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Traditional DCN architectures (Cisco view)
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Some issues with conventional DC designs

Networking constraints of traditional L2/L3 hierarchical organization:
— Fragmentation of resources (VLAN, subnetting)
— Limited server-to-server capacity (high oversubscription)
— Ethernet scalability (FIB size, STP, flooding, ARP broadcast)

— Low performance under cloud application traffic patterns

— Reliability: 2 is a poor choice for redundancy at scale




Ideal DCN from a Cloud App dev view

Internet : Internet

1 Data Cenr
Layer 3 One blg Ethernet SWItCh

* Scalable & Agile: Any VM to any physical machine.

Layer 2

» Uniform high capacity (BW & latency)
: * Performance isolation and fault-tolerant
\ e Cost-effective (commodity hardware, small state)
= BR = L3 Border Router
AllA .. A AllA]..lA * AR = L3 Access Router
= S = L2 Switch
1 * | R =1nad Ralanrer
A Single Layer 2 Domain X 100 000s of Servers
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Related work

VL2 [SIGCOMM 09]
e Layer 3 routing fabric used to implement a virtual layer 2
 Unmodified switch hardware and software

 End hosts modified to perform enhanced resolution to assist
routing and forwarding (IP-in-IP source routing)

Portland [SIGCOMM 09]
e Separates host identity from host location

— Uses IP address as host identifier

— Introduces “Pseudo MAC” (PMAC) addresses internally to encode
endpoint location

 Runs on commodity switch hardware with OpenFlow API
BCUBE and more to come...



New generation DCN topologies
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Basic idea

« Compactly represent a source route into an in-packet Bloom filter (iBF)

o Carry the 96-bit iBF in the source and destination MAC fields
(MAC re-writing at source and destination ToR switches)

o Stateless forwarding by querying next-hop switches in the iBF

o Bloom filter fundamentals

e« mbitarray 96 bits of Ethernet SA and DA
o kindependent hash functions 7
« n elementsinserted 3 MAC addresses (CORE, AGGR and ToR)
Insert_element() Check element() “yes” / no ?
X y Z w?

ol O

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

| m=32 bits |




Basic idea

In-packet Bloom filter (iBF) based forwarding*:

iBF-based forwarding (Core in iBF?)
IP (src, dst); MAC (ibf, ibf)

iBF-based forwarding (Aggr_down in iBF?)
IP (src, dst); MAC (ibf, ibf)

OF-based forwarding action rule
IP (src, dst); MAC (ibf, ibf

iBF-based forwarding (ToR_dst in iBF?’
b o & %ol | s : IP (src, dst); MAC (ibf, ibf)

LED o 3 iBF-based
———— l N
IP (src, dst) QIT@R forwarding e IP (src, dst)
MAC (src, tor) ﬁ _decisions ﬁ MAC (tor, dst)

* Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Ananfar, S., and Nikander, P. (2009).
LIPSIN: line speed publish/subscribe inter-networking. In SIGCOMM "09. ACM.



Design Principles

Separating Names from Locations

— |P for VM identification, pure “L2” connectivity
Source explicit routing

— Stateless intermediate switching based on the iBF
Direct network control and logically centralized directory

— Rack Managers install flows at ToRs and maintain topology and VM dir.
Load balancing through path randomization

— Exploit path multiplicity to provide oblivious routing
(i.e., traffic independent randomized packet routing) [VLB]

Unmodified end-points and plug & play

— Legacy servers and applications are supported off-the-shelf.

— Auto-configuration of end-hosts and switches (Role Discovery Protocol)
Design to cope with failures

— Assume any component will fail (built-in fault-tolerance)



SiBF architecture

 An army of Rack Managers with distributed
Topology and Directory services

ié Rack Manager * Servers é Topology and Directory Services



Valiant Load Balancing

e Random path selection (per-flow)
— Choose Aggrl, Core, Aggr2
— iBF encodes Core, Aggr2, ToR

Core Core Core Core
/ b p e \
Aggr | | Aggr | | Aggr | | Aggr Aggr | | Aggr | Aggr | | Aggr

| :
|LJ:] Rack Manager * Servers é Topology and Directory Services



Role Discovery Protocol

Goal: Discovery and auto-configuration of switches

Algorithm 1: Role Discovery Protocol.

begin switch_join
ROLE +— UNDEFINED:;
SendAllPorts (llpd, ROLE) .

end

begin arp receive server

if ROLE ! = TOR then
| ROLE « TOR;

end

end

begin lldp receive neighbors

NBROLE « neighbors.ROLE;

if NBROLE = (CORE or TOR) then
| ROLE «— AGGR;

else if NBROLE = AGGR then
| ROLE «— CORE;

end

end

Similar to the discovery
protocol of Portland but simpler

Leverages the 3-tier topology

Implemented with TLV
extension to LLDP

Upon neighbor discovery

— Switch installs neighboring
Bloomed MACs entries:
k “hashes” of the MAC



OpenFlow-based iBF implementation

o OpenFlow extension to match on arbitrary wildcarded bit masks
_ Easy to implement: 2 lines of code in the flow matching function

_ Official support expected in upcoming OpenFlow versions

| MAC(src+dst) = iBF-96 bits |

Praondeeuvou? |[0[1/0[1]0(0(1]0 - 10[[1]0[1]0[0|0|0]|1 '01 Pacote
Fluxo 1:Enc.porta 1 |0]1]0]00]0[1]0] --- [o][1]0]1[o]o]oo]o] --- [o]1]
Fluxo 2: Enc. porta3 [0]0]0]1]0]0]0[1] ==+ [0][o[1]o[o]o[o[o[1] --- [o[o] 22"
Fluxo 3-Enc.porta2 | 1]0]0]0[0]0]0[1]--- [1]|o]o]olo]o]olo]o] --- [1]0] Fluxe
______________________ 12345678 48 12345678 448 |

inport | VLAN Ethernet (src) Ethernet (dst) IP (src) ]




False-positive-free forwarding
on Bloomed MAC identifiers

Instead of traditional exact matching on MAC,,
each forwarding entry contains a 96-bit mask with only k 1s
based on “hashes” of the neighbouring switch MAC.

Well-known caveat of Bloom filters: false positives

— 2 or more switches appear as next hop candidates:
(i) multi-cast the packet along matching interfaces
(ii) pick one and “pray” (+ temporal fix by controller )

(iii) Test iBFs for false positives prior to their use!

— power of choices along two dimensions:
(1) multiple paths, and (2) multiple iBF representations

RM maintains a ToR, -ToR ; matrix filled only with
false-positive-free iBFs for the multiple paths



User
i Components

Controller

RM controller implementation

-

Rack Manager

| VLB Routing Service

Host directory | Flow Handler

Tree Discovery [R':E.LJ

Topology Discovery Protocol

Core
OpenFlow stack C Statistics ) (WS )
API Utils N Ox ( Routing_) C TopologL)

Components —

( Auth. ) C Directory ) y

[ Open vSwitch ] [ OpenFlowVMS [ OpenFlow-enabled HW 1

See details of the Distributed Rack Manager implementation in WGCA'’ 10
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Message diagram

VM_IPsrc ToRsrc RM Aggr Core || Aggr RM ToRdst VM_IPdst
! I Lo 0.a) ARP(IPx
1. ARPrq(IPdst) Packetin() OpenFlow switches < Facketing < AP
o >
[T Resolve IPdst [B BT - - - >
AddFlow(IPdest):
2 REP(TORsro) | ., SendPacket(RRPrep) Action=RWin(MACs),|Fwd()

3. TCP SYN (IPdst]  Packetin() 1) _Tres Disc. | | 0.b) ARPrp(ToRdst')

Porne > ARP Replier | |- - - -> >

| | iBF: VLB Route
<" AdgFiow(): "
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.( ----------- .‘
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————— : b= — — — + {F) | iBF-based Forwarding | |—--———— : ——————
DATA mfi)ut @ | | @ m!iaut

OpenFlow protocol * * = = - > Data packet —»
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Message diagram
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SiBF: Switching with in-packet Bloom filters

Table 1. Evaluation of the state requirements in terms of entries at switches.
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Figure 5. of the load i . CDFs of the link utilization.
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Assumptions

State requirements

o ToRs connect 20 servers via 1 Gbps ports and to two AGGRs via 10 Gbps
o 10 concurrent flows per server (5 incoming and 5 outgoing)

Results

Table 1. Evaluation of the state requirements in terms of entries at switches.

Physical hosts 2.880 23.040 103.608
Racks 144 1152 STRS
Agor. Swiiches 24 (p; = 24) 096 (p; = 48) 144 (p; = 144)
Core Switches 12 (pe = 24) 24 (ps = UG) 72 (pa = 144)
| | VL2 | Portland | SiBF | VL2 | Portland | SiBF | VL2 | Portland | SiBF |

Entries at ToR 200 120 120 T 1292 120 120 T 3420 120 120
Entries at AGGR | 180 24 24 1272 48 13 5400 144 144
Entries at CORE || 180 24 24 1272 096 96 5400 144 144

« SiBF and Portland have O(# of ports) vs
vs. non-scalable vanilla Ethernet O(# of hosts)

Conclusion

. VL2 O(# switches)

o Minimal state at CORE and AGGR (1 entry per neighbour)

o Affordable state at TOR (# simultaneous outgoing flows + # hosted servers)



False positive rate of 96-bit Bloom filters

Setup

e m =96-bit array

o n =3 randomly chosen MAC addresses (pool of 1M unique MACs)
o kindependent hashes (double hashing with MD5 and SHA-1)

o Tested for 432 (=144*3) randomly chosen MACs

o 10.000 rounds per parameter set

Results Table 2. Evaluation of the false positive rate of the 96-bit iBF.
'k T 5 1 6 ] 7 | 8§19 [0 [I3[I5] I7 [ 19 [ 2T |
Theor. Eq 1 (-10°°) || 64.89 | 25.7 | 11.68 | 5.95[3.33[2.03]1.32]0.68 [0.42]| 0.31 | 0.25 | 0.23
fpr (-10~%) 241 | 181 15 | 1.7 [ 1.83[2.23]13.09[492|7.17 | 1146 16.09 | 21.07
fprmin (-10~°) 093 |0.58] 1.74 | 1.85[2.78 [5.56[9.72 | 28.6 | 95.1 | 182 | 355 | 591
Conclusion

o Deviation from theoretical estimate explained by assumptions [Bose 2008]
o Very low fpr suggests few iBF paths with false positives



False-Positive-free forwarding

Setup

NS-3 implementation
3-Tier Clos topo w/48-port AGGRs and COREs (576 ToRs -> 11.520 phy s.)

Test every combination of ToRsrc - ToRdst (i.e., 331.200 ToR pairs)
along each available path (96 typically).

30M iBFs sent and accounted for false positives. Pairs of ToR,,.-ToR;

Results

26% of the ToR combinations with some false positive path 26%
- On average, 3 paths (out of 96) with false positives 0

74% of pairs with every available path false-positive-free

74%

Conclusion

Only 0.92% of all DCN paths avoided for load balancing

False-positive-free forwarding comes at an affordable cost (less than 1%)
in reduced path multiplicity (can be zeroed w/ d-candidate opt.)



Load Balancing

Setup

« Two synthetic traffic matrices: (1) all-to-all, and (2) random server pairs
o Measure link utilization over 10 rounds

« SiBF Valiant Load Balancing vs. vanilla Ethernet Spanning Tree

1 I I I
SIBF —— |
0.8 naive STP :

Results

1 —
s SIBF ——
0.8 naive STP

06 b 06 bt e

Percentile rank
Percentile rank

02 b g

i

S R B S B

0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Normalized link utilization Normalized link utilization

(a) All to all. (b) Random.

Conclusions Figure 5. Evaluation of the load balancing behaviour. CDFs of the link utilization.

« SiBF splits distributes traffic over every available path reasonable well
o Comparable to other reported VLB implementations (e.g., VL2)
o Better than ECMP (only 16-way +limitations of hash-based flow balancing)



Future Work

e Flyways for QoS-enabled paths or congestion-free
routes via enahanced dynamic load balancing:

— Re-routing could help avoid losses due to microbursts
(requires congestion detection!).

— MPLS re-route like solution (2" link-disjoint iBF @ ToR)
o Multicast services
o Seamless workload mobility (VM migration)
o Include middlebox services in the iBF
- using Bloomed Service Ids or the explicit control path
o Inter-DCN communications (Inter-Cloud VPLS)
o OpenFlow-related (e.g., anycast controllers)



Conclusions

s M
E=Y

iBF-based forwarding (Core in iBF?)
IP (sre, dst); MAC (ibf, ibf)

iBF-based forwarding (Aggr_down in iBF?)
IP (src, dst); MAC (ibf, ibf)

OF-based forwarding action rule - — ‘ . R
IP (src, dst); MAC (ibf, ibf Aggr Aggr iBF-based forwarding (ToR_dst in iBF"
F IO Py ' YEEEE . IP (src, dst); MAC (ibf, ibf)
d v e ks
3 iBF-based
IP (src, dst) forwarding IP (src, dst)
MAC (src, tor) decisions MAC (tor, dst)

SiBF offers transparent explicit routing, minimal state, load balancing, service
differentiation, fault-tolerance, commoditized equipment, etc.
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Distributed Rack Manager Architecture

3 » Topology (link tuples)
| SOSQL: Keyspaci { « Server Directory

(IP, ToR) mapping

Distributed
database

o
EE : ArpReplier=—
e 2 set
%E | RackManager TreeDiscovery
5 : OpenFlow stack ]_m—[ Components
E i AP ) [ Utils | NOX _statistics ] [ WS ]
S [ Routing | [ Auth. |

_____ A e o ——— — o — = = — o — == — o — ==

[ OpenFlow-enabled }[ Open

. s J [ OpenFlowVMS ]

Network




New Generation Data Center Networking

Goals Requirements Features
R1: Any VM to any physical machine. . 1D/loc split
R - Let services “breathe”: Dynamically expand and
esource contract their footprint as needed . Scalable L2
Pooling : calaple
L2 semantics
(servers and - -
ek @l R2: High network capacity - Multipath
& - Uniform BW and Iatenqy for various traffic patterns support
Agility between any ser\./e:*r pair o . New TE (load-
- 1:1, 1:M, N:N efficient communications along any balancing)
available physical paths
- R3: Design for failure. - Fault-
Reliability Failures (servers, switches) will be common at scale. tolerance
R4: Low configuration efforts . Auto-config.
- Ethernet plug-and-play functionality
Low Opex g, Energy efficiency . Energy/Cost-
- Networking design for idle link/server optimization awareness
Low Capex Use commodity hardware - Scaling-out

Control Include middlebox services in the data path as required

- Network ctrl.




Fragmentation of resources

* CR =13 Core Router
* AR =13 Access Router
* S =12 Switch

« LB = Load Balancer
Interﬂet * A = Rack of 20 servers

& (&

with Top of Rack switch

LB S S LB LB S S LB
S S S S , S S S S
[0 ]
A A AllA A

— Fragmentation of resources due to load balancers, IP subnets, ...
e limits agility to dynamically assign services anywhere in the DC.

— Static Network assignment due to application to VLAN mappings, in-
path middleboxes, ...



Limited server-to-server capacity =

* CR =13 Core Router

* AR =13 Access Router
« S =12 Switch

* LB = Load Balancer

* A = Rack of 20 servers
with Top of Rack switch

10:1 over-subscription or worse (80:1, 240:1)

e M. o

S S LB
5 S S S
All A A

Costly scale up strategy to support more nodes and better transfer rates
— Expensive equipment at the upper layer of the hierarchy.
— High over-subscription rates i.e. poor server bisection BW



Layer 2 (Ethernet) scalability

Key:

* CR =13 Core Router

* AR =13 Access Router
« S =12 Switch

mtEmEt [M Onsoon] * LB = Load Balancer
~ | BR BR | - » A =Rack of 20 servers
Layer 3 ' ’ with Top of Rack switch
ECMP 1
AR — (ARY AR == AR |
Layer 2 .
» Full L2 reachability
* Flat routing (Ethernet)
A2
Lload B4 A4| Racks of
Balancers /— Servers
A5
(VIPs) ) (DIPs) x 100.000s

Current layer 2 architectures cannot scale

— limited switch state for forwarding tables (flat routing)

— performance (bisection BW) limitations (i.e. standard spanning
tree protocol limits fault tolerance and multipath forwarding)

— ARP broadcast overhead




DC “traffic engineering” ¢ . /<o
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DC traffic is highly dynamic and bursty

— 1:5 ratio of external vs. internal traffic R ~ [IMco9]

— Traditional traffic engineering does not work well (TM changes constantly)
— Bursts are too short-lived for traditional approaches to react to them

Goal of DC traffic engineering
— Location-independent uniform BW and latency between any two servers
— For any TM! DC patterns (1:1, 1:M, N:N)

Approach
— Avoid spanning tree to make all available paths could be used for traffic
— Load balancing: E.g., TM oblivious routing, VLB [Monsoon, VLB]

Additional requirement

— Force application traffic through middleboxes
(firewalls, DPI, intrusion det., load balancers, WAN opti., SSL offloaders)

[IMC09] S. Kandula et al., “The Nature of Data Center Traffic: Measurements and Analysis”, To Appear in IMC 2009
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