

Research infrastructures for a cloudy future Internet

Christian Esteve Rothenberg Maurício Ferreira Magalhães

University of Campinas (Unicamp)

Goal of the talk

OpenFlow

Enabling technology for the future Internet

Power of innovation, architectural implications, ...

New packet forwarding paradigms

LIPSIN: Line-Speed Publish/Subscribe Inter-Networking

- SiBF: Data center networking with in-packet Bloom filters

Experimental Research on the Future Internet

Message

- The Cloud is here to stay,
 - but how will it evolve and impact the Internet from an architectural point of view?
- The inter-networking requirements of the Cloud
 main driving force shaping the so-called future Internet
- Develop Inter-Cloud use cases in the national infrastructures for Future Internet R&D
 - Towards a planet-scale, federated CloudLab

Disclaimer

This presentation contains a mix of hype and speculation.

- Interoperability
- Open market
- Low entry barrier
- Incentives for innovation at all layers
- Sustainable

- Provider lock-in
- Performance hauls
- Security
- Privacy
- ...

- A marketing term?
- If the Internet is the network of networks, the Inter-Cloud is the cloud of clouds
- A federation of clouds

 i.e., an agreement to cooperate
 for the mutual benefit (\$\$\$)

The Inter-Cloud

"The Cloud represents a new layer in the Internet architecture and, like the many layers that have been invented before, it is an open opportunity to add functionality to an increasingly global network" - Vint Cerf, 2009¹

Cloud Initiatives that have an analogue in the Internet's past:¹

- The rising importance of *academia*.
- Increasing interest in *interoperability* among cloud vendors.
 - Today's clouds like network islands before IP
- *Carrier* interest in new service opportunities.

^[1] http://googleresearch.blogspot.com/2009/04/cloud-computing-and-internet.html ^[2] http://blogs.cisco.com/datacenter/comments/is the intercloud history repeated/

The Inter-Cloud as an Utility

- Learn from other utilities (energy, water, transport) and anticipate the emergence of an utility-driven *Cloud resource market*
 - Utility-Oriented Federation of Cloud Computing Environments
- What is the role of the (inter-)networking substrate?

The emergence of a Cloud market

Enterprise IT Consumer

[Buyya et al. InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services]

Research in the Inter-Cloud

• It is all about *context* (again, i.e., like mobility), but strongly driven by business (aka BGP but on a higher level)

Networking the Inter-Cloud

Re-examination of cost/control trade-offs & adoption incentives:

- Mature protocols (VPN, IPv6, IP Multicast, Sec BGP, DNSsec, ...)
- Novel routing mechanisms (e.g., LISP, energy-aware protocols, or even XML routing)
- Radical information-centric architectures (e.g., CCN, PSIRP).
- Virtual flash networks, Bandwidth-on-Demand, WAN acceleration (compression, packet deduplication), etc.

Isolated Clouds over IP

Cloud-oriented connectivity?

Towards a CloudLab

Table 2. Comparison of cloud computing testbeds.										
Characteristics	Open Cirrus	Google/ IBM cluster	TeraGrid	PlanetLab	Emulab	Open Cloud Testbed	Amazon EC2	LANL cluster		
Type of research	Systems and services	Data- intensive applications	Scientific applications	Systems and services	Systems	Interlopera- bility across clouds using open APIs	Commercial use	Systems		
Approach	Federation of heterogeneous data centers	Cluster supported by Google and IBM	Multisite heterogeneous clusters for super- computing	Nodes hosted by research institution	Single- site cluster with flexible control	Multisite het- erogeneous clusters	Raw access to virtual machines	Reuse of LANL's retiring clusters		
Participants	CMU, ETRI, HP, Intel, IDA, KIT, MIMOS, RAS, UIUC, Yahoo!	Google, IBM, MIT, Stanford Univ., Univ. of Washington	Many universities and organizations	Many universities and organizations	Univ. of Utah	Four centers	Amazon	CMU, LANL, NSF		
Distribution	10 sites	Central- ized—one data center in Atlanta	11 partners in US	More than 700 nodes worldwide	More than 300 machines	480 cores dis- tributed in four locations	Several unified data centers	Thou- sands of older but still useful nodes at one site		

[Source http://www.cs.cmu.edu/~droh/papers/opencirrus-ieeecomputer.pdf]

GENICloud

[Source: http://groups.geni.net/geni/attachment/wiki/GENICloud/GEC7Poster.pdf]

Thank you!

Questions?

Answers???

Thank you!

Questions?

Answers???

BACKUP

Impacts of the cloud data center footprint on the Future Internet?

THE INTER-CLOUD

Emergence of data-centric architectures

Impacts of the Inter-Cloud?

Flattering of the Internet topology

[Core image adapted from A. Greenberg SIGMETRICS 09 Tutorial]

The role of Cloud brokers

Cost-Aware Internet Routing

savings of a cloud computing installation's power usage by dynamically re-routing service requests to wherever electricity prices are lowest on a particular day, or perhaps even where the data center is cooler.

From "Follow the energy price!" to "Follow the wind, the sun or the moon!"

[Qureshi et al, "Cutting the Electric Bill for Internet-Scale Systems", SIGCOMM '09]

Cloud Standards

	Service Provider			
	Open Standards			
	Cloud Cloud Software Environment (SaaS) Cloud Software (Infrastructure (IaaS)	Management	•	VM image formats and
	Cloud Applications	Reporting		metadata
curity	Cloud Applications	SLA Mgmt	•	API to storage DB etc
	Cloud Applications	Planning		
Se	Virtualized Resources Virtual Images Compute Networking Image metadata	Billing	•	Naming
	Storage Etc. Image	Metering	•	Security
	Software Kernel (OS, VM Manager)	Provisioning		
	Firmware, Hardware	Monitoring	•	•••

[Source: http://www.opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-2_0.pdf]

• Open Source developments (Eucalyptus, Ubuntu Enterprise Cloud) and de facto APIs (e.g., Amazon EC2 and S3)

Cloud Standards

[Source: http://www.opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-2_0.pdf]

Inter-Cloud

- Cloud 1 / Cloud 2 transport → XMPP
- Cloud 1 finds Cloud 2 → Naming, Presence
- Cloud 1 trusts Cloud 2 \rightarrow Certificates, Trust
- Cloud 1/2 negotiate → Policy, Entitlement, Security, Metering
- Cloud 1 sets up Cloud 2 → Placement, Deployment, Format, Motion
- Cloud 1 sends to Cloud 2
- → Transfer, Management VM Runs in Cloud 2
- → Addressing, VLAN, WWN, Filesystem

Bernstein et al. "Blueprint for the Intercloud - Protocols and Formats for Cloud Computing Interoperability,"

- Cloud 1 / Cloud 2 transport
- **Cloud 1 finds Cloud 2** → Naming, Presence
- Cloud 1 trusts Cloud 2 → Certificates, Trustsec
- Cloud 1 queries Cloud 2 for \rightarrow RDF/SPARQL, OWL Cloud 1 selects; receives protocols, interface
- → Web Services: REST API
- Cloud 1 calls services in Cloud 2 \rightarrow Metering, SLAs

Network economics & Future Internet

- Data Centers are like Factories¹
 - Number 1 Goal: Maximize useful work per dollar spent
- And the future network of networks?
 - Incentives for re-architeturing the Internet? DC-driven incentives???
- Think like an economist/industrial engineer as well as a computer scientist
 - Understand where the dollar costs come from
 - Use computer science to reduce/eliminate the costs / complexity

