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Adaptive Fuzzy Rule- YS 
Ken Nozaki, Hisao Ishibuchi, Member, IEEE, and Hideo Tanaka, Member, IEEE 

Abstract-This paper proposes an adaptive method to construct 
a fuzzy rule-based classification system with high performance 
for pattern classification problems. The proposed method consists 
of two procedures: an error correction-based learning procedure 
and an additional learning procedure. The error correction-based 
learning procedure adjusts the grade of certainty of each fuzzy 
rule by its classification performance. That is, when a pattern is 
misclassified by a particular fuzzy rule, the grade of certainty 
of that rule is decreased. On the contrary, when a pattern is 
correctly classified, the grade of certainty is increased. Because 
the error correction-based learning procedure is not meaningful 
after all the given patterns are correctly classified, we cannot 
adjust a classification boundary in such a case. To acquire a 
more intuitively acceptable boundary, we propose an additional 
learning procedure. We also propose a method for selecting 
significant fuzzy rules by pruning unnecessary fuzzy rules, which 
consists of the error correction-based learning procedure and the 
concept of forgetting. We can construct a compact fuzzy rule- 
based classification system with high performance. Finally, we test 
the performance of the proposed two methods on the well-known 
iris data. 

I. INTRODUCTION 

UZZY systems based on fuzzy rules have been suc- 
cessfully applied to various control problems [ 191, [28]. 

In many application tasks, fuzzy rules were usually derived 
from human experts as linguistic knowledge. Because it is 
not always easy to derive fuzzy rules from human experts, 
recently several methods have been proposed for automatically 
generating fuzzy rules from numerical data (for example, 
see [29], [31], and [32]). For pattern classification problems, 
several classification methods based on fuzzy set theory [34] 
have been proposed (for example, [121, [131, [71, [81, and [261). 
In Grabisch et al. [7], [8], those fuzzy classification methods 
were classified into four categories. We summarize the four 
categories in Table I. Fuzzy rule-based classification methods 
were classified into the first category, i.e., the methods based 
on fuzzy relations. 

Let us consider fuzzy rules in a two-dimensional pattern 
space XI x X2 such as “If z1 is A and z 2  is B then (z1, z2) 
belongs to Class 1 with a 0.9 degree of certainty” where A 
and B are fuzzy subsets on X I  and X z ,  respectively. Each 
fuzzy rule defines a fuzzy subspace of the pattern space. Fig. 1 
illustrates how a fuzzy rule defines the corresponding fuzzy 
subspace. As we can see from Fig. 1, the fuzzy subspace is 
locally represented by the antecedent of the fuzzy rule. That 
is, the knowledge for classification problems is expressed by 
each fuzzy rule with local representation [27] or local approx- 
imation [ 171. In general, local representation-based methods, 
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TABLE I 
FUZZY CLASSIFICATION METHODS 

method based on example 
fuzzy relations fuzzy-rule-based methods [12, 13, 301 

’ linguistic recognition system [25] 
fuzzy pattern matching weighted fuzzy pattern matching [5] 

fuzzy integral [8] 
fuzzy clustering fuzzy c-means [2] 
other methods fuzzy k-nearest-neighbor [3, 181 

fuzzv decision tree 141 

pattern space - r! 

Fig. 1. Local representation by fuzzy rules. 

including look-up tables, nearest-neighbor algorithms, and 
RBF networks [21], [22], have the advantage of requiring 
relatively small computation time and yield intelligible repre- 
sentation. One of the features of local representation by fuzzy 
rules is that the fuzzy rules partially overlap with one another 
as shown in Fig. 1. Therefore, the obtained classification 
boundary can be smooth because of the interpolation technique 
well known in fuzzy logic control. On the other hand, we 
cannot obtain a smooth classification boundary by using, for 
example, a look-up table based on the crisp partition of a 
pattern space. This is illustrated in Fig. 2. 

Now let us focus our attention on fuzzy rule-based classifi- 
cation methods. Generation of fuzzy rules from numerical data 
for pattern classification problems consists of two phases: how 
to partition a pattern space into fuzzy subspaces and how to 
define a fuzzy rule for each fuzzy subspace. Ishibuchi et al. 
[ 121 have proposed a fuzzy rule-based classification method 
based on a fuzzy partition by a simple fuzzy grid (known, 
henceforth, as the simple fuzzy grid method). Fig. 3 illustrates 
an example of the fuzzy partition of a two-dimensional pattern 
space by the simple fuzzy grid method. The simple fuzzy 
grid method can be viewed as a method based on local 
representation. When we use the simple fuzzy grid method, the 
classification performance directly depends on the choice of a 
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look-up table boundary 
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Fig. 2. 
classification system 
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Fig. 3. Fuzzy partition by a simple fuzzy grid. 

fuzzy partition. That is, if the fuzzy partition is too coarse, a 
number of patterns may be misclassified. On the contrary, if it 
is too fine, a lot of fuzzy rules cannot be generated because of a 
lack of training pattems in the corresponding fuzzy subspaces. 
Therefore, the choice of the fuzzy partition is very important 
but difficult. 

To reduce the dependency of the classification performance 
on the choice of the fuzzy partition, Ishibuchi et al. [ 121 have 
proposed a fuzzy classification method that simultaneously 
employs several fuzzy partitions of different sizes in a single 
fuzzy rule-based classification system. The idea of this method 
is illustrated in Fig. 4 where K is the number of fuzzy 
subsets on each axis of the pattern space. It can be seen from 
Fig. 4 that this method employs multiple fuzzy rule tables. 
Therefore, we call this method the multirule table method. 
The main drawback of the multirule table method is that 

/- \ 

input 
+ 

/ 
K=5 

Fig. 4. Multirule table method. 

Fig. 5.  CMAC. 

the number of fuzzy rules would be enormous, especially for 
high-dimensional classification problems. 

The idea of employing plural partitions of an input space 
has been used in the cerebellar model articulation controller 
(CMAC) [ 11 illustrated in Fig. 5 where several partitions have 
been generated by sliding the grid. As seen from Figs. 4 and 5 ,  
CMAC employs several partitions with the same size, whereas 
the multirule table method uses those with different sizes. 
In the multirule table method, we can acquire a generalized 
fuzzy rule table from a coarse fuzzy partition (e.g., see the top 
table with K = 2 in Fig. 4). On the contrary, we can get a 
specialized fuzzy rule table from a fine fuzzy partition (e.g., 
see the bottom table with K = 5 in Fig. 4). Therefore, the 
process of choosing a fuzzy partition in the simple fuzzy grid 
method can be viewed as finding the compromise between 
generalization and specialization in machine learning [20]. 
Such a compromise is not necessary in the multirule table 
method because generalized and specialized fuzzy rule tables 
are simultaneously employed. 

In Ishibuchi et al. [12], the grade of certainty of each fuzzy 
rule is determined by a heuristic method without learning 
(i.e., one-pass algorithm). The advantage of such a heuristic 
method is that we require neither time-consuming iterative 
computation nor complicated learning procedures. However, it 
can be expected that the classification power may be improved 
by modifying the grade of certainty of each fuzzy rule. In 
this study, we will propose an adaptive fuzzy rule-based 
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classification method (known, henceforth, as the adaptive 
method) that can adjust the grade of certainty of each fuzzy 
rule by a simple error correction-based learning procedure 
and an additional learning procedure. The advantages of the 
adaptive method are: i) we can obtain a fuzzy rule-based 
classification system with high performance by adjusting the 
grades of certainty of the fuzzy rules, and ii) we do not require 
a fine fuzzy partition of a pattern space for even complex 
classification problems. That is, we can get a high performance 
classification system with a coarse fuzzy partition. This means 
that the adaptive method can construct a compact classification 
system with a small number of fuzzy rules. 

We also suggest a rule pruning method to remove unnec- 
essary fuzzy rules by applying the concept of forgetting in a 
destructive method [ 161 to a fuzzy rule-based classification 
system. In the pruning method, we also employ the error 
correction-based learning procedure of the adaptive method. 

This paper is organized as follows. In Section 11, we give 
a brief description of the simple fuzzy grid method and 
the multirule table method. In Section 111, we propose an 
adaptive method of a fuzzy rule-based classification sys- 
tem, which consists of an error correction-based learning 
procedure and an additional learning procedure. We exam- 
ine various specifications of learning constants in the error 
correction-based learning procedure. We also demonstrate that 
the additional learning procedure can generate an intuitive 
acceptable classification boundary. In Section IV, we propose 
a pruning method that is based on the concept of forgetting 
for selecting significant fuzzy rules and removing unnecessary 
fuzzy rules to build a compact fuzzy rule-based classification 
system. Section V provides the performance evaluation of 
the proposed methods by applying them to the ins data 
[6]. We discuss the limitations of the proposed methods and 
suggest possible extensions in Section VI. Section VI1 gives 
the conclusion. 

11. FUZZY RULE-BASED CLASSIFICATION SYSTEMS 
In this section, we briefly describe the fuzzy rule-based clas- 

sification method proposed in Ishibuchi et al. [12]. The fuzzy 
rule-based classification method consists of two procedures: a 
fuzzy rule generation procedure and a classification procedure. 
We also give a brief description of the multirule table method. 

A. Fuzzy Rule Generation Procedure 

Let us assume that a pattern space is the unit square [O, 
11 x [0, 11 for enhancing graphical illustration. Suppose that 
m patterns xp : (xpl, xp2), p = 1, 2, " ' ,  m, are given 
as training patterns from M classes: Class 1 (Cl), Class 2 
(C2);  ..., Class M (CM) .  That is, the classification of each 
z p ( p  = I, 2, . . . >  m) is known as one of M classes. The 
classification problem here is to generate fuzzy rules that 
divide the pattern space into M disjoint decision areas. For 
this problem, we employ fuzzy rules of the following type 

If zpl is A: and xp2 is A: 
then xp belongs to C c  with CF = CF%Y, 

Rule RE: 

i = 1, 2, . . . ,  K ;  j = 1, 2, ' " )  K (1) 

where K is the number of fuzzy subsets on each axis of the 
pattern space, RC is the label of the fuzzy rule, A: and 
A; are fuzzy subsets on the unit interval [0, 11, C c  is the 
consequent (i.e., one of M classes), and CF is the grade of 
certainty of the fuzzy rule. 

In this paper, we employ symmetric triangle-shaped mem- 
bership functions for A: and Aj" in the antecedent of (1) 
though we can use other types of membership functions e.g., 
trapezoid-shaped or bell-shaped. Let us assume that each axis 
of the pattern space is evenly partitioned into K fuzzy subsets 
Af , A?, . . . , AE where AY is defined by the symmetric 
triangle-shaped membership function 

where 

( 3 )  

(4) 

Fig. 3 shows the fuzzy partition and the triangle-shaped mem- 
bership functions for K = 5. The simple fuzzy grid method in 
Ishibuchi et al. [12] uses the K 2  fuzzy rules in (1) generated 
by the K x K simple fuzzy grid such as Fig. 3. 

The consequent C c  and the grade of certainty CFtY of 
the fuzzy rule RE in (1) can be determined by the following 
procedure. 

Procedure 1-Generation of Fuzzy Rules: 
1) Calculate PCT for T = 1, 2, . . . , M as 

p E C T  

2) Find Class X ( C X )  by 

(5) 

If multiple classes take the maximum value in (6), 
the consequent C t  of the fuzzy rule corresponding to 
the fuzzy subspace A: x A: cannot be determined 
uniquely. Thus, let C c  be q5 and the procedure is 
terminated. Otherwise, CE is determined as C X  in (6). 

3) CFzY is determined as 

PCT 
T=l 

where 

PCT 

C T f C X  

(7) 

In this procedure, the consequent C c  is determined as the 
class that has the largest sum of p 7 ( z p l )  .kF(zp2) .  The fuzzy 
rules with the consequent of q5 are called dummy rules that 
have no effect on fuzzy inference in the classification phase. 
Thus, when there is no pattern in the fuzzy subspace A: x A:, 
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Fig. 6. Two-class classification problem. 

this procedure generates a dummy rule as the fuzzy rule RE. 
By Procedure 1, K 2  fuzzy rules are generated from the given 
training patterns for the K x K simple fuzzy grid. 

The compatibility grade of the training pattern xp to the 
fuzzy rule RE is defined by the product operator in (5) 
instead of the minimum operator which has been used in many 
fuzzy control systems. These two operators were compared 
in Ishibuchi et al. [14] where the superiority of the product 
operator in classification performance was demonstrated by 
computer simulations. 

There is one possible way to extend the fuzzy rules in (1) 
when multiple classes take the maximum value of &T. Let 
us assume that Class 1 and Class 3 take the maximum value 
of PCT. In this case, we can generate a fuzzy rule with the 
consequent “Class 1 or Class 3” instead of a dummy rule. 
While such a fuzzy rule with multiple classes in the consequent 
part can give useful information (i.e., possible classes in the 
corresponding fuzzy subspace), it is not used in this paper 
because its introduction may spoil the simplicity of the simple 
fuzzy grid method. Utilization of such a fuzzy rule is left for 
future work. 

Let us consider a two-class classification problem shown in 
Fig. 6 where closed circles and open circles denote training 
patterns from Class 1 and Class 2, respectively. We applied 
Procedure 1 to the classification problem shown in Fig. 6 using 
various values of K (i.e., K = 2-7). The generated fuzzy rules 
are shown in Fig. 7. In each figure, hatched area, dotted area, 
and painted area represent the following: 

1) Hatched area: The consequent of the generated fuzzy 

2) Dotted area: The consequent of the generated fuzzy rule 

3) Painted area: A dummy rule is generated in this area. 
As seen from Fig. 7, dummy rules denoted by the painted 

areas were generated for K = 4-7 because there is no training 
pattern in the corresponding fuzzy subspaces. It should be 
noted that the grid lines in Fig. 7 are not crisp boundaries 
between fuzzy rules. As is shown in Fig. 3, the grid lines 
in the pattern space show the 0.5 levels of the fuzzy subsets 
on each axis. This explains why fuzzy rules are generated 
at some areas with no training patterns such as the top-left 
and bottom-right ones for the case of K = 3. For example, 
the top-left fuzzy rule generated for K = 3 seems to have 
no training patterns in Fig. 7, but its actual fuzzy subspace 
ranges from the top-left corner (0, 1) to the center point 
(0.5, 0.5) of the two-dimensional pattern space [0, 112. Thus, 

rule in this area is Class 1 (closed circles). 

in this area is Class 2 (open circles). 

K=3 
(b) 

K=6 
( e )  

Fig. 7. Generated fuzzy rules. 

K=7 
(0 

that fuzzy rule includes two closed circles (Le., Class 1 
patterns). 

B. Classification Procedure 

Let us assume that a rule set S is given to form a fuzzy 
rule-based classification system. Using the fuzzy rules in S, 
we can classify an unknown pattern xp = ( zp l ,  xp2) by the 
following procedure. 
Procedure 2-Classification of an Unknown Pattern 
x p  = (Zpl,  z p 2 ) :  

1) Calculate QCT for T = 1, 2, . . . , M as 

(9) 

Find Class X ( C X )  maximizing QCT by 

Q C X  = max(ac1, QC2, . . . ,  Q C M } .  (10) 

When multiple classes take the maximum value in (lo), 
xp cannot be classified, i.e., xp is considered as an 
unclassifiable pattern. Otherwise, zp is classified as 
Class X ( C X )  determined by (10). 
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In this procedure, the result of the fuzzy inference is the 
consequent of the fuzzy rule with the maximum value of 
p F ( z p l )  . p y ( x p z )  .CFiy. Therefore, when there are no fuzzy 
rules with p F ( ~ ~ l ) . p F ( z ~ 2 )  > 0 and CF; > 0, the unknown 
pattern xp cannot be classified. When multiple classes take 
the maximum value of Q ~ C T  in (lo), the classification of the 
unknown pattern is rejected in this procedure. This procedure 
can easily be extended to indicate possible classes of the un- 
known pattern. For example, when Class 1 and Class 3 take the 
maximum value of QCT, these two classes can be suggested as 
the possible classes of the unknown pattern. While we do not 
allow such a classification strategy in computer simulations of 
this paper, information about possible classes of the unknown 
pattern may be useful in some application areas. 

We here introduce a confidence level for the classification 
of an unknown pattem xp, which can be considered a mem- 
bership value of that pattern to the classification result C X .  
Let g p  be a confidence level defined as 

where QCI , Q C ~ ,  . . . , QCM and acx are defined by (9) and 
(lo), respectively. 

We applied Procedure 2 to the classification problem in 
Fig. 6. Classification results by the fuzzy rules for K = 
2-7 are shown in Fig. 8 where (a)-(f) are corresponding to 
those in Fig. 7. In Fig. 8, the curves denote the classification 
boundaries between Class 1 and Class 2, and the painted areas 
describe unclassifiable regions. As seen from Fig. 8, when the 
fuzzy partition of the pattern space is too coarse ( K  = 2, 3), 
we cannot correctly classify all the given training patterns. 
On the contrary, when it is too fine ( K  = 6, 7), there are 
several unclassifiable regions because the dummy rules were 
generated in those fuzzy subspaces. In this example, we can 
correctly classify all the training patterns by the fuzzy rules for 
K = 6, 7. In Fig. 7, we should note again that the grid lines 
in the pattern space are not crisp boundaries between fuzzy 
rules. This explains why the painted areas in Fig. 8 are much 
smaller than those in Fig. 7. 

In general, when the fuzzy partition is too coarse, we cannot 
obtain a classification boundary without misclassification. On 
the contrary, when the fuzzy partition is too fine, we cannot 
generate a number of fuzzy rules because of a lack of training 
patterns in the corresponding fuzzy subspaces. 

C. Multirule Table Method 
As one possible approach to cope with the above-mentioned 

issue, Ishibuchi et al. [12] have proposed the multirule table 
method, which simultaneously employs several fuzzy part- 
tions of different sizes in a single fuzzy rule-based classifica- 
tion system as shown in Fig. 4. Fig. 9 shows the classification 
result of the multi-rule-table method using the fuzzy partitions 
with K = 2-6, i.e., all the fuzzy rules corresponding to K = 
2-6. As seen from Fig. 9, all the training patterns are correctly 
classified without unclassifiable regions. 

K=6 
(e) 

K=7 
(0 

Fig. 8. Classification results by the simple fuzzy grid method. 

Fig. 9. Classification result by the multirule table method 

111. ADAPTIVE FUZZY RULE-BASED CLASSIFICATION SYSTEMS 

In the fuzzy rule-based classification systems described 
previously, the classification boundary was determined by the 
two neighboring fuzzy rules with different consequent classes. 
To illustrate how a classification boundary is determined, let 
us consider the following fuzzy rules in a one-dimensional 
pattern space 

R I :  I f z i s A l  

R2: IflcisA2 

then z belongs to Class 1 with C F  = CF1, (12) 

then z belongs to Class 2 with CF = CFz (13) 
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where A1 and A2 are fuzzy subsets. Fig. 10 illustrates the 
classification boundary defined by these fuzzy rules. In Fig. 10, 
the dotted lines denote the membership functions of AI and 
A2, and the solid lines describe the products of the membership 
functions and the corresponding grades of certainty. As seen 
from Fig. 10, the classification boundary is determined by the 
equation p, l (z )  . CFl = p2(5) . CF2 where p l (z )  and pz(x )  
are the membership functions of A1 and A2, respectively, That 
is, the classification boundary is defined by the ratio of CF1 
and C F2. 

In the simple fuzzy grid method, the grades of certainty of 
fuzzy rules are determined by Procedure 1, i.e., a heuristic 
method without learning capability. Therefore it is possible to 
improve the classification performance by adjusting the grades 
of certainty of the fuzzy rules generated by Procedure 1. To 
construct a fuzzy rule-based classification system with high 
performance, we here propose an adaptive fuzzy rule-based 
classification method. The adaptive method consists of two 
procedures: an error correction-based learning procedure to 
sequentially adjust the grades of certainty of the fuzzy rules 
and an additional learning procedure to acquire an intuitively 
acceptable classification boundary. First, we illustrate the 
error correction-based learning procedure, then we propose an 
adaptive fuzzy rule-based classification method with both the 
error correction-based learning procedure and the additional 
learning procedure. 

A. Learning Procedure 
To adjust the grades of certainty of the fuzzy rules, we 

use the following error correction-based learning procedure 
(Procedure 3A). 
Procedure 3A--Error Correction-Based Learning Procedure: 
For a training pattern xp = ( zp l ,  z p ~ ) ,  find a fuzzy rule RZ 
satisfying the following equation: 

max (ac1, ac2, . . . , W M }  = 

$(zp l )  . pjK(zp2) . CFC (14) 

where (YCT(T = 1, 2, . . . ,  M )  is calculated by (9). Adjust 
the grade of certainty of the fuzzy rule RZ obtained by (14) 
as follows: 

1) when xI, is correctly classified by RE 

(15) CFC := CF: + 71(1 - CF;j K ) 

and 
2) when zr, is misclassified by R$ 

C F g  := CFG - 7 2 .  CF; (16) 

where 71 and r/2 are learning constants. 
In this procedure, first we find the fuzzy rule RE having the 

maximum product of the compatibility and the certainty [i.e., 
p F ( x p l )  . #(zp2)  . CF;] among all the fuzzy rules in the 
rule set S. That is, we choose the fuzzy rule that classifies the 
given training pattern 'cp. Next, when the selected fuzzy rule 
correctly classifies the training pattern, the grade of certainty of 
this rule is increased by (15). Otherwise, the grade of certainty 
is decreased by (16). 

boundary 

0 '  input value x 

Fig. 10. Classification boundary determined by two fuzzy d e s .  

Generally, because the number of correctly classified pat- 
terns is much larger than that of misclassified patterns as 
shown in Fig. 8, the grade of certainty of each fuzzy rule tends 
to be increased to its upper limit (i.e., CF; N 1) by (15) if we 
assign the same value to the learning constants 71 and 7 2 .  To 
avoid this tendency, we should specify 71 to be much smaller 
than 7 2 ,  i.e., 0 < 71 << 7 2  < 1. Appropriate specifications of 
these two learning constants will be examined by computer 
simulations in this subsection later. 

A learning method with Procedure 3A for generating a fuzzy 
rule-based classification system can be written as the following 
algorithm. 

Learning Method with Procedure 3A 

Step 1) Initialization: 
1) The number of iterations of the algorithm is set 

as J = 0. Let .I,,, be the maximum number of 
iterations, and let E be the desirable classification 
sate. 

2) Let K be the number of the fuzzy subspaces on each 
axis of a pattern space. 

3) Generate the fuzzy rules for the given K by Pro- 
cedure 1 mentioned in Section 11. Then denote the 
generated fuzzy rules by the rule set S. 

Step 2) Classification: 
1) Classify all the training patterns by Procedure 2 

mentioned in Section I1 with the fuzzy rules in the 
rule set S. Calculate the classification rate of the 
training patterns. 

2) When J = Jmax, stop the algorithm. 
Step 3) Adjustment of the Grades of Certainty: 

1) When the classification rate of the training patterns 
is higher than or equal to the desirable classification 
rate E ,  stop the algorithm. 

2) Set J := Jf 1. 
3) Perform Procedure 3A for each xp, 

. . . ,  m. 
4) Go back to Step 2). 

p = 1, 2, 

In this algorithm, the initial values of the grades of certainty 
of the fuzzy rules are determined by the heuristic method (i.e., 
Procedure l), and the learning of the grades of certainty is 
performed pattern by pattern. Thus, the order in which the 
training patterns are used may have some influence on the 
result of the learning algorithm. This influence can be reduced 
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by using small values of the learning constants. The learning 
method can be also implemented as a batch procedure (i.e., the 
grades of certainty are changed after all the training pattems 
are used). 

When the fuzzy partition is too coarse to attain the desirable 
classification rate E ,  the learning method is not terminated 
until the maximum iteration J,,,. In this case, the oscillation 
of classification boundaries may occur. Bad effect of this 
oscillation can be reduced by using small values of the 
learning constants. The introduction of the momentum term 
to the learning of the grades of certainty may also reduce the 
oscillation. 

While we only use the maximum iteration number J,,, and 
the desirable classification rate E as the stopping conditions 
of this algorithm for simplicity, other stopping conditions 
can be included in the learning method to avoid unnecessary 
learning iterations. For example, if the algorithm monitors the 
difference between the current status and the previous one, 
it can be automatically terminated when no improvement is 
expected from more iterations. 

We illustrate this learning method with Procedure 3A by 
applying it to the two-class classification problem shown in 
Fig. 6. To investigate the relationship between the values of 
the learning constants (i.e., ~1 and r / 2 )  and the learning speed, 
we performed nine numerical experiments where the leaming 
constants ~1 and 772 were chosen from 0.001, 0.01, and 0.1. In 
these experiments, the stopping conditions of this method were 
set as J,,, = 1000 and E = 100%. Table I1 shows the number 
of iterations required for correctly classifying all the training 
patterns under the various values of the leaming constants. 
From Table 11, we can summarize as follows: 

1) When ~1 was larger than or equal to 772, all the training 
pattems could not be correctly classified until 1000 
iterations of the algorithm. That is, the learning constants 
should be specified as 0 < 71 << r/z  < 1. 

2) When the learning constants were too small, the learning 
speed was slow. For example, the required number 
of iterations for correctly classifying all the training 
patterns in the second row (i.e., ~1 = 0.001 and Q = 
0.01) was more than ten times as large as that in the 
third row (i.e., rll = 0.001 and r/2 = 0.1). Thus, if we 
use very small values of the learning constants such as 
ql = 0.00001 and r/2 = 0.0001, the learning is terribly 
slow while the learning constants satisfy the condition 
of 0 < 

We employ the learning constants ~1 = 0.001 and 7 2  = 
0.1 in the later experiments, which gave the best results in 
Table 11. 

We applied the learning method with Procedure 3A using 
K = 2-5 to the classification problem shown in Fig. 6. The 
classification results are shown in Fig. 11. From the compar- 
ison of Fig. 11 with Fig. 8, we can see that the classification 
boundaries between two classes were moved by the learning 
in the direction of correctly classifying the training pattems 
as much as possible. Therefore, all the training patterns can 
be correctly classified by fewer fuzzy rules in the learning 
method with Procedure 3A than in the simple fuzzy grid 

<< Vz < 1. 

TABLE I1 
RELATIONSHIP BETWEEN THE VALUES OF THE 

LEARNING CONSTANTS AND THE NUMBER OF ITERATIONS 

Number of iterations 
" 'V2 K = 2  K = 3  K = 4  K = 5  

0.001 0.001 * * * * 
0.001 0.01 * 255 33 27 
0.001 0.1 * 5 3 2 

0.01 0.001 * * * * 
0.01 0.01 * * * * 
0.01 0.1 * 49 4 3 
0.1 0.001 * * * * 
0.1 0.01 * * * * 
0.1 0.1 * * * * 

* :All the training patterns could not be 
correctly classified until 1000 iterations. 

K=4 
(C) 

K=5 
(d) 

Fig. 11. Classification results by the learning method with Procedurz 3A. 

method. For example, while the 36 fuzzy rules for K = 6 
were required for correctly classifying all the training patterns 
in the simple fuzzy grid method [see Fig. 8(e)], the nine 
fuzzy rules for K = 3 can correctly classify them [see 
Fig. 1 l(b)]. This means that the learning method can improve 
the classification power by adjusting the grades of certainty 
of the fuzzy rules. 

It should be noted that the learning method with Procedure 
3A requires a relatively small number of learning iterations 
when the learning constants are appropriately specified (see 
Table 11). That is, when the learning constants were specified 
as r) l  = 0.001 and 7 2  = 0.1, all the training patterns were 
correctly classified after five iterations for K = 3, after three 
iterations for K = 4 and after two iterations for K = 5. 
It is because we use the grades of certainty determined by 
Procedure 1 as the initial values, which have been already 
well defined to classify the training pattems. 
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B. Additional Learning 

In the learning method with Procedure 3A, the algorithm is 
stopped when the classification rate for the training patterns 
becomes higher than or equal to the desirable classification 
rate E .  Therefore, when we specify E as E = loo%, the 
classification boundary obtained by that method is located in 
the neighborhood of the training pattern that was finally clas- 
sified correctly. However, one may think that the classification 
boundary should lie in the center of training patterns belonging 
to different classes. Thus, we propose the following additional 
learning procedure (Procedure 3B) to adjust the location of 
the classification boundary in the direction of obtaining a 
more intuitively acceptable classification boundary after all 
the training patterns are correctly classified. 

Procedure 3B-Additional Learning Procedure: Calculate 
the confidence level up of each training pattern zPr p = 1, 
2, . . . , m, by (1 1). Find the training pattern zq having the 
minimum value of the confidence level as follows: 

cq = min aP. (17) 
P 

When cy is below the threshold O,, adjust the grades of 
certainty of two fuzzy rules as follows: 

1) Find the fuzzy rule RE corresponding to the first term 
QCX of (11) as 

Q C X  = Pu,K(Xql) . / 4 % q 2 )  . CFf. 

CF; := CFzj' + 7]3(1- CFzj') 

(18) 

Adjust the grade of certainty of the fuzzy rule satisfying 
(18) by 

(19) 

where 773 is the learning constant such that 71 < 7 3  < 772. 

2) Find the fuzzy rule RE corresponding to the second 
term of (1 1) as 

Adjust the grade of certainty of the fuzzy rule satisfying 
(20) by 

CF: := CF; - 7 7 3 .  CF:. (21) 

From the definition in ( l l ) ,  we can see that the confidence 
level is equal to zero if two classes take the same maximum 
value of CQT. This means that it is equal to zero on classifi- 
cation boundaries. Therefore the confidence levels of training 
patterns lying near the classification boundaries are very small. 
In this learning procedure, first we find a training pattern with 
the minimum confidence level by (17) and choose the two 
fuzzy rules associated with the calculation of the confidence 
level by (18) and (20). Then we adjust the grades of certainty 
of those fuzzy rules in the direction of making the confidence 
level larger by (19) and (21). 

We propose an adaptive method for generating a fuzzy 
rule-based classification system by both the error correction- 
based learning (i.e., Procedure 3A) and the additional learning 
(i.e., Procedure 3B). The adaptive method is the same as the 

Fig. 12. Classification result by the adaptive method. 

learning method with Procedure 3A in the last subsection 
except for Step 3). Step 3) of the learning method is modified 
in the adaptive method as follows: 

Adaptive Method 

Step 3) Adjustment of the Grades of Certainty: 
1) Set J := J+ 1. 
2) When the classification rate of the training patterns 

is below loo%, adjust the fuzzy rule by Procedure 
3A for each xP, 

3) When the classification rate of the training patterns 
is loo%, adjust the fuzzy rules by Procedure 3B. 
When the minimum value of the confidence level is 
beyond the threshold value Q,, stop the algorithm. 

4) Go back to Step 2). 

p = 1, 2, . . .  , m. 

In Step 3) of this adaptive method, when all the training 
patterns are not correctly classified, the grades of certainty of 
the fuzzy rules are adjusted by Procedure 3A in the direction 
of correctly classifying the misclassified training patterns. On 
the other hand, when all the training patterns are correctly 
classified, the grades of certainty are adjusted by Procedure 
3B in the direction of making the minimum value of the 
confidence level larger. That is, the grades of certainty are 
adjusted in the direction of generating a classification boundary 
coinciding with our intuition. 

For the illustration of the adaptive method, we applied it to 
the two-class classification problem shown in Fig. 6 using the 
parameter specifications 71 = 0.001, 772 = 0.1, 773 = 0.01, 
and 8, = 0.05. Fig. 12 shows the classification result for 
K = 3. From the comparison of Fig. 12 with Fig. 1l(b), we 
can see that the classification boundary by the adaptive method 
moved in the direction of acquiring an intuitively acceptable 
classification boundary by Procedure 3B, i.e., by the additional 
learning procedure. 

Iv .  RULE PRUNING WITH FORGETTING 

Fuzzy rule-based classification methods, which generate 
fuzzy rules from numerical data, can be viewed as a knowledge 
acquisition tool for classification problems. Generally speak- 
ing, the fewer fuzzy rules a fuzzy rule-based classification 
system has, the more intelligible it is. Ishibuchi et al. [ 151 have 
proposed the genetic algorithm-based (GA-based) method to 
construct a compact fuzzy rule-based classification system by 
selecting significant fuzzy rules and removing unnecessary 
fuzzy rules by genetic operations. 
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We propose here a rule-pruning method based on the 
concept of forgetting [ 161 in a destructive-learning method 
to construct a compact fuzzy rule-based classification system. 
That is, we apply the concept of forgetting to the grades of 
certainty of fuzzy rules generated by Procedure 1 in Section I1 
to prune unnecessary fuzzy rules. We propose the following 
method for selecting an appropriate rule set S by introducing 
the concept of forgetting to the learning method in Section III- 
A. 

Pruning Method-Rule Pruning with Forgetting: 
Step 1) Set the number of iterations of the algorithm as 

t := 1. Specify the maximum number of iterations 
t,,, as a stopping condition. Generate an initial 
rule set S. 

Step 2) Perform Procedure 3A for each xp(p  = I, 2, 
. . . , m). 

Step 3) Modify the grades of certainty of the fuzzy rules 
in the rule set S by 

CF: := C F t  . ( I  - 7) 

where y is a forgetting rate. We call this modifica- 
tion “forgetting” in this paper. 

Step 4) When the grade of certainty CFtY falls below the 
pre-specified threshold 0, remove the fuzzy rule 
RE from the rule set S. 

Step 5 )  When t = t,,,, stop the algorithm. Otherwise, let 
t := t+ 1 and return to Step 2). 

In Step 2) of the pruning method, we use Procedure 3A to 
adjust the grades of certainty of the fuzzy rules. Furthermore, 
in Step 3), the grades of certainty of the fuzzy rules in the rule 
set S are decreased by (22). Therefore, the grades of certainty 
that are not increased at Step 2) are just decreased at Step 
3). This means that the grades of certainty of fuzzy rules that 
are not used for the classification of the training patterns are 
reduced monotonically with the number of iterations of the 
algorithm. On the contrary, the grades of certainty of fuzzy 
rules that correctly classify the training patterns are increased 
at Step 2) and decreased at Step 3). When the grade of certainty 
of a fuzzy rule falls below the threshold 8, that fuzzy rule is 
removed from the rule set S. In this manner, we can prune 
unnecessary fuzzy rules and obtain a compact rule set. 

It should be noted that the basic idea of the pruning method 
is to remove fuzzy rules that are not used for the classification 
of the training patterns. For example, a fuzzy rule with a large 
value of the grade of certainty (e.g., 0.9) in the initial rule set 
will be removed after some iterations of the pruning method if 
that fuzzy rule is not used for the classification of any training 
pattern. On the contrary, a fuzzy rule with a small value of 
the grade of certainty (e.g., 0.3) will not be removed if that 
fuzzy rule correctly classifies some training patterns in every 
iteration of the pruning method. 

To illustrate the pruning method, we applied it to the two- 
class classification problem shown in Fig. 6 with the parameter 
specifications t,,, = 10000, 71 = 0.001, 7 2  = 0.1, y = 
0.001, and H = 0.1. In the computer simulation, we used all 
the fuzzy rules corresponding to the fuzzy partitions for K = 
2-6 shown in Fig. 7(a)-(e) a? the initial rules in the rule set 

Boundary 
(0 

Fig. 13. Selected fuzzy rules and classification result by the pruning method. 

S. Our problem here is to prune unnecessary fuzzy rules in 
order to select a compact rule set S from the initial rule set 
(i.e., all the fuzzy rules for K = 2-6). Fig. 13 shows the 
selected fuzzy rules in S and the corresponding classification 
result. In Fig. 13, the selected fuzzy rules are denoted by 
the hatched and the dotted areas in the same manner as in 
Fig. 7. In the comparison of the classification result of the 
pruning method with those of the simple fuzzy grid method, 
the pruning method can correctly classify all the given training 
patterns by using fewer fuzzy rules than the simple fuzzy grid 
method. That is, in the pruning method, the selected 17 fuzzy 
rules correctly classified all the training patterns, whereas the 
36 fuzzy rules did in the simple fuzzy grid method [see 
Fig. 8(e)]. 

There is no guarantee that the selected fuzzy rules by 
the pruning method cover the entire pattern space. That is, 
there may be unclassifiable regions in some classification 
problems. One possible approach to cope with this issue is 
to employ the bell-shaped fuzzy sets in the antecedents of 
the fuzzy rules instead of the triangle-shaped fuzzy sets. We 
applied the pruning method with the bell-shaped fuzzy sets 
to the classification problem in Fig. 6. The selected fuzzy 
rules and the corresponding classification result are shown 
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i. 
K=4 
(C) 

K=6 
(e) 

K=5 
(d) 7 

0 

Boundary 
(f) 

Fig. 14. 
with bell-shaped fuzzy sets. 

Selected fuzzy rules and classification result by the pruning method 

in Fig. 14. Fig. 14 demonstrates that 15 fuzzy rules correctly 
classified all the training pattems and covered the entire pattern 
space. 

In Fig. 13, we used all the fuzzy rules corresponding to 
K = 2-6 as the initial rule set. That is, the pruning was 
started from the rule set generated by the multirule table 
method. The classification result by the initial rule set was 
shown in Fig. 9 as the result of the multirule table method. 
From the comparison between Fig. 9 (before pruning) and 
Fig. 13 (after pruning), we can see that the classification 
boundary in Fig. 13(Q is a bit counter-intuitive while all 
the training patterns were correctly classified in both figures. 
This suggests that the pruning may slightly deteriorate the 
classification performance for unknown patterns that were not 
used for generating and pruning fuzzy rules. This issue will 
be addressed by computer simulations in the next section. The 
pruning method can be applied to the initial rule set generated 
by the simple fuzzy grid method as well as the multirule table 
method. In this case, fewer fuzzy rules may be selected. We 
used the multirule table method for generating the initial rule 
set of the pruning method in computer simulations in the next 
section as in this section to compare the pruning method with 
the GA-based method in Ishibuchi et al. [lS]. 

TABLE 111 
IRIS DATA 

sepal sepal petal petal 
length width length width 

5.1 3.5 1.4 0.2 c1 
4.9 3.0 1.4 0.2 C1 

7.0 3.2 4.7 1.4 C2 
6.4 3.2 4.5 1.5 c2 

6.3 3.3 6.0 2.5 c 3  
5.8 2.7 5.1 1.9 C3 

V. SIMULATION RESULTS 

We applied the proposed methods to the iris data [6] to 
verify the effectiveness of our methods. The classification 
problem of the iris data is to classify three species of iris 
(iris setosa: C1, iris versicolor: C2, and iris verginica: C3) 
by the four-dimensional pattern vectors consisting of sepal 
length (XI), sepal width (Q), petal length (x3), and petal width 
(54). There are SO samples of each class in this classification 
problem. Table I11 shows some of the 150 samples of the 
iris data. To employ the same membership functions for each 
axis of the pattern space, we normalized attribute values of 
each attribute as having the maximum value of one and the 
minimum value of zero. We examine the learning ability 
for training patterns used for learning and the generalization 
ability for testing patterns that are not used for learning. 
Table IV summarizes the proposed methods in this paper and 
our former methods [ 121, [1S] together with the corresponding 
parameter specifications used in this section. 

A. Learning Ability for Training Patterns 

To examine the learning ability for training pattems, we 
used all the 150 samples as training patterns and performed 
computer simulations with the parameter specifications listed 
in Table IV. 

Table V shows the classification rates of the adaptive 
method (i.e., the combination of the error correction-based 
learning and the additional learning) and the simple fuzzy 
grid method. It should be noted in Table V that the number 
of fuzzy rules excludes dummy rules (i.e., fuzzy rules with 
4 in the consequent part). Table V indicates that the learning 
ability of the adaptive method is higher than that of the simple 
fuzzy grid method for all values of K .  Especially for K = 
2, the improvement of the classification rate was 26.67%. We 
can also see that the adaptive method can correctly classify all 
the training patterns with only 62 fuzzy rules for K = 3. On 
the contrary, the simple fuzzy grid method correctly classified 
98.67% of the training patterns with even 295 fuzzy rules for 
K = 6. It should be noted that the results for the adaptive 
method in Table V can also be viewed as the results of the 
error correction-based learning method with no additional 
learning. This is because the additional learning procedure 
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Method 

Adaptive 
Pruning 

Simple-fuzzy-grid [12] 
Multi-rule-table [la] 

GA-based [15] 
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Parameter specifications 
K Jmax 771 ~2 ~3 @a 

2 - 6 1000 0.001 0.1 0.01 0.05 
2 -  6 10000 0.001 0.1 - 
2 N 6 - -  
2 N 6 - -  
2 - 6 - -  

TABLE IV 
CLASSIFICATION METHODS AND PARAMETER SPECIFICATIONS 

method 
2CV 
1x1 Adaptive 

K = 2  K = 3  K = 4  K = 5  K = 6  
91.73 94.80 94.53 94.80 95.37 
92.00 95.33 98.m 94 67 ~ 6 . 6 7  

0.001 0.1 

- -  
- -  

method 
Adaptive 

Simple-fuzzy-grid 
# of rules 

K = 2  K = 3  K = 4  K = 5  K = 6  
94.00 100.00 100.00 100.00 100.00 
67.33 94.00 92.67 96.00 98.67 

16 62 129 190 295 
2CV 
LV1 Simple-fuzzy-grid 69.27 92.43 90.03 95.27 95.57 

67.33 93.33 89.33 95.33 96.67 

Method 

Multi-rule-t able 
GA-based 

~ 

Pruning 

~ 

(i.e., Procedure 3B) was used only after a 100% classification 
rate was attained for the training patterns. 

Table VI summarizes the classification performance of the 
pruning method, the multirule table method and the GA-based 
method. In those methods, all the fuzzy rules corresponding 
to the fuzzy partitions for K = 2-6 were used as the initial 
d e s  in S,  i.e., 692 fuzzy rules were used. It can be seen from 
Table VI that all the training patterns are correctly classified 
by the selected 43 fuzzy rules by the pruning method. We can 
also see that the pruning method outperforms the multirule 
table method from the viewpoint of the number of fuzzy 
rules as well as the classification rate. Therefore, we can 
conclude that the pruning method can construct a compact 
fuzzy rule-based classification system with high performance 
by removing unnecessary fuzzy rules from the initial rule set. 
From the comparison of the pruning method with the GA- 
based method, we can see that the pruning method has a 
little more fuzzy rules. This is because the number of fuzzy 
rules was used as a part of the fitness function in the GA- 
based method. That is, the number of fuzzy rules was directly 
minimized in the GA-based method while that is implicitly 
minimized by removing fuzzy rules with very small grades of 
certainty in the pruning method. 

Correct(%) Error(%) # of rules 
100.00 0.00 43 
95.33 4.67 692 
99.47 0.53 12.6 

B. Generalization Ability for Testing Patterns 

To examine the generalization ability for testing patterns, we 
employed the two-fold cross validation (2CV) and the leaving- 
one-out (LV1) as follows (see [33] for the details of 2CV and 
LV1): 

Two-Fold Cross Validation (2CV): Carry out the following 
procedure ten times and calculate the average classification 

2 c v  
LV1 
2 c v  
LV1 

Pruning 

Multi-rule- t able 

TABLE VI11 
GENERALIZATION ABILITY FOR TESTING PATTERNS 

\ ,  \ , I. 

93.03 6.70 28.00 
93.33 6.67 42.62 
94.30 5.70 597.75 
94.67 5.33 691.11 

Method 1 Correct(%) I Error(%) 1 # of rules 

2cv 
LV1 GA- based 90.67 7.20 10.10 

94.67 4.00 12.90 

Step 1) 

Step 2) 

Step 3) 

Leaving 

Divide randomly 150 samples into two subsets 
having 75 samples in each subset. Use one subset 
as training patterns and the other subset as testing 
patterns. 
Generate and train the fuzzy rules by using the 
training patterns, and then classify the testing pat- 
terns. 
Exchange the training patterns for the testing pat- 
terns, and then repeat the same procedure as Step 
2). 
One Out (LVI): Select one testing pattern, and use 

the other 149 patterns as training patterns. Generate and train 
the fuzzy rules by using the training patterns, and classify the 
testing pattern. Repeat this procedure 150 times until each of 
all the samples is selected as a testing pattern, and calculate 
the average classification rate for testing patterns. 

Tables VI1 and VI11 show the average classification rates 
for testing patterns by 2CV and LV1. From the comparison 
of the classification rates of the adaptive method and the 
simple fuzzy grid method in Table VII, we can see that the 
generalization ability of the fuzzy rule-based classification 
system was improved by the adaptive method, especially 
when the fuzzy partition of the pattern space was coarse, 
i.e., K = 2, 3, 4. For example, the improvement of the 
LV1 results was 24.67% for K = 2. On the other hand, 
when the fuzzy partition is fine, the generalization ability 
of the adaptive method was slightly worse than that of the 
simple fuzzy grid method because of overfitting to training 

rate for testing patterns. patterns. 
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From the comparison of the simulation results of the pruning 
method with those of the multirule table method in Table VIII, 
we can see that the pruning method substantially reduced the 
number of fuzzy rules at the cost of a slight deterioration of 
the performance. 

VI. DISCUSSION 
In the last section, we have demonstrated that the adjustment 

of the grade of certainty of each fuzzy rule can improve the 
classification performance of fuzzy rule-based classification 
systems generated by our previous methods (i.e., the simple 
fuzzy grid method and the multirule table method). The 
proposed methods, however, have the following limitations: 

1) The fuzzy partition of the pattern space should be 
prespecified. 

2) The membership function of each antecedent fuzzy set 
is not adjusted. 

3) The number of fuzzy rules is not efficiently reduced by 
the pruning method in comparison with the GA-based 
rule selection method. 

4) It is difficult to apply the proposed methods to pattern 
classification problems with many attributes because 
the number of fuzzy rules generated by fuzzy grids 
exponentially increases as the number of attributes. 

To cope with the first two limitations, we can introduce the 
learning of the membership function of each antecedent fuzzy 
set to our adaptive method. The membership function can be 
adjusted by an error correction-learning method (see Nozaki et 
al. [24]). A genetic algorithm-based learning method similar 
to Nomura’s algorithm [23] can be also used for the learning 
of the membership function of each antecedent fuzzy set (see 
Ishibuchi and Murata [9]). While the error-correction-learning 
algorithm in [24] does not change the number of fuzzy subsets 
on each axis, the GA-based learning methods in [9], [23] can 
adjust the number of fuzzy subsets as well as their membership 
functions. 

The third limitation suggests that the GA-based rule selec- 
tion method [15] rather than the proposed pruning method is 
appropriate when our aim is to minimize the number of fuzzy 
rules. Even in this case, the proposed adaptive method can be 
utilized for the learning of the selected fuzzy rules by the GA- 
based rule selection method (see Ishibuchi et UL. [lo]). The last 
limitation prevents us from applying the proposed methods 
to pattern classification problems with many attributes. For 
example, if we have five fuzzy subsets on each axis of a 
thirteen-dimensional pattern space, the number of fuzzy rules 
generated from a simple fuzzy grid is 513 (more than one 
billion). Such a pattern classification problems involving many 
attributes can be handled by a fuzzy classifier system (see 
Ishibuchi et al. [ll]) where each fuzzy rule is coded as an 
individual. The proposed adaptive method can also be used in 
the fuzzy classifier system for the learning of each fuzzy rule. 

VII. CONCLUSION 

This paper proposed the adaptive fuzzy rule-based classi- 
fication system that can automatically adjust the grades of 
certainty of fuzzy rules using numerical data. The adaptive 

method consists of two procedures: the error correction-based 
learning procedure and the additional learning procedure. 
We demonstrated by computer simulations that the adaptive 
method can improve the classification power of fuzzy rules by 
the error correction-based learning procedure and generate an 
intuitively acceptable classification boundary by the additional 
learning procedure. Furthermore, we proposed the pruning 
method which is based on the concept of forgetting, for 
constructing a compact fuzzy rule-based classification system 
with high performance. 

In this paper, we just modified the grades of certainty of 
fuzzy rules to improve the classification performance. There 
are, however, many other approaches to more sophisticated 
fuzzy rule-based classification systems. Some approaches such 
as the learning of the membership functions and the com- 
bination of the error correction-based learning and genetic 
algorithms were suggested in this paper. 
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