTION 

There exists a pretty large gap between mathematical thinking and common thinking. The former 
employs well-defined notions only, requiring a high standard of precision in all quantities in 
processing, while the latter operates with provisional judgements, vague notions and partly 
recognized relationships. In general, when solving practical problems, what we have at our disposal 
can be referred to as the evidence from which information must be extracted. Here, by evidence 
we mean the raw material from which judgements of facts are made, and information is the 
meaningful interpretation and correlation of data allowing us to make decisions. 

Thus, what a practitioner really needs is a set of tools enabling him to cope with evidence, i.e. 
to extract and organize all the information from his provisional knowledge about a problem. 

This task can be approached in a number of ways but the aim of this paper is to show that fuzzy 
sets theory allows quite precise conceptualization by which one can think of and manipulate the 
reality. 

We restrict our attention to the linear programming (LP) problems. It appears that the fuzzy 
approach allows a unified treatment of various LP tasks. To provide this unicity, in Section 2 we 
propose a look at the problem of how to define such a task. In this context, a decision maker (DM) 
is forced to reflect primarily on questions like “What does it mean that an alternative satisfies a 
given criterion?’ “How can I test whether it satisfies this criterion?” and so on. The resulting 
mathematical model is now a product of a particular representation of the DM’s aspirations, 
possibilities and desires. Using fuzzy sets and choosing an appropriate representation we are able 
to recover almost all propositions described in the literature on fuzzy linear programming (FLP). 
This is demonstrated in Sections 4 and 5. To make the paper self-contained, in Section 3 we display 
a number of basic concepts needed for further considerations; this material is mainly devoted to 
the unacquainted reader. 

2. DEFINING AN LP PROBLEM 

The aim of this section is to outline a conceptual background for the “fuzzification” of the 
standard LP problem 

max G,: cjx, j = l,...,J 

s.t. six d bi, x > 0, i = l,...,Z, (1) 

where x is an (M x 1) column vector, cj and ai are the (1 x M) row vectors and his are real 
numbers. 

Problem (1) is a particular case of the baseline model considered in Ref. [l] and it can be viewed 
as a mathematical representation of the task defined as 

“Do the best under the circumstances”. 
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To reach such a representation we proceed via the four steps listed below. (Of course these steps 
cannot be misguided by the system theoretic procedure for model building. We focus here only on 
the aspects making problem (1) a meaningful representation of the verbally formulated task.) 

A. Determine a set X of criteria, or aspects, by means of which it is decided whether 
a given alternative is the solution. Y is decomposed into two disjoint and 
nonempty sets 59 and 9. The criteria forming the set Y are used to evaluate the 
quality or attractivity of a given alternative, while the criteria forming the set 9 
are used to evaluate the feasibility or realizability of an alternative. 

B. Identify a set of operational characteristics or measurement procedures visualizing 
how the system behaves with respect to each criterion K in X. To denote that 
an operational characteristic concerns criterion Gj in 9 (resp. Fi in 9) we will 
write gj (resp. 1;:). In terms of problem (1) this step corresponds to: (a) the 
corroboration that all the characteristics are linear functions of the variable x; 
and (b) the determination of numbers constituting the vectors cj and a,. 

C. Define what it means that an alternative satisfies a given criterion. In the case 
of the deterministic problem (1) we use two such definitions. The first of them 
exploits what we will call the satisfiability region Ei = (- zc, bJ. Referring to 
this notion we can write 

xsatFi iff JJx)eBi. (2) 

Here “sat” and ‘%I” are shortenings of “satisfies” and “if and only if”, respectively. 
Observe that the satisfiability region models what was called “circumstances” in 
our verbal formulation of problem (1). Introducing Bi = [bi, 6,] we model the 
requirement _bi < A(x) < 6,; similarly, using Ei = { bi} we get the equality-type 
constraint fi(x) = {bi} and so on. The second definition assigns a meaning to the 
term “best alternative”, which usually leads to the optimization problem. Note 
that this definition can be considered in a sense as a counterpart of definition 
(2): the satisfiability region is defined here in a more sophisticated (nonevident) 
but still meaningful way. 

D. Determine a decision rule, i.e. a rule employed in choosing the solution to 
problem (1). The most natural seems to be 

XES iff (VKEX)xsatK, (3) 

where by S we mean a set of alternatives being the solution to our decision 
problem. Unfortunately, although reasonable, this rule is not always applicable 
immediately. A constructive remedy is to “soften” rule (3) to a form which enables 
us to consider alternatives “supposedly” satisfying given criteria: 

XES ifI (VKEX)xsytK, 

where syt stands for “supposedly satisfies”. 

The general remark is that the successful realization of all the steps requires a relatively large 
portion of information; in particular, the DM must be able to isolate relevant criteria, identify the 
operational characteristics and he must be able to define a way in which the satisfiability of a given 
criterion will be tested. Consider a simple example taken from Ref. [2]. 

Suppose the DM is interested in allocating M crops over area A in a way which provides high 
total benefit, and that he assumes that the success depends on the possibility of irrigation of this 
area only. In this case the DM isolates only three criteria (Step A): K, = benefit; K, = water 
demand; and the commonsense criterion, K, = total area of land allocated to all the crops. Denoting 
x = (x,,...,x,) with x,,, = the area allocated to the Mth crop, he defines next (Step B) three 
operational characteristics h,, h, and h, regarding the consequences of choosing a concrete 
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alternative. Finally (StepC), he defines what it means that x satisfies a given criterion. Depending 
on the DM’s aspirations, desires and actual circumstances the definitions may take the following 
forms : 

(a) x sat K, iff h,(x) = maxh,(y), 

(a’) x sat K, iff h,(x) > B,’ 

(b) x sat K, iff h,(x) G W, 

(t-4 x sat K, iff h,(x) = m;lnh,(y), 

(c 1 x sat K, iff h,(x) < A, 

where A, B, and W are prespecified numbers. Choosing appropriate definitions the initial problem 
can be represented as the set of inequalities, as a single- or multiple-objective mathematical 

programming (MP) problem. For instance, the satisfiability of K, can be defined by condition (b) 
when the water resources are fully recognized or by condition (b’) in the case of a water deficit. 
Observe also that in ordinary OR language the first definition will be classified as a “constraint” 
while the second as an “objective”. These names are in fact irrelevant to the DM as he is interested 
in whether x satisfies K, or not. 

When testing the satisfiability of a given criterion, the following situations may occur: 

(i) A criterion K must be satisfied rigidly but the DM is not able to determine the 
satisfiability region definitely. 

(ii) An operational characteristic is only partly recognized, i.e. the DM is able to 
show a weak relationship between a given alternative and a possible consequence. 

(iii) The form of a given characteristic is known (e.g. it is linear) but its parameters 
cannot be determined precisely. 

In practice a combination of these situations may occur. 
The theory of fuzzy sets allows us to cope with all these situations in a unified and efficient way. 

A general recipe-proposed by Bellman and Zadeh [3]-is to introduce numerical degrees of truth 
assessing the extent to which the proposition “x sat K” seems to be credible or plausible. These 
degrees are determined “at hand” or are inferred from the evidence that the DM has at his disposal. 

3. FUZZY SET TOOLS FOR REPRESENTING EVIDENCE 

According to L. A. Zadeh, the meaning of a partly recognized concept can be represented by 
means of a so-called membership function p mapping a universe of discourse into the unit interval. 

To explain this idea suppose an operational characteristic J is such a partly recognized concept, 
i.e. the DM cannot assign to an alternative x an exact value z = J(x) but he has evidence enabling 
him to state that the value of fi in x is ABOUT =. This last term induces a fuzzy set 2 (the tilde 
is used to indicate that Z is a fuzzy set) of 2, the set of real numbers, characterized by the 
membership function P(Z. 2 can be imagined as an elastic constraint acting on the values that may 
be assigned to A(x). p&-) is interpreted as the degree to which the constraint ABOUT z represented 
by 2 is satisfied when r is assigned to 1;:(x): 

/lz(r) = Poss(fi(x) = r), (5) 

where Poss is the possibility measure [3]. 
Caution. Since any crisp (nonfuzzy) subset is a special kind of fuzzy set, hereafter we will not 

distinguish-if not necessary-between fuzzy and crisp sets. 

3.1. Fuzzy numbers 

For practical purposes the fuzzy subsets of d are classified as fuzzy numbers provided that they 
are convex, unimodal, normalized and have upper semi-continuous membership functions (for 
details see Refs [4,5]). The set of real fuzzy numbers will be denoted F(9). 
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An important type of fuzzy numbers are the so-called LR fuzzy numbers (consult Ref [4]). 
characterized by membership functions of the form: 

L(r) for - cc < z_ < r < : 

&z(r) = R(r) for z G r < z + x (6) 

0 otherwise, 

where L (resp. R) is a nondecreasing (resp. nonincreasing) function such that L(z) = R(z) = 1. and 
L(g) = R(F) = 0. Here 2 (resp. 2) is said to be the lower (resp. upper) bound of Z and 2 is referred 
to as the main value of Z. An LR fuzzy number Z will be denoted 

z = (g. z, $J. (7) 

A most useful-from a practical standpoint-example of an LR fuzzy number is the triangular 
fuzzy number with the linear functions L and R; such a number will be denoted (GJ=.?)~. 

Remark I. When pz(r) = 1 for r E [z,, 2 *], then this Z is referred to as the flat fuzzy number or 
fuzzy interval. In this case we write (z, r,, z*, L)LR. 

A binary operation *: 2 x R + &! can be extended to the operation 0: F(2) x F(d) --+ F(d) 
as follows [4]: 

In particular, 

and 

i 

(t-a, ra, rti),, for r b 0 
r 0 (a, a. ti),, = 

(rti. ra, rg),R for r < 0; 

(8) 

(8’) 

(8”) 

equation (8’) defines the addition of two LR fuzzy numbers and equation (8”) defines the 
multiplication of an LR fuzzy number by a real number. 

3.2. Fuzzy functions 

By a fuzzy function we mean a mapping f: Y 4 F(M) assigning fuzzy numbers to the points in 
Y. We can interpret such a mapping in two, equivalent, ways. The first way provides expression 
(5). Writing f(yo) = Z E F(d), we impose an elastic constraint on possible values of j(y,), and pz(r) 
expresses the possibility (or the degree of ease) that .f(y,) takes the value r. In the second approach, 
/ is considered as a fuzzy relation a/: Y x R + [0, l] and @/(y,r) determines the degree of 
compatibility between the cause J and a possible result r = f(y). For fixed y,, O,(yO, r) reduces to 
the fuzzy set Z. Although both interpretations are equivalent, in some circumstances [see case (iii) 
in Section 21 the second interpretation seems more convenient. 

From a mathematical standpoint the fuzzy mapping can be treated as a generalized multivalued 
mapping. The main repercussion of such a standpoint is that to determine a 
set A we must specify two sets called the upper (A*) and lower (A,) inverses 
follows: 

P”*(Y) = Tnter(Z, A) = 2: min(G), P,,(U)) 

co-image of a fuzzy 
of A [6], defined as 

(9) 
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and 

P,&) = Incl(Z, A) = 1:: max( 1 - P,(U), Pi), 

where Z = f(y), Inter(Z, A) is the degree of intersection of 2 with A and 
inclusion of Z in A. In particular, when Z and A are crisp sets then 

Inter(Z, A) = 
1 whenZnA#@ 

0 otherwise 

and 

1 when Z c A 
Incl(Z, A) = 

0 otherwise. 

One can verify the following relationships, true for each Z and A: 

Incl(Z, A) = 1 - Inter(Z, A’) 

and 

Incl(Z, A) < Inter(Z, A). 

Incl(Z, A) is the degree of 

(11) 

(12) 

Here A’ stands for the complement of A and pAC(y) = 1 - p”(y) for each y. Similarly, the condition 
p”(y) < pB(y) for each y means that the fuzzy set A is included in B in the “hard” sense; to denote 
this we will write A c,, B. Thus, taking into account relations (11) and (12) we state that 

A, = If\(A’)* and A, E,, A*, 

i.e. we recover the “traditional” properties of the upper and lower inverses. The interested reader 
will find more details concerning these generalized notions in Ref. [6]. 

Employing the identity max(a, b) = (a + b + (a - b/)/2 we verify that when A G,, B then 
Incl(A, B) 3 0.5. Unfortunately, the converse statement is not true which causes problems in inferring 
the hard containment of A in B. Defining (see Ref. [2]) 

Incl,(Z, A) = 
inf P,JY) 

Wl(2.A) 
1 

when I(Z, A) # 0 

otherwise, 

where Z(Z, A) = {YEW: p=(y) > ,u”(y)} we get an index possessing the desired property, i.e. 

(13) 

1 when Z c,, A 

Incl,(Z, A) = a E(O, 1) when supp A E supp B 

0 otherwise. 

Here supp A denotes the support of the fuzzy set A, i.e. the topological closure of the (crisp) set 
(yea: pA(y) > 0). One can verify that 

Incl,(Z, A) = a iff tl = sup{/I~[O, 11: Z, c A@} 

= sup{P~ [0, 11: Z, n (A’)@ = a}, 

where A, = {y E 9: p”(y) > p} denotes the B-cut of the fuzzy set A. 
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This last definition is in a sense “dual” to the definition of Inter(2, A), namely 

Similarly, one can verify that 

Incl(Z,A) = CL iff tl = 1 - sup{/?~[O, l]:Zgn(Ac)B # 0). 

4. A SOLUTION TO A FUZZY MATHEMATICAL PROGRAMMING (FMP) 
PROBLEM OF TYPE 1 

An FMP problem is of type 1 when the DM agrees to test the satisfiability of all criteria forming 
the set X by means of the satisfiability regions. Symbolically, a problem of type 1 can be written 
in the form 

h,(x)~B,,, k = 1,2 ,..., N, 

x 2 0, (14) 

where some or all of the entities are fuzzy and N = card(X). 
Consider a single line of problem (14), say h,(x) E Bj, je { 1,. . . , N}, and let us write hi B for 

simplicity. 
Introducing a fuzzy function we model the situation when the performance of the system under 

consideration with respect to the corresponding criterion is only partly recognized. Similarly, the 
fuzzy set B means some ambiguity concerning the satisfiability of this criterion. 

As we have argued, the shape of the set B modefs the DM’s aspirations and it can be given “at 
hand” or it must be inferred from other, possibly fuzzy, data. 

The first situation occurs for instance when the DM considers as satisfactory all the alternatives 
placing the values of the operational characteristic in the “vicinity” of some threshold b, being a 
real number, without exceeding it. Here “vicinity” is a vague concept and its meaning must be 
defined by the DM [cf. case (i) from Section 21. This approach was suggested in Refs [7,S]. 

The second case corresponds, for instance, to a situation when an alternative x is taken as 
satisfactory if the value of an operational characteristic h is “above” some threshold 6 and 6 is a 

fuzzy number. 
Suppose, for example, that our jth criterion K = “profit” and denote by u the desired benefit. In 

this case the fuzzy number gcan be interpreted in the following way. The DM will be: (1) unsatisfied 
when u < b; (2) quite satisfied when u = b; and (3) fully satisfied when u = 6. (Here _h < b < 6 are 
prespecified real numbers.) Within the limits of the DM’s best knowledge it is possible to attain 
the value b and it is very hard to attain 6. Hence, a strategy directed towards attaining the value 
u E [b, 61 requires some effort and this effort increases when u approaches the upper bound 6. (In 
the case of the “agricultural” model discussed in Section 2 this effort concerns some agrotechnical 
and/or organizational undertakings.) In effect, the resulting satisfaction in attaining the profit value 
u increases when u changes from b to b and decreases (because of the expenditure involved in the 
undertakings mentioned above) when u changes from b to 6. Denote by p&(u) the degree of this 
resulting satisfaction. 

Now the term ABOVE 6 will be modelled in accordance with the DM’s aspirations. Referring 
to the above example, we can expect that an ambitious (or “greedy”) agent would define his 
satisfiability region as 

i 

0 when u < b 

ps(u) = inf (1 - p&r)) = 1 when u 2 6 (15) 
,8U 

I 1 - R&u) otherwise, 
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i.e. he will be unsatisfied with attaining the profit value u < b and he will be fully satisfied when 
u > 6. Similarly, a less ambitious (or “lazy”) agent would define his satisfiability region as 

k+(u) = sup&-) = 
,Q” 

i 

0 when u < b 

I when u 2 b (16) 

L&u) otherwise. 

(Recall that Rb and LG denote the right and left reference functions, respectively, characterizing the 
fuzzy threshold 6.) 

The membership functions defined above characterize what was termed by Dubois and Prade 
[S] as the fuzzy intervals of numbers certainly greater than 5, denoted (6, + co), and of numbers 
possibly not less than 5, denoted [&, + co), respectively. We can also define the complements of 
these intervals, i.e. 

P( - cf. a,(u) = 1 - P[6. + 3c#4 P( - aj.L](4 = 1 - P(6. + c&4 (17) 

The last two intervals are appropriate for modelling the term BELOW b: 
Observe that both p’B and pLg have the general form 

: 

0 when u G b- 

P(U) = ct~(O, 1) when b- < u < b+ (18) 

1 otherwise, 

where, for instance, b- = b when we use expression (16). A membership function of this form was 
applied by Zimmermann [7] to assign a meaning to the statement f(x) 2 b, with 2 being a fuzzy 
counterpart of the crisp 2 relation. 

Having defined the satisfiability region B, the DM can construct a set of admissible alternatives. 
Define 

X;(r) = {x E X: u@,(x), Bk) 2 a} (19) 

to be the set of alternatives satisfying the kth criterion with the degree not less than CC; UE {Inter, 
Incl, Incl,}. 

Our first observation is that when h, is a real-valued function, then 

v f2 {Inter, Incl, Incl,}, 

i.e. we obtain Zimmermann’s approach. When h, is an interval-valued mapping (i.e. with each x in 
X there is associated a closed and crisp interval on the real line) and B, is a crisp interval then, for 
UE (Incl, Incl, ), we have 

1 
@W, B,) = 

when h,(x) c B, 

0 otherwise, 

i.e. we obtain Soyster’s approach to inexact programming [9]. Finally, when h, is a fuzzy mapping 
and Bk is an LR fuzzy number then, using as u the Incl, index, we get a counterpart of the fuzzy 
inexact programming discussed by Negoita [IO]. 

Suppose now that the DM has decided to consider as admissible the alternatives from the set 
Xp”’ (z). According to the basic relation (1 l), he is certain that any alternative x from this set is 
inadmissible to an extent not greater than 1 - LX; more precisely, 

if x E XF’Yr) then Incl(h,(x), B;) < 1 - a. 
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if x~XF”(ol) then Inter(h,(x),B;) < 1 - a. 

Since Incl(h,(x), B;) is not greater than Inter@,(x), B;), the alternatives from the set X’,““(a) are more 
“acceptable” than those from the set X Inter(a). In other words, when using the Inter index the 
DM prefers a risky strategy, while when using the Incl index he prefers a careful strategy. The 
choice between these indices may also depend on the importance of a given criterion: when this 
criterion is important it is better to use the Incl index, and when the consequences of its “violation” 
are not too extreme we may use the Inter index. This last observation allows a simple and attractive 
combination of different criteria with different degrees of importance (note that the extent of the 
set of admissible alternatives may be also controlled by the definition of the satisfiability region 
B,, as we discussed earlier). In the case of a very important criterion the DM may be interested in 
considering alternatives for which the support of the fuzzy number h,(x) is surely contained in the 
support of the satisfiability region. Such a requirement is satisfied when he uses the Incl, index 
instead of the index Incl. 

Now we are ready to solve problem (14), a fuzzified version of problem (1). To do this we refer 
to Bellman-Zadeh’s rule as presented in Ref. [lo], which now takes the form 

max a 

v(h,(x),B,) > a, k = 1,2,. .., N, 

x 2 0, a > 0. (20) 

Assume for simplicity that all coefficients specified in problem (1) are triangular fuzzy numbers. 
According to equations (8’) and (8’7, the value of each operational characteristic is also a triangular 
fuzzy number, e.g. g,(x) = (cjx,cjx,Cjx),, where, for instance, _cj denotes the vector containing the 
lower bounds_cj,, m = 1,2,. . , M. It is a simple exercise to derive the following deterministic 
equivalents of our fuzzified problem. 

(i) When u = Inter, problem (20) takes the form 

max a 

s.t. (‘j - a(Ej - Cj))X 2 b,: + a(bf - b,:), j = 1,. . . ,_I, 

(3 + a(% - aJ)X G b+ - a(b: - b;), i = I,..., L, 

x 2 0, a > 0. (21) 

Here b,: = bj (resp. bj) and bf = bj (resp. hj) when for Bj we take the fuzzy interval [s,, + 00) (resp. 
(Kj, + co)). Similarly, b; = _b,(resp. bi) and b+ = bi (resp. Fi) when for Bi we take the fuzzy interval 
(- co, lFi) (resp. (- co, 6J). The same remark applies to the remaining cases (ii) and (iii). 

(ii) When v = Incl, problem (20) takes the form 

max a 

s.t. (cj - a(cj - cj))x > by + a(bj' - bj), j=l J, ,.*., 

(ai + a(%, - ai))x < b+ - a(b+ - b;), i = l,...,I, 

x 2 0, a 2 0. (22) 
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(iii) When v = Incl,, problem (20) takes the form 

max u 

S.t. (Tj + Z(Cj - cj))X 2 bJ + a(bf - by) 

(iii - r(Pi - ~J)x < b+ + a(b+ - him) 

gjx 3 b,: 

i&x < b+ 

X30, aE[O,l], j=l,..., J, i=l,..., I. (23) 

It should be stressed that the approach presented here was initiated by Dubois [l I] and, 
independently, by Wierzchon et al. in Ref. [12]. 

5. A SOLUTION TO A FUZZY MATHEMATICAL PROGRAMMING (FMP) 
PROBLEM OF TYPE 2 

An FMP is of type 2 if it reduces to the form 

maxii( j = 1,. . ,J, 

St. XEX (24) 

where gjs are fuzzy functions and X is a crisp set of admissible alternatives. 
According to our earlier nomenclature this problem arises when the DM is (a) able to point out 

unambiguously some set of “acceptable” alternatives and (b) interested in finding an alternative 
maximizing some operational characteristics over this X but (c) these characteristics are only partly 
recognized. 

Assume for a moment that J = 1 and write g(x) instead of El(x). 
To give a meaning to the term “maximal value” of such an imprecise characteristic S, observe 

that in the crisp case (when the characteristic is a real function we will write g instead of g) an 
alternative x0 is said to be optimal iff there is no x in X s.t. g(x) > g(x,) or, equivalently, for any 
x in X we have g(x) d g(x,). This corresponds to the two approaches exploited in the classical 
theory of choice: we can treat x,, as the non-dominated or dominating alternative, respectively (see 
Ref. [ 133 for details). 

Denote M’ = g(x,) and define B, = [w, + co), B’, = (- co, w). When g is unimodal over X we can 
reformulate the above statements as follows. An alternative x0 is optimal when 

(i) there is no x in X, x # x0, s.t. g(x)E&, 

(ii) for any x in X. x # x0, we have g(x)E&,. 

This last observation makes it possible to assign a precise meaning to the notion of a maximal 
value of an imprecise characteristic. Denote again by v@(x), B) an index used to evaluate the degree 
with which the value of g(x) can be treated as belonging to the set E. Now we are able to give the 
“softened” versions of the earlier definitions. 

An alternative x” is referred to as r-v-nondominated when there exists a set B” = [w”, + co) 
such that 

v(g(xO), BO) = a 
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and 

d&4 B”) < a, x E X. 

Dejnition 2 

An alternative x0 is said to be a-u-dominating when there exists a set B, = (- x, wo] such that 

v(fixo), Bo) = a 

and 

U@(X), Bo) 2 a, x E X. 

The first definition means that x0 belongs to B” with the maximal degree while the latter chooses 
an alternative that belongs to B, with the minimal degree of membership. When j is a real function 
then x0 = x0. 

Proposition 1 

Let v(.,.) = Inter(.,.). An alternative x0 is a-Inter-nondominated when it is a solution to the 
following MP problem: 

min w” 

s.t. Rg(,)(wo) < a 

xEX, O<a<l. (25) 

An alternative x0 is a-Inter-dominating when it solves the following MP problem: 

max w. 

s.t. LBJwo) 2 a 

XEX, O<a<l. (26) 

Here LBtx, and RBIx, stand for the left and right reference functions of the fuzzy number g(x) 

= (g(x),g(x),g(x)),,, respectively. 
Proof of this proposition follows immediately from the nature of the Inter index and from the 

fact that L#,(w)(resp. R&W)) is a nondecreasing (resp. nonincreasing) function of its argument w. 

Corollary 1 

When L and R are invertible then the MP problems reduce to the following: 

max R&(a) and max La&a) 

s.t. XEX, O<a<l, s.t. XEX, O<a<l. 

In particular, when j(x) = cx and all the components of c are triangular fuzzy numbers then to 
find the a-Inter-nondominated alternative we should solve the following parametric LP problem: 

max (c - a@ - c))x 

s.t. XEX, 0 < a < 1; (27) 

and to find the a-Inter-dominating alternative we should solve the problem 

max(r + a(c - c))x 

s.t. xEX, 0 <a < 1. (28) 
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Corollary 2 

When x0 is the a-Inter-nondominated alternative then, for any x in X, 

Incl(g(x), (- 00, w’(a)]) 2 1 - z. (29) 

Similarly, when x0 is the a-Inter-dominating alternative then, for any x in X, 

InW(x), [w,(a), + 00)) G 1 - a. (30) 

Here w’(a) is the value found by solving problem (25); solving problem (26) we find the value ~~(2). 
This corollary shows that x0 is a-Inter-nondominated when it intersects with the set [w’(a), + cc) 

with the maximal (equal to a) degree and simultaneously, when it is included in the set (- cc, we(z)] 
with the minimal (equal to 1 - a) degree; we can apply symmetrical reasoning to the interpretation 
of x0. 

With Proposition 1, by application of the basic identity (1 l), we have the following. 

Proposition 2 

Let u(. , .) = Incl(. , .). An alternative y” is a-Incl-nondominated when it solves the following MP 
problem: 

max u” 

s.t. LgJuo) >, 1 - a 

xEX, O<a<l; 

and an alternative y. is a-Incl-dominating when it is a solution to the problem 

min u. 

s.t. R#,,,(UO) < 1 - a 

XEX, O<a<l. 

(31) 

(32) 

Analysing both propositions we obtain the following. 

Corollary 3 

An alternative x0 is r-Inter-nondominated iff it is (1 - a)-Incl-dominating and an alternative 
x0 is a-Inter-dominating iff it is (1 - a)-Incl-nondominated. 

It can be easily verified that the first part of Proposition 1 covers the approach proposed by 
Orlovski [2] (see also Ref. [ 141). Similarly, the second part of Proposition 2 includes the approach 
suggested by Verdegay [ 151. 

Proposition 3 

Let v(. , .) = Incl,(. , .). An alternative z” is Incl,-nondominated when it is a solution to the problem 
rnEaxx&x) and the alternative solving the problem ~~xx~(x) is Incl,-dominating. 

This proposition follows immediately from the definition of the Incl, index. 

Corollary 4 

An alternative z” is Incl,-nondominated iff it is I-Incl-nondominated (or O-Inter-dominating) 
and an alternative z. is Incl,-dominating iff it is 1-Incl-dominating (or 0-Inter-nondominated). 

Our discussion hitherto can easily be extended to the case of J > 1 objective functions. We can 
define, for example, the set S::,. . . , =, of nondominated alternatives as follows: 

SND I,.,...=, = {ycX: there is no x in X s.t. vg,(x), B$ > u&(y), Bz) for some k~ { 1,. . . , J} and o(gj(x), 

B,O) > v(gj(Y)vB,O) t/j Z k}. 
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For example, when all gjs have all the right reference functions invertible and r(. , .) = Inter(. , .), 
then we can refer to the classical multiobjective programming problem by saying that 

Y”ES:::...,., when it is a solution to the problem 

max CQ,,&(aJ, . . . , R&i&,)1 

s.t. XEX, O<rj<l, j=l,..., .I. (33) 

TO see that such a definition has a sense, suppose x0 is an efficient (Pareto) solution to problem 
(33). Then, for any x 4 St:,, _,, we have 

wk(x) = R&!.,(Q) < R&JaJ = wt(xo) for some k 

and 

Wj(X) = Rg&(aj) < R$,(a,) = wj(xo) Vj # k. 

Taking into account that Rgjcx,(wj(x)) = zj and that the right reference function is now a strictly 
decreasing function, and defining By = [w,(x’), + co) we state that, for any x 4 ST:, _,, 

1ncl(ik(x)3 Et) < ak 

Incl(g,(x),$) < aj, j # k. 

In closing let us mention “optimization” of a fuzzy function over a fuzzy domain 2. Using the 
method of approximation of a fuzzy set described by Negoita [lo, Section 3-l], we can replace this 
X by a crisp set Xapr. In this way our initial task can be reduced to problem (24). Another possible 
method relies on the extraction of a crisp set X, being the P-cut of the fuzzy set X. Again such an 
approach reduces our initial task to problem (24). 

6. CONCLUDING REMARKS 

The paper can be summarized as follows. To represent an LP problem mathematically the DM 
must ask himself what does it really mean that a given alternative is the solution? To answer this 
question, usually he proceeds via the four steps presented in Section 2. In the presence of perfect 
information the obtained solution is of a dogmatic nature. As any real-life problem is rarely 
perfectly recognized, and in particular the DM aspires to attain a set of (implicitly stated) goals, 
the dogmatic representation of his problem seems to be questionable. 

Thus the DM should try to build up a representation that reflects his diverse desires, aspirations 
and his subjective opinions. Admitting the fuzzy representation, the DM gains the spectrum of 
models discussed in previous sections. 

The nondogmatic character of the fuzzy models allows us to fit them accurately to actual 
circumstances, making it possible to investigate exhaustively the effects of particular decisions. 
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