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Abstract 

This paper presents a survey on methods for solving fuzzy linear programs. First LP models with soft constraints are 
discussed. Then LP problems in which coefficients of constraints and/or of the objective function may be fuzzy are 
outlined. Pivotal questions are the interpretation of the inequality relation in fuzzy constraints and the meaning of fuzzy 
objectives. In addition to the commonly applied extended addition, based on the min-operator and used for the aggregation 
of the left-hand sides of fuzzy constraints and fuzzy objectives, a more flexible procedure, based on Yager's parametrized 
t-norm Tp, is presented. Finally practical applications of fuzzy linear programs are listed, 

Keywords: Fuzzy sets; Mathematical Programming; Extended addition of fuzzy intervals; Compromise solution; Inequality relation in fuzzy 
conslraints 

1. Introduct ion 

Empirical surveys reveal that Linear Programming is one of the most frequently applied OR techniques in 
real-world problems, see, e.g. KivijSrvi, Korhonen and Wallenius (1986), Lilien (1987), Tingley (1987) and 
Meyer zu Selhausen (1989). However, given the power of LP one could have expected even more applications. 
This might be due to the fact that LP requires much well-defined and precise data which involves high 
information costs. In real-world applications certainty, reliability and precision of data is often illusory. 
Furthermore the optimal solution of an LP only depends on a limited number of  constraints and, thus, much of 
the information collected has little impact on the solution. Being able to deal with vague and imprecise data may 
greatly contribute to the diffusion and application of LP. The use of probability distributions has not proved very 
useful in doing so. However, since the seminal paper "Fuzzy sets" by Lofti A. Zadeh in 1965, there exists a 
convenient and powerful way of modeling vague data without having recourse to stochastic concepts. The 
subject of this paper is to review how fuzzy data can be integrated into LP systems. 

In order to reduce information costs and at the same time avoid unrealistic modeling, the use of fuzzy linear 
programs can be recommended. Their application implies that the problems will be solved in an interactive way. 
In the first step the fuzzy system is modeled by using only the information which the decision maker can 
provide without any expensive additional information acquisition. Knowing a first 'compromise solution' the 
decision maker can perceive which further information should be obtained and he is able to justify the decision 
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by comparing carefully additional advantages and arising costs. In doing so, step by step the compromise 
solutions are improved. This procedure obviously offers the possibility to limit the acquisition and processing of 
information to the relevant components and therefore information costs will be distinctly reduced. 

A general model of a fuzzy linear programming problem (FLP-problem) is presented by the following 
system: I 

C l x I ~ C 2 x 2 ~  " '"  ~ C ~ x  n ~ M E x  (1) 

subject to l ( i l X l ( ~ t ( i 2 x 2 ~ " ' l ~ l ~ t i n X n ~ B i  , i = 1  . . . . .  m, 

X 1, X 2 , . . . , X n ~ t O .  

"4ij" Bi '  Cj,  i = 1 . . . . .  m; j = 1 . . . . .  n, are f u z z y  sets in R. The symbol • represents the extended addition 

explained in Section 4. The interpretation of the inequali ty  relation ~ is discussed in Sections 2 and 5. 
As each real number a can be modeled as a fuzzy number 

1 if x = a ,  
A = { ( x ,  f A ( x ) ) l x e N  } w i t h f ~ ( x ) =  0 else, 

the general system (1) includes the special cases where: 
1. The objective function is crisp, i.e. 

z ( x )  =clx  +c2x + . . .  +c xn Max. (2) 

2. Some or all constraints are crisp, i.e. 

g i ( x )  --- a i l x  1 d- a i2x  2 -1- . . .  -[-ainX n ~ b i. (3) 

3. Some or all constraints have the soft form 

gi (  x )  ~- all x I -I- ai2 x 2 + . . .  -F ainX n ~ 1~ i. (4) 

These special cases may be combined. 
The application of FLP-systems offers the advantage that the decision maker can model his problem in 

accordance to his current state of information. At the same time he is no longer able to use the well known 
simplex algorithms for computing a solution of his problem. Therefore various procedures for calculating a 
compromise solution of an FLP-system (1) have been developed. They mainly differ in the assumptions made in 
order to reduce the FLP to a classical mathematical optimization problem. 

In this paper we present a survey on procedures for solving FLP-problems. First we deal with the simplest 
case, LP-models with soft constraints, for getting an idea of the handling of fuzzy optimization problems. We 
then tackle the essential problems using FLP-systems: 

- modeling of fuzzy data; 
- extended addition for aggregating fuzzy objectives and left-hand sides of fuzzy constraints; 
- inequality relations between fuzzy sets in constraints; 
- treatment of fuzzy objectives; 
- extended addition based on Yager's t-norm Te; and 
- computing of a compromise solution. 

Subsequently we give a survey of applications of fuzzy linear programs published in the literature. 

Basics of fuzzy set theory are presented in the Appendix, in order to assist in understanding the main issues of this paper. 
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2. Linear Programming with soft constraints 

We get the simplest form of FLP-models if the decision maker is able to specify all coefficients, but not all 
right-hand sides of the constraints by crisp numbers. Such systems with soft constraints of the type 

g i ( x )  = g i ( x , ,  x 2 . . . . .  x . )  = a i lx i  + a i 2 x  2 + " ' "  + a i n x .  ~ B i  (4) 

were discussed for the first time by Zimmermann (1975), who described the imprecise right-handside /~i by a 
fuzzy set with the support [b/, bi + d i] _ R, d />  0, and a monotone decreasing membership function Ixn. 

Moreover the membership function lxB, must be specified so that the function 

i if gi < bi, 
~ D , ( g i )  = Bi(gi)  if b i <~ gi ~ bi + di ,  (5) 

if b i + d i < gi ,  

expresses the individual satisfaction of the decision maker in relation to g~ = g i ( x l  . . . . .  Xn). 
The composition of the functions ~ o ( g i )  and gi = gi ( x )  = a i l x t  + " " " +ainXn to ~ i ( x )  = P~o ° gi ( x )  = 

Wo,(&(X)) directly assigns a measure of the satisfaction of the i-th constraint to the solution x = (x 1 . . . . .  x.). 
According to Zimmermann and other authors, the inequality relation ' ~  ' in soft constraints (4) may be 

interpreted as 

Bi ~ ( g i ( x ) < b  i + d , ,  (6) g;( x )  IXD, (x )  ---> Max, 

i.e. each soft constraint adds an additional objective to the decision problem, called fuzzy objective in the 
literature. 

There exist various propositions for modeling the function P~D (gi) on the interval [b i, b i + di], e.g.: 
(i) l inear shape  (Zimmermalm, 1975; Sommer, 1978; Werners,'1984); 
(ii) concave shape: 

(a) by exponential functions (Sakawa, 1983; Zimmermann, 1978); 
(b) by piecewise linear functions (e.g, Hannan, 1981; Rommelfanger, 1984; Nakamura, 1984; Sakawa and 

Yano, 1990); 
(iii) s-shape: 

(a) by piecewise linear functions (e.g. Harman, 1981; Rommelfanger, 1984); 
(b) hyperbolic functions (Leberling, 1981, !983; Sakawa and Yano, 1990); 
(c) by hyperbolic inverse functions (Sakawa and Yano, 1990); 
(d) by logistic functions (Zimmermann and Zysno, 1982); 
(e) by cubic functions (Schwab, 1983). 

Therefore, a linear programming system of type 

z ( x )  = c , x ,  + . - .  + c . x .  --, M a x  ( 7 )  

subject to a . x l  + " ' "  + a i . x . ~ B i ,  i = l  . . . . .  rn l, 

ai lXl  + . . .  + a i n x n ~ b i ,  i = m l + l  . . . . .  m, 

X l , . . .  , X n >/O, 

with m 1 soft constraints and m -  m 1 crisp constraints may be described more precisely by a multiobjective 
optimization system of the type 

( zC x ) ,  ~lC x )  . . . . .  ~m,(x)) (8) Max 
x E X  U 
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where 

Xv = { x ~ R T ) l a . x L  + " "  + a i ,  x,<~ bi + di ,  V i =  1, 2 . . . . .  m 1, 

and a i l x  I + . . .  a i n x n ~ b i ,  V i = m  I + 1 . . . . .  m} .  

For comparing the given objective function z ( x )  with the fuzzy objective functions tzi(x), it is usually 
proposed to substitute z(x) with a function iXz(X), where the quantification of I.Lz(X) is obtained by specifying 
the membership function ~Lz(Z) of Z =  {(Z, ~z(Z))[ Z ~ R} - the fuzzy set of the satisfying values, i.e. 

~Lz(X) = fLz(Z(X)).  
Basic data of ~z(Z) are 

~= Max z (x)  and _z= Max z ( x ) ,  
x ~ X  v xEX  L 

with X L = {x ~ R~ I all x l  + " " " + a i n X n  <~ bi ,  Vi = 1,2 . . . . .  m}, and the basic shape of ~ z ( Z )  is given by 

i if z < z ,  
~Lz(Z) = z(Z) if Z~<Z<~,  

if ~ < Z ,  

where ~z(Z) is a monotone increasing function of z, which may be modeled in analogy to I-~o,(gi). 
In practical applications a DM is not interested in finding the complete solution of the multiobjective system 

(8), i.e. the set of all Pareto optimal solutions, but he needs a procedure which generates a so-called 
'compromise solution'. To determine a compromise solution, it is usually assumed in the literature that the total 
satisfaction of a decision maker may be described by 

k ( x )  = min(p~z(x), VLI(X) . . . . .  I~,~(X)). (9) 

Empirical researches reveal that the min-operator is often too pessimistic, see, e.g. Zimmermann and Zysno 
(1979). However, not only the simple mathematical handling supports the use of this operator, but also the fact 
that the subjective specified membership values are only on an ordinal scale level, which means that only simple 
data comparisons are possible. Therefore the use of the mean value, as proposed by Sommer (1978), the 
arid-operator (see Werners, 1984), or a combination of min-operator and bounded sum (see Oder and Rentz, 
1993), raises serious measurement problems. 

In contrast to conventional mathematical programs, a not necessarily linear optimization system 

Max Min(~z(X ),  I.LI(X ) . . . . .  IXm~(X)) (10) 
x ~ X  v 

treats the objective in the same manner as the soft constraints, which explains why this approach is called 
symmetr ic  model  in the literature. 

Following Negoita and Sularia (1976), the optimization system (10) is clearly equivalent to 

~ Max (11) 

subject to k 6 P~z(x), 

k~<~Li(X), i = l  . . . . .  m l, 

x ~ X  U, k <  1. 

Using linear membership functions (see, e.g. Zimmermann, 1975; Werners, 1984) or piecewise linear, concave 
membership functions (see Rommelfanger, 1984), the system (11) matches a classical LP-model and can easily 
be solved by well-known algorithms. 

The structure of this solution process suggests that it may easily be extended to multicriteria LP-systems with 
crisp or soft constraints, see, e.g. Zimmermann (1978), Leberling (1981, 1983), Werners (1984) and Rom- 
melfanger (1984, 1988). 
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Some authors recommend to organize the solution process as an interactive process. Wemers (1984) for 
example intends to ensure by this procedure that the calculated solution is a Pareto-optimal solution of (8), 
because this attribute is not necessarily given by using the min-operator as preference function. The interactive 
solution process MOLPAL of Rommelfanger (1988) is based on the idea that, at the beginning, a decision 
maker is just able to roughly approximate the membership functions, whereas he can later on specify the 
functions in detail referring to additional information of the solution process. 

3 .  M o d e l i n g  f u z z y  d a t a  

In the literature the flexible right-hand side/~i are modeled by L-R-type fuzzy numbers, where the left spread 
is zero and bi is the largest value, which is accepted with certainty as the right-hand side of the constraint i, i.e. 
Bi = (bi, O, [3i)RR; see the definitions and Figs. A.1 and A.2 in the Appendix. Obviously, the meaning of/~i as 
the greatest value for the right-hand side does not permit to model /~i as a trapezoid fuzzy number or as a fuzzy 
number with a positive left spread, as can be found in early papers on the subject. 

Suitable reference functions are the functions presented above in Section 1, which are confirmed by utility 
theory. Yet the essential problems are neglected: satisfaction values can be measured only on an ordinal scale 
and interpersonal comparisons of membership values can only be attained with great difficulties. Furthermore 
the interpretation and evaluation of the compromise solution hMa x calculated by system (10) are to be 
questioned. It is a pity that the problem of specifying the membership functions is often ignored in the literature 
because this point is an essential criterion for the approval and application of fuzzy models. In our opinion there 
exist only few cases when the decision maker is capable of describing the precise form of a fuzzy number 
/~i = (bi, 0, ~i)RR o I n  practice we will find only more or less successful approximations of the 'true' shape of 
membership functions. In particular it is very difficult to model realistically the part of a membership function 
belonging to small membership values. 

Therefore we propose the following procedure as a practical way of getting suitable membership functions: 
First the DM specifies some prominent membership values and associates them with special meanings. This 

procedure shall be explained for a right-hand side/~ = {(y, ixB(y) I y ~ R}, which is interpreted as the maximal 
quantity of stock at the DM's disposal. 

• ct = 1: ixs,(y) -- 1 means that y belongs with certainty to the set of available values. 
• o~ -~ ha:  ~Bi(y) >1 h a m e a n s  that the decision maker is willing to accept y as an available value for the 

time being. A value y with i~B~(y) >1 h a has a good chance of belonging to the set of available 
values. Corresponding values of y are relevant to the decision. Obviously, a value y with 
~B(Y) = hA is a sort of aspiration level. 

• ct = e:  P,B'~(Y) < e means that y has only very little chance of belonging to the set of available values. 
The decision maker is willing to neglect the values y with txBj(y) < e. 

1 

~m 

bi b~ A b~ =b i+~  ~ 

Fig. 1. Membership function of B~. 
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" . . . .  " i " 

~j q 

- ~ . --h a --, ka,e Fig.  2. /~q= (aij;  aij; ~ i~ ,  otij , o~ij , o~ij ) . 

- - s  ]£Bi(--b~a) = )k A _ Subsequently the decision maker has to fix values ~/x, and b i such that and ~8~(b~) = e Then 
the polygon line from (b i, 1) over (~/x,, hA ) to (b~, e) is a suitable approach to ~B, on the interval [bi, b~]. For 
all y q~ [b i, b~] we set ixs,(y) = 0; see Fig. 1. 

Taking the pattern from L-R-type fuzzy numbers we symbolize a fuzzy number with this special membership 
function by/~i = (bi; O, 0; ~x,, ~)x~,~, where ~x~ = ~ ,  _ bi and ~ = -b~ - b r If required the DM can specify 
additional membership levels and additional points (y,  fB,(Y)) on the polygon line. 

Fuzzy coefficients ,(q or Ckj do not usually include elements that may be realized with certainty. An 
appropriate point of reference for a fuzzy set /~j is the subset [a~j, ~;j] ~ R consisting of the real numbers with 
the highest chance of realization, i.e. 

= 1 if y ~ [aij , ~tij], 
~ A i J ( Y )  < 1 else. 

Accordingly the DM should specify numbers aX:, ~.x:, ai~. ' ~;~, so that 

['LaiJ(Y)( ~)kA~ ~A else,if Y ~ [aX/' a/Xf]', and I.~Ai~(y){ >~e< e else.ify~[ai~"'ai~]' 

The width of the intervals [a/~, ~i~], t~ = 1, k A, e, is inversely linked with the amount of information available 
to the decision maker. The special case in which _a~j--~j is also imaginable, but in our opinion it is less 
realistic to assume that all coefficients /~q are fuzzy numbers as it was presumed by Ramik and Rimanek 
(1985) and Slowinski (1986). 

Consequently the polygon line from (a i j, ~ e) over (ai~A , )kA) , (aij , _  1), (~lij , 1), (aij,-hA )kA) to (aij e) is a 
suitable approach to the membership function of ,4ij on the support of [a~j, ~ ] ;  see Fig. 2. 

In comparison to the right-hand sides /~i, the spreads et~j = a~j - a~. and ~.g = ~ j  - ~ j  of the coefficients 
/~j are relatively small, so one often skips level ~'a and uses coefficients of the simple type /~;j= 
(a_ij; ?tij; ct~j; "~ij) ~ or Cj = (c_j; "Cj'~ "~;'~ "~;)t3. 

4. Aggregation of the left-hand sides of fuzzy constraints 

The left-hand side of a fuzzy constraint 

can be aggregated to a fuzzy set t t i(x) by Zadeh's extension principle 

f , f . # ( z ) =  Sup T ( f A ( x ) , f B ( y ) ) ,  Z ~ R ,  
Z ffi x * y 

(12) 

(13) 
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where * is a real operation * : R x R ---> R and T : [0, 1] × [0, 1] ~ [0, 1] is any given T-norm; see the 
Appendix. 

In the literature the min T-norm is generally applied. Then, if all coefficients ?~ij of the i-th constraint are 
fuzzy intervals of the same L-R-type, the left-hand side can be consolidated to a fuzzy interval with the same 
reference functions. Especially for coefficients of type A~ij = (aij; ~lij; ol.~j; "~j)e, we get 

~ i ( X  ) . . . . .  ~ i l X l { ~ i 2 X 2 ( ~  ~l~inX n ( a i ( x ) , ~ l i ( X ) ;  Oiei(X) ,oLi(X))--e e, 

with 

n i n i 
ai( x )  -~- E ai jxj ,  ai( x )  = "aijxj, ~__~i( x )  ~-- E o£~jxj, ~ (  x )  = ~ i jx j .  

j = l  j = l  j = l  j f l  

Obviously the spreads cry(x) and ~ . (x )  extend if number and size of the variables x i increase. Thus the 
left-hand side Ai(x )  gets fuzzier and fuzzier. We will come back to this problem in Section 7. 

5. Inequality relations 

A pivotal question while determining a solution of an FLP-model is the interpretation of the inequality 
relation in fuzzy constraints, .4,(x) ~/~r  In the literature various concepts have been proposed for comparing 
fuzzy sets (see, e.g. Dubois and Prade, 1983; Bortolan and Degani, 1985; Rommelfanger, 1986), but all these 
techniques appear to be of little interest for fuzzy mathematical programming. Special interpretations of the 
inequality relation ' ~ '  in fuzzy constraints ,41(x)~/~i are suggested for instance by Negoita and Sularia 
(1976), Tanaka and Asai (1984), Ramik and Rimanek (1985), Slowinski (1986), Carlson and Korhonen (1986), 
Luhandjula (1987), Rommelfanger (1988), Buckley (1988, 1989) and Sakawa and Yano (1989); see the survey 
in Rommelfanger (1989) and Lai and Hwang (1992). 

In most of these approaches fuzzy constraints /~i(x) ~/~i are replaced by one or two crisp linear constraints. 
For getting an impression of these crisp surrogates, some of them are formulated in the following as an 
LR-fuzzy i n t e r v a l  z~i(x ) = (ai(x); "ai(x); ~__i(x); ~i(X))LR and a fuzzy number B/=  (b;; 0; fAi)LL o r  /~i = 
(bi; 0; fAi)RR : 

• "~i(x) + a i ( x ) R - ] ( p )  ~< b i, p ~ [0, 1] (Tanaka and Asai, 1984; Buckley, 1988); 
• -di(x ) + ct i (x)  R -  1(~) ~< bi + fAiR- l(ix), Ix ~ [0, 1] (Carlson and Korhonen, 1986); 
• -di(x) <~ b i and "~i(x) + c t i ( x ) R - l ( e )  <~ b i + fai R -  l(e), e E [0, 1[ (Ramik and Rimanek, 1985; Wolf, 

1989); 
• a i _  bl <~ (~_i(x) + fAi) L -  i(p), p ~ ]0, 1] (optimistic index) a n d  

-di(x) + c t i ( x ) R - l ( e )  <~ b i + fai L -  l(e), e ~ [0, 1] (pessimistic index) (Slowinski, 1986); 
• "~i(x) - e t i ( x )L - l ( c t )  <~ b i + fAiR-l(ct),  a ~ [0, 1] (Sakawa and Yano, 1989). 

This procedure has the disadvantage that the DM has interpreted the fuzzy constraints in crisp LP-programs with 
no regard to the objectives. However, he can change the fixed parameters p, ix, ~ or a in the next step of the 
interactive solution process. 

A more flexible interpretation is proposed by Rommelfanger (1988): 

( E j= l ( aij .4_ ot ij) xj ,,~. bi d_ fAi _ --e ~< (14) 

Ixi( x )  = IXDj(-di( x )  ) "-> Max. (15) 

It is composed of the 'pessimistic index' (14), which is used by Slowinski (1986) and other authors too, and the 
fuzzy goal (15). The membership function IXD, is defined according to (5) and may be interpreted as the 
subjective evaluation of the needed quantity ~ti(x)= F_,7=t'~ijx ~ with regard to the right-hand side /~i; see 
Fig. 3. 
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I J 
\ ~ f ' v z  b i ai(x) b i "t-~ 

Fig. 3. Inequality relation ' ~ R'. 

The inequality relation ' ¢ R' has the advantage that a possible surplus - a i ( x )  - -  b i directly influences the 
decision process. Moreover, '~. R' coincides with the usual interpretation of the inequality relation in soft 
constraints (6); in the special case of deterministic inequalities it corresponds to the classical ~< relation. Thus 
"~ R is a general definition for inequality relations in optimization models. 

When using the inequality relation ~ R, it is sufficient for all Aij to specify only the values -dij and 
--e = -..di j q_ --e Clij 13[ i j" 

Obviously the influence of the extended addition, based on the rain T-norm, on the feasible solution of the 
optimization system (1) depends on the interpretation of the inequality relation. 

Using the pessimistic relation (4), as Slowinski (1986), Ramik and Rimanek (1985) (with e = 0) and 
Rommelfanger (1988) propose, the set of feasible solutions of the FLP-problem (1) shrinks when the number 
and size of variables x i increase, i.e. the pessimistic character of (4) is intensified by using the pessimistic 
min-norm. 

On the other hand, the optimistic character of other interpretations are intensified too. This is true for the 
o~-possible feasibility of Luhandjula and the G-c~-Pareto optimal solution of Sakawa and Yano, but also the 
'optimistic index' of Slowinski loses its restrictive character in case a.q. i(x) increases. 

6. Maximizing fuzzy objectives 

It seems clear that a fuzzy objective function 

Z ( x ) = C l X l ~  - - .  ~ C n X n  ~ M~x (16) 

should be interpreted as a multiobjective demand. 
Even in the simple case in which the coefficients Cj have the form Cj = (_Q; ~j; ~/~; ~/-~)~ and Z(x) can be 
written as 

with 

2(x) = (_~(x); ~(x); y ( x ) ;  ~ ( x ) ) ,  

j = l  j = t  jff i l  j = l  

the fuzzy objective function (16) implies that the four goals 

_~(x) ~ Max, _ ~ ( x ) - y ( x )  - ,  Max, 

~(x) - ,  Max, ~ (x )  + ~ ( x )  - ,  Max 

(17) 

(18) 
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should be satisfied simultaneously on the set of feasible solutions X. In general, an ideal solution to this 
problem (i.e. a solution maximizing all objectives at the same time) does not exist. 

In the special case of triangular coefficients Cj = (cj; ~ ;  ~/j), the set (18) corresponds to the three objectives 

Z l (X)=C(X)  "-+ Max, z2( x) = y_( x)  --+ Min, Z s ( X ) = 7 ( x )  --+ Max. 

Lai and Hwang (1992) proposed to substitute these objectives by fuzzy objective functions with linear 
membership functions, in which the basic values, the positive and the negative ideal solutions, should be 
calculated as 

z~ Is = Min c ( x ) ,  z~ Is = Max "y(x),  z NIs = Min 7 ( x ) ,  
x ~ X  x ~ X  -- x ~ X  

zPIS=c(xi) = Max c(x) ,  zPIS = ~_(xii) = Min ~/(x), z PIs = ~ (xm)  = Max ~ ( x ) .  
x ~ X  x ~ X  -- x E X  

These definitions, especially those of the values z Nts, z2 nls and z~ Is, are not very convincing. In general, these 
values are too small and too big and therefore the linear membership functions do not seem to be adequately 
modeled. A better proposal would be 

z~ I s=  Min[c(Xn) ,  C(XIII)], Z NIS= Max [ y ( x l )  , "Y(XIII)], Z NIS= Min [~ (x i )  , V(xn)] .  
x E X  x ~ X  L-- ~ x ~ X  

The first method for getting a 'compromise solution' of (15) was proposed by Tanaka, Ichihashi and Asai 
(1984). They substitute the fuzzy objective with the crisp 'compromise objective' 

1 £(2c_ j+2c j+} .+~j )x j .  z (  x l  = -g j= l 

Another procedure to compute a 'compromise solution' of (1) is the 'a-level related pair formation' which is 
based on a few crisp objective functions in analogy to (18) (see Rommelfanger, Hanuscheck and Wolf, 1989). 

Sakawa and Yano (1989) propose to calculate an 'a-Pareto-optimal solution' by restricting the coefficients 

~j to a-level-sets C;  = [c~, ?~]. A similar concept is the '[3-possibility efficient solution' of Luhandjula 
1987). As these authors do not explain the specification of the levels a or [3 and use several restrictive 

assumptions, we refrain from presenting here these proposals in detail. For example, Sakawa and Yano assume 
that the DM is able to specify the membership function of the coefficients of the objective function so precisely 
that it is possible to calculate the trade-off rates between the objectives by calculating derivatives of the 
corresponding membership functions. 

As an ideal solution of (16) on a set of feasible solutions does not generally exist, Slowinski (1986) and 
Rommelfanger (1988) suggest to calculate a satisfying solution, a procedure which corresponds to the usual way 
of acting in practice. 

In analogy to modeling a right-hand side /~, a fuzzy aspiration level 57 can be described as 

57-- (n;  re; 0) ~. (19) 

Then, the satisfying condition 

57 ~ Z ( x )  (20) 

is treated as an additional fuzzy constraint. In accordance to the chosen inequality-interpretation, (20) can be 
substituted by crisp inequalities or in case of ' G R' by a crisp linear inequality and a fuzzy objective function. 
By changing the aspiration levels, the set of efficient solutions is restricted step by step (Slowinski, 1986; 
Rommelfanger, 1988, pp. 249-250). Obviously it is easy to extend this approach to multicriteria problems. For 
supporting the practical handling of both procedures, there exist PC-softwares, e.g. FLIP (see Slowinski, 1986) 
or FULP (see Rommelfanger, 1991). 



H. Rommelfanger / European Journal of Operational Research 92 (1996) 512-527 521 

7. Extended addition, based on Yager's t-norm Tp 

To get a more realistic extended addition of the left-hand sides of fuzzy constraints and of fuzzy objectives, 
Rommelfanger and Keresztfalvi (1992) recommend the use of Yager's parametrized t-norm, 

Tp(u, v) = max(O, l -- ( ( 1 - -  u) p + ( 1 - v ) p ) I / p } ,  u, vE[O,  1], p > O ,  (21) 

which can be adapted to special situations. In case of n variables it has the form 

. . . .  • - , t I . . . . .  t n ~ [0, 11. (22) 
i=1  

In the special case that all coefficients -4ij are trapezoid fuzzy intervals of type Aij = (aij;_ "dij; _,j,cd -~otij) ~, the 
following theorem holds (see Rommelfanger and Keresztfalvi, 1992): 

Theorem 1. Suppose the coefficients Aij o f  the left-hand sides of  the inequality constraints 

L I X I ( ] ~ A i 2 x 2 ( 9  . . .  (])l~inXn~J~i, i = 1  . . . . .  m, (11) 

are trapezoid f u z ~  intervals o f  type Ptij = ( a_ij, ?tij , cU_ij, ~ i j )  ~. I f  the addition is extended by Yager' s t-norm Tp 
with p >1 1, then 

t~i( x ) = A-il x 1 (9 t~i2 x 2 (9 . "  (9 t~i.x . = ( ai( x ),  ~i( x )  , c(~i( x ) , ~ ( x ) ) ~ (23) 

is also a fuzzy interval with linear reference functions, such that 

a i ( X )  ~-- ~ a i jx j ,  ~li(x) ~- ~ "aijxj, 
j = l  j = l  

~ ( x ,  p)  = II(a__~lX 1 . . . . .  ~ . )  [[q = ((O/-~lXl) q "q- " ' "  "~(OL~inXn)q) l/q, (24) 

+ . . .  (25) K~(x, p) = 11 (K~.,x~ . . . . .  K~.x.) 1[ q= ((--e, q --~ q)l /q,  

where q = p / (  p - 1) >/1. 

Looking for the consequences of using the extended addition based on t-norm Tp instead of the usually 
applied min-operator, we can state that the l-level set [ai(x), ~i(x)] does not change with the parameter p 
whereas the spreads a_~(x) and ~ ( x )  decrease if p decreases (q increases). The extent of change will be 
evident by looking at the extreme cases: 

If p tends to infinity, then Tp tends to the min T-norm and we come back to the usual extended addition; see 
Section 4. Thus, if p ---) oD and q = 1, then /~i(x) has greatest spreads 

oL~.(x, oo)=OLilXl + . . .  +Ol, inXn and ~ ( x , ~ ) = - ~ i l  x, + . . . + ~ i . X n .  

If p = 1 (and q ---) ¢0), then Tp = T L is the well known Lukasiewicz T-norm: 

Z l ( U  , u) = TL(U, v) = M a x { u ,  u + v - -  1}. 

In this case .~ (x)  has smallest spreads 

a__~(x, 1 ) =  M a x { t ~ l X  1 . . . . .  OL~nXn} and ~ ( x ,  1 ) = M a x { ~ , x  . . . . . .  ~ . .x .} .  

If p ~ ] l , + c ¢ [ ,  the spreads a__~(x, p) and U~(x, p) are strictly monotone increasing functions of p. 
Therefore, if the set of feasible solutions of the inequality equation ~i(x) + ~ ~(x, p) ~< bl + [3~ is denoted by 
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Xi(P), we have Xi(P) CXi(P' ) i f  p > p ' ;  p, p '~ ] l ,+o~[ .  Moreover, as II- . .  Ilq satisfies the 
inequality, the sets x i ( p )  are convex sets for all p E [1, oo[. 

Using the Tp-norm based addition the inequality relation ' ~ R' should be modified to 

triangle 

- ¢:~ [ "~ i (x )+ '~ i (x '  p) <~b i+ ~ '  
t~i( X) ~KRBi ~ l~i( x)  = l.tDi(-di( x)  ) .-~ Max. (26) 

Obviously the inequality relation ' ~  KR' is identical with ' ~  R' for p ~ 0% but in general the inequality 
interpretation varies with p. 

Now the decision maker has two ways of expressing his attitude towards risk: 
• by specifying the values ~ j ,  "y~j, [37, v~; 
• by choosing a value p ~ [1, +-oo[ for each objective and for each constraint independently. 

8. Solution process for getting a compromise solution 

The discussion of the crucial points of fuzzy linear programming reveals that there exists an extensive offer 
of effective methods for reducing fuzzy linear programs in crisp systems. In order to make the best choice the 
decision maker has to consider the different assumptions of the suggested procedures and compare them with 
the actual decision problem. In any case the solution should be determined step by step in an interactive process, 
in which additional information out of the decision process itself or from outside should be used. In doing so, 
inadequate modeling of the real problem can be avoided and information costs will, in general, be decreased. 

To date, the only procedure which offers a flexible extended addition of the left-hand sides of fuzzy 
constraints is the latest version of FULPAL, called FULPAL 2.0 (see Rommelfanger and Keresztfalvi, 1993). 
The basic characteristics of FULPAL 2.0 are: 

• FULPAL is based on the inequality relation ' ~ ~ ' .  
• The coefficients are modeled as .~.j = (aij" ~ "aij; ot~j; "~j)e or Ckj = (Ckj, Ckj; ~l~j, ~j)e.  
• The right-hand sides of the constraints-are modeled as Bi = (bi; 0,-0; 13XA'~,'~) xa'~, where h A is the 

membership degree of the crisp aspiration level b i + [3,x A. 
• FULPAL uses a satisfying approach, where the fuzzy aspiration levels Nk = (nk; vXa, v~; 0, 0) x"'~ for the 

ha objective functions are changed step by step by improving the crisp aspiration level n k - v k . 
• The total satisfaction of the decision maker with a solution x is expressed by the compromise objective 

function h ( x )  = Min(p~za(cl(X)) . . . . .  IXz~(CK(X)), I'~n,(~l (x))  . . . . .  ~o (~m(~x))). 
• Regarding the calculationof the values n ~ -  v~ and n k of A7 k, in Z~= CklX 1 ~ ' ' "  ~ CknXn ~ ]Vk the 

inequality relation ' ~ g' is used. 
Under these assumptions a compromise solution of a multiobjective fuzzy linear program of type 

Z l  = C l l X t  ~ " ' "  ~ Clnxn) 

= c-,,lXl e K . x . )  
- ,  Max (27)  

subject t o  All x, ~ - - .  ~ .4i .  x.  ~/~i, i =  1 . . . . .  m 1, 

x = ( x l ,  x2 . . . . .  x z ) ~ X = { x ~ R ~ l a i l x  l +  "'" +ainx.<~bi, V i = m  l + l . . . . .  m} 
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can be calculated by solving the crisp system 

523 

x --, Max (28)  

subject to ~.~Zk(_.Ck(X)), k = 1 . . . . .  K, 

h <~ p.o~(~i(x)), i=  1 . . . . .  m,, 

c_k(x ) - ~ ( x ) > ~ n k - v ~ ,  k = l  . . . . .  K, 

~i (x)  + ' ~ ( x ,  p)<bi+[3~i, i=  l . . . . .  ml, 

X =  ( X l ,  X 2 . . . . .  X2) E X .  

Following the algorithm FULPAL 2.0 we can assume that all the piecewise linear functions iXz, and txo, are 
concave membership functions. Then, if p = 1 or p ~ + ~, the system (28) is a crisp linear program which can 
be solved by means of the well-known simplex algorithms. As far as the intermediate parameters p e ]1, ~[ are 
concerned, it is sufficient in practical applications to work with a linear approximation, proposed by 
Rommelfanger and Keresztfalvi (1993). The advantage of this approximation procedure is that a compromise 
solution can be calculated by solving a crisp linear LP. 

9. Applications of fuzzy linear programming 

Fuzzy Linear Programs (FLP) were developed to tackle problems encountered in real-world applications. The 
following list shows that the applications of FLP are numerous: and diverse. 
Agricultural economics: 

• analysis of water use in agriculture (Owsinski, Zadrozny and Kacprzyk, 1987); 
• feed mix (Lai and Hwang, 1992); 
• farm structure optimization problem (Czyzak, 1990); 
• regional resource allocation (Leung, 1988; Mjelde, 1986); 
• water supply planning (Slowinski, 1986, 1987). 

Assignment problems: 
• network location problem (Darzentas, 1987). 

Banking and finance: 
• capital asset pricing model (Ostermark, 1989); 
• profit apportionment in concern (Ostermark, 1988); 
• bank hedging decision (Lai and Hwang, 1992); 
• project investment (Hanuscheck, 1986; Wolf, 1988; Lai and Hwang, 1992). 

Environment management: 
• air pollution regulation problem (Sommer and Pollatschek, 1978); 
• energy emission models (Oder and Rentz, 1993). 

Manufacturing and production: 
• aggregate production planning problem (Verdegay, 1987); 
• machine optimization problems (Trappey, Liu and Chang, 1988); 
• magnetic tape production (Wagenknecht and Hartmann, 1987); 
• optimal allocation of production of metal (Ran~k and Rimanek, 1987); 
• optimal system design (Zeleny, 1986); 
• crude oil manufacturing (Wagenknecht and Hartmann, 1987); 
• production-mix selection problem (Verdegay, 1987); 
• production scheduling (Carlsson and Korhonen, 1986). 
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Personnel management: 
• coordination of personnel demand and available personnel structure (Spengler, 1992). 

Transportation: 
• transportation problem (Verdegay, 1984); 
• truck fleet (Zimmermann, 1976). 

Appendix. A concise introduction to fuzzy set theory 

Let X be a classical set of objects which should be evaluated with regard to a fuzzy statement. Then the set 
of ordered pairs 

2(= {(x,  I~A(X))I x E X } ,  where IXA: X-'-> [0, 1], 

is called a fuzzy set in X. The evaluation function IXA(X) is called the membership function or the grade of 
membership of x~in A. 

A fuzzy set A = {(x, IXA(X)) I X E X} is called normalized if Supx ~ X~A(X) = 1. 
Let ?~be a fuzzy set in X and a E [0, 1] a real number. Then a classical set 

A~ = {x E X J IXA(X) >1 a} is called an a-level set or a-cut of t~, and A~ = {x E X J J.LA(X) ~> a} is called a 
strong a-level set or a-cut of A. 

A fuzzy set A in a convex set X is called convex if 

J.La(~kXl +(1 -h )x2 )>/Min( i xa (X l )  , J.LA(X2)), Xl, x 2 E X  , h E [ 0 ,  1]. 

Obviously a fuzzy set .4 is convex if and only if each a-level set of A is convex. 
A convex normalized fuzzy set A = {(x, I~A(X))J X E E} on the real line R such that 

(i) there exist exactly one x 0 E R with the membership degree WA(X0) ---- 1, and 
(ii) IXA(X) is piecewise continuous in R, 
is called a fuzzy number; see Fig. A.1. 

A convex normalized fuzzy set A = {(x, ~A(X)) I X E R} on the real line R is called a fuzzy interval if 
(i) there exists more than one real number x with a membership degree IXA(X) = 1; 
(ii) IXA(X) is piecewise continuous in E; see Fig. 2. 

A binary operator T:[0,  1] X [0, 1]--*[0, 1] is called a triangular-norm or t-norm if, for all a, b, c, d E  
[0, 1]: 

(T1) T (a ,  1) = a. (boundary condition) 

(T2) T(a,  b) = T( b, a). (commutativity) 

(T3) T(a, T( b, c) ) = T( T(a, b), c). (associativity) 
(T4) T ( a ,  b) ~ T(c ,  d) if a ~< c and b ~< d. (monotony) 

A function L: [0,+ ~[---> [0, 1], such that 
(i) L(O)= 1, 
(ii) L is not increasing on [0, + oo[, 
is called a reference function of a fuzzy number. 

A fuzzy number AT= {(x, ~N(x))J x E  R} is called of L-R-type if there exist reference functions L and R 
and scalars a ,  [3 > 0 such that 

[ L ( ( n - x ) / a )  if x < n ,  
~ ( x )  = [R((x-n)/[3) if  x>~n. 

Symbolically/V is denoted by (n, a ,  [3)LR- 
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11 
1 3 4 7 x 

~'. R(u) 
L(u) 

t -u 

I 2 

Fig. A.1. N =  (3; 2; 1)LR. 

Fig. A.2. L(u) = max(0, 1 - u); R(u) = 1/(1 + u2). 

A fuzzy  interval  A~ = {(x,  p~M(X)) I X ~ ~} is ca l led  o f  L-R- type  i f  there exis t  reference funct ions  L and R 

and scalars or, [3 > 0 such that  

( L ( ( m  1 - x ) / e t )  i f  x < m  1, 

IXM(X) = ~ 1  i f  m 1 <~ x <~ m 2, 

[R((x-m2)/[3) if m2 < x .  

Symbol i ca l ly  M is denoted  by  ( m  t, m 2, a ,  [3)LR" 
The  s igni f icance  o f  fuzzy  numbers  or  fuzzy  intervals  o f  L -R- type  is that the calculat ions  o f  the ex tended  

operat ions,  based  on  the ex tens ion  pr inciple  o f  Zadeh ,  are cons iderab ly  s impl i f ied  (see Dubo i s  and Prade ,  1980). 
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