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This paper takes a general look at core ideas that make up the burgeoning body of Fuzzy 
mathematical programming emphasizing the methodological view. 

Although Fuzzy mathewatical programming has enjoyed a rapidly increasing acceptance 
within the scientific community, some technical hurdles exist to hinder a unanimity. Reasons 
for this as well as possible ways for improvement are also discussed. 
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1. htroduction 

Mathematical disciplines have traditionally arisen in response ,o the need to 
solve problems in the real world. Fuzzy mathematical prograw~Cag, following 
this traditional pattern, has been developed in connection with the necessity to 
meet requirements of decision making in practice. 

As witnessed by discussions in professional journals, many decision models 
outline wrongly the problem to be tackled. One of the reasons of this 
mismatching is the fact that most of these models and methods are unsuitable for 
decision situations in which intrinsic or informational imprecision plays a pivotal 
role. 

Although probabilistic theories (Kall [39], Va]a [96]) claim to model decision 
making under uncertainty, there is a qualitatively different kind of imprecision 
which is not covered by these apparatus, that is: inexactnes~, ill-definedness, 
vagueness. Situations where doubt arises about the exactn,~ss of concepts, 
correctness of statements and judgements, degree of credibility, have little to do 
with the occurrence of events, the back-bone of probability theory. 

Fuzzy sets theory offers a proper framework for coming to grips with such 
situations involving non-stochastic imprecision. 

A look at the existing literature clearly indicates its contribution in enhancing 
the descriptive power of numerous decision making models (Mathematical 
programming: Zimmermann [106], Negoita [56], Dubois [18]; Utility theory: 
Kickert [40]; Knowledge engineering: Baldwin [2], Sugeno [86], etc.) by letting 
irreductible imprecisiou be taken into account. 

The purpose of this paper is to review the state of knowledge in the area of 
Fuzzy mathematical programming and to provide a perspective on potential 
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research directions. An exhaustive review is not possible within the scope of a 
single article as the subject is still being vigorously pursued by many workers. On 
the other hand picking and reviewing an individual segment would not do justice 
to the richness of the subject. Thus I shall try to glance at significant areas with a 
decision perspective in view. This does not imply a value judgement on t,~pics and 
results which are not reported. 

Let me mention that existing fuzzy mathematical programming approaches 
proceed along the lines to be given below. 

First the set P of admissible alternatives is specified. Next, the result 
e(x, O, C 1 , . . . ,  Cm) representing the position of each potential alternative x e P 
vis-a-vis to the goal (0) and the constraints (C~, i = 1 , . . . ,  m) is elicited. 

Let now a compatibility function on the set I of possible results be given by 
K:I-~ R, i.e. K(e(x, 0, C 1 , . . . ,  C,,)) is the degree of compatibility ofx with the 
goal and constraints of the problem. 

Finally a transformation T which assigns a real valued function on P to any 
compatibility function is defined. The resulting problem is to maximize TK(x) -- 
F(x) on P. 

As will become apparent in the sequel, existing points of view differ on the 
choice of P, K and T and on the kind of solution sought. 

The paper is organized as follows: Section 2 deals with flexible programming, 
i.e. mathematical programming problems with crisp parameters, the objective 
and constraints of which are ill stated. Mathematical programming problems with 
fuzzy parameters are taken up in Section 3. Extensions to situations where 
fuzziness and randomness are combined in the scope of a mathematical program 
as well as to multiple objective programming problems are discussed in Section 4. 
We end up with a discussion on technical hurdles which hamper the rapid 
elevation of Fuzzy optimization from the academic to the practical realm and to 
ways for improvements. 

2. He~ble progrmmn~g 

hi-solving their problems, Deciders generally grapple with technological, 
environmental and competitive factors which interact in a complicated fashion. In 
such a turbulent environment, the formulation of the problem in terms of 
dichotomous 'yes or no' statements yields often inconsistencies which are 
expressed by the vacuousness of the feasible set. So it is worthwhile to discuss 
how to tolerate some ieeways in the formulation of goals and constraints of a 
m,~thematical program. This is the main topic of flexible programming, the 
subject matter of this section. 

2.1. Problem formulation 

Consider the mathematica! proj~am 

gin f(x), 
g,(x)~b,, i = l , . . . , m ,  (P1) 
x {x 
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where f and gi (i = 1 , . . . ,  m) are real functions of n variables and '--.' indicates 
that the Decider is no longer able to specify clearly the goal and constraints of his 
problem because it is just impossible or because he wants to allow himself some 
leeways. Speaking informally, (Pl) reads: Find x ¢ X such that f (x)  is maintained 
to a lower level while gi(x) <~ bi (i = 1 , . . . ,  m; are met as well as possible. 

Immediately the question arises of what the best or the more satisfying 
alternative in this context means and how to single out such an alternative. The 
business of the remainder of this section is dev,3ted to these questions and related 
problems. 

2.2. Symmetrical approaches 

2.2.1. Symmetrical approaches based on the concept of decision in a fuzzy 
environment 

For convenience, the goal of (P1) is replaced by a constraint of the form: 
f(x)<.Zo, where Zo is some prescribed threshold. Furthermore, membership 
functions of fuzzy sets Cl (i --- 0 , . . . ,  m) representing the Decider's aspirations 
for the attainment of the goal and of the constraints should be made explicit and 
defined in some proper way. The proper way is open for the model builder. For 
practical purposes, (piecewise) linear, polynomial, hyperbolic functions are 
mostly used. How to elicit membership functions of involved fuzzy sets falls 
outside the scope of this paper. Interested readers are referred to Kuz'min [41] 
Yager [101] where axiomatical and empirical considerations in connection with 
this problem are discussed. 

Keeping in mind notations of the general construction scheme of Section 1, let 

e ( x ,  O,  C l ,  . . . , C m )  f f i ( U C o ( X ) ,  . . . , U C , ( X ) )  

where Uco(X) is the membership function of the fuzzy set Co representing the 
ill-defined goal and Uc, (i = 1 , . . . ,  m) fuzzy membership functions of fuzzy sets 
representing ill-formulated constraints. 

Define K and T as follows: 

K ( u c o ( X ) ,  . . . , u c . ( x ) )  = rain  U c , ( X ) ,  
i 

T : . ~  d~ 
K TK--F:X--*R 

x rain uc,(x) 
i 

where ~ =  {K:I.--~ R} and d¢-  {F :X---> R}. 
The deterministic program resulting from this construction is 

max rain Uc,(X). (PI') 
x c X  i 

(PI ')  is nothing but the deterministic counterpart of a flexible program obtained 
via the Bellman and Zadeh concept of decision making in a fuzzy environment 
(Negoita [55], Tanaka et al. [92], Zimmermann [104]). 
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The fuzzy decision is the fuzzy set D characterized by the membership function 

uo(x) f m!n uc,(x). 

(PI') reflects the pure rationality principle (the Homo economicus attitude) 
consisting in optimizing a utility function (here the compattbifity function uv(x)) 
over the set of feasible actions. Slightly different versions of (P1 °) may be 
obtaiaed by considering other triangular norms or compensatory operators (to 
avoid the ultra conservative character of triangular norms) in the definition of the 
compatibility function. 

Naturally the question arises of how to find an optimal solution of (PI'). The 
following results offer a basis for putting (Pl') in a form which is convenient for 
computational purposes. 

~ p o ~ d o a  2.1. 

xYx uv(x) - V ^ " '  ^ v uco(x) v uc (x)] 
{ k ' l . . . , .  Of m 

,,,~[o, l]  

where v and ^ denote max and rain respectively and 

c7' = (x E X luc,(x) 

Propos|don 2.2. x ° is optimal for the program 

max rain (Uc,(X)) 
xCX ira0.1 

if and only if x ° is optimal for 

max Uco(X), Uco(X) ~ Uc,(X), x ¢ X. 

For the general case ((Pl) has m constraints, m > 1) the reader is referred to 
Tanaka et al. [92] where among other things a discussion on how Proposition 2.1 
may be exploited to find a solution of the initial flexible program, is reported. 

In a more practical level Zimmermann [104] has treated the linear case. Using 
piecewise-linear functions to represent involved soR goals and constraints, the 
original problem is translated into a linear program. See also Dyson [22] for a 
discussion on these matters and Dubois [18] for linkups between soft constraints 
and fuzzy thresholds. 

Zimmermann's proposal offers the maximizing alternative in the Fuzzy decision 
set. In addition the Decider may want to capture some essential features on other 
alternatives in the neighbourhood of the maximizing solution. Along this line, 
some efforts have been devoted to elicit the whole fuzzy decision set via 
p~rametric programming techniques (Verdegay [98], Chanas [13]). 

The above mentioned ideas have been adequately adapted to deal with 
situations where variables are required to be integer (Stolen and Fabian [85], 
Ignizio [36]) or Booleans (Zimmermann and PoUatchek [108]). 

Let me also mention that Zimmermann's approach has been outstandingly 
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successful in solving concrete problems: Air regu|ation problem (Sommer and 
Pollatchek [82]), Media selection (Wiedey and Zimmennann [100]), Diet and 
production problems (Afgoun [1], Lebbah [43]), Logistics (Ernst [23]), Main- 
tenance scheduling (Holtz and Desonki [35], Inventory planning (Rinks [68]). 

Duality relationships that allow interesting economic interpretations have also 
been derived (Hamacher et al. [29], R6dder and Zimmermann [69]). An 
indisputable advantage of the symmetrical approach for a flexible program briefly 
outlined in this subsection is the existence of user-friendly mathematical 
programming packages that may be used to solve resulting deterministic 
programs. 

Nevertheless if one wants to be more realistic, the incorporation of nun-linear 
membership functions into the model in a way to translate more faithfally the 
desiderata of the Decider should be envisaged. Early steps along this !~.~me may be 
found in Nakamura [54]. Furthermore much more is needed in connection with 
the problem of yielding the whole fuzzy decision. How to reduce the support of 
the fuzzy decision set by assigning appropriate bounds to the objective fupction, 
how to deal with more general membership functions are, among others, 
questions which merit more attention. 

Let us now turn to the case where the Decider is only able to specify some 
subjective preferences ordering on the set of potential actions. 

2.2.2. Symmetrical approaches based on the concept of 'nondominated action' 
Consider the standard flexible program (P1) and assume that the Decider is 

only able to give subjective articulations of his preferences via a set of estimates 
and a fuzzy preference relation. Define elements of the general construction 
scheme (see Section 2) as follows: 

P=X, e(x,O, 
where NS(.~, x) is a fuzzy strict preference relation induced from the original fuzzy 
relation (see Orlovski [60, 61] for further details). N~(~, : )  is the ,~egree to which 

is strictly preferred to x. 

K(e(x, O, C , , . . . ,  Cm))= 1 - su~ N~(.~, x) = NND(x), 

rK(x)ffi N D(x). 
The problem resulting from these definitions (see Section 2) is 

max NND(X), X e X. (P2) 

On account of con~e,ltional operations of negation and union of fuzzy sets 
(Zadeh [103]), NNV(x) is nothing but the degree to which x is non-dominated by 
any other action .~ ¢ X. 

P~pos|fion 2.3. If  (x °, k °) is optimal for the program 
rain k 
N~(~,x)<.k, V . ~ X , ~ - x ,  (P2') 
x eX,  

then x ° is optimal for (P2). 
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(P2') is a semi-infinite mathematical program that can be solved by the 
three-phase algorithm (Glashoff and Gustafson [28]) or by cutting plane method 
(Blankenship and Falk [6], Timsi and Kerri [94]). Under some assumptions (P2') 
can be solved by existing mathematical programming packages. This is the 
content of the following: 

P~epe~on 2.4. If ~ ~ convex in the second argument and X is a bounded 
polyhedric set the extreme points of which define the set X', then 

rain max ~ ( ~ ,  x)  = rain max a~(~, x).  
x e X  ~GX x e X  £~X' 

(1) 

As (P2) is equivalent to the first member of (1), it is clear that a solution of 
(P2) may be obtained by solving the following mathematical program: 

max k, (x, k) e X", 

where 

X"= {(x, k ) e X x  R l k ~  N'(~,x),$ GX'}. 

The usefulness and interest of the outlined method for solving a flexible program 
would be enhanced if there would be some appropriate techniques to capture the 
Decider's preferences. 

A still open question in connection with the above approach is that of finding 
an analytical representation of N ~ and N ND in a way to solve resulting 
deterministic programs. 

Methods discussed in the two previous subsections have the common feature of 
considering constraints and goals as similar concepts; hence the name symmetrical 
approaches. 

Let us now turn ~ ~ituations where this symmetry is not justified. 

2.3. Assymmetric~l approaches 

Consider the following definitions: 

Pffi {x E x [  Uc,(X) ~> =,, i ffi 1 , . . . ,  m) 

where uc, (i ffi 1 , . . . ,  m) are as previously membership functions of fuzzy sets 
representing constraints of (PI) and =, (i = 1 , . . . ,  m) are thresholds fixed to 
express the Decider's attainments for the constraints. 

e(x, o, c , ,  . . . , c m ) = ( U c o ( X ) ,  u c , ( x ) ,  . . . , Uc.(X)), 
K(e(x,O, Co, C1,. . .  , C,,)=uco(x) and TK(x)-uco(X). 

The resulting program is then 

max u~o(x ), 
Uc,(X) >~ ate, i = 1 , . . . ,  m, (P3) 

x~0 .  
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(P3) reflects an asymmetrical attitude, i.e. the fuzzy set representing the goal is 
considered as a utility function that ranges potential actions and the fuzzy sets 
representing the constraints determine the admissible set. If u o have some 
desired properties, (P3) may be solved by existing mathematical programming 
packages. 

We have an entirely different type of problem if P is considered as a fuzzy set 
of X denoted here D and e(x, O, C 1 , . . . ,  C,,,), K, and T are defined as 
previously. The resulting problem is: 

max Uco(X), x ¢ D. (PY) 

(PY) is mathematically meaningless because of the fuzziness surrounding the 
feasible set and the question emerges of how the optima| solution of this problem 
should be understood. One possible interpretation of a solution of (PY) is via the 
concept of maximizing set (Werners [99], Zimmermann [1069, i.e. a fuzzy set 
which reflects the compatibility of elements in the support of the feasible set P 
with the fuzzy set representing the objective (Co). 

For instance a fuzzy maximizing decision M may be characterized by the 
following membership functions: 

0 

Uc.(X) - infx so Uco(X) 
uM(x) "- sup,,~so u¢o(x) - inf,,~s~, Uco(X) 

1 

if Uco(X) <. inf uco(x), 
x ¢ S o  

if inf Uco(X) <~ Uco(X) <~ sup Uco(X), 
xe~9 x¢~D 

if sup Uco(X) >~ Uco(X), 
xE2i o 

where So is the support of D, i.e. So = {x G X I uv(x) > 0}. 
An alternative with a higher membership degree in the fuzzy set intersection of 

M and D may be regarded as an optimal solution of (PY). 
In an attempt to reflect the fuzzy nature of the p~'ob!em (P3'), Orlovski [59] has 

proposed to find a fuzzy solution for (PY). 
The fuzzy set Soil characterized by the membership function 

f max 

U$olI(X) "- 10eV(k) 
kifxe  U v(k), 

k~lo.q 

elsewhere, 

where 

V(k)=lxcX[uco(X) f f imaxuco( t )}  
I~ t e D  k 

and 

D k = {x G X I uok(x) k } 

may be regarded as a solution of (P3'). A justification of this may be found 
elsewhere (Orlovski [59], Negoita [55]). 
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Propo~ou 2.$. lf x ¢ u,,~l]O, 1] then Uson(x) ~ Uco(X). 

Owing to this proposition, Uson(X) can simply be written as 

Uson(x) ffi { :  c°(x) ifx¢[_JV(k),elsewhere.ke[O, ll 

An alternative to Soil is based on the concept of optimality in the sense of 
Pareto. Let me denote such a solution So12. 

Uco(X) if x ¢ E, 
USol2(X) [ 0 elsewhere, 

where E is the set of efficient solutions of the multiobjective program 

max(uv(x), Uco(X)), x eX. 

Further details on these matters may be found in [55, 591. 
In practice, Uson(X) and Uso~.(x) may be obtained via parametric programming 

techniques (Verdegay [97]) and multiple objective programming methods (Philip 
[65]) respectively. 

The above fuzzy solutions seem more appropriate for flexible programs where 
the goal is fuzzy while constraints are crisp and vice versa. Whether to choose an 
approach for a given flexible program can not be determined theoretically. This 
choice depends on the real situation and on the aims of the Decider. 

2.4. Discussion 

The main lesson of this section is that different point of views proposed in the 
literature for dealing with a flexible program may be encompassed in a unified 
framework (The general construction of Section 1). 

Solutions obtained are either deterministic, satisfying or fuzzy. Approaches 
yielding deterministic solutions are interesting from a computational standpoint as 
resulting problems are generally mathematical programs about which a great deal 
is known. Nevertheless they may be criticized in that the approximation of a fuzzy 
mathematical program by a deterministic one may falsify the real problem in 
some direction. 

In addition the pure rationality principle on which these methods are based is 
valid in situations where the Decider has full and exact knowledge about the 
decision problem, but worthless in a fuzzy context. So, much more is needed to 
translate more faithfully a fuzzy problem into a deterministic one. 

Fuzzy solutions seem to our opinion more realistic in that they reflect the fuzzy 
nature of the problem and provide more insights. It would be interesting to put 
forward methods giving fuzzy solutions which are less prohibitively costly from a 
computational point of view than those discussed here. 

Auother interesting axe for further inquiry is that of exploiting appropriately 
the bounded rationality principle (Simon [79]) to propose interactive methods for 
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are feasible and optimal to some desired extent 

3. Ma~ema~tcal prog~m~ing preb|en~ with f~zy parameters 

Usually, coefficients of the objective and constraints of a mathematical program 
are supposed to be fixed characteristics of the modelle6 reality. This condition is 
not fulfilled in many practical situations, e.g. when data are demands, technologi- 
cal coefficients, available capacities, cost rates and so on. This section is 
concerned with problems arising when some or all coefficients of the problem are 
restricted by some fuzzy restrictions, i.e. are possibilistic variables (Zadeh [103]). 
Such models seem to be quite typical for practical situations when the parameters 
are obtained from experts. 

As non-linear programming problems with fuzzy parameters have hitherto not 
received further scrutiny in the literature, we restrict ourselves to the linear case. 
Readers interested in Fuzzy non-linear programming may find some preliminary 
material in Dumitru and Luban [21] and Baptis~ella [4]. 

The problem to be considered in this section is that of finding a solution for the 
program 

max., Axe_G, x>~O, (P4) 

where A is an m × n matrix, b an m-vector and ~ an n-vector, the components of 
which are characterized by fuzzy restrictions. 

Similarly to approaches for solving flexible programming problems, the 
construction scheme described in Section 1 constitutes the main apparatus for 
deriving deterministic counterparts of (P4). 

The large number of papers in this field can be explained by the diversity of 
assumptions made: What is fuzzy in the problem (the fuzziness enters at the goal 
and/or the constraint level), the shape of involved possibility distributions, the 
criterion used for comparing fuzzy quantities, the type of solution which is sought 
(deterministic, fuzzy or satisfying). 

We will first restrict our considerations to the case when the coefficients of the 
objective function are real numbers. 

3.1. Deterministic obiective function 

As inexact programming problems will appear as subproblems in analyzing and 
solving some particular cases of (P4), we briefly focus on these problems. 

An inexact program is a problem of the type 

max CX, 

xlA1 + ' ' "  + x,A,  c_ B, (P4') 

x~>>-O, ] = l , . . . , n ,  

where A t (] ffi 1 , . . . ,  n) and B are non-einpty convex sets of R m and '+ '  is to be 
interpreted as follows: If A and B are two sets then A + B = {a + b j a ¢ A and 
beB} .  
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Here are the key facts concerning (P4') (Soyster [83]): 

Propedtfion 3.1. The set 

Q = {x IxtA  + . . .  c_B, xj> O,j= 1 , . . . ,  n} 
b a convex set o f  R". Furthermore, if B - {y e R" ]y ~< b} then 

Q - Q ' -  {x eR" IA <<.b } 
where A = (aq) and ais = SUpateA i aq with aq being the i-th component o f  aj. 

A~ording to the above statement, (P4') is a convex program about which a 
great deal is known (Lagrangian, Kuhn and Tucker methods,.. .).  If ~ has the 
above form then (P4') is equivalent to a linear program. 

We are now prepared to handle the following particular case of (P4') 

3.1.1. Mathematical program with fuzzy  sets inclusive constraints 
Consider the following mathematical program: 

max cx, 

xt~l + ' "  + x,A, ~_ ~, (P4") 
xj~>0, j f l , . . . , n ,  

where ,~j (j - 1 , . . . ,  n) and ~ are fuzzy sets of R", '+ '  denotes the extension of 
addition of crisp sets to fuzzy sets and ' _ '  the inclusion between fuzzy sets. 

(P4") is termed robust program (Negoita [55]) and the interpretation which 
goes with this program is that B is a maximum tolerance of the fuzziness of 

The following result [55] provides a direction on which one can proceed in 
order to find a solution of (P4"). 

Pl~posifion 3.2. I f  the fuzzy  set ~ is such that the image o f  u~ denoted here 
Im ue = {rt, . . . , rp} with 0 ffi r~ < . . .  < rp < 1 then x = (x~, . . . , xn) >- 0 is feasible 
for (P4") i f  and only if 

x l , ~  + " "  + x,,,~ c_ ~}',, i = 1 , . . . ,  p. (P4") 

The dimension of the resulting problem reduces substantially if At (i ffi 
1 , . . . ,  n) and/~ are vectors, the components of which are fuzzy numbers of the 
L-R type (Dubois and Prade [19, 20] i.e. there are well shaped functions L, R 
and real numbers mq, m .  ocq, oft, Pij, Pi such that 

f L (mq  - x~ 
ua,~(x)ffi~ \ - ~ i ~ - /  i f x<'mq'°cq>O'  

[R(x mr') 

{ ' L ( m i - x ~  i f x < . m ,  c~i>0, 
\ oc~ / 

= R( _ , \ - - ~  / i f x > ~ m , # i  >0.  

Symbolically aq and b~ are denoted (mq, ~q, flq)LR and (m, o~, fl~)Lk respectively. 
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l [~ 'o l~t i iOu 3.3. I f  components aq o f  ,~i end ~i o f  ~ are fuzzy  numbers o f  the L-R 
type denoted as previously then x : (x ~, . . . , x , )  is feasible for (P4") if  and only if  
x is feasible for  the system 

mqx s = m ,  i = l , . . . , m ,  

i - l , . . .  , m, 

i ffi l, . . . , m. 

J 

 uxj 
J 

E p, j #,, 
J 

The finiteness of lm u~ as well as the fact that components of Ai and B must be 
fuzzy numbers of the same type are too restrictive to be realistic. The following 
result based on the decomposition theorem [55] may be helpful in solving (P4") 
without imposing the above mentioned restrictions. 

llhroposiflon 3.4. x -- (xl, • . . ,  x , )  • X is feasible for (P4") if and only if 

xlAi + ' "  + x,,A[, =_/~" Vr e ]0, 1] (2) 

where ,4~ and ~" are the r-cut o f  .~j and ~ respectively. 

By virtue of Proposition 3.4, constraints of the fuzzy program (P4") may be 
replaced by (2) and xj ~> 0 (] --- 1 , . . . ,  n). 

The resulting problem is a semi-infinite program which may be solved by 
available methods (discretization, three-phase algorithm or cutting plane meth- 
ods; see Glashoff and Gustafson [28], Timsi and Kerri [94]). Assuming that aq 
and bi are characterized by convex possibility distributions simplifies matters 
considerably. As a matter of fact in this ease ~,~ and/~ are real closed intervals; 
denote them by [a~, aN] and [b~, b U] respectively. 

Owing to ~nterval arithmetic, the equivalent deterministic program of (P4") is 
the linear program: 

m a x  CX, 

Ea,% b, i= l , . . . ,m ,  
] 

°, i=: , . . . ,m,  
] 

xj~>0, ] --1, . . . , n. 

We turn now to in(equalities)-constrained problems which seem to be quite 
typical for practical situations especially when parameters are obtained from 
experts. 

3.1.2. Incorporating fuzzy  components in a mathematical programming frame- 
work 

Consider first the following mathematical program: 

max cx, 

Aix T ~s, i -  1 , . . . ,  m, (P5) 

x~>O. 
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In some particular cases, (P5) may be conveyed into a flexible program and 
solved by methods described in Section 2. Assume that T represents equality and 
~ = (b,  bT, b+), i.e. it is characterized by the possibility distribution uG, the 
support of which is [bT, b+]; furthermore u~ increases on [b7, bi], u~,(b~) = 1 and 
it decreases on [b, b~]. Then (P5) may be interpreted as the flexible program: 

m a x  ¢x, 

A~(x) ~.b,  i = 1 , . . . ,  m, 

x 3 0 ,  

where ~ is interpreted as follows: The degree ui(x) to which x satisfies the fuzzy 
constraint Alx ffi b~ is u~,(Agx). 

The above described approach is also valid when (T, ~l) is (~,  (bt, - ~ ,  b~)) or 
(3 ,  (b,  b~', +~)). For further details on these matters see (~h~igeartaigh [58]. 

An alternative which lends itself better for solving (PS) in the case when T and 
b~ are arbitrary, consists in restricting on alternatives which are possibly and/or 
necessarily feasible to some desired extent. Keeping this in mind, the feasible set 
and the objective function of the resulting deterministic problem may be defined 
as follows: 

P = {x e X [  Poss(A,x Tf i , )3  ~i, i = 1 , . . . ,  m} 

where 0tj denotes an appropriate fixed threshold, 

F(x) =cx, 

o r  

P = {(x, k) • X × 1 [ Poss(cx 3 ~0) 3 k, Poss(Aix Tb,) 3 k; i = 1 , . . . ,  m}, 
F(x, k ) f k, 

~0 being a target level fixed by the Decider. 
A need to more realism has led some researchers to cope with the problem of 

finding, a fuzzy solution of (P5). A fuller exposition of these ideas for the case 
when b are characterized by trapezoidal possibility distributions may be found in 
Tanaka et al. [89-91]. It would be interesting to extend these ideas to more 
general possibility distributions. 

Let us now consider the case where fuzziness enters at the technological matrix 
level. It is clear that resulting problems will heavily depend on approaches chosen 
for comparing fuzzy quantities. Here is among other things a comparison pattern. 

Definition. Consider two fuzzy quantities ~ and b. Then ~ ~< b if and only if 
sup a ~ ~< sup b ~' and inf ~ ~ ~ inf 6 ~ V~ E [0, 1]. 

The following result due to Ramik and Rimanek [67] is helpful for obtaining 
equivalent deterministic programs of a possibilistic program when coefficients of 
the technological matrix as well as those of the second member are characterized 
by nicely behaving functions under the above comparison criterion. 
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Propos|tion 3.$. Assume that a# (j = 1 , . . . ,  n) and ~i (i = 1 , . . . ,  m) are fuzzy 
intervals of  the type LR, i.e. generalizations of  fuzzy numbers of  the type LR 
where the mean values are intervals instead of  real numbers (see Section 3.1.1), 
symbolically denoted 

(m#, n#, a'#, ~ij)LIRi, (PD qi, )ti, 6i)LtRi. 

Then x ¢ X is feasible for 

m a x  c.g, 

Aix < ~ ,  i = l, . . . , m, 

2~ ~ 0 ,  

i f  and only if x is a solution of  the following system: 

(P6) 

- -< p , -  2 

- 6 , )  -< q , -  

da , (~  fl#xj - 6~) <<. q~-  ~ n#x~, 

i=  1 , . . . ,  m, 

where 

eH,=sup{u [Hi(U)=Hi(0)= 1} and dx ,={u  [H~(u)=~imH(s)}. 

Additional insights may be gained by considering other comparison criteria 
(Dubois and Prade [20], Freeling [27]. 

Although the above described approach is attractive from a computational 
point of view, it turns ou* that the requirement that ~# and bi must be fuzzy 
numbers of the same type severely limits the applicability of the method. 

Much energy has been devoted recently to allow the incorporation of fuzzy 
parameters characterized by not too restrictive possibility distributions in the 
scope of a linear programming model. A device which suggests itself is the 
replacement of involved possibility variables by some judiciously chosen fixed 
values (Luhandjula [49]). Nevertheless such an approach may be criticized in that 
only some particular values on the support of involved possibility distributions are 
taken into account. Some remedies have been proposed to cure this weakness. 

Definition. x ~ X  is a~-possibly feasible (at-necessarily feasible) for (P6) if 
Poss(A~x ~< 6i) ~> ac (Nec(Aix ~< 6i) ~> c¢), i = 1 , . . . ,  m, where Poss and Nec 
denote possibility and necessity respectively. 
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For some desired ~, such alternatives are interesting in that they maintain the 
possibility (necessity) of achievement of each constraint to the desired level. 

Let us now give some characterizations of c-possibly feasible alternativeb. 

PmposiUon 5.6. x e X is or-possibly feasible for 

max {cx,/lix = b~, i = 1 , . . . ,  m}. 
.~EX 

if and only if 

u~t.®~(a~)~<u~_**.~oq(a0 and u~l,,,.**)(oO<~u~2®y,,)(oc), i = 1 ,  . , m ,  

where uta,.** ~ (u{-®.~ !) is the membership function of  the fuzzy set of  numbers which 
are possibly greater than or equal to (less than or equal to) rh (Dubois [18]). 

lhroposition 3.7. x e X is c~.possibly feasible for (P6) if and only if there are 
W ¢ •'[ and si¢ ~ such that Wx <<. si, i = 1 , . . . ,  m, (AT and ~ denoting oc-cut of  
i[i and 6~ respectively). 

Cordary .  A solution of  the system A+x <~ b;" (A~x ->. b~), i - 1 , . . . ,  m, where 
A + - ( a ~ , . . . ,  a +) and A7 = (a~i, • • •, ai-~) with m + - maxt~,n, t, m -  - mint~,n, t, 
is or-possibly feasible for 

max{cx l A,x <<.b,, i f  1 , . . . ,  m} 
(max{~ [ Aix ~>/;,, i -  1, . . . ,  m}). 

Characterizations of c~-necessarily feasible actions may be found in Dubois [18] 
and Luhandjula [52]. 

In order to integrate simultaneous'y optimistic and pessimistic features, one 
may define the feasible set of the resulting deterministic program as the 
intersection of a~-possibly feasible and ~l-necessarily feasible ones for some 
desired target levels c~ and tl (Bukley [9]). 

A further possibility is to define the feasible set on the basis of the joint 
possibility distribution (Orlovski [63]), i.e. to put 

1" = {x ~ x IPoss(A,x, <. 6 , , . . . ,  A.,x,,, <<. b.,) >- o4. 

The resulting problem in such an approach is unfortunately complex to analyze 
and hard to solve. 

An entirely different approach consists in translating the original fuzzy problem 
into v semi-infinite program. Consider (P6) and assume that the corresponding 
technological matrix A and the second vector/~ are m × n and m-ary possibility 
distributions characterized by ~r,i and ~rt; respectively. 

For convenience, let us introduce two parameter sets T ~ and T 2 which are in 
univocal correspondence with supp,4 and supp b respectively (supp denotes 
support). 

Let A(tl) and b(h) the corresponding bijections. Put T =  T~x T 2. For 
t - ( t l ,  h ) e  T t x  T 2 put u ( t ) -  min(~r~i(A(h), :h;(b(h)). This is nothing but the 
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degree of compatioility of A(h)  and b(t2) with restrictions defined by n,,i and ~ .  
For simplicity A ( h )  and b(t2) will be merely denoted A(t)  and b(t) respectively. 

Consider T,,, (i = 1 , . . . ,  p + 1) where T~, = {t ¢ T [ u(t) ~> oc/} and ~ are real 
numbers such that 0 < Go < ~1 < "  • "< ~p+l ~< 1. Let now 0 = 6v+ ~ <-  • • < ~51 be 
chosen to penalize t ¢ T such that u(t) is at a low level. Consider the following 
semi-infinite program: 

max cx, 

A(t)x b(O, t G 

O<~A(t)x-b(t)<<-~3p, t e  T~p, 

69 <~ A(t)x  - b(t) <~ CSp_,, t ¢ T~,_,, (P6') 

62 ~ A(t)x  - b(t) <~ 6, t e T~,, 

x~O.  

A solution of (P6') may be regarded as a satisfying solution of the fuzzy program 
(P6). As a matter of fact such a solution optimizes the objective and meets the 
rea!~stic requirement of being feasible for most favourable circumstances (t e 
T%J ,  strongly violating the feasibility restriction for less favourable cir- 
cumstances (re T~,,) and weakly violating the feasibility for intermediary 
situations. 

For further details on these matters the reader is referred to Luhandjula [52]. 
Our next concern will be the case where coefficients of the objective function 

are fuzzy. 

3.2. Fuzzy objective function 

In order to draw the reader's attention to the problem of incorporating fuzzy 
components into the objective function of a linear program, we assume that 
constraints are deterministic. It is clear that ideas developed in 3.1 may be 
appropriately combined with those to be discussed here to get a satisfying 
solution for the general problem (P4). 

For easy reference we state the problem at hand as follows: 

max ~x, x e Y - (x e R n I Ax  <~ b, x >~ 0}. (PT) 

This fuzzy program may be converted in a deterministic one by exploring the 
link-up between imprecision (here fuzziness) and infinity. 

Consider the following semi-infinite program: 

max ~p 

$Xt>¢~, S E S  1, 

ol - -  6 <~ Sx <<- OG s E S 2, 

~-26<<.sx<<.~-6 ,  s ~ S  3, (P7') 

o : - ( p - 1 ) ~ < . s x < . ~ - ( p - 2 ) ,  s ~ S  p, 

x ¢  Y, 
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where S t ffi St × ' "  × S / with 

sJ  -- e , ,  = - . . . ,  s,  f e ,  - " © '  
kffil 

(Bit are real numbers such that 0 < BF < " "  < Bt < 1 and £'~' denotes the Bi-cut 
of ~j). 

A solution of (P7') which may be obtained by semi-infinite programming 
techniques (Glashoff and Gustafson [28], Timsi and Kerri [94]) may be regarded 
as a satisfying solution for (P7). Such a solution realizes better values of sx for s in 
the support of e with high degree of compatibility with the restriction defined by 
~, worse values for s with less degree of compatibility and average values for 
intermediary situations. 

Furthermore we can state: 

Proposition 3.8. I f  (oh °, x °) is an optimal solution of the semi-infinite program 
(PT') then 

Poss(~0 ~> ~0) ffi max Poss(ex ~ ~o) 
xGY 

where Poss denotes possibility. 

Another approach in a similar vein ha,,; been put forward by Rommelfanger 
[70] who converts the original fuzzy program (P7) into a multiple objective 
deterministic program by substituting ~j by a finite number of level cuts. 

The above mentioned approaches necessitate the elicitation of particular 
elements on the support of possibilistic variables ~j. One can equally well proceed 
directly. To this end we generalize the concept of optimality in the following 
manner: 

Definition. x°e  Y is p-possibly optimal for (PT) if there is no x e Y such that 
Poss(ex > ~x °) ~> B. 

The reader can easily verify that this concept coincides with that of optimality 
in the deterministic case. Thus it is consistent with our identification of a real 
number with a degenerate possibility distribution of R. 

A B-possibly optimal solution (B = 1) is interesting for (P7) in that it is not 
dominated to a great extent. 

We now turn to the characterizations of B-possibly optimal alternatives 
(Luhandjula [51]). 

Proposition 3.9. x ° ¢ Y is B-possibly optimal for (P7) if and only if x ° is optimal 
for ,,he following infinite family of linear programs: 

m a x  cx, 

xeY, cesof{ceR"lcjeef}. (P7") 

For practical purposes the following result can be used. 
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lihropo~Uon 3.10. (P7") is equivalent to 

m g x  cx, 

Co~Rm~J. x ° ~. X is ~8-possibly optimal for (P7) if and only if S'~ =_ 7+(Y, x °) 
where T+(Y, x °) is the polar to the corse of  tangents of  Y at x °. 

3.3. Discussion 

The methodological style described in Section 1 focuses flexible and mathe- 
matical programming with fuzzy parameters in a unified framework. 

Equivalent deterministic problems of linear programs with fuzzy parameters 
are generally linear mathematical programs for which there exist a lot of user 
friendly packages. This feature makes the fuzzy approach computationally 
attractive and strongly departs from probabilistic ones. 

Let me at this point make some first steps toward a comparative assessment of 
fuzzy and stochastic programn,,ng. The approach consisting in replacing fuzzy 
quantities by their more possible values looks like the stochastic programming 
procedure where random variables are replaced by their expectations or fairly 
good estimates of them. 

The method based on the concept of possibilistie dominance (o~-possibly 
feasibility) is the fuzzy counterpart of the well known chance constrained 
programming (Kall [39], Vaja [96]). 

Furthermore the semi-infinite programming approach conveys the original 
fuzzy problem into a control configuration framework (T being the state space 
and steps being described by t c T,~+,, . . . ,  t ¢ ?~,). Therefore this approach may 
be regarded as an analog to multistage stochastic programming [39]. 

In the stochastic programming literature some severe criticisms have been 
~aised against the procedure consisting in replacing random variables by some 
estimates of them and against chance constrained programming techniques (Kall 
[39], Hogan et al. [34]). It is worth noting that these objections may be 
transferred to their fuzzy counterparts. Nevertheless these criticisms are not valid 
for the multistage programming approach which lends itself better for situations 
involving imprecision and/or uncertainty. So it is our opinion that the semi- 
infinite approach is a promising direction for mathematical programming with 
fuzzy parameters. 

Throughout this section, emphasis has been placed upon possibilistic domin- 
ance for converting the fuzzy progran~ into a deterministic one. It would be also 
interesting to consider dominance ~:~c:~a based on necessity measures and to 
combine the two type of dominance criteria in order to yield more credible 
solutions. 

Such theoretical questions as what is the dual of a mathematical program with 
fuzzy parameters and what is its associated possibility distribution (the distribu- 
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tion problem) are still to be fully answered in a way to get more insights. In 
connection with the latter problem, early results may be found in Bucldey [8]. 

In contrast to flexible programming, applications of mathematical programming 
with fuzzy parameters are very scarce (Ohl~igeartaigh [58]: Transportation 
problem, Tanaka et al. [91]: Value of information problem). Efforts must be 
invested along this line in order to test advantages and drawbacks of existing 
methods. 

4. Extensions 

Ideas developed in previous sections have also been extended in three 
important directions. Attempts have been made to incorporate fuzziness and 
randomness simultaneously in an optimization framework, to come to grips with 
complexity inherent to the presence of several deterministic or fuzzy objectives 
and to handle multistage processes (dynamic programming). For lack of space we 
will in this section briefly survey the first two of the above mentioned topics. 
Readers interested in issues regarding multistage optimization in a fuzzy 
environment are referred to Kacprzyk [37, 38]. 

4.1. Fuzzy stochastic programming 

Combining fuzziness and randomness in the scope of a mathematical program 
is an important issue which has not received the attention it merits. 

Consider the mathematical program 

min c Ov )x, 

A~(w)x~b,(w), i= l , . . .  ,m, (P8) 

x X-{xER"lx> O}, 
where b~(w) are randonl variables and A~(w), c(w) random vectors on (~2, F, P). 

After having converted (as in flexible programming) the objective function into 
the form c(w)x~¢ ~ (c o being some desired target level), this constraint as well as 
those of (P8) are represented by probabilistic sets in X × f~ (Hirota [33]) where 
the membership functions are Uo(X, w ) , . . . ,  u,,(x, w) respectively. 

By virtue of the Bellman and Zadeh confluence principle [5], the decision is 
defined as the probabilistic set D defined by 

uo(x, w) = rain uj(x, w). 
! 

The resulting problem is then 

max Uv(X, w). 
x ¢ X  

(Ps') 

For x fixed, uo(x, w) is nothing but a rando~'~a variable on (Q, F, P) denoted in 
the sequel by uo(x). Conseque~ltly, criteria used in stochastic programming may 
be used to translate (P8') into a deterministic program, i.e. the corresponding 
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deterministic program for (P8') may be either 

maxE(uo(x)) o r  rain E(u°(x)) 
, , . .  , ,o .  v ( u o ( x ) )  

or the bicriterion program: 

max E(uo(x)), rain V(uo(x))), 
xeX xeX 
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where E and V denote the expectation and the variance respectively. An optimal 
alternative for (P8') may also be obtained via concepts of stochastic dominance 
(Pearman ar, d Kmietowitcz [64]). 

Immediately the question arises of the analytical representation of the 
distribution of uo(x) in symbol F.o0, ). The following result gives an answer to this 
question. 

l~pos|flon 4.1. 

Pm..,0.~(Z)-- ~ F..~.~(Z)-- ~ r.,<,O..,O,~(Z. Z) 
i : 0  j ,k,m 

+ ' " + ( - 1 ) m + 2 F u o ( x )  ..... u , . f x ) ( z , . . . , z )  

where F.,<~) is the distribution function of  the random variable 
F~o~) ..... .,.oo is the joint distribution o f  (uo(x, w), . . . , urn(x, w)). 

Further, 

where 

F~, = . . , . , o o + o _ ~ , ) m ~ . . . r . . , o , , ( t )  - L - ~ ( g ~ ( s )  • g 2 ( s ) )  

/: gl(s) --" e-faV)rFmin, u~oo(t) dr, 

g2(S) ~--" fo+®e-(S/t-Y)FminO.r.,u,fx)}(t) dt 
and L -1 is the inverse of  the Laplace transform. 

ua(x, w) and 

Coronary. I f  u,(x, w) (i = 0 , . . . ,  m)  are independent, then 

F=~o,.,<x~(z) = 1 - [ I  (1 - F. ,~x~(z)) .  
l 

An asymmetrical approach similar to that discussed in Subsection 2.3 and based 
on the concept of probability of a fuzzy event is described in Luhandjula [47]. 

A lot of work remains to be done in fuzzy stochastic programming. ]t would be 
interesting, for instance, to envisage the incorporation of fuzzy random variables 
in a mathematical program. Readers interested in directing efforts to these 
matters may filid prerequisite material in Hirota [33], Czogaia [1@ Luhandju[a 
[47], ¥azenin [102] and Kwakernaak [42]. 
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4.2. Multiple objective programming problems 

Recall that a multiple objective programming program is a problem of the type 

max(A(x), . . . ,  A(x)), (I'9) 
x eZf f i  (x ¢R  ~ [gi(x)<~bi, iffi 1 , . . . ,  m}, 

where j~ (i ffi 1 , . . . ,  k) and gj (] ffi 1 , . . . ,  m) are continuous real functions of n 
variables. 

Fuzzy sets theory lends itself better for dealing with (IX)). While papers coping 
with the non-linear case are seldom seen (Sakawa et al. [75, 76], Dumitru and 
Luban [21], Baptistella [3]) there is plethoric literature devoted to fuzzy 
approaches for multiple objective linear programming problems [105, 10, 
11,.. .].  

Consider the mathematical program 

max(clx ' '"" '  CkX)' (P9') 
x ¢ Y =  { x e R "  [Ax<~b,x>~O). 

The basic idea behind fuzzy methodologies for (P9') is to consider this problem as 
a flexible program of the form [105] 

cJx~Lj ,  i = l , . . . , k ,  x E Y ,  

where L~ are some prescribed thresholds (for instance L~ = maxx~rc~x). 
Representing the above fuzzy constraints by fuzzy sets of X characterized by 

piecewise linear membership function u~(x) and considering the rain operator as 
appropriate for intersection of fuzzy sets, the resulting program is 

max rain u~(x), 
x e Y  I 

which is equivalent to a linear program as stipulated by the following: 

Proposition 4.2, x ° ¢ X  is optimal for (P9") 
~0 = min~ uj(x °) is optimal for the linear program 

max ;,, 

~ <~u~(x), i = l, . . . , k, 

x e Y .  

if and only if  (x °, ~o) where 

A need for more realism has led Leberling [44] and Luhandjula [46] to consider 
non-linear membership functions and compensatory operators. A fascinating fact 
is that the resulting problems remain linear programs. In a multiple objective 
program context, a non-efficient solution is less attractive since it is dominated by 
other alternatives. So it is interesting to get a solution which is efficient (Pareto 
optimal). Zimmennann's proposal and its variants Feng [25], Leberling [44], 
Luhandjula [46] offer a weakly efficient action which is efficient when the unicity 
is guaranteed. 
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A discussion on conditions for the existence of Pareto optimal alternatives via 
the Hausdorff maximality principle may be found in Buckley [7] where an 
approach for generating the set of efficient alternatives is also proposed. This set 
may be very large and filtering techniques are needed. 

Let me also mention that the efficiency of an alternative may be tested via 
Kuhn and Tucher conditions for efficiency (Mekaouche and Rezzik [53]). Among 
other attempts of underlying principles of fuzzy mathematical programming with 
multiple objective problems are the methodological extension of goal program- 
ming (Hannan [31], Rudin and Narasimhan [74]), of cone of dominance (Takeda 
and Nishida [93]) and of multiple objective linear and non-linear fractional 
programs (Sakawa and ¥umine [75], Luhandjula [48]). 

In an attempt to reduce the complexity inherent to the presence of several 
objectives, a fuzzy solution which is richer from an informational point of view 
may be desirable. Such a solution may be obtained via techniques of parametric 
programming (Chanas [14]). 

Advantages of using a fuzzy approach for finding a solution of a multiple 
objective programming problem are flexibility, easiness to be adapted for 
interactive use and the fact that such a methodology meets the main demands for 
operational models: simplicity, robustness adaptivity (Little [45]). 

The ideas outlined above have also been extended to the case when relevant 
data are fuzzy parameters. Slowinski [80] has considered the case where 
components of the objective function are fuzzy numbers of the same type and 
obtained via possibility grade of dominance a deterministic equivalent problem 
which is a multicritefia linear fractional program. See also Roubens and Thegem 
[72] for a similar approach with flat fuzzy numbers and for a comparison with 
multiple objective stochastic programming problems. 

Lnhandjula [50] generalizes the concept of efficiency within the Simonian 
philosophy of satisfying alternatives, establishes necessary and sufficient condi- 
tions for a satisfying solution (/~-possibly et~icient action) and proposes some ways 
for singling out such an alternative. 

5. Conc|usion 

The young and multifacet field of fuzzy mathematical programming provides 
some ways for taking into account the effects of ina~x~uraties in information flow, 
making decision under uncertainty or simulating the stochastic nature of some 
elements in a mathematical model. From time to time we must look back on what 
could be accomplished and could not, what we have learned and what remains to 
be done. This paper has been written in this spirit. 

We have highlighted the unifying principle governing fuzzy optimization 
methods-eliciting a set of feasible actions and a criterion which induces a 
preferential scheme on this set in order to get a deterministic, satisfying or fuzzy 
solution. 

It is a shame that only a small fraction of the works cited in this overview can 
actually be used in a routine manner. Reasons f~)r this as well as ways for 
improvement are briefly discussed in the sequel. 
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Existing works rely mainly upon the following postulate: preferences of the 
Decider are representable by fuzzy sets which share nice properties in order to 
get tractable deterministic problems. The postulate allows to tackle the problem 
in an operational way but such questions as how to obtain these fuzzy sets 
(membership function elicitation) and to what extent these fuzzy sets match the 
Decider's preferences are to be answered. Hence before using a fuzzy mathe- 
matical programming method, one must help the Decider to define membership 
functions, thresholds an¢~ this can be a huge task. 

Very few researches have studied these model building aspects in detail. It is 
our opinion that fuzzy expert systems methodologies (Baldwin [2]) may be helpful 
for this problem. Furthermore, fuzzy sets representing the Decider's preferences 
generally do not have nice properties required to apply the methods discussed 
here (iinearity, covexity, LR form, etc.). Extensions to situations implying less 
restrictive assumptions on relevant sets are needed. A deep exploration of 
link-ups between fuzzy and semi-infinite optimization (Hettich [32], Glashoff and 
Gustafson [28]) may give insightful features in connection with this problem. 

In order to solve concrete problems most effectively, progress must be made in 
both quality and availability of fuzzy optimization software. The work by 
Mekaouche and Rezzik [53] is along this line but much more is needed. 

Extremely useful would be the increase of high quality case studies in order to 
demonstrate the usefulness of fuzzy optimization approaches and to meet their 
advantages and drawbacks. 

A better understanding of theoretical issues: duality, distribution problems, 
• . . ,  may also contribute to most advancing the state of the fields. 

Let us hope that successful developments in the above mentioned directions 
will proceed in the near future, thus bridging the gap between the language used 
for fuzzy optimization techniques and the language used by potential users of 
these techniques. 
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