

z-Formation

Excuse me, Sir, but can we deliver packets securely without addresses?

Presenter Mikko Särelä

Christian Esteve, Petri Jokela, Pekka Nikander, Mikko Särelä, Jukka Ylitalo

Outline

- Context and motivation
- Potential benefits
- Background: zFilters
 - Forwarding without globally routable addresses
 - Optimisations for better performance ("base case")
 - Simulation results
- z-Formation
 - Security enhancements ("secure case")
- Security properties
- Summary

Context - RTFM architecture

- Rendezvous matching publish and subscribe events
- Topology network topology knowledge, path creation
- Forwarding fast delivery

Context

- zFilters: A new stateless forwarding method
- z-Formation: A secure variant of z-Filters
- Architecturally compatible with (G)MPLS control plane
- Forwarding much simpler than today
- Prototypes of basic zFilters implemented for FreeBSD and NetFPGA
 - zFilters published at SIGCOMM 2009
 - Code available <u>http://psirp.org/downloads</u>

Forwarding	table	decision
zFilter	~2000 bit / port	~10 gates / port
z-Formation	~200 bits	~64 kgates

Motivation

- Simplicity
- Multicast support
- Efficiency
 - Fairly short, constant-delay switching time
 - Can likely be done at line speed
- Small forwarding tables
 - zFilters: ~2000 bits / port
 - z-Formation: Minimum ~256 bits / node
 - Trade-off between table size and gate logic
- Increase security over existing zFilter solution
 - source route identifier as a capability

Bloom Filters - basic idea

z-Formation

2009-11-25

zFilters

Technical details: Introduction

- Give names to links, not to nodes
- Form a source-route using the link names
- Encode the set, as a Bloom filter, into the packet header
- Main drawback: false positives due to using Bloom filters
- Details on next slides:
 - Link-identity-based source routing
 - Forwarding decisions
 - Optimising with multiple link identifiers
 - Simulation results

z-Formation

Link IDs and Bloom filters (zFilters)

No names for nodes

 Each link identified with a unidirectional Link ID

Link IDs

- Statistically unique
- Periodically changing
- Size e.g. 256 bits
- Local or centrally controlled

Source routing

- Encode Link IDs into a Bloom filter (zFilter)
- Naturally multicast

"Stateless"

Forwarding Decision

Forwarding decision based on binary AND and CMP

- zFilter in the packet matched with all outgoing Link IDs
- Multicasting: zFilter contains more than one outgoing links

Using Link Identity Tags (LIT)

Better forwarding efficiency with a simple trick

- Define *n* different LITs instead of a single LID
- LIT has the same size as LID, and also k bits set to 1
- [Power of choices]
- Route creation and packet forwarding
 - Calculate n different candidate zFilters
 - Select the best performing zFilter, based on some policy

z-Formation

11

2009-11-25

Using Link Identity Tags (LIT)

Forwarding efficiency

Simulations with

- Rocketfuel
- SNDlib
- Forwarding efficiency
- 20 receivers
 - ~35 links
 - Basic LID: 80%
 - Optimised: 88%
 - with 8 LITs
- Unicast
 - easy
 - Internet paths < 14 AS hops

Technical details: Summary

- Name unidirectional links, not hosts
- Form a source route (path or tree)
- Encode source route as an in-packet Bloom filter
- small "stateless" forwarding table
- Simple constant-time forwarding decisions
- Use multiple alternative link names (LITs)
 - Minimises forwarding inefficiency caused by false positives
- Generate LITs run-time on per-flow bases
 - Binds forwarding identifiers to specific flows and paths

z-Formation

Forwarding security

 Goal: to ensure (probabilistically) that hosts cannot send un-authorized traffic

- zFilter weaknesses
 - zFilter replay attacks
 - Computational attack
 - correlate zFilters to learn link IDs
 - Traffic injection attack
- Solution (z-Formation): Compute LIT in line speed and bind it to
 - path: in-coming and out-going port
 - time: periodically changed key
 - flow: flow identifier (e.g. IP 5-tuple / content id)

Secure case: z-Formation aka Secure in-packet BFs

- Form LITs algorithmically
 - at packet handling time
 - LIT(d) = Z (I, K (t), In, Out, d),
- Secure periodic key K
- Input port index
- Output port index
- Flow ID from the packet, e.g.
 - Information ID
 - IP addresses & ports
- *d* from the packet

Security properties

z-Filter works both as a forwarding ID and a capability

- To send, a host needs to know or guess a valid zFilter
- Base z-Filters
 - Bound to the *outgoing* ports along the path
 - Traffic injection possible
 - Hard to construct one without knowing LITs along the path
 - Correlation attacks possible
- z-Formation
 - Bound to the *incoming* and *outgoing* ports
 - Traffic injection difficult (due to binding to *incoming* port)
 - Very hard to construct one without knowing keys along the path
 - Correlation attacks possible <u>only</u> for a given flow ID
 - Bound to the packet stream (flow ID)
 - Need a cryptographically good Z algorithm

Injection attacks

- Assuming attacker knows a zFilter passing at h hops distance from attacker
- Left y-axis shows the probability of a single packet reaching target for various fill factors
- Right y-axis shows the average number of attempts for one successful injection with probability 0.5

z-Formation

19

Discussion

- Replay attacks: limited to the key lifetime
 - As zFilters are tied to periodically changing keys (K(t)), one per node, the capabilities become expirable
- Brute force attack: "Best" attack strategy
 - Assuming attack traffic of 1M pps (1Gbps / 1000 bits pp)
 > 40min to guess (with Pr=0.5) one 5-hop working zFilter (which is only usable for single host)
- Re-keying time?
 - Trade-off between minimizing duration of unwanted traffic vs. overhead of zFilter renewal e.g., 1 min enough to complete
 transactional traffic + protect short paths
- Attack detection and mitigation:
 - fpr increase triggers detection plus
 e.g. blacklist mechanism on FlowID (I)

2009-11-25

Conclusions

- z-Formation is a compact and secure source routing method
- Forwarding identifiers are
 - small and efficient to compute
- Capability like properties
 - expirable,
 - bound to packet flow,
 - content/communication intention
- Stateless
 - No need for per flow state
 - Forwarding with zero FIB table lookups

Comments? Questions?

Scalability beyond 20: Virtual links

Popular paths/large trees represented as virtual links

- A single Link ID for the tree
- Additional state in the forwarding nodes
- Increases scalability

Virtual $B \rightarrow C \rightarrow D \rightarrow E$ 0 0 1 0 1 0 0 0 1