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Abstract. In this paper, we present a comprehensive survey on applica-
tions of Support Vector Machines (SVMs) for pattern recognition. Since
SVMs show good generalization performance on many real-life data
and the approach is properly motivated theoretically, it has been applied
to wide range of applications. This paper describes a brief introduction
of SVMs and summarizes its numerous applications.

1 Introduction

SVMs are a new type of pattern classifier based on a novel statistical learning tech-
nique that has been recently proposed by Vapnik and his co-workers [1-3]. Unlike
traditional methods (e.g. Neural Networks), which minimize the empirical training
error, SVMs aim at minimizing an upper bound of the generalization error through
maximizing the margin between the separating hyperplane and the data [4]. Since
SVMs are known to generalize well even in high dimensional spaces under small
training sample conditions [5] and have shown to be superior to traditional empirical
risk minimization principle employed by most of neural networks [6], SVMs have
been successfully applied to a number of applications ranging from face detection,
verification, and recognition [5-11,26,50-56,76-80,83], object detection and recogni-
tion [12-15,24,47,57], handwritten character and digit recognition [16-18,45], text
detection and categorization [19,58-61], speech and speaker verification, recognition
[20-23], information and image retrieval [33-36,87], prediction [37-41] and
etc.[22,27-32,41,42,53,62,64,65,74].

In this paper, we aim to give a comprehensive survey on applications of SVMs for
pattern recognition. This paper is organized as follows. We give a brief explanation on
SVMs in Section 2 and a detailed review of SVMs-related techniques in Section 3.
Section 4 describes the limitations of SVMs. We conclude this paper in Section 5.
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© Springer-Verlag Berlin Heidelberg 2002
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2 Support Vector Machines

Classical learning approaches are designed to minimize error on the training dataset
and it is called the Empirical Risk Minimization (ERM). Those learning methods
follow the ERM principle and neural networks are the most common example of
ERM. On the other hand, the SVMs are based on the Structural Risk Minimization
(SRM) principle rooted in the statistical learning theory. It gives better generalization
abilities (i.e. performances on unseen test data) and SRM is achieved through a mini-
mization of the upper bound (i.e. sum of the training error rate and a term that depends
on VC dimension) of the generalization error [1-3,43-45].

2.1 Linear Support Vector Machines for Linearly Separable Case

The basic idea of the SVMs is to construct a hyperplane as the decision plane, which
separates the positive (+1) and negative (-1) classes with the largest margin, which is
related to minimizing the VC dimension of SVM. In a binary classification problem
where feature extraction is initially performed, let us label the training data x, e R?

with a label y, € {-1+1}, for all the training data ; = 1,..., / , where / is the number of

data, and d is the dimension of the problem. When the two classes are linearly separa-
ble in R“, we wish to find a separating hyperplane which gives the smallest generali-
zation error among the infinite number of possible hyperplanes. Such an optimal
hyperplane is the one with the maximum margin of separation between the two
classes, where the margin is the sum of the distances from the hyperplane to the clos-
est data points of each of the two classes. These closest data points are called Support
Vectors (SVs). The solid line on Fig.1 represents the optimal separating hyperplane.

. .
Margin

Fig. 1. Linear separating hyperplanes for the separable case. The support vectors are circled
(taken from [44])
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Let’s suppose they are completely separated by a d-dimensional hyperplane de-
scribed by

w-x+b=0 )
The separation problem is to determine the hyperplane such that w X, +b>+1 for

positive examples and w - X, +bh<—-1 for negative examples. Since the SVM finds the

hyperplane, which has the largest margin, it can be found by minimizing JARTS
2

2
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2)
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The optimal separating hyperplane can thus be found by minimizing equation (2)
under the constraint (3) to correctly separate the training data.

y,(x,-w+b)—-120,V, 3)

This is a Quadratic Programming (QP) problem for which standard techniques (La-
grange Multipliers, Wolfe dual) can be used [43,51,69,70]. The detailed explanation
on QP problems and alternative researches are described in Sub-section 2.4.

2.2 Linear Support Vector Machines for Non-separable Case

In practical applications for real-life data, the two classes are not completely separa-
ble, but a hyperplane that maximizes the margin while minimizing a quantity propor-
tional to the misclassification errors can still be determined. This can be done by in-

troducing positive slack variables fl in constraint (3), which then becomes
v, (x, o w+b)21-¢,V, “4)

If an error occurs, the corresponding é must exceed unity, so Zlfl is an upper

bound for the number of misclassification errors. Hence the objective function (2) to
be minimized can be changed into

min{ |wl’/2+C> ' & ()

where C is a parameter chosen by the user that controls the tradeoff between the mar-
gin and the misclassification errors. A larger C means that a higher penalty to misclas-
sification errors is assigned. Minimizing equation (5) under constraint (4) gives the
Generalized Separating Hyperplane. This still remains a QP problem. The nonsepara-
ble case is illustrated in Fig. 2.
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Fig. 2. Linear separating hyperplane for the non-separable case (taken from [44])

2.2.1 Nonlinear Support Vector Machines and Kernels

2.2.2  Nonlinear Support Vector Machines

An extension to nonlinear decision surfaces is necessary since real-life classification
problems are hard to be solved by a linear classifier [41]. When the decision function
is not a linear function of the data, the data will be mapped from the input space into a
high dimensional feature space by a nonlinear transformation. In this high dimensional
feature space, the generalized optimal separating hyperplane shown in Fig 3 is con-
structed [43]. Cover’s theorem states that if the transformation is nonlinear and the
dimensionality of the feature space is high enough, then input space may be trans-
formed into a new feature space where the patterns are linearly separable with high
probability [68]. This nonlinear transformation is performed in implicit way through
so-called kernel functions.

(a) input space (b) feature space
Fig. 3. Feature space is related to input space via a nonlinear map @, causing the decision
surface to be nonlinear in the input space (taken from [33])
2.2.3  Inner-Product Kernels

In order to accomplish nonlinear decision function, an initial mapping @ of the data
into a (usually significantly higher dimensional) Euclidean space H is performed as
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®:R" — H, and the linear classification problem is formulated in the new space with
dimension d. The training algorithm then only depends on the data through dot prod-
uct in H of the form (x,) D(x,)- Since the computation of the dot products is pro-

hibitive if the number of training vectors @(x,) is very large, and since @ is not known

a priori, the Mercer’s theorem [44] for positive definite functions allows to replace
D(x,) D(x,) by a positive definite symmetric kernel function K(x,,X,)> that is,

K(x,,x,)=®(x,) O(x,) - In training phase, we need only kenel function K(x,,X,) and
®(x,) does not need to be known since it is implicitly defined by the choice of kernel
K(x,,x,)=®(x,) O(x,) - The data can become linearly separable in feature space al-

though original input is not linearly separable in the input space. Hence kernel substi-
tution provides a route for obtaining nonlinear algorithms from algorithms previously
restricted to handling linear separable datasets [75]. The use of implicit kernels allows
reducing the dimension of the problem and overcoming the so-called “dimension
curse” [3]. Variant learning machines are constructed according to the different kernel
function K (x ’X/‘) and thus construct different hyperplane in feature space. Table 1

shows three typical kernel functions.

Table 1. Summary of inner-product kernels [68]

Inner Product Kernel

Kernel function K(x ,x,),i=12,.,N
Polynomial kernel K(x,x,) = (x"x; +1)°
Gaussian (Radial-basis) kernel K(x,x,)= exp(—Hx - xin /207)

K(x ,x,)= tanh(,BoxTxi +5).

Multi-layer perceptron (sigmoid
Yer pereep (sig ) B,and g are decided by the user

2.3 Quadratic Programming Problem of SVMs

2.3.1 Dual Problem

In equation (2) and (3), the optimization goal @(x,)is quadratic and the constraints are

linear, it is a typical QP. Given such a constrained optimization problem, it is possible
to construct another problem called the dual problem.
We may now state the dual problem: given the training sample {(x,,4,)}",, find the

Lagrange multipliers {4, }" that maximize the objective function

N 1 N N 6
Q@) :zaf‘gzzaﬂ/dfdﬂ‘f"/ (6)
i=1 i=1 i=1

subject to the constraints
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M g =0
i=l

(2) @20 fori=12,.,N

We also may formulate the dual problem for non-separable pattern using the
method of Lagrange multipliers.
Given the training sample {(x,,4,)}",, find the Lagrange multipliers {4 }" that maxi-

mize the objective function

0@=3 13 S aadd i, )

i=l i=l
subject to the constraints

N
(1) Y ad, =0
i=1
(2) o<, <C fori=12,.,N

where C is a user-chosen positive parameter. The objective function () to be

maximized for the case of non-separable problems in the dual problem is the same as
the case for the separable problems except for a minor but important difference. The
difference is that the constraints ¢ >( for the separable case is replaced with the more

stringent constraint (< ¢, < ¢ for the non-separable case [68].

2.3.2  How to Solve the Quadratic Problem

A number of algorithms have been suggested for solving the dual problems. Tradi-
tional QP algorithms [71,72] are not suitable for large size problems because of the
following reasons [70]:

e They require that the kernel matrix be computed and stored in memory and it
requires extremely large memory.

e These methods involve expensive matrix operations such as the Cholesky de-
composition of a large submatrix of the kernel matrix.

e  For practitioners who would like to develop their own implementation of an
SVM classifier, coding these algorithms is very difficult.

A few attempts have been made to develop methods that overcome some or all of
these problems. Osuna et al. proved a theorem, which suggests a whole new set of QP
problems for SVM. The theorem proves that the large QP problem can be broken
down into a series of smaller QP sub-problems. As long as at least one example that
violate the Karush-Kuhn-Tucker (KKT) conditions is added to the examples for the
previous sub-problem, each step will reduce the cost of overall objective function and
maintain a feasible point that obeys all of the constraints. Therefore, a sequence of QP
sub-problems that always add at least one violator will be guaranteed to con-
verge [51].

Platt proposed a Sequential Minimal Optimization (SMO) to quickly solve the
SVM QP problem without any extra matrix storage and without using numerical QP
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optimization steps at all. Using Osuna’s theorem to ensure convergence, SMO decom-
poses the overall QP problem into QP sub-problems. The difference of the Osuna’s
method is that SMO chooses to solve the smallest possible optimization problem at
every step. At each step, (1)SMO chooses two Lagrange multipliers to jointly opti-
mize, (2)finds the optimal values for these multipliers, and (3)updates the SVMs to
reflect the new optimal values. The advantage of SMO is that numerical QP optimiza-
tion is avoided entirely since solving for two Lagrange multipliers can be done ana-
lytically. In addition, SMO requires no extra matrix storage at all. Thus, very large
SVM training problems can fit inside the memory of a personal computer or worksta-
tion [69]. Keerti et al. [73] pointed out an important source of confusion and ineffi-
ciency in Platt’s SMO algorithm that is caused by the use of single threshold value.
Using clues from the KKT conditions for the dual problem, two threshold parameters
are employed to derive modifications of SMO.

2.4 SVMs Applied to Multi-Class Classification

The basic SVMs are for two-class problem. However it should be extended to multi-
class to classify into more than two classes [45,46]. There are two basic strategies for
solving g-class problems with SVMs.

2.4.1 Multi-class SVMs: One to Others [45]

Take the training samples with the same label as one class and the others as the other
class, then it becomes a two-class problem. For the g-class problem (¢ >2), ¢ SVM
classifiers are formed and denoted by SVMi, i=1,2,..., g. As for the testing sample x,
d(x)=w, -x+b, canbe obtained by using SVMi. The testing sample x belongs to jth

class where

d (x)= max d,(x) (8)

2.4.2 Multi-class SVMs: Pairwise SVMs

In the pairwise approach, q2 machines are trained for g-class problem [47]. The pair-

wise classifiers are arranged in trees, where each tree node represents an SVM.
A bottom-up tree, which is similar to the elimination tree used in tennis tournaments
was originally proposed in [47] for recognition of 3D objects and was applied to face
recognition in [9,48]. A top-down tree structure has been recently published in [49].
There is no theoretical analysis of the two strategies with respect to classification
performance [10]. Regarding the training effort, the one-to-others approach is prefer-

able since only ¢ SVMs have to be trained compared to q2 SVMs in the pairwise

approach. However, at runtime both strategies require the evaluation of g-1 SVMs
[10]. Recent experiments on people recognition show similar classification perform-
ances for the two strategies [24].
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(a) example of top-down tree structure  (b) example of bottom-up tree structure

Fig. 4. Tree structure for multi-class SVMs. (a) The decision Directed Acyclic Graph (DAG)
for finding the best class out of four classes. The equivalent list state for each node is shown
next to that node (taken from [49]), (b) The binary tree structure for 8 classes. For a coming
test data, it is compared with each two pairs, and the winner will be tested in an upper level
until the top of the tree is reached. The numbers 1-8 encode the classes (taken from [48,9])

3 Applications of SVMs for Pattern Recognition

In this Section, we survey applications of pattern recognition using SVMs. We classify
existing applications into seven categories according to their aims. Some methods,
which are not included in major categories, are classified into other methods and there
can be more application areas which are not included in this section. Table 2 shows
the summary of major SVMs-related applications

Table 2. Summary of major SVMs-related applications

Categories Ma]:;c(llsffer- Summary of applications
Frontal face - applied SVM to face detectipp first
detection - suggested novel decomposition algo-
rithm [51]
Face - face detection/eye detection [52]
Detection To speed up face | ICA features as an input.[83]
detection on skin | - onhogonal Fourier-Mellin Moments as
segmented region an input [11]
- overcomplete wavelet decomposition
as an input [76]
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Face

To speed up face
detection

eyes-in-whole and face templates as
preprocessing [78]

calculated reduced support vectors
[79]

Multi-view face

constructed separate SVMs for face
detection on different views [26, 54,

Detection detection 80]
eigenface for a coarse face detection
. followed by an SVM for fine detection
Comblnatlon of [55]
multiple methods Majority voting on outputs of 5 differ-
ent kernels of SVMs [77]
M2VTS database reformullated Fisher’§ linear discrimi-
(EER=3.7%) nant ratio to quadratic problem to ap-
ply SVM [8]
Face
Vaerification showed that the performance of SVMs
M2VTS database was relatively insensitive to the repre-
(EER=1.0) sentation space(PCA, LDA) and pre-
processing steps [5]
ORL database bottom-up tree multi-class method
(Recognition Rate input feature for SVM was extracted
97%) by PCA [9,48]
ORL database suggested the modified kernel to ex-
(Recognition Rate plore spatial relationships of the facial
98%) features [56]
. top-down tree multi-class method
ObJe,Ct, Own database 3D range data for 3D shape features
Recognition (Recognition Rate and 2D textures are projected onto
90%) PCA subspace and PC’s are input to
SVMs [50]
compared component-based features
with global feature as an input of SVM
Own database SVM gave better performance when
component-based features were used
[10]
people recognition(4 people)
Own database pose recognition(4 poses)
Object (People Rec. Rate: compared bottom-up and top-down
Recognition 99.5% ; Pose Rec. multi-class SVM and the results

Rate : 84.5%)

showed similar performance of two
methods [24]
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COIL database
(7200 images 72
views per each
objects 100 ob-
jects)

showed that SVMs gave a good per-
formance for 3D object recognition
from single view

tested on many synthesized images
with noise, occlusion, and pixel shift-
ing [47]

illustrated the potential of SVMs in
terms of the number of training views
per object(from 36 views to 2 views)
for 3D object recognition

showed that the performance was

Object decreased much when the number of
Recognition training views were less than 18 views
[15]
people detection
Own database recognized trajectory of moving peo-
ple [57]
detected moving vehicle
constructed the problem as 2-class
Own database ir . .
problem by classifying moving vehicle
from shadows [13]
Own database radar tqrget rec0g1.114t10n [14]
pedestrian recognition [84]
used local view and global view for
Own database, charact.er recognition . .
local view model for input normaliza-
Character recog- tion
nition . .
SVM, global view model for recogni-
tion [16]
Handwritten combined structural and statistical
Character/ features are input to single SVM clas-
Digit NIST database, . p &
Recognition Handwritten sifier
disit constructed different SVM classifier
reco ii tion for each feature and then combined 2
(l%ec different SVMs by rule-based reason-

Rate:98.06%)

ing
single SVM gave better perform-
ance[17]
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NIST database,

compared the performance according
to: effect of input dimension, effect of
the kernel function(Linear, Polyno-
mial, Gaussian), comparison of differ-
ent classifier (ML, MLP, SOM+LVQ,

Handwritten . RBF, SVM), comparison of 3 types of
- Handwritten ; .
Digit L multi-class  SVM(one-to-others, pair-
N digit . ..
Recognition . wise, decision tree)[45]
recognition
extracted biologically plausible fea-
tures
showed that their extracted features
were linearly separable features by
using linear SVM classifier [18]
Uttergnce SVMs are used to accept keyword or
verification for .
. reject non-keyword for speech recog-
Speech recogni- =
. nition [22]
tion
PolyVar telephone database is used
[21]
Speaker/ new method for normalizing polyno-
Speech mial kernel to use with SVMs, YOHO
Recognition Speaker database, text independent, best
verification/ EER=0.34% [23]
recognition combined Gaussian Mixture Model in
SVM outputs
text independent speaker verification
best EER = 1.56% [20]
Brodatz texture - boundaries between classes were ob-
database tained by SVM [33]
Image SVM d
Retrieval Correl image s were used to .separate t.wo
database classes of relevant and irrelevant im-
ages [34, 36, 87]
Financial time C-ascending SVMs were suggested
series based on the assumption that it was
rediction better to give more weights on recent
Prediction p data than distant data [41]
suggested to select suitable input vari-
Bankruptcy ables that tends to discriminate within
prediction

the SVM kernel used [40]
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- FERET database : 3.4% error rate
Gender - compared SVM-based method to:

classification linear, quadratic, FLD, RBF, ensem-
ble-RBF [27]
Goal detection - ghost goal detection [64]
Fingerprint - Types of fingerprints were classified
classification into 5 classes [62]

extracted data points from huge data-
bases and the accuracy of a classifier
Other Data condensation trained on this reduced sets were com-
parable to results from training with

Classifications
the entire data sets [42]
Face pose on FERET database [31,18]
classification
bullet-hole classification for auto-
scoring [32]
white blood cell classification [88]
Other - spam categorization [89]
Classifications - cloud classification [74]
hyperspectral data classification [28]
storm cell classification [29]
image classification [30]
3.1 Face Detection and Recognition

Face detection, verification and recognition are one of the popular issues in biomet-
rics, identity authentication, access control, video surveillance and human-computer
interfaces. There are many active researches in this area for all these applications use
different methodologies. However, it is very difficult to achieve a reliable perform-
ance. The reasons are due to the difficulty of distinguishing different persons who
have approximately the same facial configuration and wide variations in the appear-
ance of a particular face. These variations are because of changes in pose, illumina-
tion, facial makeup and facial expression [50]. Also glasses or a moustache makes
difficult to detect and recognize faces. Recently many researchers applied SVMs to
face detection, facial feature detection, face verification, recognition and face expres-
sion recognition and compared their results with other methods. Each method used
different input features, different databases, and different kernels to SVMs classifier.

Face Detection: The application of SVM in frontal face detection in image was first
proposed by Osuna et al. [S1]. The proposed algorithm scanned input images with a
19x19 window and a SVM with a 2nd-degree polynomial as kernel function is trained
with a novel decomposition algorithm, which guarantees global optimality. To avoid
exhaustive scanning for face detection, SVMs are used on different features of seg-
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mented skin regions. Kumar and Poggio [52] recently incorporated Osuna et al.’s
SVM algorithm in a system for real-time tracking and analysis of faces on skin region
and also to detect eyes. In [83], SVMs classified the ICA features after applying skin
color filter for face detection and they showed that the used ICA features gave better
generalization capacity than by training SVM directly on the image data. In Terrillon
et al. [11], they applied SVM to invariant Orthogonal Fourier-Mellin Moments as
features for binary face/non-face classification on skin color-based segmented image
and compared the performance of SVM face detector to multi-layer perceptron in
terms of Correct Face Detector (CD) and Correct Face Rejection (CR). Also to speed
up the face detection, in [78], two templates : eyes-in-whole and face are used for
filtering out face candidates for SVMs to classify face and non-face classes. Another
method to improve the speed of the SVM algorithm, [79] found a set of reduced sup-
port vectors (RVs) which are calculated from support vectors. RVs are used to speed
up the calculation sequentially.

SVMs have also been used for multi-view face detection by constructing separate
SVMs specific to different views based on the pose estimation. For face recognition,
frontal view SVM-based face recognizer is used if the detected face is in frontal view
after head pose estimation [26,54,80]. Also combined methods are tried to improve
the performance for face detection. In [55], they tested the performance of three face
detection algorithms, eigenface method, SVM method and combined method in terms
of both speed and accuracy for multi-view face detection. The combined method con-
sisted of a coarse detection phase by eigenface method followed by a fine SVM phase
and could achieve an improved performance by speeding up the computation and
keeping the accuracy. Buciu et al. [77] attempted to improve the performance of face
detection by majority voting on the outputs of 5 different kernels of SVM. Papageor-
gio et al. [76] applied SVM to overcomplete wavelet representation as input data to
detect faces and people and Richman e al. [82] applied SVM to find nose cross-
section for face detection.

Face Recognition and Authentication: The recognition of face is a well-established
field of research and a large number of algorithms have been proposed in the litera-
ture. Machine recognition of faces yields problems that belong to the following cate-
gories whose objectives are briefly outlined [8]:

e Face Recognition: Given a test face and a set of reference faces in a database,
find the N most similar reference faces to the test face.

e Face authentication: Given a test face and a reference one, decide if the test
face is identical to the reference face.

Guo et al. [9,48] proposed multi-class SVM with a binary tree recognition strategy
for face recognition. Normalized feature extracted by PCA was the input of the SVM
classifier. For face recognition, the papers used different inputs to an SVM classifier.
Heisele et al. [10] developed a component-based method and global method for face
recognition. In the component-based system they extracted facial components and
combined them into a single feature vector, which is classified by SVM. The global
system used SVM to recognize faces by classifying a single feature vector consisting
of the gray values of the whole face image. Their results showed that component-
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based method outperformed the global method. Kim e? al. [56] modified SVM kernel
to explore spatial relationships among potential eye, nose, and mouth object and com-
pared their kernel with existing kernels. Wang et al. [50] proposed a face recognition
algorithm based on both of 3D range and 2D gray-level facial images. 2D texture and
3D shape features are projected onto PCA subspace and then integrated 2D and 3D
features are an input to SVM to recognize faces. For face authentication and recogni-
tion, Jonsson et al. [5] presented that SVMs extracted the relevant discriminative
information from the training data and the performance of SVMs was relatively insen-
sitive to the representation space and preprocessing steps. Tefas et al. [8] reformulated
Fisher’s discriminant ratio to a quadratic optimization problem subject to a set of
inequality constraints to enhance the performance of morphological elastic graph
matching for frontal face authentication. SVMs, which find the optimal separating
hyperplane are constructed to solve the reformulated quadratic optimization problem
for face authentication.

3.2 Object Detection and Recognition

Object detection or recognition aims to find and track moving people or traffic situa-
tion for surveillance or traffic control. Nakajima et al. [24] developed people recogni-
tion and pose estimation as a multi-class classification problem. This paper used bot-
tom-up and top-down multi-class SVMs and the two types of SVM classifiers showed
very similar performance.

3D object recognition was developed in [15] and [47]. Both of them used COIL object
database, which contained 7200 images of 100 objects with 72 different views per
each object. Roobaert ef al. [15] proposed 3D object recognition with SVMs to illus-
trate the potential of SVMs in terms of the number of training views per object. Their
result showed that the performance was decreased much when the number of training
views was less than 18 views. M. Pontil and A.Verri [47] used linear SVMs for as-
pect-based 3D object recognition from a single view without feature extraction, data
reduction and estimating pose. They tested SVM method on the synthesized images of
COIL database with noise, occlusion, and pixel shifts and got very good performance.
Pittore et al. [57] proposed a system that was able to detect the presence of moving
people, represented the event by using an SVM for regression, and recognized trajec-
tory of visual dynamic events from an image sequence by SVM classifier. Gao et al.
[13] proposed a shadow and headlights elimination algorithm by considering this
problem as a 2-class problem. That is, the SVM classifier was used to detect real
moving vehicles from shadows. Some other object recognitions were on radar target
recognition[14] and pedestrian recognition [84].

33 Handwritten Character/Digit Recognition

Among the SVM-based applications, on the handwritten digit recognition problem,
SVMs have shown to largely outperform all other learning algorithms, if one excludes
the influence of domain-knowledge [15]. A major problem in handwriting recognition
is the huge variability and distortions of patterns. Elastic models based on local obser-
vations and dynamic programming such as HMM are efficient to absorb this variabil-
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ity. But their vision is local [16]. To combine the power of local and global character-
istics, Choisy et al. [16] used NSPH-HMM for local view and normalization. SVM for
global view is used for character recognition after normalization of NSPH-HMM. For
handwritten digit recognition, SVMs are used in [17], [18] and [45]. Gorgevik et al.
[17] used two different feature families (structural features and statistical features) for
handwritten digit recognition using SVM classifier. They tested single SVM classifier
applied on the both feature families as one set. Also two feature sets are forwarded to
2 different SVM classifiers and obtained results are combined by rule-based reason-
ing. The paper showed that single SVM classifier was better than rule-based reasoning
applied to 2 individual classifiers. Teow et al. [18] had developed a vision-based
handwritten digit recognition system, which extracts features that are biologically
plausible, linearly separable and semantically clear. In their system, they showed that
their extracted features were linearly separable features over a large set of training
data in a highly non-linear domain by using linear SVM classifier. In [45], they
showed the performance of handwritten digit recognition according to (1) the effect of
input dimension, (2) effect of kernel functions, (3) comparison of different classifi-
ers(ML, MLP, SOM+LVQ, RBF, SVM) and (4) comparison of three types of multi-
class SVMs(one-to-others, pair-wise, decision tree).

34 Speaker/Speech Recognition

In speaker or speech recognition problem, the two most popular techniques are dis-
criminative classifiers and generative model classifiers. The methods using discrimi-
native classifiers consist of decision tree, neural network, SVMs, and etc. The well-
known generative model classification approaches include Hidden Markov models
(HMM) and Gaussian Mixture models (GMM) [20]. For training and testing data,
there are text dependent and text independent data. Bengio er al.[21] and Wan et
al.[23] used SVMs for speaker verification on different data sets. In [21], they ex-
perimented on text dependent and text independent data and replaced the classical
thresholding rule with SVMs to decide accept or reject for speaker verification. Text
independent tasks gave significant performance improvements. [23] proposed a new
technique for normalizing the polynomial kernel to use with SVMs and tested on
YOHO database. Dong et al. [20] reported on the development of a natural way of
achieving combination of discriminative classifier and generative model classifiers by
embedding GMM in SVM outputs, thus created a continuous density support vector
machine (CDSVM) for text independent speaker verification. For utterance verifica-
tion which is essential to accept keywords and reject non-keywords on spontaneous
speech recognition, Ma et al. [22] have trained and tested SVMs classifier to the con-
fidence measurement problem in speech recognition.

3.5 Information and Image Retrieval

Content-based image retrieval is emerging as an important research area with applica-
tions to digital libraries and multimedia databases[33]. Guo et al. [33] proposed a new
metric, distance-from-boundary to retrieve the texture image. The boundaries between
classes are obtained by SVM. To retrieve more images relevant to the query image,
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SVM classifier was used to separate two classes of relevant images and irrelevant
images in [36,34,87]. Drucker et al. [36], Tian et al. [34] and Zhang et al. [87] pro-
posed that SVMs automatically generated preference weights for relevant images. The
weights were determined by the distance of the hyperplane, which was trained by
SVMs using positive examples (+1) and negative examples (-1).

3.6 Prediction

The aim of many nonlinear forecasting methods[37,39,40,41] is to predict next points
of time series. Tay and Cao [41] proposed C-ascending SVMs by increasing the value
of C, the relative importance of the empirical risk with respect to the growth of regu-
larization term. This idea was based on the assumption that it was better to give more
weights on recent data than distant data. Their results showed that C-ascending SVMs
gave better performance than standard SVM in financial time series forecasting. Fan et
al. [40] had adopted SVM approach to the problem of predicting corporate distress
from financial statements. For this problem, the choice of input variables (financial
indicators) affects the performance of the system. This paper had suggested selecting
suitable input variables that maximize the distance of vectors between different
classes, and minimize the distance within the same class. Euclidean distance—based
input selection provided a choice of variables that tends to discriminate within the
SVM kernel used.

3.7 Other Applications

There are many more applications of SVMs for pattern recognition problems. Yang
et al. [27] have investigated SVMs for visual gender classification with low-resolution
“thumbnail” faces (21-by-12 pixels) processed from 1,755 images from the FERET
face database. Then they trained and tested each classifier with the face images using
five fold cross validation. The performance of SVM (3.4% error) was shown to be
superior to traditional pattern classifiers (linear, quadratic, FLD, RBF, ensemble-
RBF). Gutta et al. [31] have applied SVMs to face pose classification on FERET
database and their results yielded 100% accuracy. Also Huang et al. [81] applied
SVMs to classify into 3 different kinds of face poses. Yao et al. [62] proposed to
classify fingerprint types into 5 different fingerprint classes. SVMs were trained on
combining flat and structured representation and showed good performance and
promising approach for fingerprint classification.

In addition, SVMs had been applied to many other applications such as data conden-
sation [42], goal detection [64], and bullet-hole image classification [32]. Data con-
densation [42] was to select a small subset from huge databases and the accuracy of a
classifier trained on such reduced data set were comparable to results from training
with the entire data sets. The paper extracted data points lying close to the class
boundaries, SVs, which form a much reduced but critical set for classification using
SVMs. But the problem of large memory requirements for training SVMs in batch
mode was solved so that the training would preserve only the SVs at each incremental
step, and add them to the training set for the next step, called incremental learning.
Goal detection for a particular event, ghost goals, using SVMs was proposed by An-
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cona et al. [64]. Xie et al. [32] focused on the application of SVM for classification of
bullet-hole images in an auto-scoring system. The image was classified into one, two
or more bullet-hole images by multi-class SVMs. White blood cells classification[88],
spam categorization[89], text detection and categorization [85,86] and more others
[63, 65] are applied SVMs. .

4 Limitations of SVM

The performance of SVMs largely depends on the choice of kernels. SVMs have only
one user-specified parameter C, which controls the error penalty when the kernel is
fixed, but the choice of kernel functions, which are well suited to the specific problem
is very difficult [44]. Smola et al. [66] explained the relation between the SVM kernel
method and the standard regularization theory. However, there are no theories con-
cerning how to choose good kernel functions in a data-dependent way [4]. Amari and
Wu [4] proposed a modified kernel to improve the performance of SVMs classifier. It
is based on information-geometric consideration of the structure of the Riemannian
geometry induced by the kernel. The idea is to enlarge the spatial resolution around
the boundary by a conformal transformation so that the separability of classes is in-
creased.

Speed and size is another problem of SVMs both in training and testing. In terms of
running time, SVMs are slower than other neural networks for a similar generalization
performance [68]. Training for very large datasets with millions of SVs is an unsolved
problem [44]. Recently, even though Platt [69] and Keerthi et al. [70] proposed SMO
(Sequential Minimization Optimization) and modified SMO to solve the training
problem, it is still an open problem to improve.

The issue of how to control the selection of SVs is another difficult problem, par-
ticularly when the patterns to be classified are nonseparable and the training data are
noisy. In general, attempts to remove known errors from the data before training or to
remove them from the expansion after training will not give the same optimal hyper-
plane because the errors are needed for penalizing nonseparability [68].

Lastly, although some researches have been done on training a multi-class SVM,
the work for multi-class SVM classifiers is an area for further research [44].

5 Conclusion

We have presented a brief introduction on SVMs and several applications of SVMs in
pattern recognition problems. SVMs have been successfully applied to a number of
applications ranging from face detection and recognition, object detection and recog-
nition, handwritten character and digit recognition, speaker and speech recognition,
information and image retrieval, prediction and etc. because they have yielded excel-
lent generalization performance on many statistical problems without any prior knowl-
edge and when the dimension of input space is very high. In this paper, we did not
compare the performance results for same application.
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Some researches compared the performance of different kinds of SVM kernels to
solve their problems and most results showed that RBF kernel was usually better than
linear or polynomial kernels. RBF kernel performs usually better than others for sev-
eral reasons such as (1) it has better boundary response as it allows extrapolation and
(2) most high dimensional data sets can be approximated by Gaussian-like distribu-
tions similar to that used by RBFs[81].

Among the application areas, the most popular research fields to apply SVMs are
for face detection, verification and recognition. SVMs are binary class classifiers and
it was first applied for verification or 2 class classification problems. But SVMs had
been used for multi-class classification problems since one to others and pairwise
bottom-up, top-down multi-class classification methods were developed.

Most of applications using SVMs showed SVMs-based problem solving outper-
formed to other methods. Although SVMs do not have long histories, it has been ap-
plied to a wide range of machine learning tasks and used to generate many possible
learning architectures through an appropriate choice of kernels. If some limitations
related with the choice of kernels, training speed and size are solved, it can be applied
to more real-life classification problems.
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