

CT 720 Tópicos em Aprendizagem de Máquina e Classificação de Padrões

2-Teoria Bayesiana de Decisão

Conteúdo

- 1. Introdução
- 2. Teoria Bayesiana de decisão: atributos contínuos
- 3. Classificação com taxa de erro mínima
- 4. Funções de discriminação e classificadores
- 5. Densidade normal
- 6. Funções de discriminação para densidade normal
- 7. Teoria Bayesiana de decisão: atributos discretos
- 8. Redes Bayesianas
- 9. Resumo

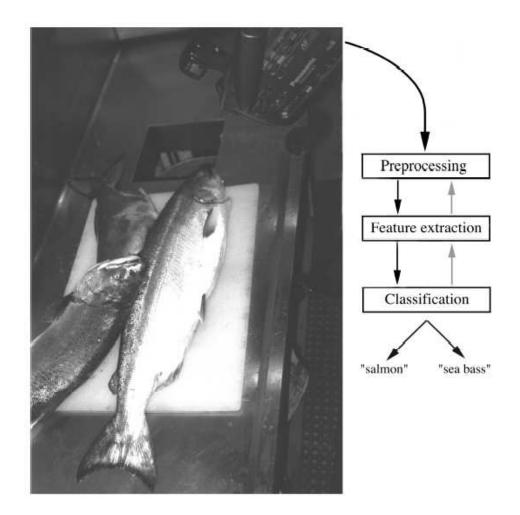
1-Introdução

Teoria Bayesiana de decisão

- abordagem estatística para reconhecimento padrões
- assume problema de decisão formulado probabilisticamente
- todos valores relevantes de probabilidade conhecidos
- identificação de sequências DNA

Este capítulo

- apresenta fundamentos da teoria
- teoria: formaliza procedimentos intuitivos



Previsão próximo tipo peixe?

 ω = estado : variável aleatória

$$\omega = \omega_1$$
 sea bass

$$\omega = \omega_2$$
 salmon

Assumindo

 $P(\omega_1)$: probabilidade *a priori* próximo tipo é *sea bass*

 $P(\omega_1)$: probabilidade *a priori* próximo tipo é *salmon*

$$P(\omega_1) + P(\omega_2) = 1$$

Decidir tipo próximo peixe

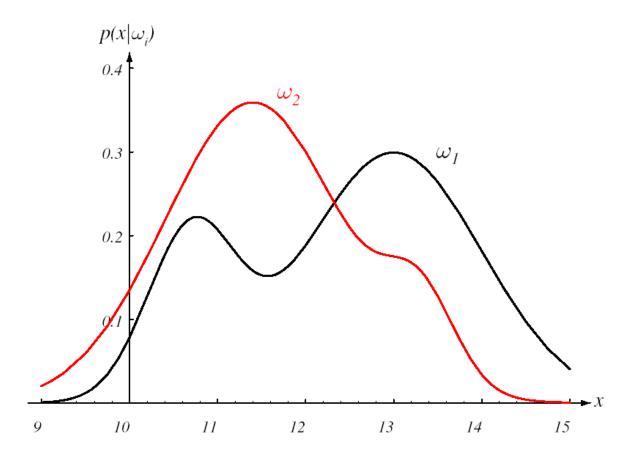
- classificação incorreta: mesmo custo
- informação disponíveis: somente $P(\omega_1)$ e $P(\omega_2)$

Regra de decisão

- \square decidir ω_1 se $P(\omega_1) > P(\omega_2)$; caso contrário decidir ω_2
- regra: mesma decisão, mesmo sabendo que existem 2 tipos
- desempenho depende da escolha de $P(\omega_1)$ e $P(\omega_2)$

Na prática

- temos mais informação
- e.g. medida luminosidade (x)
- densidade probabilidade condicional de classe $p(x/\omega)$
- função densidade de probabilidade de x dado estado ω
- $-p(x/\omega_1)$ e $p(x/\omega_2)$ descrevem diferenças de luminosidade



Supor que conhecemos:

- $P(\omega_1) e P(\omega_2)$
- $p(x|\omega_1) e p(x|\omega_2)$
- medida de luminosidade x
- Como *x* influencia a escolha correta do tipo?
 - estimativa correta do estado ?
 - como decidir o tipo (classe)

Classificação usando luminosidade como atributo

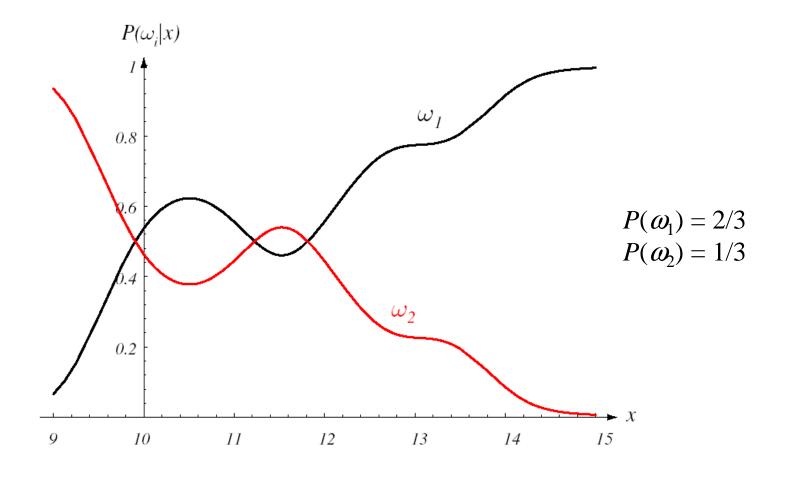
$$p(\omega_j, x) = P(\omega_j | x) p(x) = p(x | \omega_j) P(\omega_j)$$

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)}$$
Bayes

$$P(\omega_j | x) = \frac{p(x | \omega_j) P(\omega_j)}{p(x)}$$
$$p(x) = \sum_{j=1}^{2} p(x | \omega_j) P(\omega_j)$$

$$P(causa / efeito) = \frac{p(efeito / causa)P(causa)}{P(efeito)}$$

$$posterior = \frac{likelyhood \times prior}{evidence}$$



Regra de decisão de Bayes

 \square decidir ω_1 se $P(\omega_1|x) > P(\omega_2|x)$; caso contrário decidir ω_2 (*)

Regra de Bayes minimiza a probabilidade de erro

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{se decidimos } \omega_2 \\ P(\omega_2 \mid x) & \text{se decidimos } \omega_1 \end{cases}$$

- para uma observação *x* minimiza-se a probabilidade de erro:
 - \square decidindo ω_1 se $P(\omega_1|x) > P(\omega_2|x)$; ou ω_2 caso contrário
- esta regra minimiza a probabilidade de erro para qualquer x, em média?

– em média a probabilidade do erro é

$$P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error \mid x) p(x) dx$$

- $-\log a$ integral P(error) é mínima se P(error/x) é mínima, isto é, se
 - \square decidir ω_1 se $P(\omega_1|x) > P(\omega_2|x)$; caso contrário decidir ω_2
- $-P(error/x) = \min [P(\omega_1|x), P(\omega_2|x)]$
- Regra de decisão de Bayes (alternativa)
 - \square decidir ω_1 se $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$; caso contrário decidir ω_2

2-Teoria Bayesiana de decisão: atributos contínuos

Generalização

- uso de vários atributos
- mais de dois estados
- outras decisões e não só classificação
- critério mais geral que probabilidade de erro

Notação

 \mathbf{x} : atributo, $\mathbf{x} \in \mathbf{R}^d$

 \mathbf{R}^d : espaço (Euclideano) de atributos

 $\{\omega_1, ..., \omega_c\}$: conjunto (finito) de c estados (categorias)

 $\{\alpha_1, ..., \alpha_a\}$: conjunto (finito) de *a* decisões (ações)

 $\lambda(\alpha_i, \omega_i)$: loss function = custo decisão α_i quando em ω_i

Regra de Bayes

$$P(\omega_j | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{p(\mathbf{x})}$$
$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x} | \omega_j) P(\omega_j)$$

$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j) P(\omega_j)$$

- supor observação \mathbf{x} e ação α_i correspondente
- se estado verdadeiro é ω_i , então custo associado é $\lambda(\alpha_i, \omega_i)$
- valor esperado do custo da ação α_i será:

$$R(\alpha_i \mid \mathbf{x}) = \sum_{i=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$
 Risco condicional

- dado \mathbf{x} , que ação α_i minimiza o risco condicional, $\forall \mathbf{x}$?
- solução (ótima): regra de Bayes!

Regra (estratégia) de decisão

- $-\alpha(\mathbf{x})$: fornece a decisão para cada valor de \mathbf{x}
- para cada \mathbf{x} , $\alpha(\mathbf{x})$ assume um dos a valores α_1 , ..., α_a
- risco global: risco associado com uma estratégia de decisão

$$R = \int R(\alpha(\mathbf{x}) | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
 Risco global

- se $\alpha(\mathbf{x})$ é tal que o valor de $R(\alpha_i(\mathbf{x}))$ é o menor possível $\forall \mathbf{x}$, então risco global é minimizado; isto motiva o seguinte:

Regra de Bayes

para minimizar risco global:

1 – calcular

$$R(\alpha_i \mid \mathbf{x}) = \sum_{i=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x}), \quad i = 1, ..., a$$

2 – selecionar ação α_i que minimiza $R(\alpha_i|\mathbf{x})$

 R^* = risco de Bayes

Exemplo com duas classes

- $-\alpha_1$: decide que estado verdadeiro é ω_1
- $-\alpha_2$: decide que estado verdadeiro é ω_2
- $-\lambda_{ij} = \lambda(\alpha_i, \omega_j)$ custo quando decisão $\Rightarrow \omega_i$ mas verdadeiro é ω_j

risco condicional

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$
$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$$

 \square decidir ω_1 se $R(\alpha_1|\mathbf{x}) < R(\alpha_2|\mathbf{x})$

– alternativamente, em termos das probabilidades *a posteriori*

$$\square$$
 decidir ω_1 se $(\lambda_{21} - \lambda_{11})P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | \mathbf{x})$

- em geral $\lambda_{21} > \lambda_{11}$ e $\lambda_{12} > \lambda_{22}$
- utilizando Bayes, probabilidades a priori e densidades condicionais

$$\frac{P(\mathbf{x} \mid \omega_1)}{P(\mathbf{x} \mid \omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(\omega_2)}{P(\omega_1)}$$

Razão de verosimilhança

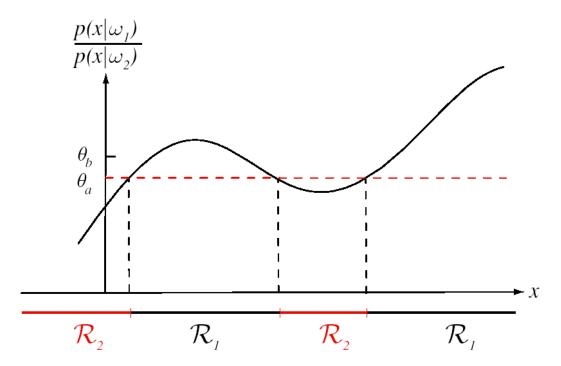
3-Classificação com taxa de erro mínima

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad i, j = 1, ..., c$$

$$R(\alpha_i \mid \mathbf{x}) = \sum_{i=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$
$$= \sum_{i \neq j} P(\omega_j \mid \mathbf{x})$$
$$= 1 - P(\omega_i \mid \mathbf{x})$$

Regra Bayes para taxa de erro mínima

- minimizar risco: selecionar ação que minimiza risco condicional
- minimizar taxa de erro de classificação:
 - $\Box \operatorname{decidir} \omega_i \operatorname{se} P(\omega_i | \mathbf{x}) > P(\omega_i | \mathbf{x}) \quad \forall i, j \quad (\text{ver *})$



4-Funções discriminação e classificadores

Função discriminação

$$g_i(\mathbf{x}), i = 1,..., c$$

 \square classificador atribui classe ω_i a **x** se $g_i(\mathbf{x}) > g_i(\mathbf{x}) \quad \forall j \neq i$

Exemplos:

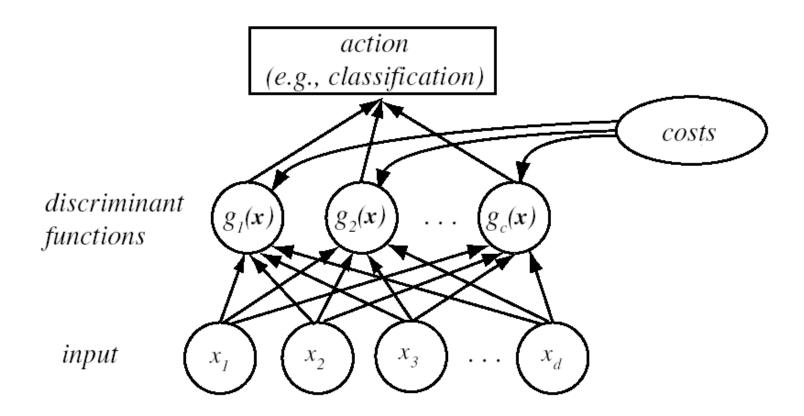
$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

risco condicional mínimo

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x})$$

erro classificação mínimo

Estrutura funcional de classificadores estatísticos



Propriedades

- funções discriminação não são únicas
- transformações: $f(g_i(\mathbf{x}))$, f monotônica crescente
- simplificação analítica e computacional
- exemplos de classificadores (erro classificação mínimo):

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} \mid \omega_j)P(\omega_j)}$$

$$g_i(\mathbf{x}) = p(\mathbf{x} \mid \omega_i) P(\omega_i)$$

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

- formas funções diferentes, mas regras de decisão equivalentes
- efeito: dividir o espaço de atributos em c regiões distintas
- \square se $g_i(\mathbf{x}) > g_i(\mathbf{x}) \quad \forall j \neq i \text{ então } \mathbf{x} \in \mathcal{R}_i$
- $-\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$
- $-\mathcal{R}_1,...,\mathcal{R}_c$ formam uma partição do espaço de atributos

– exemplo: duas categorias (classes)

$$\square$$
 atribuir ω_1 a **x** se $g_1(\mathbf{x}) > g_2(\mathbf{x}) \quad \forall j \neq i$

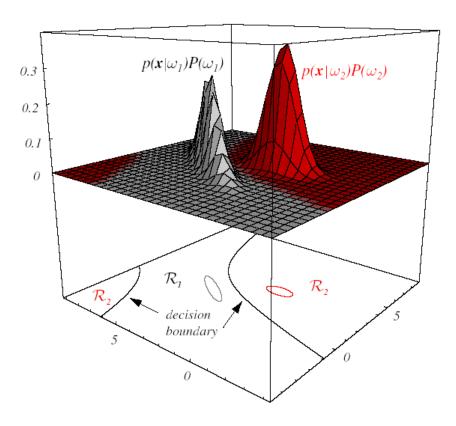
$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

$$\square$$
 atribuir ω_1 a **x** se $g(\mathbf{x}) > 0$

$$g(\mathbf{x}) = P(\omega_1 \mid \mathbf{x}) - P(\omega_2 \mid \mathbf{x})$$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$
(**)

(***)



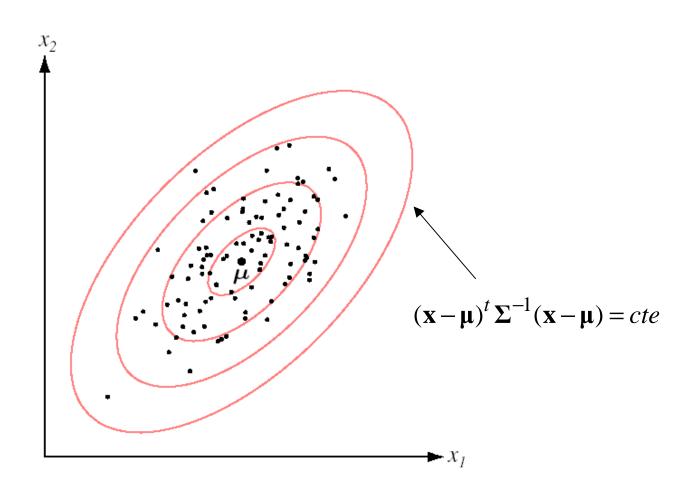
5-Densidade normal

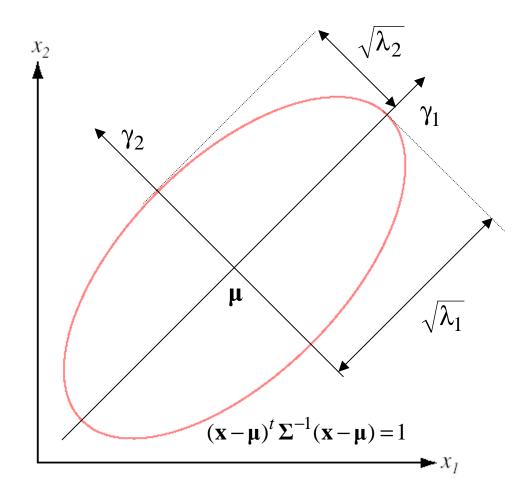
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

$$\boldsymbol{\mu} = E[\mathbf{x}] = \int_{-\infty}^{\infty} \mathbf{x} \, p(\mathbf{x}) d\mathbf{x}, \quad \boldsymbol{\mu}_i = E[x_i]$$

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t] = \int_{-\infty}^{\infty} (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x}) d\mathbf{x}$$

$$\Sigma = [\sigma_{ij}], \ \sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)], \ \Sigma > 0$$





Transformações lineares

– combinações lineares de variáveis aleatórias normais são normais

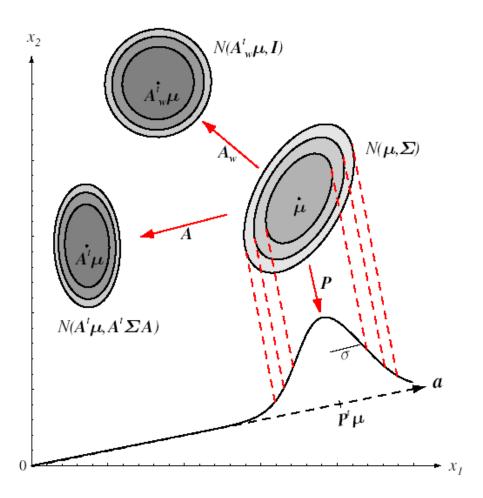
$$p(\mathbf{x}) = N(\mathbf{\mu}, \mathbf{\Sigma})$$

$$\mathbf{A} (d \times k)$$

$$\mathbf{y} = \mathbf{A}^{t}\mathbf{x} (k \times 1)$$

$$p(\mathbf{y}) = N(\mathbf{A}^{t}\mathbf{\mu}, \mathbf{A}^{t}\mathbf{\Sigma}\mathbf{A})$$

- se $\mathbf{A} = \mathbf{a} (d \times 1)$, k = 1, $\|\mathbf{a}\| = 1$ então $y = \mathbf{a}^t \mathbf{x}$ (escalar que representa projeção de \mathbf{x} ao longo de \mathbf{a}) $\mathbf{a}^t \sum \mathbf{a}$ variância da projeção de \mathbf{x} ao longo de \mathbf{a}



Observações

$$r^2 = (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Distância de Mahalanobis

$$V = V_d \mid \mathbf{\Sigma} \mid^{1/2} r^d$$

Volume hiperelipsóide

$$V_d = \begin{cases} \pi^{d/2} / (d/2)! & d \ par \\ 2^d \pi^{(d-1)/2} (d-1/2)! / d! & d \ impar \end{cases}$$

Volume hiperesfera

6-Funções discriminação p/ densidade normal

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

$$p(\mathbf{x} | \omega_i) \sim N(\mathbf{\mu}_i, \mathbf{\Sigma}_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

• Caso 1: $\sum_{i} = \sigma^{2} \mathbf{I}$

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} [\mathbf{x}^t \mathbf{x} + 2\mathbf{\mu}^t \mathbf{x} + \mathbf{\mu}_i^t \mathbf{\mu}_i] + \ln P(\omega_i)$$

termo quadrático é o mesmo $\forall i$

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$
 Máquina linear

$$\mathbf{w}_{i} = \frac{1}{\sigma^{2}} \mathbf{\mu}_{i}, \qquad w_{io} = \frac{-1}{2\sigma^{2}} \mathbf{\mu}_{i}^{t} \mathbf{\mu}_{i} + \ln P(\omega_{i})$$

Limiar (bias) para i-ésima classe

$$g_i(\mathbf{x}) - g_j(\mathbf{x}) = 0$$

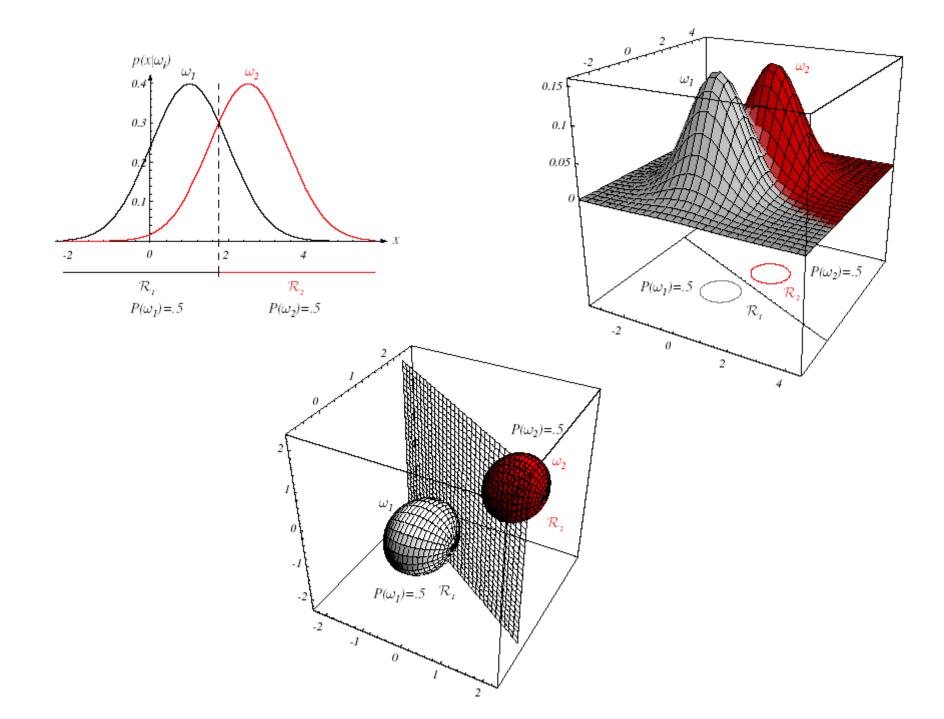
$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$$

$$\mathbf{w} = \mathbf{\mu}_i - \mathbf{\mu}_j$$

Hiperplano separa \mathcal{R}_i e \mathcal{R}_j passa por \mathbf{x}_o e é ortogonal à reta que une as médias

$$\mathbf{x}_{o} = \frac{1}{2} (\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\sigma^{2}}{\|\mathbf{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

$$P(\omega_i) = P(\omega_j) \implies \mathbf{x}_o = \frac{1}{2}(\mathbf{\mu}_i + \mathbf{\mu}_j)$$

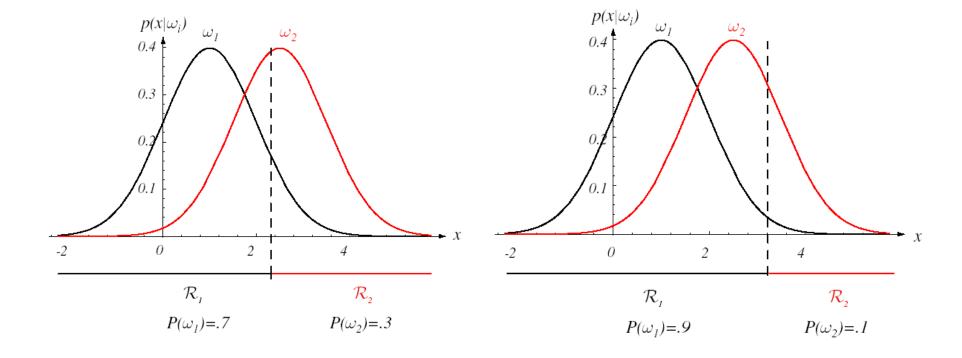


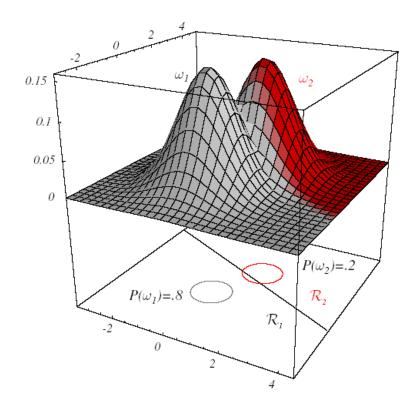
$$P(\omega_i) \neq P(\omega_i)$$

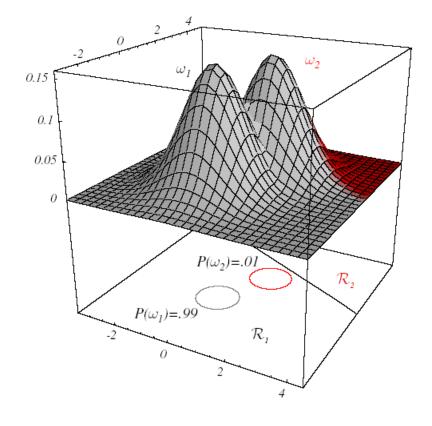
 \mathbf{x}_{o} se afasta da média mais provável

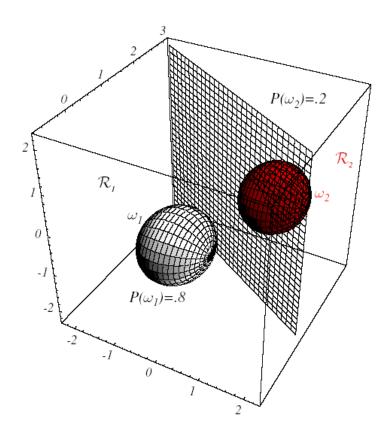
$$P(\omega_i) = P(\omega_j), \quad \forall i, j \quad \text{termo} \quad \ln P(\omega_i) \text{ irrelevante}$$

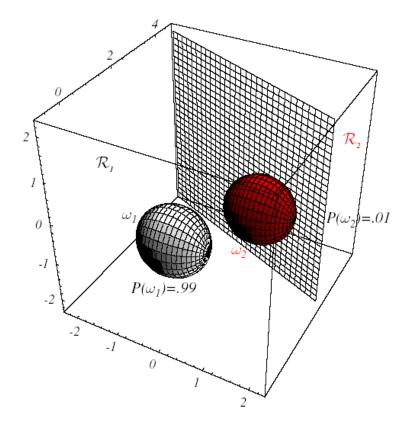
$$g_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{\mu}_i\|^2$$
 Classificador distância mínima











• Caso 2: $\sum_{i} = \sum_{i}$

independente de i

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}) + \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}) + \ln P(\omega_i)$$

se $P(\omega_i) = P(\omega_i)$, $\forall i, j$ termo $\ln P(\omega_i)$ irrelevante, logo:

$$g_i(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$
 Classificador distância (Mahalanobis) mínima

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$$

eliminando $\mathbf{x}^t \sum^{-1} \mathbf{x}$ da expansão de $(\mathbf{x} - \boldsymbol{\mu})^t \sum^{-1} (\mathbf{x} - \boldsymbol{\mu})$ (independe de i)

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{io}$$
 Máquina linear

$$\mathbf{w}_i = \mathbf{\Sigma}^{-1} \mathbf{\mu}_i \qquad w_{io} = -\frac{1}{2} \mathbf{\mu}_i^t \mathbf{\Sigma}^{-1} \mathbf{\mu}_i + \ln P(\omega_i)$$

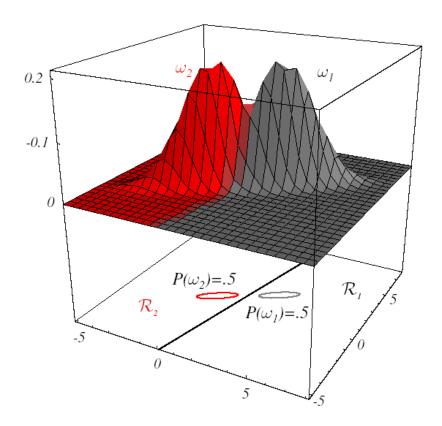
se \mathcal{R}_i e \mathcal{R}_j são contíguas, a superfície de decisão é um hiperplano

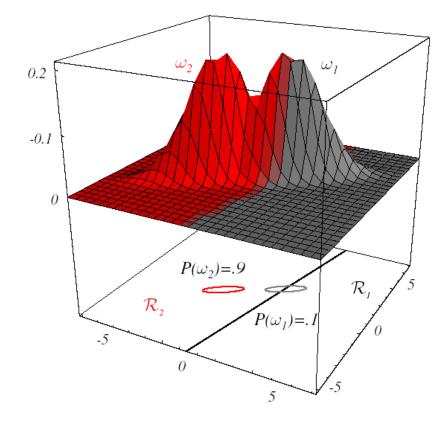
$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$$

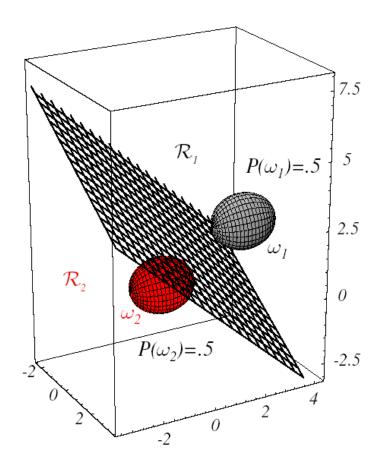
$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mathbf{\mu}_i - \mathbf{\mu}_j)$$

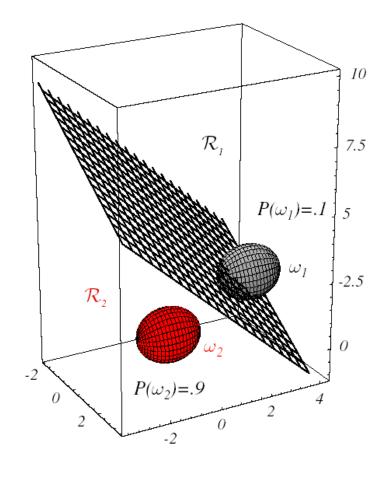
$$\mathbf{x}_{o} = \frac{1}{2} (\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\ln[P(\omega_{i})/P(\omega_{j})]}{(\mathbf{\mu}_{i} - \mathbf{\mu}_{j})^{t} \Sigma^{-1} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

- hiperplano separa \mathcal{R}_i e \mathcal{R}_j não é ortogonal à reta que une as médias
- hiperplano intercepta esta reta em \mathbf{x}_{0}
- $-\operatorname{se} P(\omega_i) = P(\omega_i), \ \forall i, j \ \operatorname{então} \operatorname{está} \operatorname{no} \operatorname{meio} \operatorname{das} \operatorname{médias}$
- se $P(\omega_i)$ ≠ $P(\omega_j)$, então hiperplano se afasta da média mais provável









• Caso 3: \sum_{i} = arbitrária

único termo independente de i

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu}) + \frac{d}{2} \ln 2\pi + \frac{1}{2} \ln |\mathbf{\Sigma}_i| + \ln P(\omega_i)$$

expandindo

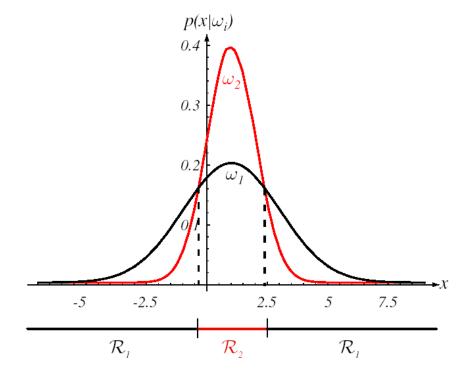
$$g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{io}$$

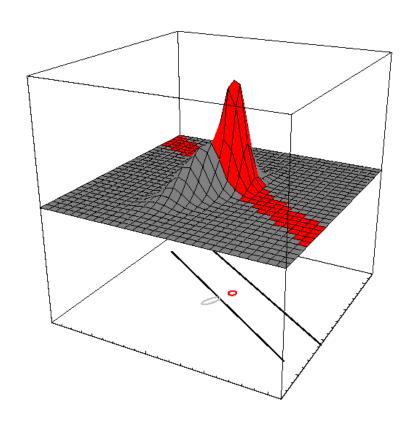
Classificador quadrático

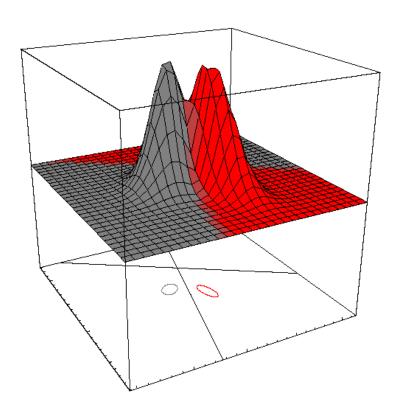
$$\mathbf{W}_i = -\frac{1}{2} \mathbf{\Sigma}_i^{-1} \qquad \mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \mathbf{\mu}_i$$

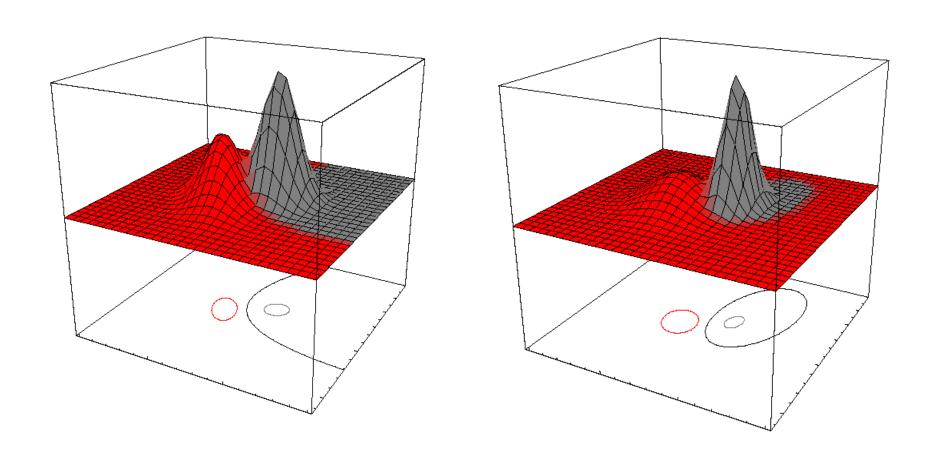
$$w_{io} = -\frac{1}{2} \boldsymbol{\mu}_i^t \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i^{-1}| + \ln P(\omega_i)$$

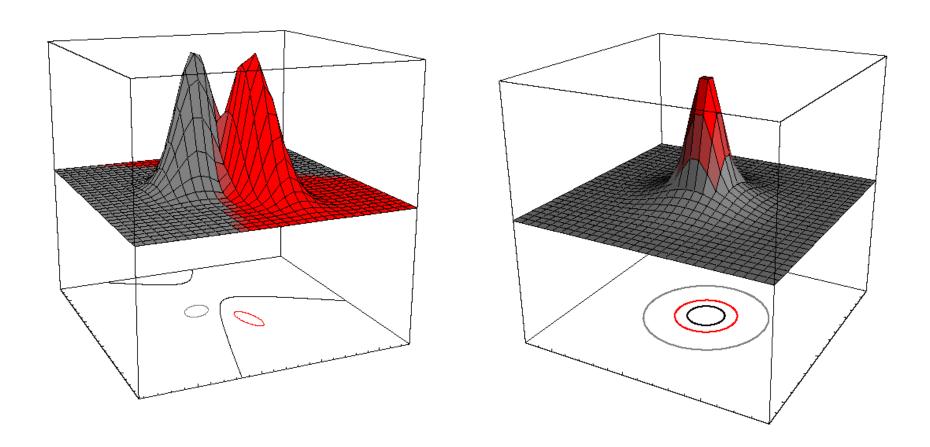
- caso com duas classes
- superfícies de decisão são hiperquadráticas
 - hiperplanos
 - hiperesferas
 - hiperelipsóides
 - hiperparabolóides
- regiões (decisão) não necessariamente conectadas

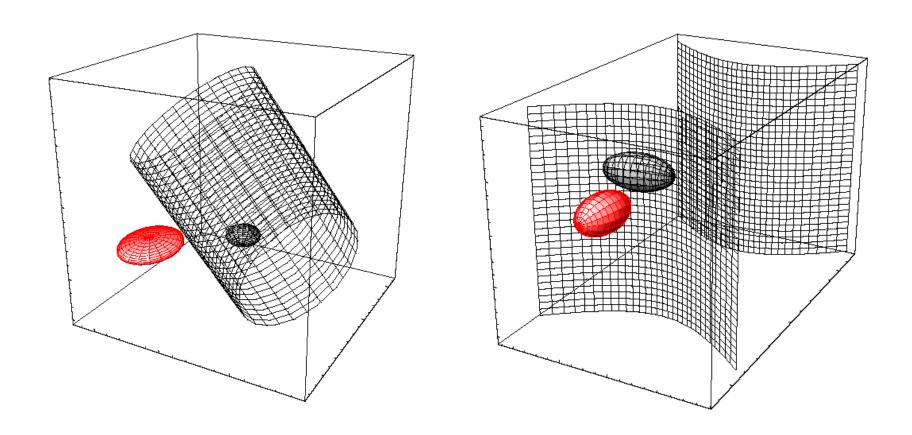


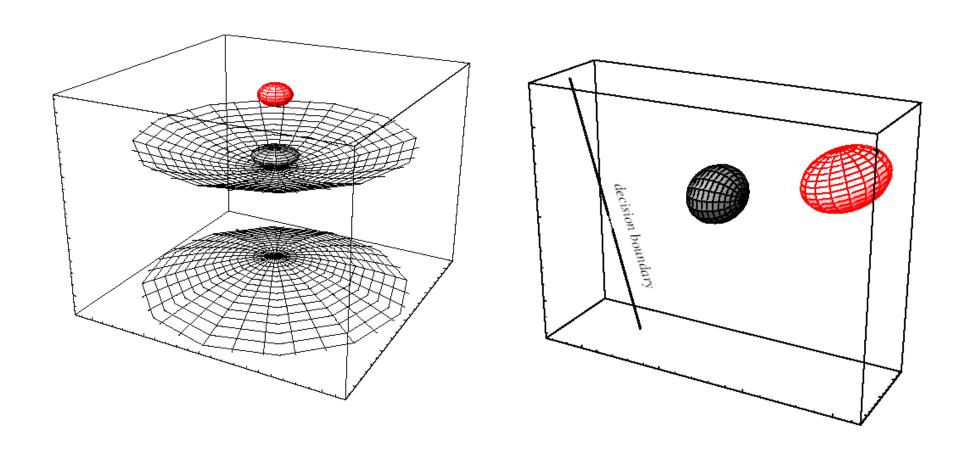




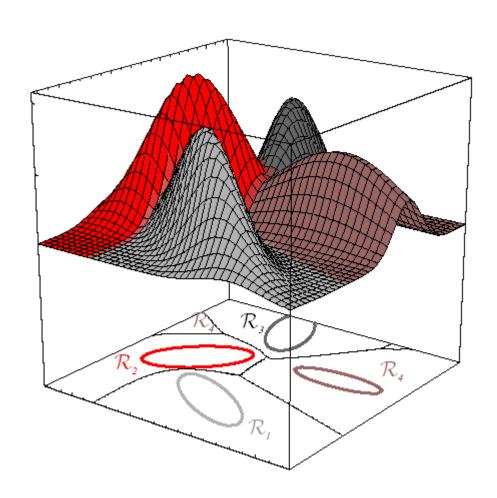




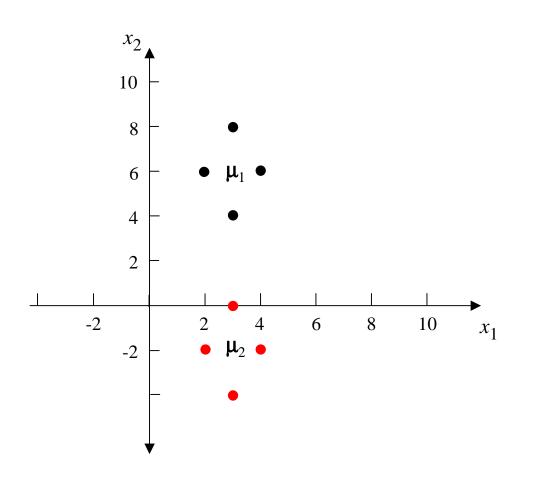




Quatro classes



Exemplo: região de decisão, dados Gaussianos



$$\boldsymbol{\mu}_1 = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \ \boldsymbol{\Sigma}_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix}$$

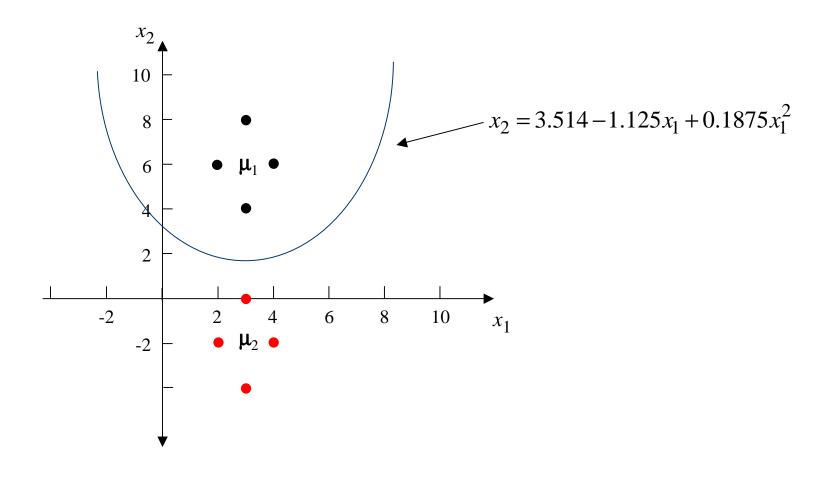
$$\boldsymbol{\mu}_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \quad \boldsymbol{\Sigma}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$P(\omega_1) = P(\omega_2) = 0.5$$

$$g_1(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_1 \mathbf{x} + \mathbf{w}_1^t \mathbf{x} + w_{10}$$

$$g_1(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_1 \mathbf{x} + \mathbf{w}_1^t \mathbf{x} + w_{10}$$

$$g_1(\mathbf{x}) = g_2(\mathbf{x})$$



7-Teoria Bayesiana de decisão: atributos discretos

$$\mathbf{x} \in \{\mathbf{v}_1,, \mathbf{v}_m\}$$

$$P(\omega_j \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \omega_j)P(\omega_j)}{P(\mathbf{x})}$$

Regra de Bayes

$$P(\mathbf{x}) = \sum_{j=1}^{c} P(\mathbf{x} \mid \omega_j) P(\omega_j)$$

$$\alpha^* = \arg\min_i R(\alpha_i \mid \mathbf{x})$$

Regra de decisão mínimo risco

Regra de Bayes para taxa de erro mínima

Funções de discriminação

$$g_{i}(\mathbf{x}) = P(\omega_{i} \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid \omega_{i})P(\omega_{i})}{\sum_{j=1}^{c} P(\mathbf{x} \mid \omega_{j})P(\omega_{j})}$$
$$g_{i}(\mathbf{x}) = P(\mathbf{x} \mid \omega_{i})P(\omega_{i})$$

$$g_i(\mathbf{x}) = \ln P(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

Exemplo: atributos binários independentes

- duas categorias (classes)
- cada componente é um valor binário
- componentes s\(\tilde{a}\) independentes

$$\mathbf{x} = (x_1, \dots, x_d)^t, \ x_i \in \{0,1\}$$

$$p_i = \Pr[x_i = 1 \mid \omega_1)$$

$$q_i = \Pr[x_i = 1 \mid \omega_2)$$

$$P(\mathbf{x} \mid \omega_1) = \prod_{i=1}^{d} p_i^{x_i} (1 - p_i)^{1 - x_i}$$

$$P(\mathbf{x} \mid \omega_2) = \prod_{i=1}^{d} q_i^{x_i} (1 - q_i)^{1 - x_i}$$

- Razão de verosimilhança

$$\frac{P(\mathbf{x} \mid \omega_1)}{P(\mathbf{x} \mid \omega_2)} = \prod_{i=1}^{d} \left(\frac{p_i}{q_i}\right)^{x_i} \left(\frac{1 - p_i}{1 - q_i}\right)^{1 - x_i}$$

$$g(\mathbf{x}) = \ln \frac{P(\mathbf{x} \mid \omega_1)}{P(\mathbf{x} \mid \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$
 (**)

$$g(\mathbf{x}) = \sum_{i=1}^{d} \left[x_i \ln \frac{p_i}{q_i} + (1 - x_i) \ln \frac{1 - p_i}{1 - q_i} \right] + \ln \frac{P(\omega_1)}{P(\omega_2)}$$
 Linear em x_i

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0$$

$$w_i = \ln \frac{p_i(1-q_i)}{q_i(1-p_i)}, \quad i = 1,...,d$$

$$w_0 = \sum_{i=1}^{d} \ln \frac{(1 - q_i)}{(1 - p_i)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

lembrar: decidir ω_1 se $g(\mathbf{x}) > 0$ e ω_2 se $\mathbf{g}(\mathbf{x}) \ge 0$ (***)

Análise

- $-g(\mathbf{x})$ é uma combinação linear (ponderada) das componentes de \mathbf{x}
- valor de w_i é a relevância de uma resposta $x_i = 1$ na classificação
- $-\operatorname{se} p_i = q_i$ então valor de x_i é irrelevante ($w_i = 0$)
- $-\operatorname{se} p_i > q_i \operatorname{então} (1 p_i) < (1 q_i), w_i > 0 \operatorname{e} x_i = 1 \Rightarrow w_i \operatorname{votos} \operatorname{para} \omega_1$
- $-\operatorname{se} p_i < q_i \operatorname{então} (1 p_i) > (1 q_i), w_i < 0 \operatorname{e} x_i = 1 \Longrightarrow |w_i| \operatorname{votos} \operatorname{para} \omega_2$

Exemplo: dados binários 3-d

- duas categorias (classes)
- cada componente é um valor binário
- componentes s\(\tilde{a}\) independentes

$$P(\omega_1) = P(\omega_2) = 0.5$$

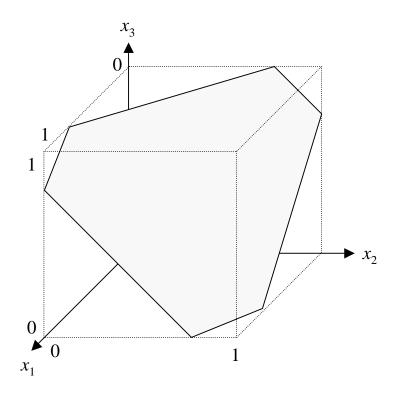
$$p_i = 0.5, q_i = 0.8, i = 1,2,3$$

$$w_i = \ln \frac{p_i(1-q_i)}{q_i(1-p_i)}, \quad i = 1,...,d$$

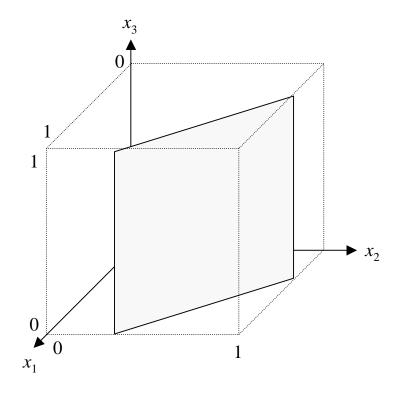
$$w_0 = \sum_{i=1}^{d} \ln \frac{(1-q_i)}{(1-p_i)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

$$w_i = \ln \frac{p_i(1-q_i)}{q_i(1-p_i)}, \quad i = 1,...,d$$
 $w_i = \ln \frac{0.8(1-0.5)}{0.5(1-0.8)} = 1.3863 \quad i = 1,...,3$

$$w_0 = \sum_{i=1}^{3} \ln \frac{(1-0.8)}{(1-0.5)} + \ln \frac{0.5}{0.5} = -1.75$$



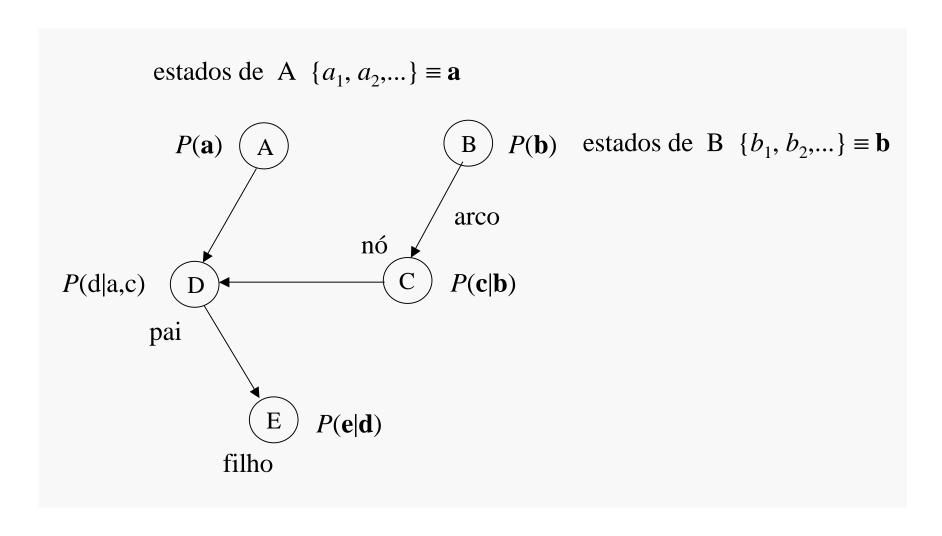
$$p_i = 0.8$$
 $q_i = 0.5$ $i = 1,2,3$

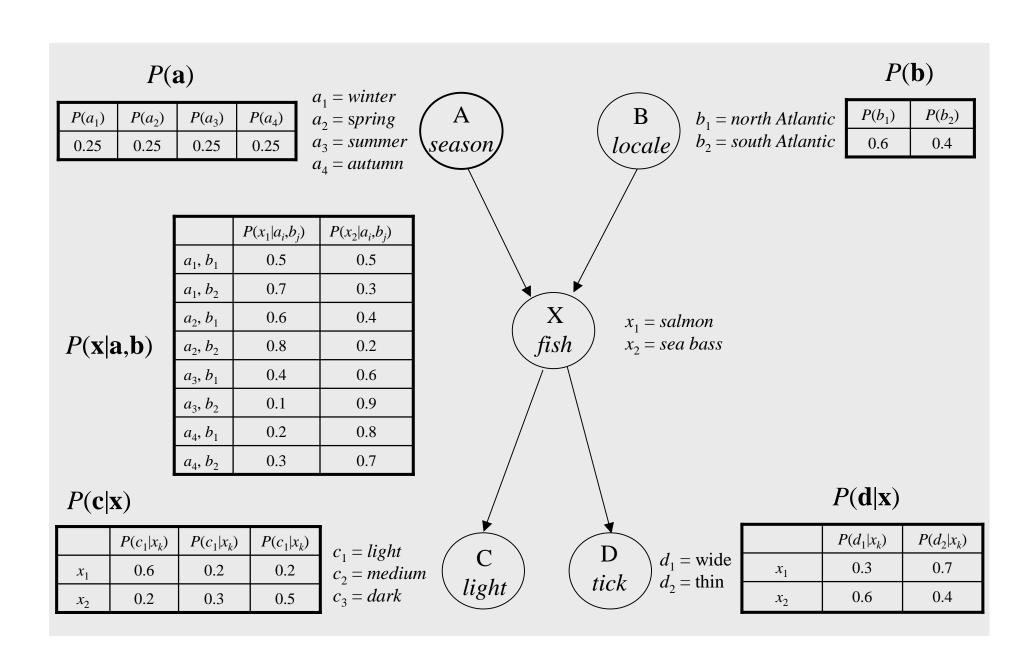


$$p_i = 0.8$$
 $q_i = 0.5$, $i = 1,2$
 $p_3 = q_3$

8-Redes Bayesianas

- Conhecimento sobre distribuições
 - parâmetros de distribuições
 - dependência/independência estatística
 - relações causais entre variáveis
- Redes Bayesianas
 - explora informação estrutural no raciocínio com variáveis
 - usa relações probabilísticas entre variáveis
 - assume relações causais

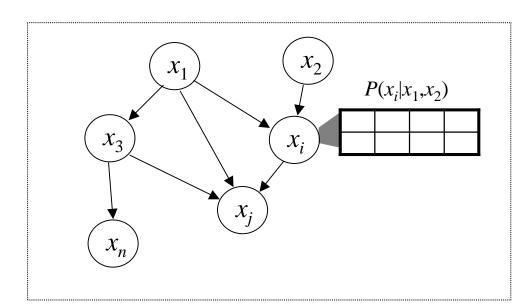




 $P(a_3,b_1,x_2,c_3,d_2) = P(a_3)P(b_1)P(x_2 \mid a_3,b_1)P(c_3 \mid x_2)P(d_2 \mid x_2) = 0.25 \times 0.6 \times 0.4 \times 0.5 \times 0.4 = 0.012$

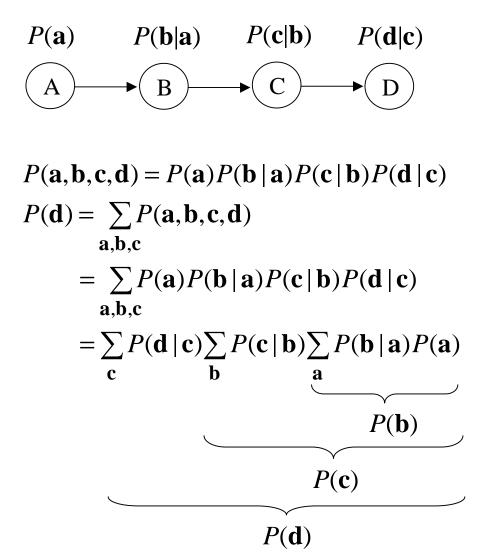
Redes Bayesianas formalmente

- grafo acíclico
- nó: variável aleatória (atributo)
- arco: efeito, causa (A afeta B \rightarrow B condicionado a A)
- cada nó condicionalmente independente dos não descendentes
- representa probabilidade conjunta das variáveis



$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid PaiDe(x_i))$$

Exemplo



em geral: dados os valores de algumas variáveis (evidência: e)
 qual é o valor de uma configuração das outras variáveis (x)?

$$P(\mathbf{x} \mid \mathbf{e}) = \frac{P(\mathbf{x}, \mathbf{e})}{P(\mathbf{e})} = \alpha P(\mathbf{x}, \mathbf{e})$$

- Exemplo: salmon and sea bass
 - probabilidade peixe veio do Atlântico Norte (b_1)
 - sabendo que é primavera (spring a_2)
 - peixe é salmão (salmon x_1) claro (light c_1)

$$P(b_1 | a_2, x_1, c_1)$$
?

- Em classificação (erro mínimo): salmon or sea bass?
 - sabe-se que
 - peixe é claro (c_1)
 - origem é Atlântico Norte (b_2)
 - não se sabe:
 - estação do ano
 - espessura
 - problema de classificação:

$$P(x_1 | c_1, b_2)$$
?

$$P(x_2 | c_1, b_2)$$
?

$$P(x_{1} | c_{1}, b_{2}) = \frac{P(x_{1}, c_{1}, b_{2})}{P(c_{1}, b_{2})} = \alpha \sum_{\mathbf{a}, \mathbf{d}} P(x_{1}, \mathbf{a}, b_{2}, c_{1}, \mathbf{d})$$

$$= \alpha \sum_{\mathbf{a}, \mathbf{d}} P(\mathbf{a}) P(b_{2}) P(x_{1} | \mathbf{a}, b_{2}) P(c_{1} | x_{1}) P(\mathbf{d} | x_{1})$$

$$= \alpha P(b_{2}) P(c_{1} | x_{1}) \left[\sum_{\mathbf{a}} P(\mathbf{a}) P(x_{1} | \mathbf{a}, b_{2}) \right] \left[\sum_{\mathbf{d}} P(\mathbf{d} | x_{1}) \right]$$

$$= \alpha P(b_{2}) P(c_{1} | x_{1})$$

$$\times [P(a_{1}) P(x_{1} | a_{1}, b_{2}) + P(a_{2}) P(x_{1} | a_{2}, b_{2})$$

$$+ P(a_{3}) P(x_{1} | a_{3}, b_{2}) + P(a_{4}) P(x_{1} | a_{4}, b_{2})]$$

$$\times [P(d_{1} | x_{1}) + P(d_{2} | x_{1})]$$

$$P(x_1 | c_1, b_2) = \alpha(0.4)(0.6)[(0.25)(0.7) + (025)(0.8) + (0.25)(0.1) + (0.25)(0.3)]1.0$$

$$P(x_1 | c_1, b_2) = \alpha 0.114$$

$$P(x_2 | c_1, b_2) = \alpha 0.066$$

classificação: salmon!

Naive Bayes

- relações de dependência entre atributos desconhecidas
- neste caso assume-se independência condicional

$$P(\mathbf{x} \mid \mathbf{a}, \mathbf{b}) = P(\mathbf{x} \mid \mathbf{a}) P(\mathbf{x} \mid \mathbf{b})$$

9-Resumo

- Teoria Bayesiana de decisão é simples
- Regras de decisão
 - minimizar risco: ação que minimiza risco condicional
 - minimizar Pr[erro]: estado que maximiza densidade a posteriori $P(\omega_i|x)$
- Superfícies decisão hiperquadráticas no caso Gaussiano
- Redes: relações dependência/independência entre variáveis

Observação

Este material refere-se às notas de aula do curso CT 720 Tópicos Especiais em Aprendizagem de Máquina e Classificação de Padrões da Faculdade de Engenharia Elétrica e de Computação da Unicamp e do Centro Federal de Educação Tecnológica do Estado de Minas Gerais. Não substitui o livro texto, as referências recomendadas e nem as aulas expositivas. Este material não pode ser reproduzido sem autorização prévia dos autores. Quando autorizado, seu uso é exclusivo para atividades de ensino e pesquisa em instituições sem fins lucrativos.

ProfFernandoGomide ©DCA-FEEC-Unicamp