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New data center design drivers

� Application needs

– Cloud services drive creation of huge DC designs

� Technology trends

– Commodity servers + Virtualization (host + network)

Deployment constraints � Deployment constraints 

– Space, location,  resources

� Operational requirements

– Auto-configuration, energy concerns, DC modularity 

� Scalable cost-driven design

– Design for failure, 1:N resilience at data center level

How to forward packets inside the data center?
- Network should not be bottleneck for cloud applications



Traditional DCN architectures (Cisco view)

IEEE Spectrum Feb.

net gear follows mainframes 

business model: 

• large

• vertically integrated 

• expensive equipment 

• deployed in pairs

+ networking constraints !



Some issues with conventional DC designs

Networking constraints of traditional L2/L3 hierarchical organization:

– Fragmentation of resources (VLAN, subnetting)

– Limited server-to-server capacity (high oversubscription)

– Ethernet scalability (FIB size, STP, flooding, ARP broadcast)

– Low performance under cloud application traffic patterns– Low performance under cloud application traffic patterns

– Reliability: 2 is a poor choice for redundancy at scale



One big Ethernet switch

• Scalable & Agile: Any VM to any physical machine.

• Layer-2 semantics (Plug-and-Play)

Ideal DCN from a Cloud App dev view

IEEE Spectrum Feb.

• Layer-2 semantics (Plug-and-Play)

• Uniform high capacity (BW & latency)

• Performance isolation and fault-tolerant

• Cost-effective (commodity hardware, small state)

• ...

x 100.000s of Servers



Related work

VL2 [SIGCOMM´09]

• Layer 3 routing fabric used to implement a virtual layer 2

• Unmodified switch hardware and software

• End hosts modified to perform enhanced resolution to assist 

routing and forwarding (IP-in-IP source routing)routing and forwarding (IP-in-IP source routing)

Portland [SIGCOMM´09]

• Separates host identity from host location

– Uses IP address as host identifier

– Introduces “Pseudo MAC” (PMAC) addresses internally to encode 

endpoint location

• Runs on commodity switch hardware with OpenFlow API

BCUBE and more to come…



New generation DCN topologies
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Basic idea

� Compactly represent a source route into an in-packet Bloom filter (iBF)

� Carry the 96-bit iBF in the source and destination MAC fields
(MAC re-writing at source and destination ToR switches)

� Stateless forwarding by querying next-hop switches in the iBF

� Bloom filter fundamentals� Bloom filter fundamentals

� m bit array                                           96   bits of Ethernet SA and DA

� k independent hash functions           7  

� n elements inserted                            3   MAC addresses (CORE, AGGR and ToR) 

Insert_element() Check_element() “yes” / no ?



Basic idea

In-packet Bloom filter (iBF) based forwarding*:

*



Design Principles

• Separating Names from Locations

– IP for VM identification, pure “L2” connectivity

• Source explicit routing

– Stateless intermediate switching based on the iBF

• Direct network control and logically centralized directory

– Rack Managers install flows at ToRs and maintain topology and VM dir.– Rack Managers install flows at ToRs and maintain topology and VM dir.

• Load balancing through path randomization

– Exploit path multiplicity to provide oblivious routing

(i.e., traffic independent randomized packet routing) [VLB]

• Unmodified end-points and plug & play

– Legacy servers and applications are supported off-the-shelf.

– Auto-configuration of end-hosts and switches (Role Discovery Protocol)

• Design to cope with failures

– Assume any component will fail (built-in fault-tolerance)



• An army of Rack Managers with distributed 

Topology and Directory services

SiBF architecture



Valiant Load Balancing

• Random path selection (per-flow)

– Choose Aggr1, Core, Aggr2

– iBF encodes Core, Aggr2, ToR



Role Discovery Protocol

• Similar to the discovery

protocol of Portland but simpler

• Leverages the 3-tier topology

Goal: Discovery and auto-configuration of switches

• Leverages the 3-tier topology

• Implemented with TLV 

extension to LLDP

• Upon neighbor discovery

– Switch installs neighboring

Bloomed MACs entries:

k  “hashes” of the MAC



OpenFlow-based iBF implementation

� OpenFlow extension to match on arbitrary wildcarded bit masks

– Easy to implement: 2 lines of code in the flow matching function

– Official support expected in upcoming OpenFlow versions



False-positive-free forwarding 

on Bloomed MAC identifiers

• Instead of traditional exact matching on MACdst, 

each forwarding entry contains a 96-bit mask with only k 1s 

based on “hashes” of the neighbouring switch MAC.

• Well-known caveat of Bloom filters: false positives 

– 2 or more switches appear as next hop candidates:– 2 or more switches appear as next hop candidates:

(i) multi-cast the packet along matching interfaces

(ii) pick one and “pray” (+ temporal fix by controller )

• (iii) Test iBFs for false positives prior to their use!

– power of choices along two dimensions: 

(1) multiple paths, and (2) multiple iBF representations

• RM maintains a ToRsrc-ToRdst matrix filled only with 

false-positive-free iBFs for the multiple paths



RM controller implementation

See details of the Distributed Rack Manager implementation in WGCA’ 10



Testbed



Message diagram



Message diagram

Bootstrapping



Message diagram
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State requirements

� ToRs connect 20 servers via 1 Gbps ports and to two AGGRs via 10 Gbps

� 10  concurrent flows per server (5 incoming and 5 outgoing)

AssumptionsAssumptions

ResultsResults

� SiBF and Portland have O(# of ports) vs. VL2 O(# switches) 
vs. non-scalable vanilla Ethernet O(# of hosts)

� Minimal state at CORE and AGGR (1 entry per neighbour)

� Affordable state at TOR (# simultaneous outgoing flows + # hosted servers)

ConclusionConclusion



False positive rate of 96-bit Bloom filters

� m = 96-bit array 

� n = 3 randomly chosen MAC addresses (pool of 1M unique MACs)

� k independent hashes (double hashing with MD5 and SHA-1)

� Tested for 432 (=144*3) randomly chosen MACs

� 10.000 rounds per parameter set

SetupSetup

ResultsResults

� Deviation from theoretical estimate explained by assumptions [Bose 2008]

� Very low fpr suggests few iBF paths with false positives

ConclusionConclusion

ResultsResults



False-Positive-free forwarding

• NS-3 implementation

• 3-Tier Clos topo w/48-port AGGRs and COREs (576 ToRs -> 11.520 phy s.) 

• Test every combination of ToRsrc - ToRdst (i.e., 331.200 ToR pairs) 

along each available path (96 typically).

• 30M iBFs sent and accounted for false positives.

SetupSetup

ResultsResults

• Only 0.92% of all DCN paths avoided for load balancing

• False-positive-free forwarding comes at an affordable cost (less than 1%) 

in reduced path multiplicity (can be zeroed w/ d-candidate opt.)

74% of pairs with every available path false-positive-free

26% of the ToR combinations with some false positive path

- On average, 3 paths (out of 96) with false positives

ResultsResults

ConclusionConclusion



Load Balancing

� Two synthetic traffic matrices: (1) all-to-all, and (2) random server pairs

� Measure link utilization over 10 rounds

� SiBF Valiant Load Balancing vs. vanilla Ethernet Spanning Tree

SetupSetup

ResultsResults

� SiBF splits distributes traffic over every available path reasonable well

� Comparable to other reported VLB implementations (e.g., VL2)

� Better than ECMP (only 16-way +limitations of hash-based flow balancing)

ConclusionsConclusions



Future Work

• Flyways for QoS-enabled paths or congestion-free 
routes via enahanced dynamic load balancing:

– Re-routing could help avoid losses due to microbursts
(requires congestion detection!). 

– MPLS re-route like solution (2nd link-disjoint iBF @ ToR)– MPLS re-route like solution (2 link-disjoint iBF @ ToR)

� Multicast services

� Seamless workload mobility (VM migration)

� Include middlebox services in the iBF

– using Bloomed Service Ids or the explicit control path

� Inter-DCN communications (Inter-Cloud VPLS)

� OpenFlow-related (e.g., anycast controllers)



Conclusions

SiBF: Switching with in-packet Bloom filters

SiBF offers transparent explicit routing, minimal state, load balancing, service 

differentiation, fault-tolerance, commoditized equipment, etc.



Thank you!

questions?



BACK-UP



Distributed Rack Manager Architecture

• Topology (link tuples)
• Server Directory 

(IP, ToR) mapping



New Generation Data Center Networking

Goals Requirements Features

Resource 

Pooling
(servers and 

network eq.)

&

Agility

R1: Any VM to any physical machine. 

- Let services “breathe”: Dynamically expand and 
contract their footprint as needed

- L2 semantics

· ID/loc split

· Scalable L2

R2: High network capacity 

- Uniform BW and latency for various traffic patterns 
between any server pair

- 1:1, 1:M, N:N efficient communications along any 

· Multipath 

support

· New TE (load-Agility
- 1:1, 1:M, N:N efficient communications along any 

available physical paths
balancing)

Reliability
R3: Design for failure. 

- Failures (servers, switches) will be common at scale.
· Fault-

tolerance

Low Opex

R4:  Low configuration efforts 

- Ethernet plug-and-play functionality 
· Auto-config.

R5:  Energy efficiency

- Networking design for idle link/server optimization
· Energy/Cost-

awareness

Low Capex Use commodity hardware · Scaling-out

Control Include middlebox services in the data path as required · Network ctrl.



Fragmentation of resources

– Fragmentation of resources due to load balancers, IP subnets, …

• limits agility to dynamically assign services anywhere in the DC. 

– Static Network assignment due to application to VLAN mappings, in-

path middleboxes, ...



Limited server-to-server capacity

Costly scale up strategy to support more nodes and better transfer rates 

– Expensive equipment at the upper layer of the hierarchy.

– High over-subscription rates i.e. poor server bisection BW



Layer 2 (Ethernet) scalability

[Monsoon]

Current layer 2 architectures cannot scale 

– limited switch state for forwarding tables (flat routing)

– performance (bisection BW) limitations (i.e. standard spanning 

tree protocol limits fault tolerance and multipath forwarding)

– ARP broadcast overhead

x 100.000s



DC “traffic engineering”

• DC traffic is highly dynamic and bursty 
– 1:5 ratio of external vs. internal traffic

– Traditional traffic engineering does not work well (TM changes constantly)

– Bursts are too short-lived for traditional approaches to react to them

• Goal of DC traffic engineering

[IMC09] 

• Goal of DC traffic engineering
– Location-independent uniform BW and latency between any two servers

– For any TM! DC patterns (1:1, 1:M, N:N)

• Approach
– Avoid spanning tree to make all available paths could be used for traffic 

– Load balancing: E.g., TM oblivious routing, VLB [Monsoon, VLB] 

• Additional requirement
– Force application traffic through middleboxes 

(firewalls, DPI, intrusion det., load balancers, WAN opti., SSL offloaders)

[IMC09] S. Kandula et al. , “The Nature of Data Center Traffic: Measurements and Analysis”, To Appear in IMC 2009


