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DECISION-MAKING IN A FUZZY ENVIRONMENT*}

R. E. BELLMAN} anp L. A. ZADEH§

By decision-making in a fuzzy environment is meant a decision process in which
the goals and/or the constraints, but not necessarily the system under control, are
fuzzy in nature. This means that the goals and/or the constraints constitute classes
of alternatives whose boundaries are not sharply defined.

An example of a fuzzy constraint is: “The cost of A should not be substantially
higher than a,”” where « is a specified constant. Similarly, an example of a fuzzy goal
is: “z should be in the vicinity of z, ,”’ where z, is a constant. The italicized words
are the sources of fuzziness in these examples.

Fuzzy goals and fuzzy copstraints can be defined precisely as fuzzy sets in the
space of alternatives. A fuzzy decision, then, may be viewed as an intersection of
the given goals and constraints. A maximizing decision is defined as a point in the
space of alternatives at which the membership function of a fuzzy decision attains
its maximum value.

The use of these concepts is illustrated by examples involving multistage decision
processes in which the system under control is either deterministic or stochastic. By
using dynamic programming, the determination of a maximizing decision is reduced
to the solution of a system of functional equations. A reverse-flow technique is de-
scribed for the solution of a functional equation arising in connection with a decision
process in which the termination time is defined implicitly by the condition that the
process stops when the system under control enters a specified set of states in its

state space.

1. Introduction

Much of the decision-making in the real world takes place in an environment in
which the goals, the constraints and the consequences of possible actions are not known
precisely. To deal quantitatively with imprecision, we usually employ the concepts
and techniques of probability theory and, more particularly, the tools provided by
decision theory, control theory and information theory. In so doing, we are tacitly
accepting the premise that imprecisiono—whatever its nature—can be equated with
randomness. This, in our view, is a questionable assumption.

Specifically, our contention is that there is a need for differentiation between ran-
dommess and fuzziness, with the latter being a major source of imprecision in many
decision processes. By fuzziness, we mean a type of imprecision which is associated
with fuzzy sets, [20], [21] that is, classes in which there is no sharp transition from mem-
bership to nonmembership. For example, the class of green objects is a fuzzy set. So
are the classes of objects characterized by such commonly used adjectives as large,
small, substantial, significant, important, serious, simple, accurate, approximate,
ete. Actually, in sharp contrast to the notion of a class or a set in mathematics, most
of the classes in the real world do not have crisp boundaries which separate those ob-
jects which belong to a class from those which do not. In this connection, it is impor-
tant to note that, in the discourse between humans, fuzzy statements such as “John
is several inches taller than Jim,” “z is much larger than y,” “Corporation X has a
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bright future,” ‘‘the stock market has suffered a sharp decline,” convey information
despite the imprecision of the meaning of the italicized words. In fact, it may be
argued that the main distinction between human intelligence and machine intelligence
lies in the ability of humans—an ability which present-day computers do not possess—
to manipulate fuzzy concepts and respond to fuzzy instructions.

What is the distinction between randomness and fuzziness? Essentially, randomness
has to do with uncertainty concerning membership or nonmembership of an object
in a nonfuzzy set. Fuzziness, on the other hand, has to do with classes in which there
may be grades of membership intermediate between full membership and nonmember-
ship. To illustrate the point, the fuzzy assertion “Corporation X has a modern out-
look” is imprecise by virtue of the fuzziness of the terms “modern outlook.” On the
other hand, the statement ‘“The probability that Corporation X is operating at a loss
is 0.8,” is a measure of the uncertainty concerning the membership of Corporation X
in the nonfuzzy class of corporations which are operating at a loss. Similarly, “The
grade of membership of John in the class of tall men is 0.7, is a nonprobabilistic
statement concerning the membership of John in the fuzzy class of tall men, whereas
“The probability that John will get married within a year is 0.7,” is a probabilistic
statement concerning the uncertainty of the occurrence of a nonfuzzy event (mar-
riage).

Reflecting this distinction, the mathematical techniques for dealing with fuzziness
are quite different from those of probability theory. They are simpler in many ways
because to the notion of probability measure in probability theory corresponds the
simpler notion of membership function in the theory of fuzziness. Furthermore, the
correspondents of @ 4 b and ab, where a and b are real numbers, are the simpler opera-
tions Max(a, b) and Min(a, b). For this reason, even in those cases in which fuzziness
in a decision process can be simulated by a probabilistic mode), it is generally advan-
tageous to deal with it through the techniques provided by the theory of fuzzy sets
rather than through the employment of the conceptual framework of probability
theory.

Decision processes in which fuzziness enters in one way or another can be studied
from many points of view. [22], [9], [14] In the present note, our main concern is with
‘introducing three basic concepts: fuzzy goal, fuzzy constraint and fuzzy decision,
,‘and exploring the application of these concepts to multistage decision processes in
‘which the goals or the constraints may be fuzzy, while the system under control may
| be either deterministic or stochastic—but not fuzzy. This, however, is not an intrinsic
restriction on the applicability of the concepts and techniques described in the follow-
ing sections.

Roughly speaking, by a fuzzy goal we mean an objective which can be character-
ized as a fuzzy set in an appropriate space. To illustrate, a simple example of a fuzzy
goal involving a real-valued variable z would be: “z should be substantially larger than
100.” Similarly, a simple example of a fuzzy constraint would be: “‘z should be approzi-
mately in the range 20~25.” The sources of fuzziness in these statements are the itali-

cized words.
A less trivial example is provided by a deterministic discrete-time system charac-

terized by the state equations
Topl = Tn + Un, n=0;1727"'1

where z, and u, denote, respectively, the state and input at time n and in which for
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simplicity z. and u, are assumed to be real-valued. Here a fuzzy constraint on the
input may be

-1 <%, <1

where the wavy bar under a symbol plays the role of a fuzzifier, that is, a transforma-
tion which takes a nonfuzzy set into a fuzzy set which is approximately equal to it.
In this instance, u. < 1, would read “u, should be approzimaiely less than or equal to
1 a.nd the effect of the fuzzifier is to transform the nonfuzzy set —1 < u, < 1 into
a fuzzy set —1 < u. < 1. The way in which the latter set can be given a precise

meaning will be discussed in §2.

Assume that the fuzzy goal is to make z; approximately equal to 5, starting with
the initial state 2o = 1. Then, the problem is to find a sequence of inputs u, , %y , u
which will realize the specified goal as nearly as possible, subject to the specified
constraints on uy , u1 , Uz .

In what follows, we shall consider in greater detail a few representative problems of
this type. It should be stressed that our limited objective in the present paper is to
draw attention to problems involving multistage decision processes in a fuzzy en-
vironment and suggest tentative ways of attacking them, rather than to develop a
general theory of decision processes in which fuzziness and randomness may enter in a
variety of ways and combinations. In particular, we shall not concern ourselves with
the application to decision-making of the concept of a fuzzy algorithm [22]—a con-
cept which may be of use in problems which are less susceptible to quantitative analysis
than those considered in the sequel.

For convenience of the reader, a brief summary of the basic properties of fuzzy
sets is provided in the following section.

2. A Brief Introduction to Fuzzy Sets

Informally, a fuzzy set is a class of objects in which there is no sharp boundary
between those objects that belong to the class and those that do not. A more precise
definition may be stated as follows.

Definition. Let X = {z} denote a collection of objects (points) denoted generically
by z. Thn a fuzzy set A in X is a set of ordered pairs

(1) A= {(I) PA(x))}) reX

where u, (z) is termed the grade of membership of z in A, and p.:X — M is a function
from X to a space M called the membership space. When M contains only two points,
0 and 1, A is nonfuzzy and its membership function becomes identical with the char-
acteristic function of a nonfuzzy set.

In what follows, we shall assume that M is the interval [0, 1], with 0 and 1 repre-
senting, respectively, the lowest and highest grades of membership. (More generally,
M can be a partially ordered set or, more particularly, a lattice [15], [6].) Thus, our
basic assumption is that a fuzzy set A—despite the unsharpness of its boundaries—
can be defined precisely by associating with each object z a number between 0 and 1

which represents its grade of membership in A.
Ezample. Let X = {0, 1, 2, - - -} be the collection of nonnegative integers. In this

space, the fuzzy set A of “‘several objects” may be defined (subjectively) as the collec-
tion of ordered pairs

2) A = {(3,06), (4,08), (5,1.0), (6,1.0), (7,0.8), (8,0.6)}
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with the understanding that in (2) we list only those pairs (z, p4(z)) in which u, (z)
is positive.

Comment. It should be noted that in many practical situations the membership
function, u4 , has to be estimated from partial information about it, such as the values
which it takes over a finite set of sample points zy, -+ ,zZy. When A is defined
incompletely—and hence only approximately—in this fashion, we shall say that it is
partially defined by exemplification. The problem of estimating p4 from the knowledge
of the set of pairs (z1, pa(@1)), -, (@x, pa(zy)) is the problem of absiraction—
a problem that plays a central role in pattern recognition. [4], [18] We shall not con-
cern ourselves with the solution of this problem in the present paper and will assume
throughout—except where explicitly stated to the contrary—that u4 (z) is given for
all z in X.

For notational purposes, it is convenient to have a device for indicating that a fuzzy
set A is obtained from a nonfuzzy set A by fuzzifying the boundaries of the latter set.
For this purpose, we shall employ a wavy bar under a symbol (or symbols) which
define A. For example, if A is the set of real numbers between 2 and 5, ie., A =
fz|2 <z <5}, thend = {z|2 < z < 5} is a fuzzy set of real numbers which are
approximately between 2 and 5. Similarly, A = {z |z = 5} or simply 5 will denote
the set of numbers which are approximately equal to 5. The symbol ... will be referred
to as a fuzzifier.

We turn next to the definition of several basic concepts which we shall need in later
sections.

Normality. A fuzzy set A is normal if and only if Sup. pa(z) = 1, that is, the su-
premum of u, (z) over X is unity. A fuzzy set is subnormal if it is not normal. A non-
empty subnormal fuzzy set can be normalized by dividing each u4 (z) by the factor
Sup: pa (z). (A fuzzy set A is empty if and only if pa(z) = 0.)

Support. The support of a fuzzy set A isaset S(A) suchthatz € S(4) = pa(z) > 0.
If ua(z) = constant over S(A4), then A is nonfuzzy. Note that a nonfuzzy set may be
subnormal.

Equality. Two fuzzy sets are equal, written as A = B, if and only if us = us, thatis,
pa(@) = ps(z) for all z in X. (In the sequel, to simplify the notation we shall omit
the argument z when an equality or inequality holds for all values of z in X.)

Containment. A fuzzy set A is contained in or is a subset of a fuzzy set B, written
as A C B, if and only if us < up. In this sense, the fuzzy set of very large numbers
is a subset of the fuzzy set of large numbers.

Complementation. A’ is said to be the complement of A if and only if u,’ = 1 — pa.
For example, the fuzzy sets: A = {tall men} and A’ = {not tall men} are complements
of one another if the negation “not” is interpreted as an operation which replaces
pa(z) with 1 — pu(z) for each z in X.

Intersection. The intersection of A and B is denoted by A N B and is defined as the
largest fuzzy set contained in both A and B. The membership function of A N Bis
given by

3) pans(z) = Min (ua(z), uz(z)), zeX

where Min (@, b) = aif a < b and Min (e, b) = b if @ > b. In infix form, using the
conjunction symbol A in place of Min, (3) can be written more simply as

4) Mane = pa A us.

The notion of intersection bears a close relation to the notion of the connective
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“and.” Thus, if 4 is the class of tall men and B is the class of fat men, then A N B
is the class of men who are both tall and fat.

Comment. It should be noted that our identification of “and” with (4) implies that
we are interpreting “‘and” in a “hard” sense, that is, we do not allow any tradeoff
between w4 (z) and us(z) s0 long as ps(z) > us(z) or vice-versa. For example, if
pa(z) = 0.8 and up(z) = 0.5, then pins(z) = 0.5 so long as p4(z) > 0.5. In some
cases, a softer interpretation of “and” which corresponds to forming the algebraic
product of us(z) and ps(z)—rather than the conjunction pa(z) A ws(z)—may be
closer to the intended meaning of “and.” From the mathematical as well as practical
points of view, the identification of “and” with A is preferable to its identification
with the product, except where A clearly does not express the sense in which one
wants “and”” to be interpreted. For this reason, in what follows “and” will be understood
to be a hard “and’’ unless explicitly stated that it should be interpreted as a soft “and”
(in the sense of corresponding to the algebraic product of membership functions ).

Union. The notion of the union of A of B is dual to the notion of intersection. Thus,
the union of 4 and B, denoted as A U B, is defined as the smallest fuzzy set containing
both A and B. The membership function of A U B is given by

(5) #AUB(x) = Max (U'A (3)7 (] (J;)), re X

where Max (a,b) = aif a > b and Max (¢, b) = b if ¢ < b. In infix form, using the
disjunction symbol V in place of Max, we can write (5) more simply as

(6) Bays = pa V us.

As in the case of the intersection, the union of A and B bears a close relation to
the connective “‘or.” Thus, if A = {tall men} and B = {fat men}, then A U B =
{tall or fat men}. Also, we can differentiate between a hard “‘or’’, which corresponds to
(6), and a soft “or”, corresponding to the algebraic sum of A and B, which is denoted
by A & B and is defined by (9).

It is easy to verify that U and 1 are related to one another by the identity

@ AUB= (A NBY.

Algebraic product. The algebraic product of A and B is denoted by AB and is defined
by

8) pap(z) = pa(@)ps (@), € X.
Algebraic sum. The algebraic sum of A and B is denoted by A @ B and is defined by
) paos(x) = pa(@) + ps(x) — pa(@us(z), z € X.
It is eagy to verify that
(10) A®B= (4A'BY.

Comment. Tt should be noted that the operations V and Aare associative and
distributive over one another. On the other hand, - (product) and ® (sum) are
associative but not distributive. Note also that - (product) distributes over V but
not vice-versa. This property is possessed, more generally, by any operation » which
is monotone nondecreasing in each of its arguments. More specifically, if & > b =
axb>asbanda>a =axb>a «bthenax(® V)= (axd) V (axc).
Many of the results described in the following sections remain valid when A is re-
placed by an operation » which is associative and distributes over V.
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Convezity and concavity. Let A be a fuzzy set in X = Rr. Then A is conver if and
only if for every pair of points z, y in X, the membership function of A satisfies the
inequality

(11) pa(z + (1 — MNy)2= Min (pa(z), na@)),

for0 < X < 1. Dually, 4 is concave if its complement A’ is convex. It is easy to show
that if A and B are convex, sois A N B. Dually, if A and B are concave, so is AU B.

Relation. A fuzzy relation, R, in the product space X X ¥ = {(z,y)},z € X,y € Y,
is a fuzzy set in X X Y characterized by a membership function uxz which associates
with each ordered pair (z, y) a grade of membership u: (z, ¥) in R. More generally,
an n-ary fuzzy relation in a product space X = X; X X, X --- X X, is a fuzzy set
in X characterized by an n-variate membership function ue(z;, -+ ,2.), 7, € X i
i=1---,n

Ezample. Let X = Y = R’, where R’ is the real line (— o, ®). Then 2> y is a
fuzzy relation in R®. A subjective expression for g in this case might be: up(z, y) = 0
forz < y;me(z,y) = A+ @ —y)") forz > y.

Fuzzy sets induced by mappings. Let f: X — Y be a mapping from X = {z} to ¥ =
{y}, with the image of z under f denoted by y = f(z). Let A be a fuzzy set in X.
Then, the mapping f induces a fuzzy set B in ¥ whose membership function is given by

(12) pe(Y) = SuPees-1qy) pa(z),
where the supremum is taken over the set of points f™ (y) in X which are mapped
by f into y.

Conditioned fuzzy sets. A fuzzy set B(z) in Y = {y} is conditioned on z if its member-
ship function depends on z as a parameter. This dependence is expressed by us (y | z).

Suppose that the parameter z ranges over a space X, so that to each z in X corre-
sponds a fuzzy set B(z) in Y. Thus, we have a mapping—characterized by p»s(y | z)—
from X to the space of fuzzy sets in ¥. Through this mapping, any given fuzzy set A
in X induces a fuzzy set B in Y which is defined by

(13) us(y) = Sup. Min (u4(2), us(y | 7))

where u4 and us denote the membership functions of A and B, respectively. In terms
of A and V (13) may be written more simply as

(14) pe(y) = Vo(ua(z) A pa(y|z)).

Note that this equation is analogous—but not equivalent—to the expression for the
marginal probability distribution of the joint distribution of two random wvariables,
with us(y | ) playing a role analogous to that of a conditional distribution.

Decomposability. Let X = {z}, Y = {y} and let C be a fuzzy set in the product space
Z = X X Y defined by a membership function p¢(z, y). Then C is decomposable along
X and Y if and only if C admits of the representation C = A {1 B or equivalently

(15) be(z,y) = pa(x) A pay)

where A and B are fuzzy sets with membership functions of the form u, (z) and us (),
respectively. (Thus, A and B are cylindrical fuzzy sets in Z.) The same holds for a
fuzzy set in the product of any finite number of spaces.

Probability of fuzzy events. Let P be a probability measure on R". A fuzzy event [23]



DECISION-MAKING IN A FUZZY ENVIRONMENT B-147

A in R" is defined to be a fuzzy subset A of R whose membership function, u, , is
measurable. Then, the probability of A is defined by the Lebesgue-Stieltjes integral

(16) P(4) = [ iz aP.

Equivalently, P(A) = Eu, where E denotes the expectation operator. In the case of
a normal nonfuzzy set, (16) reduces to the conventional definition of the probability
of a nonfuzzy event.

This concludes our brief introduction to some of the basic concepts relating to fuzzy
sets. In the following section, we shall use these concepts as a basis for defining the
basic notions of goal, constraint and decision in a fuzzy environment.

3. Fuzzy Goals, Constraints and Decisions

In the conventional approach to decision-making, the principal ingredients of a
decision process are (a) a set of alternatives; (b) a set of constraints on the choice
between different alternatives; and (c¢) a performance function which associates with
each alternative the gain (or loss) resulting from the choice of that alternative.

When we view a decision process from the broader perspective of decision-making
in a fuzzy environment, a different and perhaps more natural conceptual framework
suggests itself. The most important feature of this framework is its symmetry with
irespect to goals and constraints—a symmetry which erases the differences between
%them and makes it possible to relate in a relatively simple way the concept of a deci-
'sion to those of the goals and constraints of a decision process.

More specifically, let X = {z} be a given set of alternatives. Then, a fuzzy goal or
simply a goal, G, in X will be identified with a given fuzzy set G in X. For example,
if X = R! (the real line), then the fuzzy goal expressed in words as “z should be sub-
stantially larger than 10" might be represented by a fuzzy set in R' whose membership
function is (subjectively) given by

pe(z) =0, =z <10,
=01+ —-10)7 2> 10.

Similarly, the goal ‘“z should be in the vicinity of 15"’ might be represented by a fuzzy
set whose membership function is of the form

(18) pe(z) = 1+ (z — 15)")7".

Note that both of these sets are convex in the sense of (11).

In the conventional approach, the performance function associated with a decision
process serves to define a linear ordering on the set of alternatives. Clearly, the mem-
bership funection, pe(z), of a fuzzy goal serves the same purpose' and, in fact, may be
derived from a given performance function by a normalization which leaves the linear
ordering unaltered. In effect, such normalization provides a common denominator for
the various goals and constraints and thereby makes it possible to treat them alike.
This, as we shall see, is one of the significant advantages of regarding the concept of a
goal—rather than that of a performance function—as one of the principal components
of a conceptual framework for decision-making in a fuzzy environment.

In a similar manner, a fuzzy constraint or simply a constraint, C, in X is defined to

(17)

! Assuming, of course, that u¢ takes values in a linearly ordered set.
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be a fuzzy set in X. For example, in R', the constraint “z should be approximately
between 2 and 10,” could be represented by a fuzzy set whose membership function
might be of the form

pe(@) = 1 +a(z—6)")"

where a is a positive number and m is a positive even integer chosen in such a way
as to reflect the sense in which the approximation to the interval [2, 10] is to be under-
stood. For example, if we set m = 4and a = 5% thenatz = 2 and ¢ = 10 we have
approximately pc(z) = 0.71, while at z = 1 and z = 11, uc(z) = 0.5;and atz =0
and z = 12, uc(z) is approximately equal to 0.32.

An important aspect of the above definitions of the concepts of goal and constraint
is that both are defined as fuzzy sets in the space of alternatives and thus, as will be
elaborated upon below, can be treated identically in the formulation of a decision.
By contrast, in the conventional approach to decision-making, a constraint set is
taken to be a nonfuzzy set in the space of alternatives X, whereas a performance func-
tion is a function from X to some other space. Nevertheless, even in the case of the
conventional approach, the use of Lagrangian multipliers and penalty functions makes
it apparent that there is an intrinsic similarity between performance funetions and
constraints [17, Chapter 15]. This similarity—indeed identity—is made explicit in
our formulation.

As an illustration, suppose that we have a fuzzy goal G and a fuzzy constraint C
expressed as follows:

G: z should be substantially larger than 10, with pe(z) given by (17) and

C: z should be in the vicinity of 15, with uc(z) expressed by (18).

Note that G and C are connected to one another by the connective and. Now, as
was pointed out in §2, and corresponds to the intersection of fuzzy sets. This implies
that in the example under consideration the combined effect of the fuzzy goal G and
the fuzzy constraint C on the choice of alternatives may be represented by the intersec-
tion G N C. The membership function of the intersection is given by

ponc(z) = pa(z) A pe(2)
or more explicitly
pane(z) = Min ((1 + (@ — 1007, 1 4+ @ - 15))7) for z > 10,
=0 for z<10.

Note that G N C is a convex fuzzy set since both G and C are convex fuzzy sets.

Turning to the concept of a decision, we observe that, intuitively, a decision is basic-
ally a choice or a set of choices drawn from the available alternatives. The preceding
example suggests that a fuzzy decision or simply a decision be defined as the fuzzy set
of alternatives resulting from the intersection of the goals and constraints. We for-
malize this idea in the following definition.

Definition. Assume that we are given a fuzzy goal G and a fuzzy constraint C in a
space of alternatives X. Then, G and C combine to form a decision, D, which is a
fuzzy set resulting from intersection of G and C. In symbols,

(19) D=GNC

and correspondingly sp = me A uc. The relation between G, C and D is depicted in
Figure 1.
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te
constraint goal
decision
X
Ficure 1
More generally, suppose that we have n goals Gy, ---, G, and m constraints
Ci, -+, Cn. Then, the resultant decision is the intersection of the given goals Gi,
-+, G, and the given constraints C,, ---, C,, . That is,
(20) D=GNcGN.-.--ngnNnacNe.N---NC
and correspondingly
(21) Up = pag; AN peg A - A pe, AN ey AN pey N -0 A pc, .

Note that in the above definition of a decision, the goals and the constraints enter
into the expression for D in exactly the same way. This is the basis for our earlier
statement concerning the identity of the roles of goals and constraints in our formula-
tion of decision processes in a fuzzy environment.

Comment. The definition of a decision as the intersection of the goals and constraints
reflects our interpretation of “and” in the “hard” sense of (4). If the interpretation
of “and” is left open, we shall say that a decision—viewed as a fuzzy set—is a con-
fluence of the goals and the constraints. Thus, “confluence’ acquires the meaning of
“intersection’’ when “and” is interpreted in the sense of (4); the meaning of “algebraic
product” when “and” is interpreted in the sense of (8); and may be assigned other
concrete meanings when a need for a special interpretation of ‘‘and” arises. (See
Comment following (10).) In short, a broad definition of the concept of decision may
be stated as:

Decision = Confluence of Goals and Constraints.

As an illustration of (21), we shall consider a very simple example in which X =
(1,2, ---,10} and G1, Gy, C1 and C; are defined below:

z ' 1 2 3 4 5 6 7 8 9 10
ke, |0 0.1 0.4 0.8 1.0 0.7 0.4 0.2 0 O
s, | 0.1 0.6 1.0 0.9 0.8 06 05 03 0 0
uc, /0.3 0.6 0.9 1.0 0.8 0.7 0.5 0.3 0.2 0.1
ue, | 0.2 0.4 0.6 0.7 09 1.0 0.8 0.6 0.4 0.2

Forming the conjunction of ue, , pes , ke, and pe, , we obtain the following table of
values for up (z):

£ 1 2 3 4 H 6 7 8 9 10

zp |0 0.1 0.4 0.7 0.8 06 0.4 0.2 0 O
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Thus the decision in this case is the fuzzy set
D = {(2,01), 3,04), 4,07), (5 08), (6,06), (7,04), (8 0.2)}.

Note that no z in X has full (that is, unity grade) membership in D. This reflects,
of course, the fact that the specified goals and constraints conflict with one another,
ruling out the existence of an alternative which fully satisfies all of them.

The concept of a decision as a fuzzy set in the space of alternatives may appear at
first to be somewhat artificial. In fact it is quite natural, since a fuzzy decision may
be viewed as an instruction whose fuzziness is a consequence of the imprecision of the
given goals and constraints. Thus, in our example, G1, G», C1 and C; may be respec-
tively expressed in words as: “z should be close to 5,” “z should be close to 3,” “z
should be close to 4’ and “z should be close to 6”. The decision, then, is to choose z
to be close to 5. The exact meaning of “close” in each case is given by the values of
the corresponding membership function.

How should a fuzzy instruction such as “z should be close to 5 be executed?
Although there does not appear to be a universally valid answer to questions of this
type,’ it is reasonable in many instances to choose that z or z’s which have maximal
grade of membership in D. In the case of our example, this would be z = 5.

More generally, let D be a fuzzy decision represented by a membership funetion up .
Let K be the set of points in X on which up attains its maximum, if it exists. Then,
the nonfuzzy, but, in general, subnormal, subset D of D defined by

pom (z) = Max up(z) for r € K,
= 0 elsewhere

will be said to be the optimal decision and any z in the support of D¥ will be referred
to as a maximizing decision. In other words, a maximizing decision is simply any
alternative in X which maximizes up (), e.g., £ = 5 in the foregoing example. Note
that in R* a sufficient condition for the uniqueness of a maximizing decision is that D
be a strongly convex fuzzy set, i.e., that D be convex and have a unimodal membership
function.

In defining a fuzzy decision D as the intersection—or, more generally, as the con-
fluence—of the goals and constraints, we are tacitly assuming that all of the goals and
constraints that enter into D are, in a sense, of equal importance. There are some situa-
tions, however, in which some of the goals and perhaps some of the constraints are of
greater importance than others. In such cases, D might be expressed as a convex
combination of the goals and the constraints, with the weighting coefficients reflecting
the relative importance of the constituent terms. More explicitly, we may express
po(z) as
(22) up (@) = Dim @i (2)ue, (2) + 2051 8i(®)nc; @)
where the «; and 8; are membership functions such that

Srai(@) + 2 aBi(x) = 1.

Subject to this constraint, then, the values of ;(z) and 8;(z) can be chosen in such
a way as to reflect the relative importance of Gi, --- ,G, and Cy, -+ ,Cn . In par

3 The execution of fuzzy instructions is discussed in [22].
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ticular, if m = n = 1, it is easy to verify that (22) can generate any fuzzy set which
is contained in G U C and contains G N C. Note that (22) resembles the familiar
artifice of transforming a vector-valued criterion into a sealar-valued criterion by form-
ing a linear combination of the components of the vector-valued objective function.

So far, we have restricted our attention to situations in which the goals and the con-
straints are fuzzy sets in X, the space of alternatives. A more general case which is of
practical interest is one in which the goals and the constraints are fuzzy sets in dif-
ferent spaces. Specifically, let f be a mapping from X = {z} to Y = {y}, with T repre-
senting an input (cause) and y, y = f(z), representing the corresponding output
(effect ).

Suppose that the goals are defined as fuzzy sets Gy, --- , G, in ¥ while the con-
straints C1, - - - , Cr, are defined as fuzzy sets in X. Now, given a fuzzy set G, in Y,
one can readily find a fuzzy set G, in X which induces G, in Y. Specifically, the member-
ship function of G, is given by the equality

(23) MG.-(I) = "’Gi(f(z))y i = ly e, N
The decision D, then, can be expressed as the intersection of Gy, ---,G, and
Cr, -+, Cn. Using (23), we can express up(z) more explicitly as

21 w@) = pa (@) A - A ue,F@)) A pe, @) A -+ A e, (2),

where f: X — Y. In this way, the case where the goals and the constraints are defined
as fuzzy sets in different spaces can be reduced to the case where they are defined in
the same space. We shall find (24) of use in the analysis of multistage decision pro-
cesses in the following section.

4. Multistage Decision Processes

As an application of the concepts introduced in the preceding sections, we shall
consider a few basic types of problems involving multistage decision-making in a fuzzy
environment. It should be stressed that, in what follows, our main purpose is to illus-
trate the use of the concepts of fuzzy goal, fuzzy constraint and fuzzy decision, rather
than to develop a general theory of multistage decision processes in which fuzziness
enters in one way or another.

For simplicity we shall assume that the system under control, 4, is a time-invariant
finite-state deterministic system in which the state, z., at time t, ¢t = 0,1, 2, --- ,

ranges over a finite set X = {01, - -+, 04}, and the input, u, , ranges over a finite set
U={a, - ,am. The temporal evolution of A is described by the state equation
(25) ZTi41 = f(It ’ ut)y t= 01 17 21 e

in which f is a given function from X X U to X. Thus, f(z: , u,) represents the successor
state of z, for input u, . Note that if f is a random function, then A is a stochastic
system whose state at time ¢ + 1 is a probability distribution over X, P (z,1 | 2, , u,),
which is conditioned on z, and u. . Analogously, if f is a fuzzy function, then A is a
fuzzy system [21] whose state at time ¢ + 1 is a fuzzy set conditioned on z, and .,
which means that it is characterized by a membership function of the form
#(Ze41 | 2., u,).* Since we will not be concerned with such systems in the sequel, it
will be understood that f is nonfuzzy unless explicitly stated to the contrary.

! It should be noted that when we speak of a fuzzy environment, we mean that the goals and/or
the constraints are fuzzy, but not necessarily the system which is under control.
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We assume that at each time ¢ the input is subjected to a fuzzy constraint C*, which
is a fuzzy set in U characterized by a membership function p,(u;). Furthermore, we
assume that the goal is a fuzzy set G" in X, which is characterized by a membership
function pev (zx), where N is the time of termination of the process. These assump-
tions are common to most of the problems considered in the sequel.

Problem 1. In this case, the system is assumed to be characterized by (25), with f
a given nonrandom function. The termination time N is assumed to be fixed and
specified. The initial state, , , is assumed to be given. The problem is to find a maxi-
mizing decision.

Applying (20), the decision—viewed as a decomposable fuzzy setin U X U X - -
X U, may be expressed at once as

(26) R=CNcN.---ne™*nég”
where GV is the fuzzy set in U X U X --- X U which induces G in X. More ex-
plicitly, in terms of membership functions, we have

27) up(uo, -+ ,unva1) = po(wo) A -+ A prv—a(un—1) A pev (zx)

where zy is expressible as a function of zo and uo, - - - , u~_, through the iteration of
(25).

Our problem, then, is to find a sequence of inputs uo, - - - , uy_3 which maximizes
up as given by (27). As is usually the case in multistage processes, it is expedient to
express the solution in the form

u;=7l'[(ﬂ:¢), t=0,1,2,"',N—'1,

where , is a policy function. Then, we can employ dynamic programming to give us
both the 7. and a maximizing decision us”, - - - , up—1 .
More specifically, using (26) and (25), we can write

(28) “D(uour Tty ul{rl—l) = Maxuo-"'.uzv-.z MB.X,,N_I (uo(’lto) A - pnvea(un—z)
A pr1(uxv—1) A pev(f(@w_1, una)).

Now, if v is a constant and ¢ is any function of ux_; , we have the identity
Max,y_, (v A g(un—1)) = v A Maxyy_, g(uy-1).
Consequently, (28) may be rewritten as
(29) #D(uou, ,uzhv"—l) = MaXy;,... uy_, (mo(uo) A -+ A pn—e(un—2) A uoN-l(ZN—l))
where
(30) pov-1 (Zw—1) = Maxuy_, (uy—1(un-1) A pev (f(@w—1, un-1)))

may be regarded as the membership function of a fuzzy goal at time ¢t = N — 1 which
is induced by the given goal G" at time t = N.

On repeating this backward iteration, which is a simple instance of dynamic pro-
gramming, we obtain the set of recurrence equations

pev—r (Tn_y) = Maxu,_, (u(unv—=) A pev-r+1 (Tyys1))
INop41 = f(zN-v y UN—s ), v=1---,N,

31)

which yield the solution to the problem. Thus, a maximizing decision u", - - - , U1
is given by the successive maximizing values of uy_, in (31), with ux—, defined as a
function of zy_,, v = 1, --- , N.
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Ezample. As a simple illustration, consider a system with three states o, , 02, 03 and
two inputs a1 and @3 . Assume N = 2 for simplicity. Let the fuzzy goal at time ¢ = 2
be defined by a membership function u¢: whose values are given by

ner(01) = 0.3; Bei (o) = 1; pei(os) = 0.8.
Furthermore, let the fuzzy constraints at ¢ = 0 and ¢t = 1 be defined respectively by
polar) = 0.7, po(e) = 1; mla) = 1; w(az) = 0.6.

The state transition table which defines the function f in (25) is assumed to be

He

o1 L2 o3
ay o1 (41 o1
az bt L4 g3

Using (30), the membership function of the fuzzy goal induced at t = 1 is found
to be

per(o1) = 0.6; ugr (o) = 0.8; per(o3) = 0.6
and the corresponding maximizing decision is given by

m(n) = ay; m(02) = an; mi(oa) = as.
Similarly, for ¢ = 0

beo(o1) = 0.8;  peo(o2) = 06;  peo(oz) = 06

and
mo(o1) = az; m(oy) = a1 or as; mo(os) = a1 or as.

Thus, if the initial state (at ¢ = 0) is o1, then the maximizing decision is as , a1 and
the corresponding value of pes is 0.8.

Next, we turn to a more general multistage decision process in which the system
under control is stochastic, while the goal and the constraints are fuzzy.

5. Stochastic Systems in a Fuzzy Environment

As in the preceding problem, assume that the termination time X is fixed and that
an initial state x; is specified. The system is assumed to be characterized by a condi-
tional probability function p (z.41| Z: , %.). The problem is to maximize the probability
of attainment of the fuzzy goal at time N, subject to the fuzzy constraints C°, -- -,
M,

If the fuzzy goal GV is regarded as a fuzzy event [23] in X, then the conditional
probability of this event given zy_1 and u~—1 is expressed by

(32) Prob (Gy | zv_1, uw—y) = Epev(an) = ZzN D (@x | Zv—1, Un—1)uer (Ty)

where E denotes the conditional expectation and uer is the membership function of
the given fuzzy goal.

We observe that (32) expresses Prob (G | zv—1, usy—1) or, equivalently, Euanr (z),
as a funection of zy_; and ux_1, just as in the preceding problem ug (zx) Was expressed
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as a function of zy_; and ux—1 via (25). This implies that Eue~v (zx) can be treated in
the same way as uev (zy) was treated in the nonstochastic case, thus making it possible
to reduce the solution of the problem under consideration to that of the preceding
problem.

More specifically, the recurrence equations (31) are replaced by

(33) HGN=» (IN—F) = I\Iaxun_. (MN-P (uN—v); E#G”"“ (zN—v+l))
Eugn-v+1 (Zn—si1) = Zzu_m P @N—st1| TNy , Un_s W =r+1 (Tv—pi1)
where, as before, uen-»(zy—,) denotes the membership function of the fuzzy goal at
t = N — v induced by the fuzzy goal at t= N — v+ 1, v =1, ---, N. These
equations yield a solution to the problem, as is illustrated by the following example.
Ezxample. As in the preceding example, we assume that the system has three states
o1, 02, 03 and two inputs a3, a; . N is assumed to be equal to 2, and the probability
function p (z.41 | z:, u.) is given by the following two tables, corresponding to u, =
a1, and 4, = a3, respectively.

I. U = ay II. Ut = ao
X+l Zisl
x5 — z;
o1 (4] a3 o1 4] os
a 0.8 0.1 0.1 a1 {01 09 O
g (O 0.1 0.9 o [0.8 0.1 0.1
os (0.8 0.1 0.1 oz 101 O 0.9

The entries in these tables are the values of p (i1 | Z:, u.). Thus, the entry 0.8 in the
position (o1, 02) in the first table signifies that if the system is in state o; at time !
and input a; is applied, then with probability 0.8 the state at time ¢ 4 1 will be o, .

The fuzzy goal at ¢t = 2 is assumed to be the same as in the preceding example,

that 1s
per(o1) = 0.3;  wer(o2) = 1;  pes(os) = 0.8,
Likewise, the constraints are assumed to be the same. Thus
mlar) = 07, moler) =1; () =1, mlaz) = 0.6.

Using (33), we compute Eug: (z2) as a function of 2, and w, . Tabulating the results,
we have

n
u1

a1 o1 4]

ay 0.42 0.82 0.42
a 0.93 0.42 0.75

Next, using (33) with » = 1 and computing pe:(z1) we obtain

ugi(o1) = 0.6; par(oz) = 0.82; pei (o) = 0.6
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which correspond to the following values of the maximal policy function
(33a) mo1) = ar; mo) =a; (o) = a.

The final iteration with » = 2 yields

o
Bo
ay 0.62 0.62 0.62
a, 0.8 0.62 0.60
(33b) peo (1) = 0.8; peo (02) = 0.62; peo (o3) = 0.62.
(33¢) mo(o) = e1;  m(oz) = a1 or a; mlos) = .

The values of peo in (33b) represent the probabilities of attaining the given goal at
t = 2 starting with o1, 02 and o3, respectively, assuming that the inputs are deter-
mined by the maximal policy function =, that is, u; = = (z.) ¢t =0, 1, . =01,
02,03, U = on, az) Whose values are given in (33a) and (33c).

Comment. It should be noted that when the fuzzy goal at time N is defined in such a
way that the probability of attaining it is small for all values of zy_1 and uy_1, it
may be necessary to normalize the fuzzy goal induced at time N — 1 before finding
its intersection with Cy_1, for otherwise the decision would be uninfluenced by the
constraints. To be consistent, such normalization may have to be carried out at each
stage of the decision process. Although we shall not dwell further upon this aspect
of the problem in the present paper, it should be emphasized that it is by no means a
trivial one and requires a more thorough analysis.

6. Systems With Implicitly Defined Termination Time

In the preceding cases, we have assumed that the termination time, N, is fixed a
priori. In the more general case which we shall consider in this section, the termination
time is assumed to be determined implicitly by a subsidiary condition of the form
zy € T, where T is a specified nonfuzzy subset of X termed the termination set.! Thus,
the process terminates when the state of the system under control enters, for the first
time, a specified subset of the state space. In this case, the goal is defined as a fuzzy
set G in T, rather than in X.

More concretely, assume that the system under control, A, is a deterministic sys-
tem characterized by a state equation of the form

(34) Ti41 =f(xl,ul), t= 0) 112)

where z, ranges over X = {01, -+, 01, ou41, **, oaf, In Which T = {oya, - -+,
.} constitutes the termination set. As before, f is assumed to be a given function from
X X U to X, where U = {a1, -* , @n} is the range of u,, { = 0, 1, 2, --- . Note
that if ¢; is an absorbing state, that is, a state in T, then we can write f(o., a;) = o,
for all aj in U.

The fuzzy goal is assumed to be a subset of T characterized by a membership func-

1 In its conventional (nonfuzzy) formulation, this case plays an important role in the theory
of optimal control and Markovian decision processes. Some of the more relevant papers on this
8ubject are cited in the list of references.
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tion ue(zy), where N is the time at which z; € T, with z, ¢ T for { < N. As for the
constraints on the input, we assume for simplicity that they are independent of time
but not necessarily the state. Thus, if A is in state o; at time ¢, then the fuzzy con-
straint on u, is assumed to be represented by a fuzzy set C (o;) (or C (z:)) in U which
is conditioned on ¢; . The membership function of this set will be denoted by uc(u. | z.).

Let 2, be an initial state in 7", where " = {¢1, -+, o1} is the complement of T
in X. To each such initial state will correspond a decision, D (%), given by

(35) D) =C@)NCE)N---NC(zym) NG
where the successive states 21, - -+, Zy—1, Z» can be expressed as iterated functions
of 2o and uo, - - - , un_1 through the state equation (34). Thus

T = f(2o, )
T2 = f(z1, w1)
= f(f(xo ’ uﬁ)) ’LL1)
Ty = f(f(f(zO ’ u0)1 ‘Ud), u2)

(36)

Note that, asin (26), the (’s in (35) should be regarded as fuzzy sets in the product
space U X U X---X U X T. Another point that should be noted is that D (z) is
uniquely determined by (35) for each z, , with the understanding that D (z,) is empty
if there is no finite sequence of inputs u,, * - - , uy—1 which takes the initial state 2
into T. In this event, we shall say that T is not reachable from the initial state.

From (35), we can readily derive a simpler implicit equation which is satisfied by
D (z). Specifically, in virtue of the time-invariance of A and the time-independence
of the goal and constraint sets, (35) implies

(87) D(z) =C@)NC@p) N--- NCTyna) NG
fort = 0,1, 2, --- . In particular,

(38) D@) =C@p)N--- NCE@una) NG
and hence (37) can be written as

(39) D(z.) = C(z:) N D(z.11)

or, using (34),

(40) D(z,) = C(z) N D(f(z:, ut)), t=0,12 ---

which is the desired implicit equation. Expressed in terms of the membership func-
tions of the sets in question, this equation assumes the following form (for ¢ = 0)

(41) [J.D(UO, e, uN—l‘xO) = #c(uolzo) A #D(’Udy ;UN—LIf(xo;uo))

where the termination time N is also a function of z, and o, 1 , 4z, - - - through the
state equation (34) and the termination condition zy € T, withzo § T, - -+ ,zv1 € T.

Now suppose that the successive inputs %o, u1, -, uy-1 are determined by a
stationary (time-invariant) policy function =, =: T’ — qu, which associates with each
state z,in 7" an input u, which should be applied to A when it is in state z. . Thus,

(42) w=w@), t=0--+,N—-1 z¢€T.

Since uo, - - - , ux—1 are determined by o and = through (42) and the state equation
(34), the membership function of D(z,) can be written as wp(zo| ). Similarly,
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ue (o | Zo) can be written as pc(m(xo) | 20), and wp(ur, ---, uv_1|f (2o, ue)) as
po(f (@, m (%)) | 7). With these substitutions, (41) assumes the more compact form

(43) pp (o | 7) = pe(r(zo) | 2o) A wo(f(zo, 7)) | 7), 1z € T,

which in effect is a system of ! equations (one for each value of z;) in the up . This
system of equations determines up as a function of x, for each =, with the understand-
ing that pp = 01if under = the process does not terminate, that is, there does not exist a
finite N such that zy € T. Furthermore, it is understood that up = ug for states in 7.
It is easy to demonstrate that (43) has a unique solution. Spemﬁcally, by de-
composmg the set of states 7" = {o1, ---, o} into disjoint subsets 7%, ---, T'x,
where T\, A =1, - - - , k, represents the set of states from which T is reachable in A
steps, it is readily seen that the equations in (43) corresponding to the x, which are in
T1 yield uniquely the respective values of up . In terms of these, the equations in (43)
corresponding to the z, in 7 yield uniquely the values of up for z; in T, . Continuing
in this manner, all the pp’s can be determined uniquely by successwely solving sub-
sets of the system of equations (43) for the blocks of variables in 7'y, ---, T« .
For our purposes, it will be convenient to represent a policy = as a policy vector

(44) T™ = (7"(0'1): T 1l'(0’1))

whose 7th component, ¢ = 1, -+ -, I, is the input which must be applied when A is
in state o, . Note that = (¢;) ranges over the set U = {a1, - - - , @} and thus that there
are m' distinet policies in the policy space.

With reference to the system of equations (43), let

(45) po(r) = (uo(or|m), -+, up(oa|m))

be an n-vector, termed the goal attainment vector, whose components are the values of
the membership function of D at o1, - - - , ¢, (corresponding to policy = ). It is natural
to define a preordering in the policy space by

(46) 7 27" e up() > up(a’)

which means that a policy =’ is better than or equal to a policy 7 if and only if
up(oi|7') > wp(o, | o) fori = 1, -- -, n. Then, a policy = will be said to be optimal

if and only if = is better than or equal to every policy in the policy space.

Does there exist an optimal policy for the problem under consideration? The answer
to this question is in the affirmative. This assertion can be proved rigorously,® but it
will suffice for our purposes to regard it as a consequence of the alternation principle
(13]—a principle of broad validity which in concrete cases can be asserted as a prov-
able theorem.

Specifically, let =" and = be two arbitrary policy vectors, Wlth up(x’) and pp(x”)
being the corresponding goal attainment vectors. Using 7 and 7”, let us construct a
policy vector 7 in accordance with the following rules:

@r) Ti= T if o (o | 7":) > wup (o | W::)

=a; if po(oi|7) <uwploi|m)
for each component ™ of T 1= 1, , 1. Then, according to the alternation prin-
ciple, r > «’ and * > 7, that is, 7 is better than or equal to both =’ and #”. From
this and the finiteness of the policy space it follows at once that there exists an optimal
policy.

% A proof for the case of a stochastic finite-state system is given in [12].
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From (43) it is a simple matter to derive a functional equation satisfied by the goal
attainment vector corresponding to the optimal policy. Thus, let

(48) po" = Max, up(r)

and let P(x) be an n X n matrix of zeros and ones whose #jth element is one if and
only if ¢; = f(s,, 7 (s:)), that is, the state o, is the immediate successor of o; under
policy =.

Furthermore, let uc(r) denote a vector whose sth component is uc(r (02) | 0u).
Then, on taking the maximum of both sides of (43), we obtain

(49) po' = Max, (ue(r) A P(m)up™)

which is the desired functional equation for us“. Although different in detail, equation
(49) is of the same general form as the functional equations arising in the theory of
Markovian decision processes [17]. Its solution, however, is considerably simpler to
obtain because of the distributivity of Max and A.

Specifically, let «', -+ - , ", where » = m’, denote the m' distinct policy vectors.
Then, on using V in place of Max, (49) becomes

(50) pe' = (uo(w') A P(@us) V -+ V (@) A P(x")up®).

Taking advantage of the distributivity of V and A, and factoring like terms, we can
put (50) into a much simpler form which, written as a system of equations in the com-
ponents of up", reads

(51) !‘D"(U'l') = V.i(#c(ailo'i') A ﬂD”(f(o'iyai))); 1= l,---,n, .7 =1,-- y M

where a; = x(0;) = input under policy = in state o; ; up" (0:) = ith component of
the optimal goal attainment vector; f(s:, a;) = successor state® of o, for input a,,
with f(o:, ;) = osforz =141, ---, n (that is, for ¢; in the termination set T);
sc(ay| o) = value of the membership function of the constraint C' in state o, for
input «;, with pe(a,|0;) =1 fori=1+1,---,n;and fori =141, ---, 7,
#p" (0:) = po(os) = value of the membership function of the given goal G at o;.
Thus, the up* (0:), ¢ = 1, - -+, I, are the unknowns in (51), while the us* (a:), ¢ =
l+1---,n, and the po(e;|0:),2=1,---,m,5 = 1, -+, m, are given constants.
To make the solution of (51) more transparent, it is helpful to simplify the nota-
tion in (51) by letting the unknowns in (51) be denoted by w; , that is, w; = up¥ ()
for i = 1, -+, l. Furthermore, let the product and plus symbols denote A and V,
respectively. Then, (51) can be written more compactly in matrix form as

(52) w=Bw+7y
where w = (w1, -, w),vy= (M1, "+, 1), B = (bi); furthermore,
bi = 0 if o, is not an immediate suceessor of o; ;
ba = Va, sc(ap| o), where the a, are inputs which take o, into o ;
and
(53) ¥i = Vj (elaj| o)) A 8e(f(o:, ;)))
with the understanding that ug(o;) = O for states outside the termination set 7.

¢ Note that the successor states in (49) are defined by P(x).
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Having put (51) into the form of a linear equation (52), it is easy to show that
(53) and hence (51) can be solved by iteration. Specifically, let w” = (0, --- , 0) and
(54) w'+1=Bw'+-y, §=0,1,2,---.

Then, by induction, the sequence «’, ', &’ - -- is monotone nondecreasing. For,
assume that o*** > o* for some k. Using (54), we have
5) o = B 4 v > Bo* + y = w"“,

and noting that o' > o° = 0, it follows that o'** > o’ fors = 0,1, 2, --- .

Since the sequence «’, ', - - - is monotone nondecreasing and bounded from above
byw = (1, ---, 1), it follows that it converges to the solution of (52), that is, to the
first | components’ of the optimal goal attainment vector us™. Actually, a more de-
tailed argument shows that (54) yields the solution of (52) in not more than [ itera-
tions. This is an immediate consequence of the following lemma.

LEmMA. Let B = [b;;] be a matriz of order 1 with real-valued elements. Let B® denote
the sth power of B with the operations V and A replacing the sum and product, respec-
tively. Then, for all integral s > 1,

(56) B+B+.-+B=B+B+.. +B8

and

67) I+ B+B+ .- - +B =I1+B+B+--+B", s>1-1
where I is the identity matriz.

Proor. The validity of this lemma becomes rather evident when (56) is interpreted
in graph-theoretic terms. Specifically, let G(B) denote a graph with ! nodes in which
bij,4,j =1, .-, represents the ‘“strength” of the link between node 7 and node j.

Let 43,,,, denote a chain of s links in G(B),
7:..1'.14 = (bih y bhkz y "y bl.+1-i)

starting at node < and ending at node 5. The subscript u serves as a label for the chain
in question, with u ranging from 1 to M, where M is the number of distinct chains of

length s linking ¢ to j.
Define the strength of v} ;. , o (vi.;.u), a8 the strength of its weakest link, that is,
(58) U('Y:.j.u) = bi)q A b)q)\, A A b)\n+l-j'

By the definition of matrix produet (with plus and product replaced by V and A,
respectively ) it is evident that bi; , the (i, 7) element of B®, s > 1, may be expressed as

(59) bij=o(ia) Volige) V-V olism
or more compactly
(60) b:j = V, U(’Y:.J‘.p)

where V, denotes the supremum over all chains of length s linking 7 to j. Thus, in
words,
bi; = strength of the strongest chain among all chains of length s linking node ¢

to node j.

” The remaining n — I components of up™ are given by the corresponding components of ug.
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From this interpretation of the elements of B’, it follows that the (Z, 7) element of
B + B + .- + B’ can be expressed as

(i, j) element of B + --- 4+ B* = strength of the strongest chain among all

chains of length < 8 linking node ¢ to node j.
Thus, in words, the statement of the lemma implies and is implied by: If B is a matrix
of order l and s > [, then:

strength of the strongest chain among all chains of length < s linking node ¢

to node j = strength of the strongest chain among all chains of length < I

linking node ¢ to node j.

Stated in this form, the lemma is very easy to establish. In the first place, it is evi-
dent that, for s > I,

61) B+:---+B 2B+ +B.

Thus, it suffices to establish the reverse inequality B+ --- + B*' < B+ --- + B
to complete the proof.

Letv:.;be a chain from 7 to j of length s > [. Clearly, in any such chain at least one
node must appear more than once, implying that every chain of length s > I must
have one or more loops. The deletion of these loops results in a chain v;,; of length
r < 1. Now, from the definition of the strength of a chain, (58), it follows that

(62) o(i.;) < o(vig)

and hence the supremum of o (y§.;) over chains of length s (s > 1) is less than or equal
to the supremum of ¢ (v¢,;) over chains of length < I. Thus

(63) B<B+B+---+B, s>1
and hence
(64) B+B+ ---+B<B+B+---+B, s2I

which, in conjunction with (61), establishes (56).

As for (57), note that if ¢ # j, then (62) is true fors > — 1 and r < I — 1. With-
out this restriction (i # j), (62) is true with s > I — land r < I — 1if by; 2 by,
fori, j = 1, ---, l. The latter condition is satisfied if B is replaced by I + B. This
implies that the exponent ! in (56) may be replaced by ! — 1if Bisreplaced by I + B.
The result is (57).

Returning to the solution of (52), we note that the expression for sth iterate is
given by

(65) W=@®B"4+--+B+1Ihn
Making use of the lemma, we see that
(66) W' =W, s>1

which implies that (54) yields the solution to (52) in not more than ! iterations.
To gain an intuitive insight into the solution of (52), it is helpful to interpret the
transition from (49) to (51) with the aid of the state diagram of A. Thus, for con-
creteness assume that A has five states, with transitions corresponding to various
inputs shown in Figure 2. In this diagram, the number associated with the branch
leading from o; to its successor state via input a; is the value of u.(a;| ;). States
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Q) 06

Fiaure 2
o and o5 are in the termination set and the corresponding values of ue(o;) are shown
alongside. The indicated values of the p.(e;| o:) correspond to the constraint sets
C(o1) = {(an,06), (e, 1)],
C(o2) = {(en,08), (e, 1)},
Cos) = {(m, 1), (@, 0.7)}.

For the system in question, the state transition function f(e,, @,) is given by the
following table:

43

*j

[4Y a3 oy o4 (4]

(23] [ [ £ (41 U4 ay

s aga "2} g1 a4 g6

From this table, it is easy to construct the matrix P (r) for any given policy. For ex-
ample, for 7 = (az, a1, a2), we have

01000
00100_l
Plag,a1,a2) ={1 0 0 0 0.
00010J
0 0001

The system of equations (51) is obtained by reversing the direction of flow in each
branch (see Figure 3) and treating the states in 7', that is, o4 and o5 as sources, with the
states in 7", that is, o1, o and o3, playing the role of receptors (sinks). From the

Fi1GuRe 3
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diagram shown in Figure 3, the equations in (51) can be written by inspection. Thus,
B (o) = (0.6 A w2 (00)) V (1 A us*(a2)),
B (o2) = (0.8 A up“(a3)) V (1 A o (02)),
(67) po(03) = (1 A up"(06)) V (0.7 A ¥ (1)),
po (04) = pelod) = 1,
MD"(U'E) = pg(os) = 0.8.

Employing the simplified notation in which A and V are replaced by the product
and sum, respectively, and w; = up” (0:), 7 = 1, 2, 3, the system of equations (67)
becomes

(68) w = Bw + v

where
0 1 0 0.6
B=1]0 1 0.8], vy = I:O :l
0.7 0 0 0.8

Letting «® = (0, 0, 0), we obtain on first interation o' = (0.6, 0, 0.8). Subsequent
iterations yield

o = (06,08,08), o = (0808,08), ' = (08 08,08).

Thus, o* = (0.8, 0.8, 0.8) is the solution of (68).

To visualize the iteration process, imagine that each of the sources in Figure 3
(which are the absorbing states in Figure 2) generates balls of various diameters,
with ¢;,7 =1+ 1, - -+, n, generating balls of diameters ranging from 0 to pe(s:)-
Furthermore, imagine that a branch in Figure 2 which leaves state o; via input a;,
is a pipe of diameter uc(a; | oi) which can carry balls of diameter < uc¢(a; | o;) along
the reverse direction, that is, along the direction shown in Figure 3. Thus, the dia-
gram of Figure 3 may be visualized as a network of pipes whose diameters are indi-
cated in the diagram and which can carry balls of lesser or equal diameter in the indi-
cated directions. The states in the termination set (o4 and o5) play the role of sources
of balls of diameters up to ue(o.) and ue(os) respectively, while the remaining states
(01, 02 and o3) act as receptors. Because the absorbing states act as sources, we shall
refer to the method of solution described above as a reverse-flow technique.

Now assume that it takes one unit of time for the balls to travel from a node of the
network of Figure 3 to another node. If we start with no balls at oy , o, and g3 at time
0, then at time { = 1 the maximum diameters of balls at o, , o: and ¢3 will be, respec-
tively, wi', ' and w;', where o' = (@', @', ws') is the first iterate of (68). At time
t = 2, the maximum diameters of balls will be given by »” and at time ¢ = 3 by .
Since it takes no more than three units of time for any ball to travel from its source
to any node in the network, there will be no further increase in the size of balls at
each source upon further iteration. Thus, " gives the maximum diameter of balls at
each receptor node and hence is the desired solution of (68).

Turning to the illustration of (43) and the alternation principle, consider the policy
vector # = (a1, a1, a;). For this x, the system of equations (43) becomes

pplon|7) = 06 A up(od| 7),
(69) po(os|x) = 08 A pp(os|w),

pplos|x) = 1 A po(os| ).
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In this case, o, and o3 are in 7'y and oz is in 7T"; . Noting that up (o¢ | 7) = pe(od) = 1
and pp(os | 7) = pe(os) = 0.8, we find at once eplor|7) = 0.6; up(o| 7) = 0.8;
po(os | #) = 0.8 which is the desired solution.

Carrying out the same computation for other policy vectors, we obtain the results
tabulated below

o1 o1 a3
(al y 1, a[) 0.6 0.8 0.8
(o, o, a2) 0.6 0.6 0.6
(e, @3, a1) 06 0 0.8
(1, @z, z) 0.6 0 0.6
(a2, a1, 1) 0.8 0.8 0.8
(az, @1, as) 0 0 0
(a2, @z, a1) 0 0 0.8
(a2, as , az) 0 0 o0

As a check on the alternation principle, let us take 7’ = (ay, oy, o) and 7" =
(, @2, a1). Using (47) leads to # = (a1, a1, a;1). Note that # > » and = > #”.
From inspection of the table, the maximal policy is seen to be (az, a;, o), which
agrees with the result obtained by iteration.

The approach to the solution of problems involving implicitly defined termination
time which we have described in this section can be extended to more complex deci-
sion processes in a fuzzy environment. In particular, the technique employed for
solving the functional equation (49) can readily be extended to fuzzy systems in a
fuzzy environment. Furthermore, (43) and (49) can be extended also—as in §4—
to stochastic finite-state systems. Because of limitations on space, we shall not consider
these cases in the present paper.

7. Concluding Remarks

The task of developing a general theory of decision-making in a fuzzy environment
is one of very considerable magnitude and complexity. Thus, the results presented in
this paper should be viewed as merely a first attempt at constructing a conceptual
framework for such a theory.

There are many facets of the theory of decision-making in a fuzzy environment
which require more thorough investigation. Among these are the question of execution
of fuzzy decisions; the way in which the goals and the constraints must be combined
when they are of unequal importance or are interdependent; the control of fuzzy
systems and the implementation of fuzzy algorithmos; the notion of fuzzy feedback
and its effect on decision-making; control of systems in which the fuzzy environment
18 partially defined by exemplification; and decision-making in mixed environments,
that is, in environments in which the imprecision stems from both randomness and
fuzziness.
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