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1 Introduction

Deterministic optimization is a normative process which extracts the best
from a set of options, usually under constraints. It is arguably true that op-
timization is one of the most used areas of mathematical applications. It
is the thesis of this book that applied mathematical programming problems
should be solved predominantly by using a fuzzy and possibilistic approaches.
Rommelfanger ([42], p. 295), states that the only operations research meth-
ods that is widely applied is linear programming. He goes on to state that
even though this is true, of the 167 production (linear) programming systems
investigated and surveyed by Fandel [18], only 13 of these were “purely”
(my interpretation) linear programming systems. Thus, Rommelfanger con-
cludes that even with this most highly used and applied operations research
method, there is a discrepancy between classical linear programming and
what is applied. Deterministic and stochastic optimization models require
well-defined input parameters (coefficients, right-hand side values), relation-
ships (inequalities, equalities), and preferences (real valued functions to max-
imize, minimize) either as real numbers or real valued distribution functions.
Any large scale model requires significant data gathering efforts. If the model
has projections of future values, it is clear that real numbers and real valued
distributions are inadequate representations of parameters, even assuming
that the model correctly captures the underlying system. It is also known
from mathematical programming theory that only a few of the variables and
constraints are necessary to describe an optimal solution (basic variables and
active constraints), assuming a correct deterministic normative criterion (ob-
jective function). The ratio of variables that are basic and constraints that
are active compared to the total becomes smaller, in general, as the model in-
creases in size since in general large-scale models tend to become more sparse.
Thus, only a few parameters need to be obtained precisely. Of course the
problem is that it is not known a priori which variables will be basic and
which constraints will be active.
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Moreover, a model of an actual problem is always an abbreviated view
of the underlying actual system. If a problem is able to be manipulated
in situ to obtain a solution without a symbolic representation, then there
would be no need for modeling the problem mathematically. Inherently, a
mathematical model is a symbolic representation of the problem. Bertrand
Russell ([44], p. 85, 86) states,

“The law of excluded middle is true when precise symbols are employed,
but it is not true when symbols are vague, as, in fact, all symbols are.”

At the heart of (deterministic) pure mathematics are theorems whose proofs
are mathematical statements that are either true or false, but not both (law
of the excluded middle). This concept is also stated as a property of classical
sets - either an element belongs to a set or does not, but not both. Fuzzy
set theory adds gradation to this Boolean notion of set belonging. Thus it
is the rare exception that a mathematical (optimization) model is a precise
representation of the underlying system even if the symbols represent real
numbers or real valued distributions. It is rare that an optimal solution from
an optimization model is in reality best. Herbert Simon in many places (in
particular see [46], p. 35, 36) states,

“Of course the decision that is optimal in the simplified model will
seldom be optimal in the real world. The decision maker has a choice
between optimal decisions for an imaginary simplified world or decisions
that are ‘good enough,’ that satisfice, for a world approximating the
complex real one more closely. ... What a person cannot do he will not
do, no matter how much he wants to do it. Normative economics has
shown that exact solutions to the larger optimization problems of the
real world are simply not within reach or sight. In the face of this
complexity the real-world business firm turns to procedures that find
good enough answer to questions whose best answers are unknowable.
Thus normative microeconomics, by showing real-world optimization to
be impossible, demonstrates that economic man is in fact a satisficer, a
person who accepts ‘good enough’ alternatives, not because he prefers
less to more but because he has no choice.”

From an email discussion, Rommelfanger [43] relates the following.

“In fact Herbert Simon develops a decision making approach which he
calls the Concept of BoundedRationality. He formulated the following two
theses. Thesis 1: In general a human being does not strive for optimal de-
cisions, buthe tends to choose a course of action thatmeetsminimumstan-
dards for satisfaction. The reason for this is that truly rational research
cannever be completed. Thesis 2: Courses of alternative actions and con-
sequences are in general not known a priori, but they must be found by
means of a search procedure.”
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The central tenet of this book is that most optimization is and should be a
satisficing process. To this end, fuzzy and possibilistic optimization play a
key, if not the most important, role. Why is fuzzy/possibilistic optimization
not an explicit part of every Operations Research and Optimization curricu-
lum? Why is it not in wide-spread practice yet? Is it that the practitioners
do not know these new theoretical instruments? Is it that too many uni-
versity professors do not understand the new concepts? Is it that clear and
compelling “industrial strength” models have yet to appear in a way to make
an impact? There are some “industrial strength” models (see the application
section of this volume and [31], [38]). This volume presents the compelling
reasons for including fuzzy and possibilistic optimization at the heart of nor-
mative decision theory.

We first define two terms that are frequently used in conjunction with
fuzzy set theory and possibility theory, “uncertainty” and “incomplete infor-
mation.” From [14], we have:

Definition 1. A piece of information is said to be incomplete in a given
context if it is not sufficient to allow the agent to answer a relevant question
in this context. A piece of information is uncertain for an agent when the
latter does not know whether this piece of information is true or false.

2 Fuzzy Set Theory and Possibility Theory in
Optimization

This section begins with an example “industrial strength” application which
shows the applicability and relevance of fuzzy and possibilistic optimization
in an actual application. This problem was reported in [31], [38].

Example 2. (Radiation Therapy of Tumors - [31]) The determination of
how to use particle beams to treat tumors is called the radiation therapy prob-
lem (RTP). Beams of particles, usually photons or electrons, are oriented
at various angles and with varying intensities to deposit dose (energy/unit
mass) to the tumor. The idea is to deposit just enough radiation to the tumor
to kill all the tumor cells while sparing normal tissue. The process begins
with the patient’s computed tomography (CT) scan. Each CT image is ex-
amined to identify and contour the tumor and normal structures. The image
subsequently is vectorized. Likewise, candidate beams are discretized into
beamlets, where each beamlet is the width of a CT pixel. A pixel is the math-
ematical entity or structure (a square in the two-dimensional case and a cube
in three dimensions) that is used to represent a unit area or volume of the
body at a particular location. For two-dimensional problems, about seventeen
CT scans (slices) are sequentially “stacked” (to form a three-dimensional im-
age that covers the tumor), and a variety of resolutions might be considered,
64 × 64, 128 × 128, 256 × 256, 512 × 512. One set of beams each at ten or
more equally spaced angles is not unusual. Since we constrain the dosage at
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each pixel, for ten equally spaced angles, the complexity of the problem ranges
from an order of 17 · 10 · 642 to 17 · 10 · 5122 potential constraints. How-
ever, since all pixels are not in the paths of the radiation beams that hit the
tumor, and some are outside the body, we a priori set the delivered dosages
at these pixels to zero and remove them from our analysis. This corresponds
to blocking the beam, which is always done in practice. The identification
of a set of beam angles and weights that provide a lethal dose to the tumor
cells, while sparing healthy tissue with a resulting dose distribution acceptable
and approved by the attendant radiation oncologist, is called a treatment plan.
The largest actual problem solved is on the order of 500, 000 constraints in
a fuzzy/possibilistic optimization problem. A dose transfer matrix AT (rep-
resenting how one unit of radiation intensity in each beamlet is deposited in
pixels - for historical reasons, we use a transpose to emphasize its origin as
the discrete version of the inverse Radon transform), called here the attenu-
ation matrix, specific to the patient’s geometry, is formed where columns of
AT correspond to the beamlets and rows represent pixels. A component of a
column of the matrix AT is non-zero if the corresponding beamlet intersects
a pixel, in which case the value is the positive fraction of the area of the in-
tersection of the pixels with the beamlet otherwise it is zero. The beams then
are attenuated according to a factor dependent on the distance from where
the beam enters the body to a pixel within the body and the type of tissue at
that pixel. The variables are vectors x that represent the beamlet intensities.
The mathematical programming problem is

z = min f(c, x)
AT x ≤ b.

For this problem, there are four places in which the data turn this problem into
a fuzzy/possibilistic optimization problem. First, the objective function can
be a probability function (upper/lower bounding), the probability that the ra-
diation intensity vector x will turn a health pixel into a cancerous one. Each
row of the left side, that is, each row of the constraint matrix AT , represents
each pixel in the path of the beam, the “beam’s eye view” of the tumor. Thus,
each row accumulates pixel by pixel total radiation deposited by the radiation
intensity vector x at that pixel. This will occur mathematically since the ith

row vector (the ith pixel) AT
i when dotted into the vector x is the sum of

radiation at the pixel, AT
i x. Since a pixel can be cancerous, or cancerous to

a degree (the boundaries between cancerous and non-cancerous are gradual,
transitional and thus fuzzy), the left side matrix AT matrix is composed of
fuzzy intervals. The right-hand side value is the maximum allowable dosage
(for critical organs in the path of the beam and maximal value representing
pre-burning for the tumor cells). Separately, for tumor cells, there is also an
associated minimal value, the smallest value a radiation oncologist does not
allow the radiation to go below (it is the minimal acceptable radiation that
will kill a cancer cell). These values may be considered to be possibilistic
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since these are values derived from research, expert knowledge (epistemic val-
ues), and experience with preferred values within the range. Therefore, the
right-hand side value may be considered either as a target (with preferred
ranges) or as purely as a possibilistic value.

A radiation oncologist is a satisficer. Any good treatment regime (identified
by the mathematical programming problem) will suffice. Of course the opti-
mal would be better, but given the variations in the data and model, “best”
is an illusive value and arguably unattainable. The above example prob-
lem illustrates fuzzy, probability, and possibility optimization in an applied
problem which has been solved (see [31], [38]).

Possibility theory as a mathematical theory is based on a set of axioms
or properties found below. It is used to model systems of entities or vari-
ables that are uncertain due to knowledge deficit (inherent or acquired) or
incomplete information. Fuzzy set theory deals with sets which are a gener-
alization of the classical notion of set. It is used to model systems of entities
or variables whose belonging (to a set) is gradual or transitional. Underlying
possibility theory is the principle of minimal specificity (see [16]). That is,
when the values of parameters or variables are not completely specified (for
whatever reason - by choice, by finances, by lack of the ability to obtain the
precise value, by the fact that inherently a precise value cannot be obtained),
is there still sufficient structure to the information that is available for mathe-
matical analysis? One of these mathematical structures is possibility theory.

The following simple example shows that probability alone is insufficient
to describe uncertainty of every type. Suppose all that is known is that

x ∈ [1, 4]. (1)

Clearly, x ∈ [1, 4] implies that the real value that x represents is not certain
(albeit bounded). If the uncertainty that x ∈ [1, 4] represents were probabilis-
tic (x is a random variable that lies in this interval), then every distribution
having support contained in [1, 4] would be equally valid given (1). Thus, if
one chooses the uniform probability density distribution on [1, 4],

p(x) =
{

1
3 1 ≤ x ≤ 4
0 otherwise,

which is the usual choice given no other indication other than the support, one
gives up information. The approach that keeps the entire uncertainty of (1)
considers it as all distributions whose support is [1, 4]. The pair of cumulative
distributions that bound all cumulative distributions with this given support
is depicted in Figure 1. The statement x ∈ [1, 4] not only represents a
random variable whose support is [1, 4], but it can be a mathematical entity,
an interval. When [x] = [1, 4] is a mathematical entity, an interval, the
statement x ∈ [1, 4] has no associated uncertainty. It is complete, precise,
and coherent in contradistinction with [1, 4] containing all probability density
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functions whose support is contained in this interval. It is true that the
same object, [1, 4], interpreted probabilistically and as an interval, has two
semantically distinct and analytically distinct meanings, they have a different
calculus, metric, convergence structure, and so on.
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Fig. 1 BOUNDING CUMULATIVE DISTRIBUTIONS - Possibility (blue), Ne-
cessity (red), Uniform (green)

The upper cumulative distribution depicted in Figure 1 is a possibility dis-
tribution (blue), and the lower cumulative distribution is a necessity distri-
bution (red). When the statement x ∈ [1, 4] represents an unknown random
variable whose support is the interval, to keep all the information about the
uncertainty not only requires a pair of bounding functions, but a different
arithmetic and mathematical analysis than “simply” functional analysis on
probability distributions. The uniform distribution is precisely the intuitive
solution to lack of information, “Choose the midpoint of the distribution pair
as the solution if one has to choose.” Of course, the case is made here that
x ∈ [1, 4] can also be tied to uncertainty which is purely non-probabilistic
information deficiency in addition to an uncountably infinite set of random
variables (whose support is contained in this interval).

2.1 Fuzzy Set Theory

Fuzzy sets are sets in which the Boolean property of belonging that charac-
terizes classical sets is generalized to allow degrees of belonging continuously
from zero (indicating not belonging for sure) to one (indicating belonging
for sure). A classical set is one in which every element in the universal set
has a degree of belonging that is described by the characteristic function
(zero/one), whereas a fuzzy set is one in which every element in the universal
set is described by a function, called a membership function, whose range is
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between zero and one. A fuzzy set A ∈ Ω (universal set) is uniquely described
by its membership function

μA(x) : Ω → [0, 1], x ∈ Ω. (2)

A classical set is one whose membership function is,

μA(x) =
{

1 x ∈ A
0 x /∈ A.

(3)

The general definition of a fuzzy set (2) does not impose any condition except
that the fuzzy membership be a function. In the context of optimization, we
will restrict ourselves to fuzzy numbers and fuzzy intervals, and the mem-
bership function must be upper/lower semi-continuous (or more practically
continuous), where at least one value of the domain has a membership value
of one. In contrast to probability for finite spaces (see discussion in [16]), for
an event x ∈ A, “... prob(A) is the probability that an ill-known single-valued
variable x ranging in Ω hits the fixed well-defined set A.” For example, sup-
pose we are rolling two die, and A = {4, 5}. The probability prob(A) = 7

36 .
Here x, which ranges in Ω = {2, 3, ..., 12}, is unknown (it is the outcome of
a throw of the dice), but the set A is precisely known. When we consider
μA(x), then x is “fixed”, known precisely, whereas the set A is ill-defined
(transitional).

[8] A fuzzy set (2) is an abstract mathematical notion. It presupposes
nothing about what it could be applied to the notion. It corresponds to
the ideal of non-Boolean predicates. The idea of gradualness or grade
(non-Boolean) is opposed to “all or nothing” (Boolean). Thus, fuzzy
means gradual and not vague or uncertain. So, consider a set. Some
sets are real entities, for example, the set of all salaried tenured pro-
fessors who are employed by the Mathematical and Statistical Sciences
Department at the University Colorado Denver during the 2008-2009
academic year or the set of older mathematicians. Some of these real
sets are fuzzy, for example, the set of older mathematicians, since the
concept of “older” is gradual, graded. These (fuzzy) sets are taken as
“lumped” entities (older is a “lumped” entity). They are a conjunctive
or linked set of elements having more or less weight.

Let us look again at our initial example. The interval [1, 4] considered as a
fuzzy set has membership function

μ[1,4](x) =
{

1 x ∈ [1, 4]
0 otherwise.

Considered as a fuzzy set, the elements of [1, 4] are “lumped” or linked into
one entity, an interval. This intertwined or conjunctive property charac-
terizing fuzzy sets is contrasted with the “mutually exclusive”, unlinked, or
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disjunctive property that characterizes possibility theory and probability the-
ory, as we shall discuss further below.

Mathematical analysis on fuzzy sets (here we are thinking of fuzzy sets
as abstract mathematical entities, that is, sets of membership functions (2))
require a measure, a fuzzy measure, which is used to define order, extent,
convergence, integrals (transformation of a function into a number), and so
on. Fuzzy measures and integrals are used in fuzzy logic to compare/order
and to “defuzzify” (turn a fuzzy set into a number and thus an action -
“shift into overdrive” for example). This is akin to determining the expected
value for continuous distributions in probability theory that transforms a
(probability distribution) function into a single real number (the mean).

Definition 3. [30] Given a universal set Ω and a nonempty family F of
subsets of Ω, a fuzzy measure on 〈Ω,F〉 is a function

g : F → [0, 1]

that satisfies the following properties:
1) g(∅) = 0, and g(Ω) = 1 (boundary conditions)
2) ∀A, B ∈ F , if A ⊂ B, then g(A) ≤ g(B) (monotonicity)

3) ∀ increasing sequence A1 ⊂ A2 ⊂ ... in F , if
∞⋃

i=1

Ai ∈ F , then

lim
i→∞

g(Ai) = g

( ∞⋃
i=1

Ai

)
(continuity from below)

4) ∀ decreasing sequence A1 ⊃ A2 ⊃ ... in F , if
∞⋂

i=1

Ai ∈ F , then

lim
i→∞

g(Ai) = g

( ∞⋂
i=1

Ai

)
(continuity from above).

In the above, 3) and 4) can be viewed as endowing consistency to fuzzy mea-
sures. Usually, the fuzzy measures are defined over a structured set of sets
such as a ring or a σ-algebra or the full power set P (Ω). Fuzzy measures may
be considered as generalizations of probability measures and, in the broader
sense, classical measures. The difference between the fuzzy measure and a
probability measure is that the additivity condition is replaced by a weaker
one of monotonicity and continuity.

Property 2) of Definition 3 implies that g(A ∪ B) ≥ max{g(A), g(B)} and
g(A∩B) ≤ min{g(A), g(B)}. A fuzzy measure is a real valued measure that
is used for mathematical analysis of fuzzy sets. The semantic associated
with fuzzy measure is that the assigned number g(A) to the set A ∈ F ⊂ Ω
indicates the degree to which the given element, set A of F , whose charac-
terization is transitional, belongs to F .
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2.2 Possibility Theory

The mathematical models of systems which are described by the knowledge
we as humans have (epistemic) about the system are often not probabilistic.
Deterministic models are (supposed to be) precise statements about proper-
ties of the real system, the thing itself. They refer to the real world. Possi-
bilistic models often refer to the knowledge humans have about the system.
The model exists or refers to what is in someone’s (or a group of people’s)
head, not the actual system. Possibility is a mathematical structure with
a set of operations that allow us to model some uncertainties that are not
probabilistic, uncertainties that are not random, frequencies, or chance. How-
ever, as in the interval example, they also provide a structure for probabilistic
bounds which themselves are derived from (cumulative) probabilities. Even
when the statement of the problem is clearly probabilistic (the probability
that radiation intensity x will turn a health cell into a cancerous cell), a
single probability distribution function is impossible to obtain for every cell,
and for every human body, and for every bodily condition (obesity, anorexia,
lean, and so on), and for every type of cancer, and every type of radiation
type (electron, proton, neutron), and must be approximated. To obtain one
single probability distribution function p(x) is an approximation at best. It
is perhaps more useful to find bounding functions and to do our analysis on
these rather than committing to a single probability at the start.

Some set representations are epistemic entities, the information possessed
by people about real entities. These set representations do not refer to the
real world, but to what people know about the real world. Dubois uses the
following example. I may “know” epistemically that the Prime Minister of
France is between 40 and 55 years of age. This is the extent of my knowledge
of the age of the prime minister of France, which may be wrong, and it may
differ from your knowledge. The interval [40,55] refers to an interval of real
ages. However, the age of Prime Minister Sarkozy, which exists, is a point, not
a set. The set [40, 55] is the set of possible ages of Prime Minister Sarkozy
according to my knowledge, where the actual age of the Prime minister is
a point. My interval of possible ages in this case is not a conjunction of
elements, it is a disjunction of elements (the set of distinct numbers in the
interval). A generalized characteristic function of this set is a possibility
distribution, despite the fact that there is only one age of Prime Minister
Sarkozy. If some values of ages in the interval [40, 55] are more plausible
than others, then this plausibility defines a preferential function on [40, 55]
which is a possibility distribution.

Possibility is also an abstract mathematical structure which is independent
of applications.

Definition 4. [55] Let P(Ω) denote the power set of the universal set Ω (al-
though a σ-algebra would also work). A possibility measure Pos:P(Ω) →
[0,1] has the following properties:
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1) Pos(∅)=0, Pos(Ω)=1
2) A ⊂ B ⇒ Pos(A) ≤ Pos(B), for A, B ∈ Ω.

3) Pos(
⋃
i∈I

Ai) = supi∈I Pos(Ai).

Possibility is a non-additive measure like fuzzy measures, but it differs from a
fuzzy measure since the two continuity conditions are replaced by the supre-
mum condition on the union. Moreover, property 3) of Definition 4 implies
that

Pos(A ∪ B) = max{Pos(A), Pos(B)}.

As an abstract structure, it also differs from a probability measure because
the additivity condition is replaced by the supremum condition. Besides
defining possibility via the three properties given above, possibility measures
also can be constructed beginning from probability in four different ways one
of which as was given by our first example [1, 4]. The other three ways are
presented in the sequel.

Any possibility measure is determined uniquely by a given possibility (dis-
tribution) function

π : Ω → [0, 1]

via the formula
Pos(A) = sup

x∈A
π(x), A ⊂ Ω. (4)

Also, given a possibility measure, we can define a possibility (distribution)
function π : Ω → [0, 1]

π(x) = Pos({x}). (5)

That is, we can go from a measure to a possibility distribution function in a
natural way. Moreover, possibility measures are distinct from fuzzy measures
(see [41]).

It turns out that Dempster-Shafer’s plausibility and belief functions (see
[6] and [45]) using an auxiliary probability assignment function with the re-
quirement that the focal elements (elements whose probability assignment
functions are non-zero) be nested. When this occurs, the resultant is a pos-
sibility measure. Thus, possibility theory can be considered as a particular
case of Dempster-Shafer theory. To see this, consider a finite universal set
Ω, for the sake of simplicity, and where P (Ω) denotes the power set of Ω.
We restate possibility and necessity in this context (finite universe) and call
a function Nec : P (Ω) → [0, 1] a necessity measure if and only if

Nec(∅) = 0
Nec(Ω) = 1

Nec(A ∩ B) = min{Nec(A), Nec(B)}, (6)
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for all A, B ∈ P (Ω). A function Pos : P (Ω) → [0, 1] is called a possibility
measure if and only if,

Pos(∅) = 0
Pos(Ω) = 1

Pos(A ∪ B) = max{Pos(A), Pos(B)}, (7)

for all A, B ∈ P (Ω). Note that (7) implies that if A ⊆ B, Pos(A) ≤ Pos(B).
Moreover,

Nec(A) = 1 − Pos(Ac).

The relationship between necessity and Dempster-Shafer theory is as follows.
Evidence theory is based on two non-additive measures on a universal set Ω,
a belief measure, Bel, and a plausibility measure, Pl, defined as (see [30])

Bel : P (Ω) → [0, 1] (8)
Bel(∅) = 0, Bel(Ω) = 1,

Bel(
n⋃

i=1

Ai) ≥
∑

i

Bel(Ai) −
∑
i<j

Bel(Ai ∩ Aj) + ...

+(−1)n+1Bel(
n⋂

i=1

Ai)

for all possible families of subsets of Ω. Belief is superadditive. The dual of
belief is plausibility which is defined

Pl(A) = 1 − Bel(AC). (9)

A function m : P (Ω) → [0, 1] is called a probability assignment function if
and only if

m(∅) = 0 (10)∑
A∈P (Ω)

m(A) = 1.

Lemma 5. [45] Given a probability assignment function, a Belief and Plau-
sibility measure on Ω can be defined

Bel(A) =
∑
B⊆A

m(B) (11)

for all A ∈ P (Ω), and
Pl(A) =

∑
A∩B �=∅

m(B). (12)



44 W.A. Lodwick and E. Untiedt

Conversely, given a belief measure, a probability assignment function can be
defined by

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B), (13)

where |A − B| denotes the cardinality of A − B, for all A, B ∈ P (Ω).

Essentially, starting from probability, we start from (10) where the proba-
bilities are known on sets of the space, not elements of the space, with no
particular assumed structure (they may be overlapping, for example) other
than that the sums of their probabilities add to one. From this partial infor-
mation, we can derive a mathematical structure which does not, in general,
have the additive property of probabilities which is called Belief and Plau-
sibility. On the other hand, we can start from the point of view that we
have a sub/super additive set functions called Belief and Plausibility (whose
properties are is defined by (8) and (9)) and derive a probability assignment
function from (13). If the assignment function is known on elements of the
space, then belief is equal to plausibility, and the resulting structure is prob-
ability (with additivity).

The subsets of Ω with positive values of a given probability assignment
function are called focal elements. Suppose all focal elements of the basic
assignment functions (13) can be ordered so that they are nested. That is,
suppose we have an order to the focal elements determined by (13) so that
the finite sequence

{A1, A2, ..., AK}
and m(Ai) > 0 has the property that Ai ⊆ Aj for i ≤ j. Then

Nec(A) =
∑
B⊆A

m(B) (14)

is a necessity measure. Moreover,

Pos(A) =
∑

A∩B �=∅
m(B) (15)

is a possibility measure. In other words, (10) can be given and Bel and
Pl constructed via (11) and (12). Or Bel (and Pl) can be given and the
probability assignment function be constructed via (13). Moreover, when
we have nested sets, we take the focal elements of the probability assignment
function on these nested sets and construct the possibility and necessity which
are precisely the belief and plausibility measures.

We can obtain a probability assignment function from a given necessity
measure by using (13) so that

m(A) =
∑
B⊆A

(−1)|A−B|Nec(B).
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Thus, necessity measures are belief measures when the focal elements are
nested. Fuzzy intervals are the collection of nested focal elements constructed
from the non-zero α − cuts. That is, for α > 0, in the discretized case, let

0 = α0 < α1 < ... < αj < αj+1 < ... < αN = 1,

m(Aαj ) = αj − αj−1,j = 1, ..., N

Aα = {x|μfuzint(x) ≥ α},

where μ is the membership function of the fuzzy interval. Hence, possibility
theory may be viewed as a special type of evidence theory. This allows
possibility theory to be considered from a generalized probabilistic point of
reference. Zadeh [55] defined only possibility measures/distributions. Dubois
and Prade [11] were the first to develop the dual to possibility, necessity.

The previous section outlined several ways that lead to possibility distri-
butions. There is a development (see [4]) which takes the possibility mea-
sure given above and develops the full mathematical structure such that the
mathematical analysis is well-defined. We are thinking of possibility theory
applied to mathematical analysis (optimization in particular). To this end,
we construct possibility and necessity distributions in one of the following
ways:

1. [37] Given a set of probabilities Ω = {pα(x), x ∈ R, α ∈ I, where I is an
index set},

Pos(x) = sup
α∈I

pα(x)

Nec(x) = inf
α∈I

pα(x).

2. [28] Given an unknown probability p(x) which is known to exist in-
side a bounding pair of functions p(x) ∈ [f(x), f(x)], construct neces-
sity/possibility distributions such that p(x) ∈ [Nec(x), Pos(x)].

3. [6], [45] Given a probability assignment function m whose focal elements
are nested, construct necessity/possibility distributions according (15) and
(14).

4. A fuzzy interval, defined below, generates a possibility and necessity pair.
Fuzzy intervals, as used here, are what is called in most of the literature
fuzzy numbers. The possibility and necessity functions are constructed as
was done from our initial example [1, 4] (also see Figure 3 below).

The most prevalent approach is to define the entities of interest in optimiza-
tion (the coefficients and/or the right-hand side values, for example) to be
fuzzy intervals in which case they will be able to capture both gradualness
or transition and lack of specificity/information as we specify below. Thus,
possibility distributions used in possibilistic optimization typically are asso-
ciated with the membership function of fuzzy numbers, whose generalization
is called a fuzzy interval. If the coefficients arise from probability-based
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possibility (as in items 1-3 listed above), then this generates upper and lower
possibilistic optimization (see [37]). A fuzzy number is a fuzzy set with
upper/lower semi-continuous membership function with one and only one
value, x∗, such that μ(x∗) = 1 (where x∗ is the “fuzzified” number). The
set of numbers for which the membership value are one is called the core.
So for example, a fuzzy number 2 would have μ(2) = 1, which is depicted in
Figure 2.
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0
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Fig. 2 A Fuzzy number two

A fuzzy interval M , depicted as a trapezoid in Figure 3, is a fuzzy number
except the core (which must also exist) does not have to be a singleton.
There are various views (applications) of fuzzy intervals. A fuzzy interval
can be used to enclose a set of probability distributions where the bounds
are constructed from the fuzzy interval (blue line being the possibility and
green line being the necessity in Figure 3). The core of the fuzzy interval is
the top, the horizontal line segment between 2 and 3 at height 1, indicated
in Figure 3. The possibility and necessity as indicated below enclose all
probabilities whose upper limit is the possibility (blue line) and lower limit
is the necessity (green line). Thus, according to [15],

“A fuzzy interval M can thus be viewed as encoding a family of proba-
bilities, a set of probability measures PM defined by

PM = {P |ΠM (A) = sup
a∈A

M(a) ≥ prob(A), A measurable}.

It is important to notice that there are actually three probabilistic views
of a fuzzy interval:
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Fig. 3 Fuzzy interval - Megenta

a) The imprecise probability view whereby M encodes a set of proba-
bility measures shown in Figure 3.
b) The pair of PDFs view whereby M is defined by two random vari-
ables x− and x+ with cumulative distributions in blue and green of
Figure 3 and M stands for the random interval [x−, x+].
c) The random set view whereby M encodes the one point coverage
function of a random interval, defined by the probability measure on
the unit interval (for instance the uniformly distributed one) and a fam-
ily of nested intervals (the α − cuts), via a multivalued mapping from
(0,1] to R, following Dempster [6].”

A reason that one might want to use probability-based possibility (interpre-
tations a), b) or c)) rather than probability is precisely in situations for which
real values or complete probability density functions for data are not avail-
able. For example: (1) we don’t know which of a given set of probabilities
to use, (2) all we know is that the probability is bounded by two functions,
or (3) we do not have the probability distribution on singletons, but on sets.
Whether an entity of interest inherently lacks specificity (the minimal radia-
tion that will kill a particular patient’s prostate tumor cell located at (x, y, z)
is Pos(x, y, z)), lacks sufficient research to determine its precise value or its
precise probability density function, its deterministic functional representa-
tion is not required, in the sense that one can get by with a more general
form than its deterministic equivalent - perfect information, for the use to
which it is put (the light wave reflection measured by a satellite sensor to im-
pute the depth of the ocean, low/medium/high might suffice), or complexity
reduction (low, medium, high speed for the automatic gear shifting mecha-
nism on a car), lack of information/specificity is a part of many if not most
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problems. Moreover, when we have models that are built from epistemic
knowledge (human ideas about the system rather than the system itself),
many of these linguistically derived models are possibilistic either in their
entirety or partially.

2.3 Fuzzy Set Theory and Possibility Theory -
Distinctions

The semantics of fuzzy sets and possibility are different. The difference be-
tween fuzzy set theory and possibility theory is that the semantics of fuzzy
are tied to gradualness whereas the semantics of possibility refers to incom-
plete (deficient) information about an existent entity. As we have mentioned
above, fuzzy is a non-Boolean set whose elements transitionally belong to a
given set. Possibility is tied to incomplete information. A fuzzy set member-
ship function uniquely describes the set and defines the degree to which an
element belongs to the set. The possibility distribution assigns the degree to
which the evidence supports the element’s belonging to the set in question.
In particular, consider the two statements

μA(x) = 1,

and
πA(x) = 1.

In the first instance, the membership function value of x is 1. In the second,
the possibility distribution at x is 1. In the first case, it is certain that x
belongs to the set A. In the second case, all that can be said is that the best
information at hand indicates that it is most plausible (or possible) that x
belongs to A. μA(x) = 0 means that x /∈ A for sure. πA(x) = 0 means that
all the given evidence at hand indicates that x does not belong to A (or x is
not A).

[16] “Limited specificity can be modelled in a natural way by possi-
bility theory. The mathematical structure of possibility theory equips
fuzzy sets with set functions, conditioning tools, notions of indepen-
dence/dependence, decision-making capabilities (lattices). Lack of in-
formation or lack of specificity means we do not have ’the negation of
a proposition is improbable if and only if the proposition is probable.’
In the setting of lack of specificity, ’the negation of a proposition is
impossible if and only if the proposition is necessarily true.’ Hence, in
possibility theory pairs of possibility and necessity are used to capture
the notions of plausibility and certainty. When pairs of functions are
used we may be able to capture or model lack of information. A mem-
bership function is a possibility only when the domain of a fuzzy set
is decomposable into mutually exclusive elements. A second difference
(between probability and possibility) lies in the underlying assumption
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regarding a probability distribution. Namely all values of positive prob-
ability are mutually exclusive. A fuzzy set is a conjunction of elements.
For instance, in image processing, imprecise regions are often modelled
by fuzzy sets. However, the pixels in the region are not mutually exclu-
sive (although they do not overlap). Namely the region contains several
pixels, not a single unknown one. When the assumption of mutual ex-
clusion of elements of a fuzzy set is explicitly made, then, and only then,
the membership function is interpreted as a possibility distribution; this
is the case of fuzzy numbers describing the ill-located unique value of a
parameter.” (my italicized emphases)

More recently, [14] state

“A set used for representing a piece of incomplete information is called a
disjunctive set. It contrasts with a conjunctive view of a set considered
as a collection of elements. A conjunctive set represents a precise piece
of information. For instance, consider the quantity v = sisters(Pierre)
whose range is the set of subsets of possible names for Pierre’s sis-
ters. The piece of information {Marie, Sylvie} is precise and means
that Pierre’s sisters are Marie and Sylvie. Indeed, the frame is then
S = 2NAMES , where NAMES is the set of all female first names. In
this setting, a piece of incomplete information would be encoded as a
disjunction of conjunctive subsets of NAMES.”

For example, an image could be segmented/classified into two sets, stomach
lining and stomach muscle. Every pixel in the image is given a value v where
0 ≤ v ≤ 1 with respect to being stomach lining or stomach muscle. This
is conjunctive and thus a fuzzy set. That is, each pixel is stomach lining
to specified degree (between 0 and 1), and (conjunction) each pixel is also
stomach muscle to a specified degree (between 0 and 1). On the other hand,
suppose we use the fuzzy trapezoid interval 59/59.9/60.1/61 to model the
possibilistic notion of a tumorcidal dose to each tumor pixel. This is an
incomplete set of information about each tumor pixel. That is, a tumor pixel
has an associated distribution, a fuzzy interval, a function. A tumor pixel is a
fuzzy interval 59/59.9/60.1/61. The pixel is not represented by a number (as
in the case of stomach lining or muscle - there are two numbers one for each
class), the pixel is represented by an entire distribution. Moreover, possibility
is always normalized since the semantics of possibility is tied to an existential
entity. Thus, not all fuzzy set membership functions can be transformed into
possibility distributions.

2.4 Fuzzy Set Theory and Possibility Theory in
Optimization

Gradualness characterizes many linguistic descriptions of what we know about
properties of entities and systems of these entities. Indeed, classification of
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reality, which often is the first step in mathematical modelling, may reflect the
inherent transitional nature of the class as well as objects in that class. Thus,
“tumor” is a classification which is “intertwined.” Each “tumor” pixel within
a CT scan may consist of fully cancerous cells in a pixel and (conjunctive) pre-
cancerous cells coexisting in the same pixel.

Mathematical modelling has two directions - one toward more specificity
(a real value being one “end point” of specificity) or more generality (the
universe being at the other end of specificity). Generality is often useful to
simplify analysis and reduce the complexity. The greatest use and application
of fuzzy set theory is fuzzy logic controllers. In mathematical analysis, it can
be argued that fuzzy optimization has been the most successful application.
Fuzzy optimization is an extension to flexible programming and allows for a
broader and more ample approach to flexible programming.

The appropriate classification of possibilistic optimization is optimization
under uncertainty, where some (or all) the input data (parameters) to the
optimization model lack specificity, and/or the information is insufficient to
yield a real valued number or a probability distribution. This is distinguished
from fuzzy optimization that appropriately belongs in the class of flexible pro-
gramming problems. The uncertain parameters that are possibilistic must
adhere to (7), which means that more information about the parameter can
never yield less certainty (if A ⊆ B, P (A) ≤ P (B)), and these sets must
be nested. This property (more information leading to greater certainty)
is not axiomatically present in fuzzy measures. For example, the fuzzy set
“older” remains transitionally “older,” regardless of how much more informa-
tion about older is obtained. However, the interval of the age of the prime
minister of France will narrow with more (correct) information.

Not all systems possess this property of more information not increasing
uncertainty. In competitive markets, (cold) wars, adversarial relationships
(such as political campaigns, trials, or propaganda), more information might
be worse given the propensity to disinformation, deceptive information, or
lying all mixed together with legitimate information. When the parameters
are defined as fuzzy intervals, they are also possibility distributions and au-
tomatically adhere to the axioms (definition) of possibility even if they are
fuzzy entities. When fuzzy intervals are used for the parameters, what must
be checked in terms of appropriate use is the semantics. The semantics as-
sociated with possibilistic uncertainty must be tied to information deficiency
(lack of specificity).

The next set of paragraphs are taken from [35] both directly and in mod-
ified form. By fuzzy and possibilistic optimization, as used here, we mean
optimization when at least one element of the input data is a real valued
interval, a real valued random variable, a real valued fuzzy number, or a real
valued number described by a possibility/necessity distribution. The use of
necessity distributions are done similarly to possibility except that the neces-
sity sematic is a pessimistic one, while the possibility semantic is optimistic.
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We consider the following general programming problem:

z = min f(x, c)
subject to gi (x, a) ≤ b i = 1, ..., M1 (16)

hj (x, d) = e j = 1, ..., M2.

The constraint set is denoted Ω = {x | gi (x, a) ≤ b i = 1, ..., M1, hj (x, d) = e
j = 1, ..., M2}. It is assumed that Ω �= ∅. The values of a, b, c, d, and e are in-
puts (data, coefficients, parameters) of the programming problem. These val-
ues are subject to uncertainty for a variety of reasons. Depending on the nature
of the uncertainty, they may be probability distributions, intervals, fuzzy sets
or possibilistic distributions. Moreover, the operator min and relationships =
and ≤ can take on a flexible or fuzzy meaning becoming a soft relationship or
constraint. For example, the equality and inequality relationships may be as-
pirations, that is, they may take on the meaning, “Come as close as possible to
satisfying the relationships with some degree of violation being permissible.”
On the other hand, the value of a, b, c, d, or e may be described by a probabil-
ity, interval, fuzzy or possibilistic distribution. In either case, the meaning of
the relationships must be specified. When the objective function and/or con-
straints are defined by functions other than real valued convex functions, the
optimization problem may not be (undoubted is not) convex so that typical so-
lution methods are local. In very simple cases where the constraint is of the
form Ax ≤ b, and the coefficients of the matrix and right-hand side values are
intervals, the solution set can be a star-shaped region (see [20]). Recall that an
interval is a fuzzy number. Moreover, when the components of the matrix A
are other than real valued, this means that the underlying model as specified
by linear relationships is not known exactly or that the model is precise, but
knowledge of what the value of the data are incomplete. We use a tilde, ˜, to
denote a fuzzy set, and a “hat”, ˆ, to denote a possibility distribution.

2.4.1 Fuzzy and Possibilistic Optimization Semantics

Next what is meant by decision-making in the presence of fuzzy and possi-
bilistic entities is defined. These definitions are central to the semantics and
methods. In their book (Chapter 5) Dubois and Prade [9] give clear defini-
tions and distinctions of fuzzy measures, possibility and probabilities often
forgotten and ignored by researchers (see also Chapters 1 and 7 of [13]).

1. Fuzzy Decision Making: Given the set of real valued (crisp) decisions, Ω,
and fuzzy sets, {F̃i | i = 1 to n}, find the optimal decision in the set Ω.
That is,

sup
x∈Ω

h
(
F̃1(x), ..., F̃n(x)

)
, (17)

where h : [0, 1]n → [0, 1] is an aggregation operator [30], often taken to
be the min operator, and F̃i(x) ∈ [0, 1] is the fuzzy membership of x in
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fuzzy set F̃i. The decision space Ω is a set of real numbers (crisp set), and
the optimal decision satisfies a mutual membership condition defined by
the aggregation operator h. This is the method of Bellman and Zadeh [1],
Tanaka, Okuda and Asai [48], [49], and Zimmermann [56], who were the
first to develop fuzzy mathematical programming. While the aggregation
operator h historically has been the min operator, it can be, for example,
any t − norm that is consistent with the context of the problem and/or
decision methods (see [29]).

2. Possibilistic Decision Making: Given the set of real valued (crisp) deci-
sions, Ω, and the set of possibility distributions representing the uncertain
outcomes from selecting decision x = (x1, ..., xn)T denoted Ψx = {F̂ i

x, i =
1, . . . , n}, find the optimal decision that produces the best set of possible
outcomes with respect to an ordering U of the outcomes. That is,

sup
Ψx∈Ψ

U(Ψx), (18)

where U(Ψx) represents a “utility” of the set of distributions of possible
outcomes Ψ = {Ψx|x ∈ Ω}. The decision space Ψ is a set of possibility
distributions Ψx : Ω → [0, 1] resulting from taking decision x ∈ Ω. This
is the semantic taken in the possibilistic optimization of Inuiguchi [22],
[23], [24] and Jamison and Lodwick [27]. If F̂x = 2̂x1 + 3̂x2, then each
x = (x1, x2)T generates the possibility distribution F̂x = 2̂x1 + 3̂x2.

Remark 6. Let us summarize what we have just presented. For fuzzy sets
F̃i, i = 1, ..., n, given x, [F̃1(x), ..., F̃n(x)]T is a real valued vector. Thus,
we need a way to aggregate the components of the vectors into a single real
value. This is done by a t-norm, min for example. For possibility, given x,
Ψx = {F̂ i

x, i = 1, . . . , n} is a set of distributions, so we need a way to turn
this set of distributions into a single real value. This is done by the utility
function, a generalized expectation, for example.

Very simply, fuzzy decision-making selects from a set of real valued, crisp,
elements ordered by an aggregation operator on corresponding membership
functions, while possibilistic decision making selects from a set of distribu-
tions measured by a utility operator that orders the corresponding distribu-
tions. These two different approaches have two different ordering operators
(an aggregation operation for fuzzy sets such as min and a utility function in
the case of possibility such as a generalized expectation) and lead to two dif-
ferent optimization methods (see [35]). The underlying sets associated with
fuzzy decision-making are fuzzy, where one forms the decision space of real
valued elements from operations (“min” and “and”, for example, in the case
of optimization of [1], [49] and [56]) on these fuzzy sets. The underlying sets
associated with possibilistic decision making are real value sets, where one
forms the decision space of (possibility) distributions from operations on real
valued sets.
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The construction of an appropriate utility function is a challenge. The
axioms of utility theory as developed by Von Neumann and Morgenstern [52]
are usually required. The type of utility function that is used is a challenge
and decision maker dependent. For example, if one is radiating a tumor that
is quite aggressive, one’s utility might have higher risk (the first derivative
is large and positive over the domain) than if one were radiating a tumor
that was growing very slowly (the first derivative is small and positive over
the domain). For this presentation, we put aside the question of how to
obtain an appropriate utility function noting that it is a key to the successful
implementation of the methods contained herein. The key point is that in
possibilistic optimization, one is using a utility such as a generalization of the
expectation to transform distributions into one real valued function (which is
then optimized), whereas in fuzzy optimization, one is using an aggregation
operator such as a min or t-norm to transform vectors into one real valued
function (which is then optimized).

The idea of the use of utility for decision making under uncertainty prob-
lems is discussed in [17] who show how to use two qualitative counterparts
to the expected utility criterion, one type of utility, U, that can be used in
(18), to express uncertainty and preferences in decision making under un-
certainty. Thus, what is called here possibilistic decision making, (18), is
related to what [17] develop. However, optimization as articulated here are
quantitative methods (the mapping U : Ψ → R), whereas the focus of [17] is
more qualitative.

2.4.2 Fuzzy Decision Making Using Fuzzy Optimization

Fuzzy decision making using fuzzy optimization was first operationalized by
Tanaka, Okuda, and Asai (see [48], [49]) and Zimmermann (see [56]). This
approach, based on the landmark theoretical paper by Bellman and Zadeh
[1], relaxes systems of inequalities Ax ≤ b to denote aspirations. The results
are soft constraints, where the number b to the right of the soft inequality
is a target such that, if the constraint is less than or equal to b, the mem-
bership value is one (the constraint is satisfied with certainty), and, if the
constraint is greater than b + d, (for an a priori given d > 0), the member-
ship is zero (the constraint is not satisfied with certainty). In between, the
membership function is interpolated so that it is consistent with the defini-
tion of a fuzzy number membership function in the context of the problem.
Linear interpolation was the original form (see [56]). This models a fuzzy
meaning of inequality that is translated into a fuzzy membership function
and is the source of our use of the designation of flexible programming for
these classes of problems. The α − level represents the degree of feasibility
of the constraints, consistent with the aspiration that the inequality be less
than b but definitely not more than b + d. Thus, the objective (according to
[56]) is to simultaneously satisfy all constraints at the highest possible level



54 W.A. Lodwick and E. Untiedt

of feasibility as measured by the α− levels of the membership functions (that
is “and” all membership functions).

The approach of Tanaka, Okuda, and Asai (see [48], [49]) and Zimmermann
(see [56]) deals with one way to minimize constraint violations. However,
their operationalization is not always Pareto optimal [8]. Their approach
must be iterated - fix the constraints at bounds and re-optimize. Their
method falls within a goal satisfaction approach in optimization in which the
highest degree of goal attainment is sought. They do this by minimizing the
violation of the most stringent constraint. Thus, for example, this approach
may guarantee that every constraint is satisfied to a 0.65 degree or more,
and it may be the case that every constraint is satisfied to the 0.65 level.
However, it may also be that if one of the constraints were relaxed to a 0.6
constraint violation level, all others may be satisfied at a 0.95 level. That
is, this approach does not look at the aggregate satisfaction, only the most
constraining one. It is minimizing the maximum constraint violation.

An aggregate goal attainment tries to maximize an overall measure of
aggregate goal satisfaction. The aggregate sum of goal attainment focuses on
maximizing the cumulative satisfaction of the goals. The surprise function
(see [38], [40]) is one such measure for an aggregate set of (fuzzy) goals. In
particular, when the right-hand side values are interpreted as goals rather
than rigid constraints, the problem may be translated into one of optimizing
the aggregate goal satisfaction. Thus, for soft constraints derived as,

hard yi = (Ax)i ≤ bi ⇒ soft yi = (Ax)i ≤ b̃i, (19)

where the right-hand side values of the soft constraint are fuzzy numbers,
the transformation into a set of aggregate goal satisfaction problem using
the surprise function as the measure for the cumulative goal satisfaction is
attained as follows. A (soft) fuzzy inequality (19) is translated into a fuzzy
membership function, μi (x) , which is the possibility pos(b̃i ≥ x). Each
membership function is translated into a surprise by

si(x) = (
1

μi (x)
− 1)2. (20)

These functions are added to obtain a total surprise

S(x) =
∑

i

si(yi) =
∑

i

si(yi) =
∑

i

si((Ax)i). (21)

Note that (21) is an aggregation operator. A best compromise solution based
on the surprise function is given by the nonlinear optimization problem

min z =
∑

i

si((Ax)i)

subject to x ∈ Ω (possible hard constraints).
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That is, a real valued inequality constraint whose right-hand side value is a
fuzzy number is translated into a fuzzy set. This fuzzy set then is trans-
formed into a real valued set, one for each α − level, via a surprise function
whose domain, of course, is the α − level of the fuzzy sets. The objective is
to minimize the sum of all surprise function values. Unlike Tanaka and Zim-
mermann, the constraints are not restricted such that all satisfy a minimal
level. The surprise function approach effectively sums each of the α− levels
for each of the constraints, then maximizes this sum with respect to α. Since
the optimization is over sets of crisp values coming from fuzzy sets, the sur-
prise approach is a fuzzy optimization method. The salient feature is that
surprise uses a dynamic penalty for falling outside distribution/membership
values of one. The advantage is that the individual penalties are convex
functions, which become infinite as the values approach the endpoints of the
support. Moreover, this approach is computationally tractable.

Again, the surprise approach may be used to handle soft constraints of
Tanaka, Okuda, and Asai (see [49]) and Zimmermann (see [56]), since these
soft constraints can be considered to be fuzzy numbers. However, if soft
constraints are handled using surprise functions, the sum of the failure to
meet the constraints is minimized rather than forcing each constraint to meet
a minimal (fuzzy) feasibility level.

Another historically significant interpretation of fuzzy optimization comes
from Verdegay [51], who proposes a method for obtaining a fuzzy solution
to a fuzzy problem. This is a deviation from the solutions examined so far,
which have been real valued, crisp solutions. Verdegay considers a problem
with fuzzy constraints,

z = f(x) (22)
x ⊆ C̃,

where the set of constraints have a membership function μC , with α − cut
C̃α.

Verdegay defines xα as the set of solutions that satisfy constraints C̃α.
Then a fuzzy solution to the fuzzy mathematical programming problem is

max
x∈C̃α

z = f(x) (23)

∀ α ∈ [0, 1].

Verdegay proposes solving (23) parametrically for α ∈ [0, 1] to obtain a fuzzy
solution χ̃, with α− cut χα, which yields fuzzy objective value z̃, with α-cut zα.

2.4.3 Possibilistic Decision Making Using Possibilistic
Optimization

One approach to possibility distributions of parameters ([27] and [32]) allows
all constraint violations at an established cost or penalty and minimizes the
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expected average, a generalization of expected value ([10], [26], [27], [53], and
[54]). This approach considers all possible outcomes as a weighted expected
average penalty. The expected average is a type of utility. Another utility
is minimizing regret, from Kasperski’s article in this volume. This particular
utility takes violations as penalties on all outcomes of the constraints. It opti-
mizes over sets of possibility distributions, so it is possibilistic optimization.

Another approach that optimizes over possibility distributions [23] and
[24]also optimize over distributions considers constraint feasibility as pos-
sibilistic generalizations of chance constraint methods. The approach used
in [27] and [32] is a possibilistic generalization of the recourse models in
stochastic optimization (see for example [2]), where violations of constraints
are considered as allowable up to a maximum but at a cost. The recourse
model in the context of non-probabilistic uncertainty has been studied by
[25] where interval parameters/coefficients are treated.

Possibilistic optimization historically was introduced by Buckley [3] as an
off-shoot of fuzzy optimization. Because this is a possibilistic linear program,
the objective function is governed by a possibilistic distribution. To derive
the possibilistic objective function value for a particular solution x, Buckley
first specifies the possibility that x satisfies each constraint, and takes the
minimum to indicate the possibility that x satisfies all constraints. Buckley
next constructs Poss[Z = z|x], which is the conditional possibility that the
objective function Z obtains a particular value z, given values for x. This
definition of the possibility distribution motivates Buckley’s solution method.
Recall that because we are dealing with a possibilistic problem, the solution
is governed by a possibilistic distribution. Buckley’s method depends upon a
static α, chosen a priori. The decision maker defines an acceptable level of
uncertainty in the objective outcome, 0 < α ≤ 1. For a given α, we define
the left and right end-points of the α-cut of a fuzzy number x̃ as x−(α) and
x+(α), respectively. Using these, Buckley defines a new objective function:

Z(α) = c−(α)x (24)
A+(α)x ≥ b−(α).

This linear program is constrained upon the best-case scenario. That is, for
a given α-level, each variable is multiplied by the largest possible coefficient
a+

ij(α), and is required to be greater than the smallest possible right-hand
side b−i (α). We should interpret Z(α) accordingly. If the solution to the linear
program is implemented, the possibility that the objective function will attain
the level Z(α) is given by α. Stated another way, the best-case scenario is
that the objective function attains a value of Z(α), and the possibility of the
best case scenario occurring is α.

In the mid 1980s, Tanaka and Asai [47] and Tanaka, Ichahashi, and Asai
[50] proposed a technique for dealing with ambiguous coefficients and right-
hand sides based upon a possibilistic definition of “greater than zero.” First,
the objective function is viewed as a goal. As in flexible programming, the goal
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becomes a constraint, with the aspiration level for the objective function on
the right-hand-side of the inequality. The right-hand sides of the constraints
are subtracted so that all the numeric information is contained in a single
matrix, which is feasible when it is greater than zero. A fuzzy measure of
non-negativity is introduced to gauge optimality of a potential solution x.

Luhanjula’s [39] formulation of the possibilistic mathematical program de-
pends upon his concept of “more possible” values. He first defines a possibility
distribution ΠX with respect to constraint F as

ΠX = μF (u),

where μF (u) is the degree to which the constraint F is satisfied when u is
the value assigned to the solution X . Then the set of more possible values
for X , denoted by Vp(X), is given by

Vp(X) = Π−1
X (max

u
ΠX(u)).

In other words, Vp(X) contains elements of U which are most compatible with
the restrictions defined by ΠX . It follows from intuition and from Luhanjula’s
formal proof [39] that when ΠX is convex, Vp(X) is a real valued interval,
and when ΠX is strongly convex, Vp(X) is a single real number. This formu-
lation varies significantly from the other approaches considered thus far. The
possibility of each possibilistic component is maximized individually. Other
formulations have required that each possibilistic component c̃j , Ãij , and b̃i

achieve the same possibility level defined by α. This formulation also has a
distinct disadvantage over the others presented here. The authors know of no
proposed computational method for determining the “more possible” values,
Vp, so there appears to be no way to solve the deterministic the problem.

2.4.4 Mixed Fuzzy and Possibilistic Decision Making Using
Mixed Possibilistic and Fuzzy Optimization Methods

An optimization problem containing both fuzzy and possibilistic variables
is called a mixed problem in this chapter. Problems in which one or more
possibilistic parameters occurs with one or more fuzzy parameters (or fuzzy
inequalities) have been studied (see [24], [36]). Within a quantitative setting,
there are two cases for the mixed problem. The first case is a problem that
contains both fuzzy and possibilistic parameters (or soft inequalities), but in
which each constraint contains exclusively fuzzy or possibilistic parameters.
In this case, the fuzzy constraints can be optimized by α− levels (according
to [40] or [56]) and the possibilistic constraints by penalized expected aver-
ages (according to [27]). For the more complex case in which both fuzzy and
possibilistic parameters appear in the same constraint, one approach is to
compute the possibilistic distributions of the aggregation of the fuzzy mem-
bership functions and optimize over the penalized expected average. The
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fuzzy parameter(s) mixed with possibilistic parameter(s) generate a possi-
bilistic distribution that depends on the aggregation operator of the fuzzy
membership functions. Another approach is described in Untiedt’s chapter
in this volume.

3 A Taxonomy of Fuzzy and Possibilistic Optimization
for Our Generic Problem

The structure of the generic optimization problem (16) when it is a lin-
ear programming problem may be considered to be formed by (i) the rim
f(x, c) = cT x, and b, e, (ii) the body f(x, a), h(x, d) = Ax, and (iii) the
relationship, ≤, = ([21]). For the generic form of the mathematical pro-
gramming problem (16), we consider a taxonomy based on (i) rim objective
function parameters, c, (ii) rim right-hand side parameters, b and e, (iii)
body parameters a and d, and (iv) relationship ≤, = . For this exposition, a
fuzzy/possibilistic optimization problem is considered to be (16) in the pres-
ence of data {a, b, c, d, e,≤, =} that is either all or a mixture of real, interval,
probabilistic, fuzzy, possibilistic with at least one parameter being fuzzy or
possibilistic where soft constraints are assumed to have been translated into
fuzzy intervals. If we have a probabilistic optimization problem whose values
are known over each x ∈ R, we would consider it under possibilistic opti-
mization where the upper bound and lower bound (possibility/plausibility
and necessity/belief) would be equal. If the probability were known only
over sets, then we would have an upper possibility bound and a lower ne-
cessity bound as in Figure 3 and do our bound interval-valued possibilistic
optimization which is transformed into utility optimization. A right-hand
side value that is fuzzy may be interpreted in two ways depending on the
context of the problem. First, a fuzzy right-hand side may indicate flexibil-
ity. Second, it may indicate (true) decomposable transition modelled by a
fuzzy interval. For the former, the constraint becomes a flexible constraint.
For the latter, it becomes a possibility.

Note that in the context of interval, fuzzy, possibility, r ≤ s and s ≤ r
does not imply r = s as can be seen in the following.

Example 7. Let

[2, 3]x ≤ [3, 6] and (25)
[2, 3]x ≥ [3, 6]. (26)

The solution of (25) is
x = (−∞, 1].

The solution of (26) is
x = [3,∞).
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Thus (25) and (26) imply that x = ∅. However,

[2, 3][x, x] = [3, 6]

means that [x, x] = [32 , 2].

This example shows that for the constraint fuzzy/possibilistic linear system,
Ax ≤ b and Ax ≥ b are not equivalent to Ax = b.

The types of optimization in the presence of interval, fuzzy interval, pos-
sibilistic coefficients, and soft constraints are as follows:

1. Flexible Programming

a. Soft constraints relationships ≤ and/or = that take on a flexible mean-
ing (come as close as possible or come as close as possible without
violation some hard constraints).

b. The objective function expresses a target desired (come as close as pos-
sible to staying under a budgetary value, or attain at least as much
profit as was obtained last year).

c. The right-hand-side value of a constraint is a fuzzy interval which is
semantically a target (deliver as close to zero radiation as possible to
healthy cells but absolutely to not exceed a critical threshold value).

2. Utility Programming

a. Interval, fuzzy interval, possibilistic cost coefficients of the objective
function rim parameter c with real valued coefficient constraint coeffi-
cient a, b, d, e ∈ R.

b. The objective function rim parameter c ∈ R with interval, probability,
possibility, fuzzy interval, and one or two of the following - body pa-
rameters interval, fuzzy interval, possibilistic a, d and/or rim right-hand
values b, e are possibilistic.

c. Interval-Valued Probability Measure (IVPM) Programming - any of the
coefficients a, b, c, d, e may be interval, fuzzy, possibilistic where there
may be a mixture of types within one constraint statement.

3. Random Set - any of the coefficients a, b, c, d, e may be interval, fuzzy,
possibilistic where there may be a mixture of types within one constraint
statement.

One also might classify fuzzy and possibilistic programming according to
whether or not the solution is a real valued fuzzy interval vector or a real
valued vector. Possibilistic programming methods of Buckley [3] and his
colleagues and Delgado [5] and his colleagues have considered fuzzy interval-
valued solutions. The methods to obtain fuzzy interval solutions are differ-
ent than those that obtain a real valued solution. Nevertheless, they fall
under possibilistic programming or random set programming of the above
taxonomy.
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