Data center networking with in-packet Bloom filters

Christian Esteve Rothenberg! Carlos A. B. Macapuna;
Fabio L. Verdi,? Mauricio F. Magalhaes! Andras Zahemszky

'FEEC - University of Campinas (Unicamp)
Caixa Postal 6101 — 13.083-970 — Campinas — SP — Brazil

2Federal University of Sao Carlos (UFSCar)
Campus Sorocaba — SP - Brazil

3Ericsson Research NomadicLab / HIIT
Helsinki, Finland

{chesteve, macapuna, nauricio}@lca.fee. uni canp. br

verdi @f scar. br, andras.zahenszky@ricsson.com

Abstract. This paper describes a networking approach for cloud datderear-
chitectures based on a novel use of in-packet Bloom filtezatode randomized
network paths. In order to meet the scalability, performgnmost and control
goals of cloud infrastructures, innovation is called fomaany areas of the data
center environment, including the underlying switchingdiogy and the packet
forwarding paradigms. Motivated by the advent of high-radow-cost, com-
modity switches coupled with a substrate of programmabir proposal con-
tributes to the body of work re-thinking how to interconneciks of commodity
PCs at large. In this work, we present the design principled the OpenFlow-
based testbed implementation of a data center architegawerned by Rack
Managers, which are responsible to transparently provitk networking and
support functions to cost-efficiently operate the DC nekwdie evaluate the
proposal in terms of state requirements, our claims of falgsitive-free for-
warding, and the load balancing capabilities.

1. Introduction

With the advent of Internet cloud services, the underpigiata center networks (DCN)
have become a matter of intense research to raise their, geafermance, and cost-
efficiency to unprecedented levels [Greenberg et al. 2008ajrder to meet these goals
without sacrificing service quality, innovation is called &t many areas of the data center
environment, including the hosting infrastructure it¢elfy., energy management, wiring)
and the network and system engineering (routing, virtaéibn, monitoring, etc.)

Recent research in re-architecting data center networksiarred creative de-
signs to interconnect servers at large, including shipjpimigtainer-tailored designs with
servers acting as routers and switches as crossbars (B@uwzeef al. 2009]), com-
moditized fat-tree topologies [Al-Fares et al. 2008], farding on position-based pseudo
MAC addresses (Portland [Niranjan Mysore et al. 2009]), aadibalanced switching
clouds providing the illusion of a single virtual layer 2 (2LGreenberg et al. 2009b]).
Traditional DCN architectures consist of a tree of netwogkelements (L2/L3 switches)

with progressively more specialized and expensive equipmeving up the network hi-
erarchy. Unfortunately, even when scaling up, resultifgltogies may only offer a frac-
tion of the aggregate capacity available at the end hosth,reported over-subscription
rates as high as 1:240 [Greenberg et al. 2009a].

While diverging in their architectural approach (e.g.veercentric vs. network-
centric), every next generation DCN design proposal ainpsatiding a scalable, cost-
efficient networking fabric to host Web, cloud and clusteplagations. Many of these
applications require bandwidth-intensive, one-to-ong.(@ideo coding/streaming), one-
to-several (e.g., distributed file systems), one-to-all.(epplication data broadcasting),
or all-to-all (e.g., MapReduce) communications among exsrv Non-uniform band-
width among data center nodes complicates applicatiorgdesnd limits the overall
system performance, turning the inter-node bisection Wwaittl the main bottleneck in
large-scale DCNs. Recent data center traffic charactemzatudies [Benson et al. 2009,
S. Kandula and Patel 2009] have shed some light on the natlD€N traffic, conclud-
ing that traffic demands are unpredictable and highly butsty factors that hamper tra-
ditional traffic engineering solutions (e.g., VLAN Qo0S). Aosely related issue is the
necessity of avoiding the fragmentation of resources @wilable servers and network
paths) throughout IP subnets and VLAN domains. In highlyalized cloud DCs, net-
work agility is key to achieve high levels of server utilization and letual machines
(VM) be dynamically instantiated (and live migrated) in awgailable physical server. An
example of a job demanding agility might be to accommodates\évi-demand to host
Web services dedicated to the World Cup football champipndaring two months. In
order to have an agile and unfragmented DCN, ideally, therpidning interconnection
fabric should behave like a big Ethernet domain that expltbie path diversity and scales
sub-linearly to the number of addressable endpoints. tuniately, the flat routing na-
ture of Ethernet does not scale beyond certain boundareesodihe lack of aggregation
capabilities, the constraints of MAC-based forwardindgapand the ARP flooding.

In this paper, we present SiBF (Switching with in-packetdsiofilters), a DCN
proposal motivated by the changes in networking driven lgydtvent of high-radix,
low-cost, commodity switches coupled with a substrate ogprmmability (e.g., Open-
Flow [McKeown et al. 2008]). Our design borrows charactarssfrom a few new
generation DCN designs, for instance building upon prov@erconnection topolo-
gies (e.g., Clos networks) and reliance on logically céizeed controllers in spirit of
4D [Greenberg et al. 2005]. Compared to related work, ourdiigrence is the forward-
ing approach based on an in-packet Bloom filter (iBF) exgediy what we call a new
entity in the data center: the Rack Manager (RM). The RM fedla direct network
control approach to transparently provide the networkingcfions (address resolution,
route computation) and support services (topology disgpwveonitoring, optimization)
to unmodified (physical and virtual) servers behind Tograzk (ToR) switches.

Forwarding in SiBF takes on the idea of moving network statiaé packet head-
ers in form of a compact, multicast-friendly source routpresentation amenable to
low-cost, high performance networking gear [Jokela et@09R. Basically, SiBF effi-
ciently interconnects any pair of communicating nodes withe DCN by compactly
representing the packet’s source route into a Bloom filterexd in the Ethernet MAC
fields. Design goals include conserving the IP semanticsyaeid a false-positive-free

forwarding fabric by leveraging DC'’s topological propediand exploiting the multiple
paths available. We address the issue of having a systemwatimutually conflicting
requirements: 1) flat (non-hierarchical) L2 addresses,2ratjgregation. Our approach
is to open another vector of the design space, namely patafificiency penalties due
to false positives resulting in some packets using unnacgdisks. The proposed solu-
tion makes better use of the 96-bit space of source and déstifVAC fields, avoiding
thereby encapsulation and shim-header overheads, and sanfe time, conserving the
nice plug and play properties of the Ethernet MAC addressiinge iBF-based fine con-
trol over the path traveled by packets enables multiple lmaldncing schemes to avoid
hot-spots, for instance, by bouncing off traffic flows to rmtediate switches.

The rest of the paper is organized as follows. Section 2 dinites background
information on the rationale behind rethinking DCN arctiitees and outlines highlights
of related work. Section 3 presents the design principleptd for our solution and
describes the key functional blocks. In Section 4, we détaiprototype implementation
and the testbed environment. Section 5 evaluates SiBFrirstef network state require-
ments, false positive performance, and load balancinglskes. Finally, Section 6
concludes the paper and outlines the future work.

2. Background

Current efforts towards low-cost powerful computing faigk span from large-scale
(geo)-distributed application programming, innovatiarthe DC infrastructure, and re-
thinking how to interconnect commodity PCs at large. Ourkasrfocused on the latter.
In this section, we first introduce networking requiremagitthe cloud, and then provide
a snapshot of two remarkable new generation DCN proposafally; we present the
Bloom filter data structure, which is at the heart of our psmgabforwarding mechanism.

2.1. Networking requirements of cloud data centers

The existing DCN literature seems to agree that efficiendyworking the cloud DC
calls for re-thinking the underpinning architecture to treeeeviewed set of requirements,
which we have summarized as follows:

Resource Pooling:Offering the illusion of infinite computing resources awile
on demand requires means for elastic computing and agieonidhg. Such degree of
DCN agility is possible (i) if IP addresses can be assigneh{oVM within any physical
server, and (ii) if all network paths are enabled and lodd#ized.

Scalability: Networking (dynamically) a large pool of location-indepent IP
addresses (i.e., in the order of millions of VMs) requireargé scale Ethernet forwarding
approach. Unfortunately, ARP broadcasts, MAC forwardalyé sizes, and spanning tree
limitations place a practical limit on the size of the system

Performance: Available bandwidth should be high and independent fronetite
points’ location, which requires congestion-free routiogany traffic matrix in addition
to fault-tolerance (i.e., graceful degradation) to linklaerver instabilities.

Middlebox support: An ordered sequence of middlebox services (e.qg., firewalls,
WAN optimizers, load balancers) is commonly required to tb@nsparently) placed on
the network paths of DCN traffic. Conventional solutiong (€SPT, VLAN, OSPF) turns

the overall configuration into a costly and tedious opergtii@sides unnecessary resource
and performance inefficiencies [Joseph et al. 2008].

2.2. Related work

There is a large body of work tackling the cloud DCN reseasshes resulting in a collec-
tion of customized architectural proposals. We brieflyioetthe essence of two proposals
which have inspired parts of our design.

PortLand proposes a scalable Ethernet-like layer 2 routing and for-
warding protocol for data centers with three-tiered hignaral topolo-
gies [Niranjan Mysore et al. 2009]. The approach to overcdhe scalability limi-
tations of Ethernet is based on modifying the control plah¢he network, leaving
the switch hardware and end hosts untouched. The main ideadcbPortLand is the
locator/identifier split, where nodes are identified by itlaeitual MAC (AMAC) address,
and located by a pseudo MAC (PMAC) address, which encodearbiecal location
information in its structure. Mapping between the two addneg spaces is done by the
edge switches after querying a central fabric manager, wisicesponsible for tracking
each correspondence of IP to pseudo MAC address within soewkred topology. Edge
switches perform AMAC-PMAC rewriting for outgoing and inomng traffic.

VL2 provides a scalable Virtual Layer 2 to empower huge dataecenwith
uniform high capacity between servers, performance isoatand Ethernet seman-
tics [Greenberg et al. 2009b]. Building upon existing tembgies, in order to support
agility, VL2 uses flat addresses in the IP layer to separateesadrom locators. VL2
yields uniform high capacity and traffic fairness by virtdeMaliant Load Balancing to
randomize the traffic throughout the 3-tiered switchingitabsing IP-in-IP encapsulation
and Equal Cost Multi-Path (ECMP). Address resolution ,(eg@plication IP to location
IP) is done modifying the end-systems and querying a saatdidctory service.

2.3. Bloom filters

The Bloom filter is a popular data structure capable of ansgeuestions of the form “is
element: in setS?”, with some tunable probability of returning false poss, i.e., claim-
ing thatx belongs taS even when this is not true. A typical implementation corssista
bit array of sizen andk independent hash functions used to set/check bit posittes
inserting/querying elements, which in our case are goingetewitch MAC addresses
forming a source route. The probability of false positivlierainsertingn elements is
commonly approximated as (cf. [Bose et al. 2008]):

k

SN

3. Design

The data center, as an interconnection network to perfoatmilolited processing tasks,
has three key dominant elements that determine its perfozeng1) the network archi-

tecture (i.e. naming, address resolution, etc.), (2) thimg scheme, and (3) the inter-
connection topology. In this section we describe the degigrtiples adopted to address
(1) and (2) which can be summarized as an identifier/loca&joaated approach where IP

addresses act solely as identifiers and oblivious routipgasided by forwarding based
on in-packet Bloom filters (iBF) encoding randomly selectedtes between the com-
municating endpoints. As for (3), the interconnection 1ogy, in line with the existing
literature, we assume a 3-tier topology with a lower layefaR switches, an intermedi-
ate layer ofp;-port Aggregation (AGGR) switches, and an upper layepgport CORE
switches (see Fig. 1). Our solution is not restricted to éq@aar topology, and works on
e.g., 3-level fat-trees with identical p-port switche&églPortland) or 3-tier 5-stage Clos
arrangements (with; # p» like VL2). Moreover, we note that other scale-out topolsgie
could be considered (e.g., DHT-like rings, Hypercubesu3petc.), as long as they offer
large path diversity and low diameter.

Core
Switches | | | | | |

|
Aggregatlonl || | | || | | | | | | |

S““‘““|>|<|H|><| [1 [<]

Top of Rack
Switches |, I|I - - IHI | |||. | | |

Figure 1. A 3-tier fat tree using 4-port switches.

3.1. Design Principles
We adopted the following principles for the proposed datderenetwork architecture:

Separating Names from Locations: Identifier-locator split is the fundamental
capability to enable resource pooling of IP addressablices, which can expand or
contract their footprint in the DC as requirealyflity). IP addresses are used to identify
physical servers (and VMs) within the DC. That is, no top@agiconstraints are imposed
on how IP addresses are assigned or translated in case ofistoations towards external
networks (i.e., public Internet). In this context, IP addres are not meaningful for packet
routing, which is solely based on a revisited source-rguti@pable Ethernet layer.

Source explicit routing with zero-overhead: Leveraging the small diameter
of data center topologies, our approach to meet the sc&yappdals is based ostrict
source routing Routing in 3-tier DCN topologies is fairly simple, as anyute be-
tween two ToRs, has an upward phase towards a common COREhsanid then a
downward path to one AGGR switch connected to the destim&ai@R. Forwarding is
based on an iBF containing only three elements, namely therdéd MAC identifiers
of (CORE;, AGG Rypwn, ToR4s) switches. Source ToRs encode the iBFs in the MAC
fields of outgoing packets which are sent to a next H6p R, switch. Hence, three
IBF-based forwarding decisions are taken, one at the firs6RGone at the CORE and
one at the down-path AGGR. The destination ToR needs to ite-ttie source and des-
tination MAC fields before delivering the packet to the destion server. By carrying
the iBF in the 96 bit space of the MAC fields and re-writing petskat ToRs, we avoid
encapsulation techniques or additional shim headers.cBwauting not only minimizes
FIB requirements of intermediate switches but also eagesthusion of middleboxes.

Direct network control and logically centralized directory: SiBF embraces the
4D [Greenberg et al. 2005] philosophy of simplifying theadptane and centralizing the

control plane to enforce the data center goals. We introtheeole of a Rack Manager
(RM) to take the routing decisions and program the state @fjfa@mmable switches. In
order to construct source routes, two pre-requisites gréned: (1)topology information
and (2)server location We surmise that a directory service to track host locateoms
the underlying switching topology are implementable anlé &bscale to the envisioned
DCN demands as shown by related work (e.g., Tesseract, 8fgopilot, VL2).

Load Balancing through path randomization: The approach to provide load
balancing is based awblivious routing i.e., traffic independent randomized packet rout-
ing [Yuan et al. 2007]. More specifically, like VL2, we implemt valiant load balancing
(VLB) using the routing iBFs to “bounce off” flows at randontenmediate switches.

Unmodified endpoints and plug-and-play: The forwarding fabric does not rely
on end-host modifications. Legacy servers, operating systnd applications are sup-
ported off-the-shelf. Moreover, the plug-and-play bebaviof Ethernet is to be con-
served, with auto-configuration of end-hosts and switcle@sgopart of the solution.

3.2. False-positive-free forwarding on Bloomed MAC idenfiers

The key innovation comes when “switching” in the AGGR and G&yers. Forwarding
tables of switches are initially empty and get filled with dloev entry per neighboring
switch detected. A flow entry is wildcarded except for the 86 bf the source and des-
tination MAC fields. However, instead of traditional exaatehing of MAC fields, each
flow entry contains a 96-bit mask generated frérhashes of the neighbouring switch
unigue MAC address. Similar to Link IDs in [Jokela et al. 2D@BBloomed MAC IDis

a 96-bit vector where only bits set, but with the key difference that itnst directional,

l.e., generated on a network interface pair basis. Fornwgrdecisions are trivial. On
packet arrival, only thé 1s of each Bloomed MAC ID are checked for presence in the
Ethernet MAC fields carrying the iBF. Upon match, the packdébrwarded.

Generation of Bloomed MAC identifiers: Instead of making: independent
hashes of the neighboring switch MAC address, we make ordyhaish using a crypto-
graphic function (e.g., MD5) and concatenate the output thié least significant 24-bits
of the MAC address (unique per Ethernet vendor). Therebyhtain a randomly gen-
eratedl 28 + 24 bit vector, which we slice in 7-bit segments to obtaifpseudo” hashes
that determine the bit positions in the 96-bit Bloom filter:

iBF[i] = (M AC%4.48| M D5(M AC))[7i : 7(i + 1)]mod96 (2)

Bloomed MACs IDs generated this way are still statisticaltyque e.g.mm!/(m — k)! =
1013 for m = 96 andk = 10. The algorithm defined by Eq. 2 is a system wide parameter
that can be changed or optimized for a given set of MAC adds@krequired).

False positives: The well-known caveat of Bloom filters is the possibility efr
turning false positives to set membership queries, i.turmeng true when a set element
was not inserted. In our case, this means that in additiohacexplicitly inserted next
hop switch, additional switch(es) appear(s) as next hogidate(s). The resulting con-
flict can be solved either (i) by multi-casting the packetngl@ll matching interfaces,
or (ii) by picking only one. In any case, we requiiF forwarding completenesse.,
loop-free and guaranteed delivery of packets to the intg@stination(s). After a care-
ful analysis of every false positive case of our implemeatathoice, we claim to have

a loop-free, high solution that circumvents any potensale arising from false posi-
tives. The factors that contribute to this result are mialii, some of them are due to
an iBF-forwarding design tailored for multi-rooted tre@ttogies, and the remaining are
implementation-specific, i.e. forced/enabled by our Op@mFmplementation choice.

To start with, note that due to the high bit per element ratig{ ~ 30 for m = 96 and

n = 3), false positives are extremely rare i.e. in the orderof (see details in Sec. 5.2).

Our strategy to avoid the potential effects of false posgiis to exploit the notion
of power of choicealong two dimensions: (1) multiple paths, and (2) multi®E repre-
sentations. That is, we compute the iBFs of the multiplelale paths, and for each we
generatel additional candidates using different sets of hash funstitJsing the topology
information, the routing service can easily checkriori whether any candidate iBFs is
prone to false positives along the path. If so, those cateli@®s are discarded from the
random path selection. For the sake of brevity, we omit soetaild of the OpenFlow
implementation and the analysis of why some false positaresself-healed by virtue
of the multi-rooted topology. In a nutshell, false posisvesult in multiple flow entries
matching the wildcarded bits in the iBF. Since only the actions associated to one/entr
can be executed (per OpenFlow specification), a packet mayrdoggly forwarded to a
switch not included in the source route. Such packets lgc&frmatching flow entries
are forwarded to the RM, which computes an alternative pathiastalls the required
flow entries to temporarily fix the issue. However, recalltthar strategy to avoid false
positives is to detect themrior to their use. With knowledge of the topology, the RM
pre-computes and maintains a source to destination ToRxigied only with false-
positive-free iBFs for the multiple available network patin Sec. 5.3 we experimentally
quantify the penalties on path multiplicity, which we aiggte to be insignificant.

3.3. Tree and Role Discovery Protocol

Topology knowledge is a prerequisite to allow source rautiy point which is not so ev-
ident and trivial is how to correctly infer the tree topolagyd the role of each switch (i.e.,
ToR, CORE or AGGR.), more critically at bootstrap time, gmmne of our requirements
is to mimic the Ethernet plug & play behavior to avoid any manatervention. This fea-
ture does not only reduce operational efforts to e.g., oeptaisbehaving switches, but is
critical for the correct (and optimized) routing of packels this end, we have designed
a Role Discovery Protocol (see Algorithm 1) that automatesinference of the switch-
ing tree by simply extending the link layer discovery pratb@LDP) with an extension
TLV to include the discovered role. We note that Portlancéaa similar challenge in
order to switches discovering their specific location wittiie DCN hierarchy to form a
pseudo MAC address of the forpod.position.port.vmidOur protocol is fairly simpler
and requires only to identify the layer in which it is located

4. Prototype implementation and testbed

Implementation of the iBF-forwarding mechanism is based @penFlow
switches [McKeown et al. 2008], and the Rack Manager (RM) besn implemented
as an application on top of the NOX controller [Gude et al.&00n the following, we
describe the key issues of the implementation work and tstbed environment. For
details on the prototype implementation and on how to repiour testbed we refer to

Algorithm 1 : Role Discovery Protocol.

begin switchjoin
ROLE «+ UNDEFINED;
SendAl | Port s(llpd, ROLB ;
nd

eginarpreceiveserver
if ROLE! = TORthen
| ROLE+« TOR;

end

o O

nd

eginlldp_receiveneighbors
NBROLE « neighbors.ROLE;

if NBROLE= (COREor TOR)then
| ROLE+« AGGR;

else fNBROLE= AGGRthen
| ROLE«— CORE;

end

o O

end

the publicly available source files and how-to instructibns

4.1. OpenFlow

An OpenFlow (OF) switch separates the fast packet forwgrftiata path) from the high
level routing decisions (control path) of a router or switdhihile the data path portion
still resides on the switch and runs using the same underhyandware, high-level packet
handling decisions (i.e. routing) are moved to a separatgalter. OF-enabled devices
and the controller(s) communicate via the OF protocol, Whiefines messages, such as
packet -recei ved, send- packet - out, nodi fy-f orwar di ng-t abl e, and
get-stats.

The disruptive aspect of OF is to define a clean interface rim fof a flow table
abstraction with entries containing a set of packet fieldaatch from the 10-tuple:
(inport, Ethg.c, Ethqs, VLAN, EthType, I Pyroto, I Psye, I Pyst, TC Py, TC Pys), and
a list of hardware-supported actions, i.eend- out-port, nodify-field, or
dr op. When an OF switch receives a packet for which it has no madgcfiow entry,
it sends this packet to the controller, which in turn decidesiow to handle the packet.
The decision is sent to the switch, which can be instructedobe the decision for some
period of time by adding a flow entry to handle upcoming pasketine rate.

In order to support the iBF-based forwarding, only a minodification was re-
quired to the current OpenFlow reference implementatigrs§9rev2 and v.1.0). The
key of iBF-based forwarding is the Bloomed MAC identifier whiis a wildcardedit-
maskwith only £ arbitrary bits set to one. Thus, we needed to add this speelayv-
ior support to the OpenFlow datapath implementation. Fatiely, this required only
changes in two lines of codef the fast path flow matching function.

http:/iwww.dca.fee.unicamp.br/ chesteve/
’function flowfiel ds_match in openflowl. 0. 0/ udat apat h/ switchflow. c or
openfl ow0. 9. 0/ dat apat h/ fl ow. ¢

12}
-
— (]) .
5| Rack Manager Tree Discovery e
- (VLB Routing Service | e
£ iting Ser
8 Host directory | Flow Handler I Topology Discovery Protocol

I
1

5

5 OpenFlow stack

2| Cam NOX
O 1 Cautn) (Directory)

- ,f o iy
g : [Open vSwitch] [OpenFlowVMS] [OpenFlow-enabled HW]
o |
Z

Figure 2. Component Architecture.

4.2. Rack Manager

The Rack Manager acts as a controller of OF switches, and ag e natural im-
plementation is as an application on top of the open sourcec@froller named
NOX [Gude et al. 2008]. In a nutshell, NOX’s programmaticenfidace is built upon
eventstriggered by NOX core components, thrown by user-defingliegtions, and gen-
erated directly from OF messages ljxacket -i n,switch join,switch | eave,
etc. Figure 2 depicts our implementation of the RM functlapavhich we have divided
into three separate NOX user components.

4.3. Message sequence

The packet flow diagram of Fig. 3 shows how communicationpbapn the prototype
implementation. Regular arrows are single data packetshendotted arrows represent
OF protocol messages. A server’s network activity startsdayding an ARP request to
some destination IP(Step 0), for instance, to resolve the address of the DN&s€eMe
ARP request reaches the ToR, which has no matching entryrdoidns the controller.

[IPsrc] | ToRsrc | [RM]l Aggr. " Core " Aggr. |[RM] | ToRdst | [|Pdst]
0.a) ARP(IPx)
1. ARPrq(IPdst) Packetin) l. .20 e |
T =
[A) Learn Server | |- -+ ->
, . B AddFlow(IPdest):
2_ARPrp(ToRsrc') | _ . SendPacket(ARPrep) R Action=RWin(MACs), Fwd()
3. TCP SYN (IPdst) Packetin() (1) TreeDisc. | | 0.b) ARPrp(ToRdst)
—_— et s st > | .
QEITTEE
< Adafiow(: "]
Action=RWout(MACs<-iBF), Fwd() TCP SYN

F) | iBF-based Forwarding |

PacketIn() 4. TCP SYN ACK(IPsrc)
—

IaddFiow(; T >
TCP SYN ACK Action=RWout(MACs<:iBF), Fwd()
F) [iBF-based Forwarding | |
5.|TCP ACK + = [E Y rw
—D_A';-_ =1 iout B — = =+ 4F) | iBF-based Forwarding | |=+ = === d - - - - - -
OpenFlow protocol + = = - - > Data packet —»

Figure 3. Packet flow sequence in an OpenFlow-based SiBF inst antiation.

The packet-inevent is passed to all the modules which have expresseeshtier ARP
packets. The RM learns the server location and registessbheang attached to a port of
the OF switch triggering the event (Action A). It then sendBa-modcommand to in-
stall a semi-permanent flow entry for future incoming paslssintaining the destination
IP equal to the server IP, and the associated actions s¢tré&Wirite the MAC fields with
the ToR and server original MAC addresses, and (ii) forwarthe attached port. The
Tree Discovery identifies the switch as a ToR and updatedaite af the Role Discovery
Protocol (Action T). The ARP replier responds with a “fakeRR reply containing the
ToR MAC (Action R). In Step 1, a server sends an ARP reques fibestination IP, and
like any originating ARP, it acts as a trigger for the serviscdvery actions described in
Step 0. After receiving the ARP reply (Step 2), the sourcesrshds a TCP SYN packet
which hits the ToR switch and is accordingly forwarded to ¢oetroller (Step 3). The
RM picks one iBF towards the destination ToR (Action C), amdeos the installation
of an OF entry (10 sec. soft-expiration) to re-write pachketknging to the fully spec-
ified 10-tuple flow. Packets within this flow description gle¢ iBF written in the MAC
fields and are forwarded at line rate across the AGGR and C@frid based on the iBF
source route (Action F). When the iBF-labeled packet higsdistination ToR, it matches
the flow entry installed in Step 0 (Action A) and is deliveredhe destination server after
re-writing the MAC headers (Action D). In Step 4, the dedimraserver replies with a
TCP SYN ACK which lacks of a flow entry and is delivered to the RMtion C). After
IBF selection and the installation of the flow entry (Actioh @e TCP SYN ACK is for-
warded based on the iBF. Upon reception at the originatingesethe 3-way handshake
can be completed (Step 5) and both entities can exchangatdata rate.

4.4. Testbed

The testbed consists of 5 physical nodes, one hosting the dD¥oller with the RM
components and the remaining 4 were partitioned into 9afimachines: 5 instantiating
an OF switch each, and 4 hosting linux-based VMs. Figure 4vshbe testbed envi-
ronment, where the solid lines represent direct links betwartual machines and the
dashed lines represent the connections between VMs frderetit physical machines.
The topology on each physical machine is configured with GpmsavMS, which in-

Host5 - : <~ NOX connections to every
192168020 _.-~" S~ - > virtual switch in each

~ physical machine (i.e., x5)
~

[OF Switch
DEnds
—— VDE Connection
= = SSH+VDE Connection
[T][| [][] []|[T16] [17][T18]
Physical machines
o o [} (] (] @ @
gg gg gi %
= N @ Y a ~ o © = =, o w » o o
Host1 Host2 Host3 Host4

192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4

Figure 4. Testbed environment.

Table 1. Evaluation of the state requirements in terms of ent ries at switches.

Physical hosts 2.880 23.040 103.608
Racks 144 1152 5184
Aggr. Switches 24 (p; = 24) 96 (p; = 48) 144 (p, = 144)
Core Switches 12 (po = 24) 24 (p2 = 96) 72 (po = 144)

| [VLZ | Portland] SIBF | VLZ | Portland] SIBF | VLZ | Portland] SIBF]
Entries at TOR || 200 | 120 | 120 [1292] 120 | 120 | 5420] 120 | 120
Entries at AGGR|| 180 27 24 [1272 48 48 [5400] 144 | 144
Entries at CORE|| 180 27 24 [1272 96 96 | 5400 144 | 144

cludes a useful set of scripts to automate the creation efarked VMs using QEMU
and VDE. Additional scripts were developed to distribueénvironment across different
physical machines usinggshconnections and virtual dumb-switches based on VDE. Our
extended script set enables to quickly define a target tgg@od automate the bootstrap-
ping of the virtual nodes and OF switches, including the IRfiguration, the creation of
data-paths, the start-up of OF modules and the connectiibve tcontroller.

5. Evaluation

After validating the prototype implementation by verifgithe full connectivity among
the pool of servers (16 VMSs), the next question is to evaltiaaBF-based forwarding
fabric in terms of (i) state requirements, (ii) potentideets of false positives, and (iii) the
load balancing capabilities. Due to the limitations of duattized testbed, performance
aspects like goodput and flow completion times are left ostope here.

5.1. State analysis

We start by comparing analytically the state requiremehtSiBF with VL2 and Port-
land. The network setup is a 3-tier Clos topology, with ToBsrecting to 20 servers via
1 Gbps ports and to two AGGRs via 10 Gbps links. Pheorts of AGGRs are used to
connect tg, /2 ToRs andy, /2 COREs equipped with, high speed ports. In line with re-
lated work [Tavakoli et al. 2009], we assume an average obh@urrent flows per server
(5 inand 5 out). Table 1 presents the scalability requirdsfam different switch config-
urations. By virtue of strict source routing, SiBF requiregimal state at COREs and
AGGRs, namely only one entry per interfacing neighbor. Meez, scaling-out the DCN
does not impact the number of flow entries in the switches lwisiconstant and equal to
the number of neighbors. At ToRs, the amount of flow entriesvgrwith the number of
concurrent outgoing flows plus a constant amount of eninies for each hosted server in
order to re-write terminating flows. By comparison, VL2 re@gs forwarding entries in
proportion to the total number of switches in order to rowtekets along the two-levels of
IP encapsulation{L Acore, LAr.r). On the other hand, Portland has the same state re-
quirements as SiBF, namely only one forwarding entry perfate, sufficient to perform
the hierarchical forwarding on PMACs.

5.2. False positives

Now, we turn our attention to the practical false positivef@@nance of small 96-bit
Bloom filters when holding only 3 elements, namely the thresoBied MAC addresses.
More than the theoretical estimates (i.e., Eq. 1), whattfiirawers are really interested is
in the observed false positive ratgpf) after the iBF is queried for elements. Therefore,

Table 2. Evaluation of the false positive rate of the 96-bit i BF.

K 5 16 7 [819 [0 [IB3[I5] I7 [19 21]
Theor. Eq 1 {10~ °) || 64.89] 25.7] 11.68| 5.95] 3.33] 2.03] 1.32] 0.68] 0.42] 0.31 | 0.25] 0.23
Fpr (109 2.41|1.81] 1.5 | 1.7 |1.83]2.23]3.09| 4.92| 7.17| 11.46| 16.09] 21.07
DT min (100 0.930.58] 1.74 | 1.85| 2.78] 5.56] 9.72| 28.6| 95.1] 182 | 355 | 591

from a pool of 1M unique, randomly generated 48-bit valueseach experiment round
(10.000 in total) we randomly insert 3 of them into a 96-bit &g the Bloom MAC ID
algorithm (Eg. 2) and test for presence of 432 (= 144 * 3 hoasjlomly selected MACs.
Table 2 shows the observeghr for basic BFs constructs and when the power of choice
optimization (withd = 4, m’ = 94) is used {pr,..;»). In theory, the optimal number of
hash functionsk,,; = *In2) that minimizes the false positive probability would be as
many as 22. However, in our practical setup, the lowfestwas obtained fok around

7. The deviation from the theoretical estimates can be exgucby the accurate equation
and bounds for small size Bloom filters by Bose et al. [Bosé.é@G8, Theorem 3].
Even without the d-candidate extension, only a few falsatpes per 10.000 queries
were observed in plain 96-bit iBFs, which suggests that ffexieof a false positive (if
any) could be easily handled on a per-case basis.

5.3. False-positive-free forwarding on large-scale DCN fmwlogies

We now evaluate the viability and efficiency of our false p@siavoidance strategy based
on discarding false-positive-prone iBF candidates prothieir use. Our thesis is that,
given the low fpr of the 96-bit iBF data structure, there are plenty of falesiive-
free paths between any two communicating nodes. In thisrempat, we use an ns-3
implementation to explore thgpr performance on large-scale DCN topologies by send-
ing an iBF for each of the available path between every ToRoWwmng the approach
described in Sec. 5.1, we generate a topology with 48-poER&and COREs to inter-
connect 576 ToRs, enough to host 11.520 physical serveingieavery combination
of (ToRs.. — ToRys) (i.€., 331.200 ToR pairs) along each available path, resulbver
30M iBFs sent and accounted for false positives. The summeayits are as follows:
74% of the ToR pairs were false-positive-free for every lade shortest path. Among
those with some false positive (26%), the average number3wag of the 96 multiple
paths. The maximum number of false positive paths for anydmRbination was 10. As
a result, only 0.92% of all network paths exhibited somesfalgsitive and should be kept
out of the pool of iBFs used for load balanced routing. Basedhese results, we may
conclude that false-positive-free forwarding comes atfior@able cost (less than 1%) in
reduced path multiplicity. Moreover, considering the dwdiglate optimization with e.g.,
d = 4, we could, with very high probability, get rid of the remaigi1% of false-positive
iBFs by choosing alternative bit representations, ancetheutilize every available path.

5.4. Load balancing capabilities

Now, we investigate the load balancing capabilities of ienpénting VLB with iBFs over
our testbed environment. Given a traffic matrix (TM), the Igedo evaluate how well
the traffic is spread among the available links. We compaeditik utilization of our
VLB implementation with a vanilla Spanning Tree (SPT) impkntation over the same
topology. Two types of TMs were tested, one to mimic the@l&ll characteristics of DC

applications like MapReduce, and one with random commting&ndpoints. We used
ITG [Avallone et al. 2004] as the traffic generator configuwgth TCP flows to last for
10s, with exponentially distributed payload sizes aroub@d Bytes, which are reasonable
assumptions for the majority of the reported DCN traffic. fegg5 shows the normalized
link utilization after ten experiment runs. As expectedT3der- and over-utilizes the
network links, whereas SiBF spreads traffic remarkably weith the maximum and
minimum normalized utilization of any link deviating onlyaund 20% from the ideal
value, i.e., 1. In the case of randomly chosen endpoints &ig)), the conclusion is
the same, VLB using iBFs achieves a nice utilization of thailable links in a TM-
independent manner. The distribution of the normalizekl litilization is comparable to
the numbers reported in the VLB implementation of VL2, witmmalues (0.78 vs. 0.46)
and max values (1.23 vs 1.2) [Greenberg et al. 2009b, Fig. Thé divergence of the
min values can be explained by the nature of the operatioaffictin VL2 compared to
our synthetic TMs.

1

| —SBF —] | —SBF —— |

naive STP i ; ; naive STP
. 08 . - e 0.8 . . B
[=4 : : : : : [=4 : :
] | | | |] | | | | |
g0.6- I N e S . g0.6 R S e B
€ | | j | € | | | | ; |
804 e g BI04 e
o | | i | o | | | | | |

0.2 - / R - 0.2 | b

0 1 1 I : I I 0 1 1 1

0 02 04 06 08 1 1.2 14 0 02 04 06 08 1 1.2 14
Normalized link utilization Normalized link utilization
(a) All to all. (b) Random.

Figure 5. Evaluation of the load balancing behaviour. CDFs o f the link utilization.

6. Conclusion

We have presented SiBF, a data center network architecasellon a simple data plane
layer below IP that forwards packets based on the conterds of-packet Bloom filter.
SiBF embraces the (upcoming) category of commodity swedbeeraged with a flow-
oriented API extending the next frontier in data center oeks from “commaoditization”
to “customization.” The DCN proposal presents many appgatharacteristics such as
not requiring any modification of end-hosts, reusing theeEtht packet header bit space,
minimal FiB consumption, and a fine control over the packetes across the data cen-
ter. The evaluation on a small-scale virtualized testbgulementation not only provides
a proof of concept that helped to feedback the design cybldsalso shed light on the
actual capacity of providing load balancing with randordi#gFs. In future implemen-
tation rounds, the prototype will be improved (e.g., to Hardilure cases) and extended
with additional features like distributed database maneagd (e.g., topology and host
directory) and transparent middlebox traversal, makiradl together a real candidate to
be deployed as an in-house cloud DCN playground.

Acknowledgements
This work is partly funded by CNPq, Capes, FAPESP and EricBssearch.

References

Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A sclEdabommaodity data center
network architectureSIGCOMM CCR38(4):63-74.

Avallone, S., Guadagno, S., Emma, D., Pescape, A., and&/eBtr(2004). D-itg dis-
tributed internet traffic generator. PEST '04 IEEE Computer Society.

Benson, T., Anand, A., Akella, A., and Zhang, M. (2009). Urstiending data center
traffic characteristics. I'WREN '09 ACM.

Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, Ragrivéon, J., Smid, M., and
Tang, Y. (2008). On the false-positive rate of Bloom filtersformation Processing
Letters 108(4):210-213.

Greenberg, A., Hamilton, J., Maltz, D. A., and Patel, P. @90 The cost of a cloud:
research problems in data center netwo& COMM CCR39(1).

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim,l@&hiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. (2009b). VL2: a scalable andblitectata center network.
SIGCOMM CCR39(4):51-62.

Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rkaxd, J., Xie, G., Yan, H.,
Zhan, J., and Zhang, H. (2005). A clean slate 4D approach tt@onke control and
managementSIGCOMM CCR35(5):41-54.

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., Mo®n, N., and Shenker, S.
(2008). NOX: towards an operating system for netwok&COMM CCR38(3).

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., &g, Y., and Lu, S.
(2009). Bcube: a high performance, server-centric netvaockitecture for modular
data centers. ISIGCOMM 09 ACM.

Jokela, P., Zahemszky, A., Esteve Rothenberg, C., AriaBfaand Nikander, P. (2009).
LIPSIN: line speed publish/subscribe inter-networkingSIGCOMM '09 ACM.

Joseph, D. A., Tavakoli, A., and Stoica, I. (2008). A poleyare switching layer for data
centers.SIGCOMM CCR38(4):51-62.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, Beferson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008). OpenFlow: enablingvewnan in campus net-
works. SIGCOMM CCR38(2):69-74.

Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, Miri, P., Radhakrishnan,
S., Subramanya, V., and Vahdat, A. (2009). Portland: a Blsfault-tolerant layer 2
data center network fabric. BRIGCOMM '09 ACM.

S. Kandula, Sudipta Sengupta, A. G. and Patel, P. (2009)natwee of data center traffic:
Measurements and analysis.AGM SIGCOMM IMC

Tavakoli, A., Casado, M., Koponen, T., and Shenker, S. (R0@pplying NOX to the
datacenter. IfProc. of workshop on Hot Topics in Networks (HotNets-VIII)

Yuan, X., Nienaber, W., Duan, Z., and Melhem, R. (2007). @blis routing for fat-tree
based system area networks with uncertain traffic dem&I@BVIETRICS PER35(1).

