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Resumo

Esta tese introduz um novo conceito para as redes de conteúdo denominado compact forward-
ing. Este conceito traduz-se na utilização de técnicas probabilísticas no plano de encaminhamento
onde o espaço de identificação não é mais relacionado a um host final, mas sim, à identificação de
conteúdo(s). A essência do conceito originou-se de uma questão básica, qual seja, onde deve ser
colocado o estado associado ao encaminhamento do pacote? Nos elementos de rede ou no cabeçalho
do pacote? A tese propõe duas soluções que representam estes extremos, SPSwitch, na qual o estado
é colocado nos elementos de rede e, LIPSIN, onde o estado é colocado no cabeçalho do pacote. O
denominador comum a essas soluções consiste na utilização de técnicas probabilísticas inspiradas no
Bloom filter como elemento base das decisões de encaminhamento. A utilização de estruturas de
dados derivadas do Bloom filter traz um custo adicional necessário à minimização dos erros associ-
ados à utilização de uma estrutura probabilística. A tese contribui com várias técnicas para redução
desses erros incluindo a análise dos custos associados. Cenários de aplicação são apresentados para
validação das propostas discutidas no trabalho.

Palavras-chave: Redes de pacotes, algoritmos, estruturas de dados, Bloom filter.

Abstract

This thesis introduces the concept of compact forwarding in the field of content-oriented net-
works. The main idea behind this concept is taking a probabilistic approach to the problem of packet
forwarding in networks centered on content identifiers rather than traditional host addresses. The
fundamental question explored is where to place the packet forwarding state, in network nodes or in
packet headers? Solutions for both extremes are proposed. In the SPSwitch, approximate forward-
ing state is kept in network nodes. In LIPSIN, the state is carried in the packets themselves. Both
approaches are based on probabilistic packet forwarding functions inspired by the Bloom filter data
structure. The approximate forwarding state comes at the cost of additional considerations due to the
effects of one-sided error-prone data structures. The thesis contributes with a series of techniques
to mitigate the false positive errors. The proposed compact forwarding methods are experimentally
validated in several practical networking scenarios.

Keywords: Packet networks, algorithms, data structures, Bloom filter.
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Chapter 1

Introduction

The Internet architecture has its origins in the 1970’s by a small group of network researchers
engaged in an academy/military research project funded by the Advanced Research Projects Agency
(ARPA) of the US Department of Defense to build robust, fault-tolerant and distributed computer
networks [1, 2]. The main goal of the DARPA Internet architecture was the development of an ef-
fective technique for multiplexed utilization of existing, heterogeneous, interconnected networks [3],
i.e., the provision of a packet-based inter-networking architecture. The resultant Internet Protocol (IP)
suite (TCP/IP) enabled an accelerated growth of the Internet including the integration of commercial
ISP networks. In 1995, the central NSFNET backbone was transformed into a privatized, distributed
backbone architecture. Being completely decentralized and lacking of a central coordinating (enforc-
ing) instance, major architectural changes to the Internet have been hard to adopt. As a consequence,
the underpinnings of today’s Internet (i.e., hierarchical routing, TCP/IP, DNS) are fundamentally the
same as projected over 30 years ago.

At the center of its original design, the IP is the single identifier space that enables global commu-
nications by providing a simple “best-effort” service of datagram delivery among network-attached
devices. The original Internet addressing scheme mandates every host having an unique IP address
with the fundamental functions characterized as follows in RFC 791 [4]: “A name indicates what we
seek. An address indicates where it is. A route indicates how to get there.” IP addresses combine
two functions in one number space as they simultaneously act as routing locators (i.e. where you are
attached to the network) and identifiers (i.e. who you are). This semantic overload of the IP is said to
be at the root of many of the limitations of today’s Internet architecture [5]. The engineering decisions
behind the functionality and format of the IP and the original end-to-end model were a consequence of
both the technological trade-offs of the time and the cooperative, experimental environment for which
it was originally meant. Indeed, the fixed size, hierarchically structured 32-bit IP address format was
a key factor for its technical feasibility, making packets easy to process by the resource-limited packet
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2 Introduction

forwarding elements (i.e. routers), which only needed to inspect the network component of the desti-
nation address and could remain ignorant about the host part. As a consequence, routers only needed
to exchange information about available routes to different networks.

Important features added to the architecture during the early 1980’s include subnetting, Au-
tonomous Systems (AS), and the Domain Name System (DNS) [6, 7]. Since then, various new
transport technologies and protocol amendments have been introduced to provide new services and
to increase the manageability of the network at a lower cost. For instance, Classless Inter-Domain
Routing (CIDR) [8] was introduced to allow a flexible allocation of the original class-based IP ad-
dress space. The Border Gateway Protocol (BGP) [9] introduced policy-based capabilities to reflect
the business relationships among providers and was later extended with features for additional flexi-
bility (e.g., community attribute, MED) and larger scale deployments (e.g., route reflectors and route
aggregation). Multiprotocol Label Switching (MPLS) [10], originally called Tag Switching, was de-
veloped in the early 1990’s to address core IP router performance issues. As time progressed, this
packet forwarding technology has evolved into a powerful consolidation platform for IP backbones
enabling new data services such as Virtual Private Networks (VPN) and, more recently, Carrier Eth-
ernet solutions. In addition, a number of mechanisms have been developed and turned out to be
useful to fight against problems caused by the original Internet design in an open commercial envi-
ronment. For instance, Network Address Translation (NAT) boxes provide extended address spaces,
configuration benefits, and partial protection for unwanted traffic at the cost of fracturing network
connectivity [11, 12]. Mobile IP [13] provides means for host mobility by introducing network indi-
rection points (i.e. home agents). From a larger perspective, such mechanisms only lead to a complex
intertwined protocol suite between those wanting flexible network control and protection and those
wanting freedom and connectivity, for legitimate or illegitimate reasons. As a consequence, the po-
tential utility and innovation at the core of the Internet is put at risk.

While today’s commercial use of the Internet unveils limitations with regard to mobility support,
security, address space exhaustion, routing system scalability, and content delivery efficiency among
others, the Internet is an ever growing success that works reasonably well [14]. Today, over 500
million end-hosts and 30.000 autonomous systems are connected. The advent of Internet-enabled
objects, sensors, and mobile personal devices only makes this figure worse. At the same time, the
Internet has been criticized to be “ossified” [15] due to the continuously patching approach based on
ad-hoc protocol extensions and overlay solutions, which may be a complex and costly solution for the
long term. The Internet is an example of what researchers [16] have called “organized complexity”
modeled by the trade-offs made by engineered network design in connecting computer networks
across a set of links resulting in a “robust yet fragile” network.



3

Last decade’s efforts towards a future Internet architecture1 have mainly focused on end-host
reachability, revisiting concepts (e.g., IP identifier/locator split) to address end-to-end security, mobil-
ity and routing issues. All of these proposals are more-or-less host-centric. Recent research activities
however point to a new way of looking at networking from a content/information-centric perspec-
tive [19, 20].2 The Internet has shifted from being a simple host connectivity infrastructure to a plat-
form enabling massive content production and content delivery, transforming the way information is
generated and consumed. From its original design, the Internet carries datagrams inserted by sending
hosts in a best effort manner, agnostic to the semantics and purpose of the data transport. There is a
sense that the network could do more [21] and better given that today’s use of the network is about
retrieval of named pieces of data (e.g., URL, service, user identity) rather than specific destination
host connections [22]. The Internet protocol suite (TCP/IP) is inherently unfair and inefficient for
data dissemination purposes (e.g., multiple flows of P2P applications, redundant information over the
wires [23]). With this in mind, the content-oriented research thread advocates for enhancements at the
inter-networking layer not to be limited to QoS or routing scalability: data persistence, availability

and authentication [24] of the data itself may be beneficial network capabilities from design.

Internet pioneer Van Jacobson provides a vision [22] to understand the motivation for a network-
ing revolution; while the first networking generation was about wiring (telephony) and the second
generation was about interconnecting wires (TCP/IP), the next generation should be about intercon-
necting information at large [19]. This shift in the orientation of network architecture design implies
rethinking many fundamentals by handling information as a first class object. A key question is to
what extent a new paradigm thinking ‘out-of-the-TCP/IP-box’ for the future network is really nec-
essary, e.g., as packet switching was to circuit switching in the 70’s. The reasoning is based on the
large scale use of the Internet for dissemination of data. A myriad of devices, including user-attended
terminals and long-running automated services, generate and consume content, without caring about
the actual data source location as long as integrity, authenticity and timeliness are assured. This shift
toward information-oriented networking is also noticeable in the momentum of service oriented ar-
chitectures (SOA), XML routers, deep packet inspection (DPI), content delivery networks (CDN) and
peer-to-peer (P2P) overlay technologies. A common issue is the necessity to manage a huge quantity
of labeled data items, which is a quite different task than reaching a particular host in today’s Inter-

1While Future Internet is a hot topic these days, the first wave on re-thinking the core Internet architecture can be
dated back to the early 90’s, when an increasing signs of strains on the fundamental architecture motivated the IETF a
planned process for the architectural evolution as expressed by Clark et al. in RFC 1287 [17] entitled “Future of Internet
Architecture.” Later in 1995, Shenker argued for a new service model for the future Internet [18] to accommodate the
requirements of (multimedia) applications. The convergence on IP resulted in massive work on QoS for packet networks,
an issue that is being publicly debated these days under the controversial notion of ‘net neutrality’.

2For the purposes of this thesis, we can and will interchangeable use the terms information, content, and data, together
with centrism and orientation also used in an arbitrary manner to denote this paradigm shift.
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net, where forwarding decisions are made not only by IP routers, but also by middleboxes, VLAN
switches, MPLS routers, load balancers, mesh routing nodes and other cross-layer approaches.

Only time will tell whether and how these novel networking concepts evolve and get eventu-
ally deployed. History has shown that economics and not purely technological arguments is what
ultimately turns prototypes into reality. Recent concerning events (and more to come) may poten-
tially promote and accelerate the adoption of new inter-networking paradigms. Our days economy
is Internet-sensitive, service outages due to Denial-of-Service (DoS) attacks or due to limitations of
BGP insecure routing carry important worries and expenses (operational plus revenue loses). At the
root of the well-known problems of unwanted traffic is the imbalance of powers in the original In-
ternet design, in which the sender has too much control over the network, compared to the receiver.
The network makes its best to deliver a packet to the destination, independent if the receiver wants
to receive it or not. Different kinds of add-ons have been introduced to fight against these problems,
such as firewalls and intrusion detection solutions. The same openness that helped to the successful
growth of rich Internet applications is now putting at risk the privacy and security of network-attached
corporations and individuals.

More than an endless discussion around ‘clean-slate’ design and deployable network evolution [25],
feasibility work is needed along ‘clean-slate thinking’ beyond the TCP/IP heritage to foster innova-
tion through questioning paradigms. This thesis is certainly not the first to turn into data-oriented
networking [26] or to leverage the publish / subscribe communication paradigm [27]. Our contribu-
tions are less in form of an overarching solution but rather of enablers in the data forwarding stratum
for novel networking paradigms. In this sense, we tackle challenges faced by the packet forward-
ing plane and explore probabilistic methods to solve them, contributing to the feasibility of scalable,
content-oriented infrastructures.

1.1 How to read this Thesis

This thesis is meant to be read as follows. The next chapter introduces the research problem on
compact forwarding, and gives an overview of the key contributions, including a description of the
author’s publications appended in the Annex. Chapter 3 goes through the essential background in the
field of our contributions. We contrast the original Internet design with the content-oriented usage of
our days and highlight the fundamental differences which motivated taking a probabilistic approach
when re-thinking the packet forwarding functions. For each sub area of our technical contributions,
we discuss the main foundations and cover relevant related work. Chapter 4 reviews the contributions
with more detail discussing how the applied principles appear in the developed solutions. Finally,
Chapter 5 concludes the thesis with a series of final remarks and future lines of work.



Chapter 2

Research Problem

A shift in the orientation of network architecture design implies rethinking many fundamentals,
for instance, defining a new identifier space for information objects of potentially different granu-
larities (e.g., documents, channels, packets), enabling more expressive communication patterns (e.g.,
publish/subscribe, find/register), efficient transmissions (e.g., multicast, in-network caching, network
coding) and increased resilience (e.g., security, data replication). The overall picture of a global
scale communication infrastructure is complex and deserves detailed multi-disciplinary discussions
(e.g., global namespaces, inter-networking functions, network management, security, stakeholders,
etc.) involving architectural, engineering, and business considerations. We aim at addressing the
challenges of novel content-oriented networks by re-thinking the key functionality of the forwarding
plane under potentially new control planes (e.g., topology management, routing control), end-to-end
communication paradigms (e.g., publish/subscribe), and namespaces (e.g., content identifiers, link
identities).

2.1 Motivation and Scope

Given the grand-scale of the research field in function of different forms and characteristics of
the inter-networking namespaces, we focus on the problem of trying to forward packets labelled
with flat (unstructured, random looking) identifiers. For the sake of generality and the objectives of
this thesis, we use the term flat label for information object identifiers or any other flat forwarding
identifier carried in packet headers. Hence, our main abstraction is a flat label which is essentially a
bit string representing any higher level information (e.g., content object, network link, multicast tree,
host identifier).

The rationale behind focusing of forwarding on flat labels is the recent emergence of architectural
proposals relying on flat labels due to their appealing capabilities such as being location-independent

5
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and having self-certifying names of hosts (cf. ROFL [28], AIP [29]) or data objects (cf. DONA [24],
PSIRP [30], CCN [19]). In addition to the current frenzy of the so-called clean slate network designs,
a conservative view of evolution of the Internet routing system also lends to the fact that topology-
independence of the addressing/naming scheme becomes a fundamental requirement for e.g., self-
configuration, multi-homing, nomadicity, and seamless mobility. Remarkable examples that have
made their way to the IETF standardization process include the Host Identity Protocol (HIP) [31] and
the Locator/ID Separation Protocol (LISP) [32]. Such efforts try to address the semantic overload of
IP by separating host identifiers from network locators and thus introduce flat namespaces. Similarly,
IP multicast group addresses are, in effect, flat identifiers that do not easily lend themselves to topo-
logical aggregation, resulting in forwarding state requirements that grow linearly with the number of
senders or multicast groups.

The common way to make global network designs to scale is to aggregate the address space so
that state is needed only for each aggregate. This scalability principle is also known as information

hiding [33]. Noteworthy examples include the public switched telephone network aggregation of the
telephone numbering system on geographical location, the Domain Name System (DNS) aggrega-
tion of its hierarchical naming system on zones, and the well-known aggregation of IP addresses on
address blocks, formerly (pre-CIDR), constituting address classes.

The caveat of flat addresses is that they prohibit CIDR-style address aggregation [34], which
is the best current practices for scalable routing and enables the global routing tables to grow sub-
linearly with the number of networks on the Internet. Hence, a common challenge encountered by
new networking paradigms is the need to take forwarding decisions at wire speed (Gbps) based on a
large universe of flat (non-aggregatable) identifiers. Because the decisions need to be taken at high
speed (typically in the order of tens to hundreds of nanoseconds), forwarding elements must use high-
speed memory (typically SRAM), which is more constrained and expensive than other resources in
network elements.

When looking for new means for aggregation to achieve a fast and scalable forwarding plane,
compression appears as a natural technique to find a shorter representation that holds the same infor-
mation as the original. The problem is that flat labels being completely random data strings cannot
be compressed (cf. Pigeon-hole principle [35]). Therefore, the compact forwarding methods under
study will consider the utilization of lossy compression techniques and try to address the question of
whether a practical and correct forwarding machinery can be built on top of one-sided error mecha-
nisms.
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2.2 Relation to Previous Work

The mechanism of a typical packet router can be separated into (i) the control computations (e.g.
routing) which take place in the background, and (ii) the fast forwarding path. Our focus falls in
the latter. The general routing problem in a network consists of finding a routing protocol, or routing

function, or distributed routing algorithms, such that, for any pair of source and destination nodes, any
message from the source can be routed to the destination [36]. When routing a message from a source
to a destination in the network, to decide where to forward the message to, a node relies on the current
context information, which includes its local routing table, the destination address, and the message
headers. As a result of the routing algorithms, network state in form of forwarding information

base (FIB) encoded in forwarding tables is created by the (background) routing and resource control
computations. The resultant in-network memory information enable hardware-assisted fast packet
processing operations, which are relatively costly and difficult to change over time.

In an independent manner from the routing algorithms and upper layer control/signaling planes,
we limit the scope of our problem to revisiting the field of suitable port-forwarding functions i = F (x)

that result in labeled packets being passed to certain output port(s) {i}. More specifically, we explore
functions of the form F (I, L,H), where:

I: Information in the packet header

L: Forwarding node local information (network state)

H: Headers-in-headers function (allows adding security functions, loop mitigation, and flexible for-
warding strategies like trial-and-error)

This forwarding scheme is similar to the standard model of Peleg and Upfal [36] and the function
F: Headers-in-port. As we shall see later, in contrast to previous work, this thesis takes a probabilistic
approach to explore new dimensions in the solution space, questioning the traditional triangle of trade-
offs in distributed computation theory:

• Memory space: Routing table size

• Stretch: Path length inflation

• Adaptation costs: Convergence measures, i.e., communication cost (routing updates per topol-
ogy/policy change) plus processing cost to store and process/compute updated memory entries.

While the traditional triangular model works well for host-centric unicast routing and forwarding
systems, we find necessary to introduce subtle refinements in order to (i) match our focus on packet
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forwarding for content-oriented networks with multicast being the basic communication mode, and
(ii) account for our probabilistic approach, where we explore solutions that deliver packets over short-
est paths but are subject to unnecessary packet duplication along their way. First, we explicitly add
the packet header information I in terms of bits. Second, we restrict the memory space to the fast
forwarding table size. Finally, we transform the stretch factor into forwarding efficiency to better
account for the multicast mode of communication and the bandwidth penalties of approximate (prob-
abilistic) solutions or eventually larger packet headers. Consequently, we can express the orthogonal
metrics of forwarding as follows:

• In-packet information: Packet header size (i.e. comprising forwarding information)

• In-network state: Local forwarding table size

• Efficiency: Transport network usage extending stretch (i.e. packets taking longer paths than
necessary) with packet duplication (i.e. copies sent over more links than necessary)

• Adaptation costs: Convergence measures, i.e., communication cost (signalling per context
change) plus processing cost to store and process/compute updated forwarding table entries.

In previous work, the compact routing problem has been defined with focus on the implementation
of protocols that require a low amount of hardware and amenable to the very-large-scale integration
(VLSI) technologies of the 90’s [37]. The trade-offs between space and efficiency for routing tables
in host-centric networks under deterministic algorithms have been extensively studied over a variety
of topologies and routing strategies [36]. The performance mismatch between the increasing trans-
mission and switching capacity and the slower pace processor and memory speeds of IP routers in the
90’s lead to considerable research in the design of forwarding table compacting techniques [38, 39].
A large body of work is (still) devoted to new algorithms and data structures for IP lookups and packet
classification [40, 41], novel compact representations for structured graphs [42], and techniques for
high-speed packet processing [43, 44, 45]. While previous work is concerned with an efficient im-
plementation of standardized protocols and packet headers around the IP stack, our focus is on new
forwarding paradigms well-suited for content-oriented architectures. Nonetheless, there is a ground
intersection in algorithmic techniques and data structures applicable to the generalized problem of
packet forwarding.

Latterly, compact routing for the Internet [46] has become an active field of research seeking
for Internet routing algorithms such that given the full view of the network topology, the trade-off
between routing table sizes and stretch is balanced in the most efficient way. Compact routing algo-
rithms make routing table sizes compact by means of omitting some details of the network topology
in an efficient way such that the resulting path length increase (compared to shortest path lengths, i.e.,
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stretch) stays small. In accordance with [46], a routing algorithm is said to be compact if (1) node
address and packet header sizes scale polylogarithmically, (2) routing table sizes scale sublinearly,
and (3) stretch is a constant (i.e. does not grow with the network size). Only recently, the problem
of compact multicast routing has been formulated and studied by Abraham et al. [47], resulting in
the first memory-stretch tradeoff bounds for one-to-many communications. The multicast routing
problem seeks to determine the network node memory requirements for a given routing algorithm
that guarantees packet delivery to multiple destinations. According to [47], a routing scheme is com-
pact if it is memory efficient and its goodness is measured in terms of stretch, i.e., the total network
distance it utilizes compared with the shortest multicast path available.

2.3 Compact Forwarding

Inspired by, but complementary to the field of compact routing, we label our approach to the re-
search problem as compact forwarding, which we frame as “the study of the trade-offs of in-network
and in-packet state of forwarding methods that guarantee the correct delivery of packets in function
of forwarding efficiency metrics.” Our notion of compactness encompasses not only the studies of
the minimal information base to perform memory-efficient forwarding operations but refers also to
the probabilistic approach taken in our studies based on one-sided error-prone algorithmic techniques
and data structures to materialize a forwarding plane for content-oriented networks. By forwarding-

correctness we understand the process of packets being delivered at least to their intended destina-
tions (i.e. the canonical requirement of deliverability of messages [48]) using a finite amount of re-
sources. The finite resource constraint aims at discarding solutions based on naive broadcast/flooding
techniques or solutions prone to infinite loops. The introduction of forwarding efficiency to quantify
the bandwidth efficiency of multicast-capable forwarding methods allows the comparison of alterna-
tive (probabilistic) approaches in the solution space.

In comparison, compact routing is focused on optimal memory-stretch tradeoffs and restrain the
inclusion of full path information in the packet headers (i.e. source routing). Our studies on compact
forwarding techniques are orthogonal to the control plane specifics (e.g. routing algorithms) that feed
the fast forwarding tables and hence determine the resultant stretch factors and adaptation costs. The
goodness of a compact forwarding is measured in terms of – memory and bandwidth – efficiency
rather than stretch. Packets delivered using a compact forwarding technique may use optimal paths
to reach every destination but may consume extra bandwidth due to unnecessary packet duplications.
Hence, we frame our research on the two extreme approaches of compact forwarding as follows:

In-network forwarding state approaches consist of having each forwarding node store a complete
routing table. Each node can then perform independent forwarding decisions as it holds an entry
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for any destination a next-hop/link to which packets for that destination should be forwarded.
The well-known drawback of this approach is the resulting routing table sizes, since each of the
n vertex need to store (n − 1) entries, totaling O(n2log(n)) memory bits. Optimal (stretch 1)
routing schemes for “simple” topologies like trees, rings, complete networks, grids and outer-
planar networks are known to require O(nlog(n)) bits of in-network routing information and
O(log(n))-bit headers [36].

Definition 1: We say a forwarding method is compact if each forwarding table entry
requires less than log(n)-bits per routable object in an n-dimension universe.

Clearly, exact match address lookup systems (e.g. Ethernet MAC forwarding) are not compact.
Compact implementations of the forwarding information base like decision trees may fall as
well into the category of compact forwarding. By extension of the definition above, a prefix-
based forwarding method (e.g. IP longest prefix matching) can be said to be asymptotically

compact if we average the size of each forwarding table entry over the complete universe of
routable objects.

In-packet forwarding state approaches (e.g. source explicit routing) consist of each datagram carry
in its header a (complete or partially complete) set of directives (e.g. path descriptors) along
which the datagram should be forwarded. As a consequence, forwarding nodes only need to
maintain local (reduced) forwarding information (e.g. the identity of its neighbors). The caveat
is that datagram headers need to be of variable size f(n) and still be processed at wire speed
in-packet.

Definition 2: We say a forwarding method is compact if the datagram header size is
of fixed size with independence of the forwarding directives included.

By datagram header size we mean the number of bits required to take the forwarding deci-
sion. In that sense, source routing forwarding schemes based on the concatenation of net-
work identifiers are not compact. Examples include IP source routing options [4] and tunnel-
ing/encapsulation techniques such as IEEE 802.1ah, IP-in-IP, or GRE [49].

This thesis builds around the concept of compact forwarding by researching questions like:

• what is a suitable forwarding substrate for content-oriented networks departing from the host-
centric paradigm of IP?

• which are the candidate features and data structures of such forwarding planes?
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• what are the dimensions and limits of the solution space, i.e., what is the minimum forwarding
information base (in-network and in-packet) to move data objects at scale?

• can we do better than the fundamental trade-offs of distributed systems theory by introducing
non-deterministic (probabilistic) techniques?

• what considerations and enhancements are needed to build a correct distributed forwarding gear
on top of one-sided error prone forwarding decisions?

2.4 Approach and Contributions

Motivated by the needs of networking at an information layer, this thesis explores new approaches
to the fundamental trade-offs of packet routing to provide forwarding services with scalability, multicast-
friendliness and security in mind. Due to the lack of aggregation capabilities of flat labels and the
compact forwarding goal of seeking the minimal information base to deliver packets at scale, we
have dived into solutions based on error-prone probabilistic data structures providing lossy com-
pression functionality. By exchanging correctness (traduced in forwarding efficiency penalties) for
space/memory time requirements (traduced in reduced information base in packet headers and net-
work nodes), we explore a new dimension in the traditional design trade-off.

Basically, we express the packet forwarding problem as two extreme set membership problems
solved by virtue of the popular data structure Bloom filter named after his inventor Burton Howard
Bloom [50]. The already 40-year-old probabilistic data structure supports element queries for set
memberships and its unique encoding algorithm gives it excellent space/time savings at the cost of
correctness. Being a one-sided error-prone lossy summary technique, Bloom filters are subject to
return false positives upon querying for the presence of an element, i.e., claiming that an element
is present when it was not really inserted. Conversely, false negatives are not possible per design,
Bloom filters always return a correct answer to intentionally inserted elements. By virtue of its hash-
based construction, the functionality of a Bloom filter is independent from the nature (type, size,
structure) of the elements at hand. The accuracy of the membership answers, that is the false positive
performance, depends only on the bit per element ratio (i.e. data structure size m divided by the
number of inserted elements n) and thus provides compact forwarding decisions independently from
the size of the identifier space. As we shall see, the benefits of this probabilistic approach may well
pay off the drawbacks in terms of larger bandwidth consumption due to the usage of extra network
links and larger packet header sizes.

This dissertation makes three sets of contributions: (i) principles, (ii) algorithmic techniques,
and (iii) applications. The first set of contributions includes a collection of generic and technical
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principles useful for designing scalable forwarding mechanisms motivated by the advent of content-
oriented network architectures. The second set includes the conception and application of algorithmic
techniques to cope with the limitations of previous work in probabilistic data structures when used
to build forwarding mechanisms following those principles. Finally, the third set of contributions is
the application of the compact forwarding methods in practical networking architectures, including
an Internet-scale publish/subscribe network architecture, inter-domain multicast, and a scalable data
center architecture.

Many of the contributions of this thesis fall into the category of filling the gap between theory and
practice, i.e., applying theoretical results on probabilistic data structures to solve the performance and
scalability problems faced by network architectures moving packets characterized by a large space of
flat labels. In that sense, we do not provide a holistic solution to the broader architectural problems,
but rather contribute with a set of enablers for the forwarding plane. At the same time, as a con-
sequence of dealing with general purpose probabilistic data structures, the algorithmic contributions
and the proposed methods can be applied to solve other related problems in distributed systems.

2.4.1 Publications

The author’s publications that underpin this thesis can be found in the annex and will be cited
hereafter from [A] to [H]. Figure 2.1 gives an overview of how the publications can be mapped to
the different areas of the contributions. While this thesis is an outcome of my research achievements,
some clarification on the work done in collaboration is needed. The author’s role and contributions to
the publications were as follows:

• Publication A (6 p.): C. Esteve Rothenberg, F. Verdi and M. Magalhães. “Towards a new gener-
ation of information-oriented internetworking architectures.” In ACM CoNext, First Workshop

on Re-Architecting the Internet (Re-Arch08), Dec. 2008, Madrid, Spain.

– Contributions: The author was the architect of the SPSwitch forwarding engine. He was
responsible for the design and evaluation of the proposed solution.

• Publication B (12 p.): P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P.
Nikander. “LIPSIN: Line Speed Publish/Subscribe Inter-Networkings.” In ACM SIGCOMM’09,
Aug. 2009, Barcelona, Spain.

– Contributions: The author was a member of the LIPSIN architecture design team, with
special focus in the Link ID Tag extensions, the parameter optimization and practical
evaluation of the in-packet Bloom filter data structure.
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Fig. 2.1: Overview of the main topics and publications of the thesis.

• Publication C (6 p.): A. Zahemszky, A. Császár, P. Nikander and C. Esteve Rothenberg. “Ex-
ploring the Pub/Sub Routing & Forwarding Space.” In IEEE ICC, Workshop on the Network of

The Future, Jun. 2009, Dresden, Germany.

– Contributions: The author contributed to the editorial work of the paper, with emphasis
on the edge switching and integration challenges.

• Publication D (6 p.): C. Esteve Rothenberg, P. Jokela, P. Nikander, M. Särela and J. Ylitalo.
“Self-routing Denial-of-Service Resistant Capabilities using In-packet Bloom Filters.” In 5th

European Conference on Computer Network Defense (EC2ND), Nov. 2009, Milan, Italy.

– Contributions: The author contributed to the design of the Z-formation forwarding method
and was responsible for the probabilistic security analysis.

• Publication E (14 p.): C. Esteve Rothenberg, C. A. Macapuna, F. L. Verdi, M. F. Magalhães
and A. Zahemszky. “Data center networking with in-packet Bloom filters.” In 28th Brazilian

Symposium on Computer Networks (SBRC), Gramado, Brazil, May 2010.

– Contributions: The author was the main architect and prototype co-developer of the SiBF
data center architecture.
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• Publication F (3 p.): C. Esteve Rothenberg, C. A. Macapuna, F. L. Verdi and M. F. Magalhães.
“The Deletable Bloom Filter: A new member of the Bloom family.” In IEEE Communication

Letters, June 2010.

– Contributions: The author was the designer of the DlBF data structure and responsible for
the simulation-based evaluation work.

• Publication G (16 p.): C. Esteve Rothenberg, C. A. Macapuna, F. L. Verdi, M. F. Magalhães
and A. Wiesmaier. “In-packet Bloom filters: Design and networking applications.” In Elsevier

Computer Networks.

– Contributions: The author was the leading author of the work and responsible for the
design and practical evaluation of the proposed extensions (performance, security and
deletability) to in-packet Bloom filter designs.

• Publication H (16 p.): M. Särelä, C. Esteve Rothenberg, A. Zahemszky, P. Nikander and J.
Ott. “BloomCast: Security in Bloom filter based multicast.” In proceedings of the 15th Nordic
Conference in Secure IT Systems (Nordsec) 2010.

– Contributions: The author was a member of the design team and contributed to the security
evaluation of the proposed solutions. The author’s contributions to the related work [51]
were the practical implementation issues and the simulation-based evaluation of the inter-
domain permutating iBFs.

2.4.2 Overview of the Achievements

When designing a routing and forwarding system, one has to consider the balance between the
amount of state stored in the network nodes and the amount of information carried in the packet
headers. On one extreme, we can compactly store the forwarding information base (state) in network
nodes that test the incoming packet labels for presence in a next hop destination set. Along this
in-network solution space, we propose a Bloom-filter-inspired port-forwarding engine well-suited
for flat identifiers [A]. On the other extreme, we have explored moving the forwarding state to the
packets themselves by compactly carrying the forwarding directives (i.e. an explicitly defined source
route). This way, forwarding nodes only need to test for membership of their locally maintained
link identifiers in order to take the next hop forwarding decision. Along the in-packet forwarding
information space, we explore probabilistic methods to provide explicit source routing while keeping
fixed-sized packet headers [B,E,H].
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Obviously, a balanced approach where some forwarding nodes are stateful and some are stateless
is not only possible but advisable when aiming at Internet-scale systems. Both extremes allow us
to trade a certain amount of over-deliveries (i.e. duplication of messages over unnecessary links) for
simple, resource-efficient forwarding operations. We let up to the specifics of the network architecture
the precise selection of the sweet points – probably dominated by the technology constraints at the
time – in terms of correctness (i.e. forwarding efficiency), and the amount of in-network and in-packet
state where the benefits pay off the drawbacks.

In the remainder of the Chapter, we provide an overview of the author’s contributions by briefly
presenting the developed concepts and applications of the compact forwarding methods.

In-network compact forwarding on flat identifiers

The goal of our compact forwarding problem is to calculate the set of outports f(I) associated
with a packet labelled by a (flat) identifier I . The challenge is that the output is a function of long,
randomly looking identifiers (e.g. 256-bit hash-based IDs). Storing a mapping between log(I)-bit
identifiers and an output set of (virtual or physical) ports is an expensive proposition. In terms of
time, it is expensive as it can take long time because the keys are long. In terms of space, it is clearly
expensive due to the size of the flat identifiers. To be compact, the implementation of f(I) should
consume less than log(I) bits per entry.

The caveat of flat labels is that, being random data streams, they cannot be compressed, i.e., for the
complete identifier space, there exists no shorter representation that holds the same information as the
original. By operation of the pigeonhole principle,1 no lossless compression algorithm can efficiently
compress all possible data, and completely random data (e.g. assumed for hash-based identifiers)
cannot be compressed. For this reason, many different algorithms exist that are designed either with
a specific type of input data in mind or with specific assumptions about what kinds of redundancy the
uncompressed data are likely to contain.

Due to their independence from the element size or form, hash functions — an old workhorse
of system designers — seem a natural fit to deal with flat identifiers. Unfortunately, perfect hashing
techniques are not feasible either due to the dynamics of the unknown set formed by the forward-
ing identifiers. Moreover, forwarding tables based on hash table implementations that store the key
together with the output next hop value(s) 〈I, f(I)〉 are not compact and imply prohibitive fast for-

1Also commonly called Dirichlet’s box principle or Dirichlet’s drawer principle. The formal statement of the pigeon-
hole principle is “there does not exist an injective function on finite sets whose co-domain is smaller than its domain” [35],
i.e., if n items are put into m pigeonholes with n > m, then at least one pigeonhole must contain more than one item. This
principle also proves that any general-purpose lossless compression algorithm that makes at least one input file smaller
will make some other input file larger. Otherwise, two files would be compressed to the same smaller file and restoring
them would be ambiguous.
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warding memory requirements given the large identifier space.

Hence, we explore the field of suitable compression schemes for the forwarding state. We avoid
lossy dictionaries because of their two-sided error that returns both false positives and false negatives.
We start by considering the traditional Bloom filter data structure due to its simplicity and tunable one-
sided error rate that trades speed/memory with correctness (false positive rate). We then investigate
the required variations on the probabilistic data structure to address the issues of the standard design
and meet the goals of a correct packet forwarding machinery.

The SPSwitch - Bloom-filter-inspired port forwarding: The SPSwitch [A] leverages a packet
classification technique (d-left fingerprint-compressed hash tables [52]) to function as an abstract
switching element with one programmable Bloom filter per output (physical/ virtual links, internal
processes). Due to its hashing-based nature, the switching decisions can be taken at O(1) time and
accommodate various types of packet identifier spaces (e.g., 256-bit content IDs, flat forwarding
labels). Acting as a probabilistic hash table, it returns always the inserted output value and, ad-
ditionally, in rare cases (false positive rate ≈ O(10−6)) it incurs in extra (non-intended) multicast
operations. Trading of over-deliveries for state reduction and line speed operations is justified given
the small, multiplicative false positive rate of chained switching operations and the data-oriented
paradigm where redundant traffic can be cached and pruned at the edges if no matching subscriptions
are installed. At routing domain boundaries [C], making a switching or mapping decision between
a large flat identifier space and the next routing and forwarding identifier space needs to be efficient
both in space (small high speed memories in forwarding elements) and time (few computation cycles
per packet). The SPSwitch aims at solving this problem: with only a few bits per entry (e.g. 40-50
bits) and independently from the identifier space (e.g. 256-bit flat labels), port forwarding operations
and label switching can be performed in a fast and resource-efficient way.

With the insights that hash-based data structure may play a fundamental role as efficient data
aggregators in network architectures based on non-structured (non-aggregatable) namespaces (e.g.,
self-certified content names, MAC addresses), we moved towards exploring the other extreme of
packet forwarding, namely carrying the routing information state into the packets themselves.

In-packet compact source explicit routing

At the opposite end from the present Internet design lies source routing [53], with its well-known
problems related to packet sizes and security [54]. In strict source routing, the packet’s path is de-
scribed, hop by hop, in the packet header. A single forwarding node does not have to know anything
else than its neighbours; it just picks the next hop node from the packet header and delivers the packet.
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Routable in-packet Bloom filters: By compactly encoding source routes with an in-packet Bloom
filter (iBF) [B], we can address one of the main caveats of source routing, namely the overhead of
having to carry all the routing information in the packet. As a side benefit of this approach to in-packet
compact forwarding, network identifiers are not explicitly revealed to outside observers, neither the
sequence or amount of hops involved. The approach is based on the assumption that there are no
stable end-to-end addresses for the network nodes, for three reasons [B]. Firstly, relying on such
addresses would not contribute to the envisioned benefits in fighting unwanted traffic and empowering
the receivers. Secondly, in a content-oriented architecture, long-lived node addresses should not
be needed. Thirdly, any such (topology-dependent) addresses used as identifiers are detrimental to
the ability of supporting mobility and multi-homing. This way, network nodes may no longer need
long-lived addresses, and to a large part, they may also remain anonymous to most of the network.
However, such node-address-less design generates new kind of problems, especially for routing and
forwarding.

The in-packet Bloom filter (iBF) approach solves the forwarding problem without end-to-end
addressing, using a link-identifier-based approach that combines elements from source routing and
stateful routing, in a flexible way. When used to take forwarding decisions, false positives are trans-
lated into packets being transmitted over additional links than the ones originally inserted. As long as
the false positive rate is low enough, falsely packet duplications can be considered acceptable due to
active caching and the decreasing probability of concatenated false positives over multiple hops. To
encode delivery trees, a set of statistically unique directed links can be formed. So, any forwarding
tree can be seen as a set of unidirectional links. Then, the iBF describing the delivery tree is placed
into the packet header and sent to the network. By checking for certain bit patterns in the header,
each forwarding node tests which of its outgoing links are included into the set. Since this is a sim-
ple binary AND operation, next hop checks can be done parallel in hardware, producing a very fast
forwarding plane. It can be shown that this approach leads to fast hardware-amenable forwarding
decisions at the forwarding nodes [B,E], reduces the possibilities for malicious nodes for sending
unwanted traffic [D], and at the same time has the seeds to scale to Internet-wide dimensions [C].

In general, an iBF [G] is well suited for network applications where one might like to include a
list of elements in every packet, but a complete list requires too much space, and, additionally, the
elements should remain undisclosed. In these situations, a hash-based representation like a Bloom
filter can dramatically reduce space, maintaining a fixed header size, at the cost of introducing false
positives. Example network applications beyond multicast forwarding [B,H][55] include, data-path
security [56], wireless sensor network security [57], IP traceback [58] and loop prevention [59].
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Extensions to probabilistic data structures

Bloom filters may impress by their sheer elegance and performance, and have been widely used in
network applications [60]. Sometimes their application to resolve some problems may be classified
as indiscriminately used tool and there may be better domain-specific alternatives to Bloom filters
under the same parameter space (cf. [61]). Certainly, there is no one size that fits all solution, and the
naive application of Bloom filters for a system critical component like packet forwarding deserves
careful considerations of whether the effects of false positives can be contained and whether there are
alternative or complementary algorithmic solutions.

When applied to the problem of packet forwarding, we encounter the necessity of obeying the
policy of no false negatives, which would put the packet delivery at risk. That is, to be correct,
the forwarding methods should guarantee that packets are being delivered, at least, to their intended
destinations. The amount of consumed resources should be bounded (e.g. no infinite loops), and,
clearly, solutions with the best efficiency should be favored.

In sake of addressing the effects of the one-sided error methods, we have proposed and validated
extensions to achieve a practical, flexible packet forwarding toolbox. The non-deterministic side of
Bloom filters means that the resultant forwarding algorithms may need to make a random choice
among alternatives when it encounters a choice point at which it cannot know which alternative leads
to the desired outcome. It is often the case that the standard Bloom filter data structure is not enough to
achieve the desired system performance (e.g., certain false positive rate or guarantees) or functionality
(e.g., deletions, counters, security).

We have studied in-depth the design space and proposed algorithmic enhancements to the con-
struction of the hash-based Bloom filter data structure. This way, we contribute to the hypothesis that
a correct forwarding machinery can be built on top of false-positive prone decision steps.

Playing with the power of choices: We fight the randomness of hashing algorithms with a multi-
plicity of choices in the combination of hash functions. By doing so, we empower the application to
pick the best candidate for a certain optimization goal (e.g., less false positives, loop-avoidance) [B].
The strategy of having multiple representations for the same element set enables re-inserting deter-
minism in the one-sided error-prone system by having the candidates tested prior to their use [E].

We use the notion of power of choices [62] and take advantage of the random distribution of the
bits set to 1 to select the iBF representation among the d candidates that leads to a better performance
given a certain optimization goal (e.g., lower fill factor, avoidance of specific false positives). This
way, we follow a similar approach to the Best-of-N method applied in [63], with the main differences
of (1) a distributed application scenario where the d value is carried in the packet header, and (2) the
best candidate selection criterion is not limited to the least amount of bits set but includes optimization
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criteria specific to packet forwarding policies (e.g., loop-freeness, avoid costly links).

Having “equivalent” iBF candidates enables to define a selection criteria based on multiple ob-
jectives. To address performance by reducing false positives, we can select the candidate iBF that
presents the best posterior false positive estimate (fpa-based selection). If a reference test set is
available to count for false positives, the iBF choice can be done based on the lowest observed rate
(fpr-based selection). Another type of selection policy can be specified to favour the candidate pre-
senting less false positives for certain “system-critical” elements (element-avoidance-based selection)
or other iBF optimization goals, for instance, element deletability as explored in [G].

DlBF - The deletable Bloom filter: Under some circumstances, a desirable property of iBFs is
to enable element deletions as the iBF packet is processed along the network. For instance, this is
the case when some inserted elements are to be processed by only one networking element (e.g., a
node / link identity within a source route) or bit space for new additions is required. Unfortunately,
due to its compression nature, the bit collisions hamper naive element removal unless we want to
introduce false negatives into the system. To overcome this limitation (with high probability), so-
called Counting Bloom filters [64] were proposed to expand each bit position to a cell of c bits.
Each bit vector cell acts now as a counter, increased on element insertion and decreased on element
removal. As long as there is no counter overflow, deletions are safe from false negatives. The caveat
is the c times larger space requirements, a very expensive price for the tiny iBFs under consideration.

We have designed the deletable Bloom filter (DlBF) [F], a new Bloom filter variation based on
the novel idea of compactly encoding the information of where collisions happen when inserting
elements. The DlBF enables false-negative-free deletions at a fraction of the cost in memory con-
sumption. Depending on how much memory space one is willing to invest, different rates on element
deletability and false positives can be achieved. The DlBF is well-suited for other use cases where re-
constructing the filter upon set membership changes is either infeasible or too costly. For standalone
applications, removal of element fingerprints is commonly desirable for functionality or optimization
purposes. For distributed applications, a deletable filter can be thinned out as queried elements are
processed in order to (i) avoid repeated matches upfront, (ii) reduce false positives, and/or (iii) enable
fresh bit space for new additions.

zFormation - Secure Bloom filter constructs: The hash-based nature of Bloom filters provides
some inherent security properties to obscure the identities of the inserted elements from an ob-
server/attacker. However, we have identified a series of use cases where extra security means are
desirable. For instance, an attacker can deduce by simple iBF inspection whether two packets contain
an overlapping set of elements (e.g. network paths). Considering another threat model, an attacker
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may wait and collect a large sample of iBFs to infer some common patterns of the inserted elements.
In any case, if the attacker has knowledge of the complete element space, it can certainly test for
presence of every element and obtain a probabilistic answer of what elements are carried in the iBF.

The main idea of the zFormation function [D] is to bind the Bloom filter operations (insert and
query) to an invariant of the packet (e.g., a packet identifier, packet payload, etc.) and a distributed
shared time-based secret. Basically, we want to make the inserted elements packet-specific and ex-
pirable. By obscuring the actual inserted elements, an iBF becomes meaningful only if used with
the specific packet, avoiding the risk of an iBF replay attack, where the routing iBF is placed as a
header of a different packet. By additionally binding the iBF generation and query operations to a
time-variant secret, we can turn the iBF expirable and useless after some period of time. Applying
these ideas to the iBF-based source routing architecture we can secure the data forwarding plane
against Distributed Denial-of-Service attacks [D]. The resulting forwarding identifiers can act simul-
taneously as path designators, i.e., define which path the packet should take, and as capabilities, i.e.,
effectively allowing the forwarding nodes along the path to enforce a security policy where only
explicitly authorized packets are forwarded. The compact representation is based on a small Bloom
filter whose candidate elements (i.e. link names) are dynamically computed at packet forwarding time
using a loosely synchronized time-based shared secret and additional in-packet information (e.g., in-
variant content or flow identifiers). The capabilities become thus expirable and flow-dependent, but
do not require any per-flow network state or memory look-ups, which are traded-off for additional,
though hardware-amenable, per-packet computation. Hence, the proposed compact forwarding ap-
proach takes the in-network state requirements down to near-zero-state, since the core forwarding
decision is based on a pure computational operation rather than based on memory-based forwarding
table lookups.

Practical Applications in Network Architectures

Our final set of contributions include the experimental validation in practical network architectures
of the hypothesis that one-sided error-prone forwarding algorithms are not only feasible in practice
but may carry benefits largely paying the potential effects of false positives.

The idea of iBF-based forwarding was initially conceived for the information-centric networking
requirements of an Internet-scale publish/subscribe architectural proposal [B, C]. Multicast-capable
iBFs can be formed by collecting enough topology information and then used to form the delivery
trees to forward packets from the data sources to their sinks. For instance, the topology information
can be gathered on demand by the flow/communication initiation packets (e.g. multicast join mes-
sages [H]) or can be managed in a more central approach like the distributed path computation entities
of (G)MPLS (cf. [65]). Following the same rationale of a managed network control environment, we
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have applied the notion of iBF forwarding in data center networks to provide a scalable and flexible
packet forwarding service below the IP layer.

SiBF - Switching with in-packet Bloom filters : Motivated by the unprecedented scale, cost, and
control requirements of cloud data center networks, we have designed and implemented SiBF [E], a
data center network architecture based on the stateless forwarding service provided by iBF encoding
source routes and carried in the Ethernet MAC fields. SiBF follows an identifier/locator separated
approach where IP addresses act solely as identifiers and oblivious routing is provided by randomly
using iBF-encoded routes between the communicating endpoints (e.g. virtual machines). Our de-
sign borrows characteristics from a few novel data center network designs, for instance building upon
proven interconnection topologies (e.g. Clos networks) and reliance on logically centralized con-
trollers (e.g., Ethane [66], Fabric Manager [67], Directory Service [68], NOX [69]). Compared to
related work, one key difference of our work is the provision of a forwarding primitive based on an
iBF expedited by what we call a new entity in the data center: the Rack Manager (RM). The RM
follows a direct network control approach (cf. 4D [70]) to transparently provide the networking func-
tions (address resolution, route computation) and support services (topology discovery, monitoring,
optimization) to unmodified (physical and virtual) servers behind Top-of-Rack (ToR) switches.

Forwarding in SiBF addresses the issue of having a system with two mutually conflicting re-
quirements: (1) flat (non-hierarchical) Ethernet addresses, and (2) aggregation. While our approach
initially seems to open another vector of the design space, namely potential efficiency penalties due
to false positives resulting in some packets unnecessary using some extra links, the proposed solution
is free from false positives by exploiting the power of choices along two dimensions: (1) multiple
paths, and (2) multiple iBF representations. The former strategy consists of simply having the iBFs
tested for false positives prior to their use, i.e., RMs maintain a ToRsrc-ToRdst routing matrix filled
only with false-positive-free iBFs (one iBF per available path).

The proposed solution makes better use of the 96-bit space of source and destination MAC ad-
dresses without sacrificing the nice plug and play properties of random Ethernet MAC addresses. To
our benefits, the “Bloomed” MAC identifiers do not incur in encapsulation or shim-header overheads.
Additionally, the iBF-based fine control over the path travelled by packets enables load balancing
schemes to avoid hot spots by bouncing off traffic flows to intermediate switching elements, or ex-
plicit control over a sequence of middlebox services (e.g., firewall, SSL offloaders, DPI).
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2.5 Summary

This chapter introduced the motivation for this thesis and presented the research problem around
the concept of compact forwarding in the context of content-oriented networking paradigms. The
scope of the research problem was restricted to suitable compact port-forwarding functions and the
relation to previous work was discussed. Finally, the main contributions of this thesis were introduced
by giving an overview of the author’s publications and the compact forwarding methods therein.

In the next chapter, essential background on the original Internet architecture and its evolution
is provided. The discussion on related work includes the ongoing efforts towards content-oriented
network architectures, and a review of probabilistic data structures used in network applications.



Chapter 3

Background

This chapter lays the fundamental background on the architectural principles of the Internet, its
evolution, the roles of the control and data planes, and the research efforts towards future Internet
architectures. Then, the rationale behind content-oriented networking is introduced as a new paradigm
with profound implications on naming, routing and forwarding. Remarkable proposals along this
trend are presented with special focus on the approaches and challenges of content-oriented packet
forwarding. The review of related work would not be complete without surveying the state of the
art of probabilistic data structures with special attention to the proposed variations and networking
applications of the Bloom filter data structure.

3.1 Principles and Evolution of the Internet Architecture

The Internet was not built in response to popular demand, real or imagined; its sub-

sequent mass appeal had no part in the decisions made in 1973. Rather, the project

reflected the command economy of military procurement, where specialized performance

is everything and money is no object, and the research ethos of the university, where ex-

perimental interest and technical elegance take precedence over commercial application.

This was surely an unlikely context for the creation of what would become a popular and

profitable service.

“Inventing the Internet” by Janet Abbate, 1999

The Internet — the collection of linked network elements and distributed systems that enable
global communications — is an ever growing success that has transformed the way businesses are
done and how people socialize. In brief, the big transformation is the emergence of an ubiquitous
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information platform, democratized in a way that people and machines can generate and consume
content in an unprecedented manner, ultimately becoming the enabling global communication infras-
tructure of what has been recently touted as the fifth Utility, i.e., cloud computing.

Over 500 million end devices and 30.000 autonomous systems are connected today. The number
of connected endpoints, is expected to grow at a high pace with the progress of IP-enabled mobile
technologies (3G, 4G), the end of the digital divide, the advent of the Internet of Things (sensors,
actuators, daily objects), and the proliferation of virtual machines in geo-distributed data centers.

The original Internet architecture was built around a host-to-host communication model, and is
perfectly suited for applications, such as file transfer and remote login, that focus on conversations
between pairs of well-known and stationary hosts. The basic architectural principles included end-
to-end addressing, global routability, and a single namespace of IP addresses that could serve simul-
taneously as locators and host identifiers. A second namespace of Fully Qualified Domain Names
(FQDN) was later added, and the Domain Name System (DNS) was developed to map between such
names and addresses.

Astonishingly, the ‘heart’ of the Internet architecture, i.e., the Internet Protocol Suite, is almost the
same as what Internet pioneers projected as part of an experimental research project to provide inter-
connection between a few heterogeneous computer networks. More than 30 years have passed since
the specification and implementation of the single network layer protocol [3] that today underpins the
converged communication infrastructure hosting these days’ World Wide Computer.

The initially monolithic Transmission Control Program [1] was later divided into a layered archi-
tecture consisting of the Transmission Control Protocol (TCP) [71] at the connection-oriented layer
and the Internet Protocol (IP) [4] at the connection-less internetworking (datagram) layer (see Fig-
ure 3.1). With the insights of running code at scale, the central algorithms of TCP were devised [72]
and after several revisions, the latest specification of TCP [73] contains the protocol operations along
four intertwined algorithms: Slow-start, congestion avoidance, fast retransmit, and fast recovery.

Fig. 3.1: IP Suite Protocol Layering. Source: [71]
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Along this journey, many ideas were added and dropped (e.g., variable address lengths). Once
the specification was implemented and broadly adopted, it has shown to work good enough [14] to
cope gracefully with all the changes below (e.g., link layer speeds and capabilities) and above the IP
waist (e.g., real-time voice/video/gaming, content overlays, application-level multicast, etc.). As a
consequence of its own success, attempts to change the core of the Internet protocol suite have failed.

Once turned into a commercial artefact to transport money rather than packets, numerous consid-
erations have appeared including security and scalability issues. As a side effect of being commercially-
driven and de-centralized, changes in the core require global deployments justified by the right in-
centives for all players. This process has been described by the National Research Council [74] as
ossification, i.e., or inability to change, in multiple dimensions: intellectual (pressure for compati-
bility with the current Internet risks stifling innovative intellectual thinking), infrastructure (ability of
researchers to affect what is deployed in the business-driven core infrastructure), and system (lim-
itations in the current architecture have led to shoe-horn solutions that increase the fragility of the
system).

The lack of industry motivation to implement risky changes have been noted by networking re-
searchers as the main non-technical challenges associated with deploying various flavors of Quality
of Service (QoS), IP Multicast, and IPv6. In the case of the later, the most recent specification for the
next generation network layer protocol has been waiting for deployment since 1998. Only recently,
some signs of adoption can be highlighted, but still the overall IPv6 traffic in Internet backbone and
regional ISPs accounts for only a fraction of the total Internet traffic. Among the show-stoppers of
IPv6 lays the success of carrier-grade NAT solutions, which despite clouding the end-to-end signifi-
cance of IP addresses have proven to be useful in (i) extending the life of the IPv4 address space, (ii)
helping in contain security threats, and (iii) assisting renumbering procedures. It can be also argued
that the lack of incentives for IPv6 may be also a consequence of the inherent resembleness to IPv4,
i.e., carrying many of the IPv4 mistakes or inadequacies to today’s use of the network.

Similar difficulties apply to the Border Gateway Protocol (BGP). Established as the de facto stan-
dard for inter-domain routing, being multi-domain/provider requires almost a global-scale, synchro-
nized protocol update in case of changes that are not backwards-compatible.

In the case of IP multicast, many multicast routing protocols have been proposed since its con-
ception in the early 90’s, see comprehensive surveys [75, 76]. A number of theories, both technical
and business based, have been proposed to explain why inter-domain multicast has not yet seen de-
ployment [77, 78, 79]. The proposed reasons include the lack of control for who can receive, the
knowledge of the number of receivers at the source, and the lack of incentives of upstream providers
to reduce the amount of monetized traffic.
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At the same time, the beauty of the flexible design of the Internet is that it has enabled numerous
evolutionary ‘patching’ approaches to emerge without having to change the network infrastructure.
Indeed, it is being argued that the Internet is a victim from its own success. Many ad-hoc and patches
solutions have been and are being developed. These include middleboxes like firewalls, NATs, Mo-
bile IP home agents, and security protocols like IPSEC or TLS. Furthermore, we are assisting to an
increase of overlay networks for content distribution like P2P systems and CDNs.

Despite all the non-driving forces, the sense that the Internet suffers from design issues that could
be solved on the whiteboard, has and still motivates more fundamental research on global-scale net-
worked systems, specially as new spins to rethink the Internet emerge (cf. content-orientism in Sec-
tion 3.2). Similarly as how IP was initially conceived as an overlay on top of the telephone system,
researchers are trying the Tantalus task of devising whether today’s Internet overlays could be the
precursors of the so-sought future generation Internet architecture.

3.1.1 The role of the Control and Data Planes

What you need is that your brain is open. — Paul Erdös

Networking systems are commonly decomposed into functional modules, which are organized
into groups or “planes.” The network architecture defines how these (protocol) functions are placed
at different points in the network (e.g., end-systems, access/core routers, servers, clients, overlay
nodes, etc.). Functional correctness and efficient coordination between different functions typically
requires the maintenance of shared information across time – commonly called “state” – at various
nodes and in packet headers. See [80] and [81] for a comprehensive discussion on the principles and
guidelines of network architectures. As observed by Rexford et al. [82], the broad organization of
functions into planes can be dictated by the following time- and space-scales:

Data plane functions are those that operate at line-speed time-scales and involve packet handling
primitives (e.g., congestion control, reliability, encryption). For example, the data plane (also-
called forwarding plane) performs packet forwarding (e.g., longest-prefix match on destination
IP field to decide on the egress interface to the next hop), as well as the access control lists
(ACLs) that filter packets based on rules defined on the header fields. Additional functions of
the fast data plane include tunneling, queue management, and packet scheduling. In terms of
spatial scales, the data plane is local to an interface card of a single router.

Control plane functions happen at a longer time-scale and enable data plane functions. The con-
trol plane consists of the network-wide distributed algorithms that compute parts of the state



3.1 Principles and Evolution of the Internet Architecture 27

required for the data plane (e.g., routing, signaling, name resolution, address resolution, traf-
fic engineering). For example, the control plane includes BGP update messages and the BGP
decision process, as well as the intra-domain routing protocols such as OSPF, its link-state ad-
vertisements (LSAs), and the shortest-path routing algorithm (e.g., Dijkstra). As a result of
these protocols the forwarding table (FIB) that determines the data plane packet forwarding is
generated. Control plane functions include all type of signaling protocols (e.g., MPLS, RSVP,
ATM PNNI signaling, telephony/X.25/ISDN) that associate global identifiers (addresses) to lo-
cal state (e.g., labels, resources). Moreover, end-to-end signaling (e.g., SIP, TCP and IPSEC
connection setup) belong also to control plane functions that setup data plane enabling state.
Name resolution based on DNS is also a control plane function that maps names to addresses
and enables end-to-end data plane activities. Control-plane functions may be data-driven, i.e.
triggered by a data-plane event (e.g., ARP, DNS), or be purely control-driven and operate in the
background (e.g., OSPF).

Management plane functions deal with monitoring, management and troubleshooting of networks
and work at an even larger time-scale than control plane functions – as they typically involve hu-
man interactions (e.g., manual configurations). The management plane centralizes and analyzes
measurement data from the network (e.g., SNMP, active probes, tomography) and generates the
configuration state on the individual routers. For example, the management plane collects and
combines Simple Network Management Protocol (SNMP) information, traffic flow records,
OSPF LSAs, and BGP update streams. Network management tools that configure OSPF link
weights and BGP policies following traffic engineering goals would be part of the management
plane. Similarly, a system that analyzes traffic measurements to detect intrusion attempts or
denial-of-service attacks and react by accordingly configuring ACLs to block malicious traffic
would be part as well of the management plane.

In today’s IP networks, the data plane operates at the time-scale of packets (Gbps) and the spatial
scale of individual network elements (switches/routers), the control plane operates at the time-scale
of seconds – commonly with a partial view of the network (e.g., an OSPF area), and the management
plane operates in a centralized fashion at the time-scale of minutes or hours and the spatial scale of
the entire network.

Recent re-architecting proposals suggest shifting or consolidating functions from one plane to the
other (e.g., the 4D architecture [70, 82, 83]). For instance, functions involving the decision process of
the distributed control plane (e.g., BGP routing) could be merged into the management plane for the
sake of stability, responsiveness and functionality of routing. As observed by Feamster et al. [84], the
growth of the Internet has introduced considerable complexity into the global routing infrastructure,
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with features being added to BGP to support more flexibility at a larger scale. Arguably, this com-
plexity has made routing protocol behaviour hardly understandable, increasingly unpredictable, and
error prone [85]. Disaggregation of router functionality, and in particular the separation of control
plane functions from forwarding functions, is a current trend in new generation routing architectures.
In an IP world, separating routing from forwarding [84] means IP “routers” becoming “lookup-and-
forward” switches to forwarding packets as rapidly as possible without being concerned about path
selection – a task that can be arguably outsourced to a centralized management environment.

On a related track, enabling some degree of network programmability by centralized controllers
has been the very sought holly grail of network infrastructure providers. Efforts to this goal can be
dated back to the 90’s and the efforts in programming telecommunication networks [86], including
the OPENSIG community, IEEE 1520, MPOA (Multi-protocol over ATM), GSMP (General Switch
Management Protocol) RFC3292, the active network research thread [87], and more recently, ongo-
ing work on the IETF ForCES (Forwarding and Control Element Separation) protocol [88] and the
OpenFlow initiative [89]. Basically, the OpenFlow protocol specifies a standard way for control-
ling packet forwarding decisions in (remote) software while keeping the hardware vendors in charge
of the device implementation. This separation of concerns leads to a promising combination (aka
software-defined networks) of the programmability of general purpose PCs – implementing an evolv-
able and customizable control plane – with line-speed commercial networking hardware taking care
of the fast data plane functions (e.g., port-forwarding, header re-writing) based on cached control
plane decisions.

Another promising line of work advocates for the introduction of a knowledge plane [90] as an
intermediary plane that holds knowledge of the network resources (such as topologies and more) in
order to reason about failures and enabling thereby novel network management capabilities.

3.1.2 Placement of Functions and State

A circuit is just one long packet — “Patterns in Network Architecture” by John Day,
2008

The basic division on where to place networking functions are “end-systems” (i.e., Internet hosts)
and “network elements” (i.e., routers, switches, etc.). Certain control-plane functions (e.g., routing
protocols) and their associated state variables (e.g., routing tables) are placed in the network (L3) and
largely in the network elements. In contrast, end-hosts usually have simple default routes (L3 state)
but are best suited to implement per-flow functions like reliability at the transport layer (L4).

This choice of function placement is commonly referred to as the End-to-End (design) principle.
The End-to-End argument — originally formulated by Saltzer, Reed and Clark [91] — suggests that
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specific application-level functions usually cannot, and preferably should not, be built into the lower
levels of the system (i.e., the core of the network). The explanation is stated as follows in the original
paper:

“... functions placed at low levels of a system may be redundant or of little value when
compared with the cost of providing them at that low level... ”

With the communication version of the End-to-End argument being (for the example of providing
reliability):

“The function in question can completely and correctly be implemented only with the
knowledge and help of the application standing at the endpoints of the communications
system. Therefore, providing that questioned function as a feature of the communications
systems itself is not possible. (Sometimes an incomplete version of the function provided
by the communication system may be useful as a performance enhancement)... ”

Hence, the End-to-End argument implies that several functions like reliability, congestion control,
session/connection management are best placed at end-systems (i.e., performed on an end-to-end
basis), while the network layer remains in charge of functions which it can fully implement (i.e.,
routing and datagram delivery). As a result, end-points are intelligent terminals in control of the
communication while the forwarding layer of the network is kept simple.

The End-to-End argument has been (and still is) subject to multiple mis-interpretation and heated
debates. The root of those conflicting views and the issues with the End-to-End principle is probably
that it was conceived at a time and for the sake of very different technological and economical con-
siderations compared to what we have today. Over the last decade, new requirements have emerged
for the Internet and its applications. In order to meet these various requirements, certain stakeholders
have arguably opted for the addition of new mechanism in the core of the network. Examples of those
emerging requirements include [92]: (i) operation in an untrustworthy world, (ii) more demanding
applications (e.g., real-time audio/video), (iii) ISP service differentiation, (iv) the rise of third-party
involvement, (v) less sophisticated users.

Back to the role of the control and data planes and the distribution of functions and state, the
End-to-End argument is well reflected in the state required for routing and forwarding being fully
distributed and placed at every router and the end-system, i.e., “... placing functions (and state) at

the lowest system level where they can be completely and correctly implemented...”. Noteworthy,
routing state maintained at end-systems is minimal (i.e., a default route) compared to the per-flow
TCP state at end-systems. In the case of TCP, the system state consists of TCP protocol parameters
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(e.g., window size, RTT estimate, slow-start threshold) as well as application-level data such as user
ID, session ID, and authentication status.

Hence, a connection-oriented protocols like TCP over a connection-less network protocol like
IP do not require on “per-connection” or “per-flow” state at routers, i.e., the network is stateless on
a per-flow basis. Routing protocols need to maintain routing state in form of routing tables inside
the network to facilitate forwarding. Unlike the signaled state of circuit-oriented approaches, routing
state is an example of “soft state” maintained by the control plane protocols running in the background
(e.g., routing protocols like OSPF). Frequent changes and aging of this soft state information are part
of the normal operations. In Ethernet for instance, ARP table entries are timed out unless refreshed.
This approach contrasts to the telephony-oriented design of virtual circuits over packet networks such
as X.25, ATM, and frame relay, where switches maintain “hard” forwarding state for each active
virtual circuit.

The growth and manageability of the routing tables of backbone routers has lead to an increasing
concern calling for routing alternatives to alleviate the routing scalability problems by, e.g., reconcil-
ing the roles of network locator and identifier of IP as proposed by the Locator/ID Separation Protocol
(LISP) [32]. In addition, various algorithms have been proposed in the literature including the dy-
namic re-assignment of network addresses and techniques for compact IP forwarding tables [38, 39].

A large body of work on so-called compact routing schemes [46, 93, 94, 95, 96, 97] has studied
the tradeoff between space and time of routing schemes. Space can be generally expressed in terms
of packet headers in messages and routing table size at network nodes, while time can be given in
terms of the computation required to select next-hop nodes and the length (or cost) of the actual
network paths between senders and receivers. This is commonly known as the space-stretch tradeoff

that dictates the relation between routing table size and route length of any routing scheme [98].
Kleinrock and Kamoun [99] were first in showing how hierarchical node addressing could produce
highly scalable routing tables, which is the basis of CIDR and OSPF/ISIS. Peleg and Upfal [36]
pioneered the studies on the fundamental tradeoffs for routing tables in general networks. They
provided tight upper and lower bounds for the tradeoff on routing table size and stretch factors for
universal routing schemes, that is, compact routing schemes applicable to arbitrary networks.

Shortest-path routing approaches represent one extreme approach as it only optimizes the route
length while the routing table size grows linearly with the network size. Compact routing refers to
design space of routing schemes with optimized space-stretch tradeoffs. Optimal universal compact
routing schemes are able to reduce the routing table size down to O(sqrt(n)) per node at the cost
of a three-fold increase in stretch. Better results [46, 94, 96] can be obtained exploiting the actual
structure of operational networks where a power-law degree distribution is common, i.e., few nodes
have a very high degree and many have a low degree.
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Only recently, Abraham et al. [47] have opened the research front on distributed compact multicast

routing schemes seeking tradeoffs between storage and space for various problems in one-to-many
communications. While memory is defined as in the unicast, the stretch factor represents the cost of
the compact multicast route and the cost of a Steiner (optimal) tree between the same set of target
nodes. The several variants of the problem studied in [47] include: (i) labeled – in which polylog-
arithmic node names can be assigned, (ii) name-independent – in which node names are arbitrarily
chosen, (iii) dynamic – in which nodes dynamically join and leave the multicast service and the goal
is to minimize as well the total cost of control messages needed to maintain the tree. The memory
requirements of a compact multicast scheme is defined as in the unicast problem. However, stretch is
re-defined as the maximum, over all choices of source nodes and sets of destination nodes, of the total
weight of edges used by the algorithm to deliver the packet to all target nodes, divided by the weight
of the minimum Steiner tree with the same set of destinations. Packet headers are allowed to include
a list of all destinations, but are restrained, as in the unicast case, from including full path information
in a source route approach.

Indeed, packets themselves are another possible location to place (routing) state in addition to
end-hosts or network nodes. The idea of adding information to packet headers to make packet pro-
cessing easier [100] is as old as the historical debate between connection-oriented and connectionless
networking technologies [101].

In a source routing approach [53], the source specifies the partial or complete path that packets
are supposed to take through the network. A common implementation (e.g., IP source routing [102],
Dynamic Source Routing in wireless ad-hoc networks [103]) consists of packet headers containing
a list of addresses, which potentially incurs in high overheads. In signaled architectures like ATM
or MPLS, source routing requires an explicit mapping to local state information (e.g., MPLS labels,
ATM VCI/VPI) using the signaling protocol (e.g., RSVP, MLD). A noteworthy hybrid approach pro-
posed in the late 90’s is IP switching [104], which aimed at taking the advantage of the robustness
and scalability of connection-less IP, and the performance (speed, capacity) of ATM switches. The
main idea behind an IP switch was a software-based IP router control plane attached to proven switch-
ing hardware and the ability to cache routing decisions in switching hardware. To be beneficial, IP
switching required a mechanism (algorithm) to associate long-living IP flows with ATM labels.

Noting that state in protocol stacks limits scalability (i.e., servers need to commit per-client re-
sources), Trickles [105] proposes a TCP-like transport protocol that enables pushing encapsulated
state from the server to the client, so that system state is kept entirely on one side of the network
connection. Additional benefits of this stateless network protocol based on self-describing packets
carrying encapsulated per-connection server state include the ability to replicate and migrate services
between servers and the avoidance of many types of denial-of-service attacks. The security implica-
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tions transforming statefull protocols into ‘stateless connections’ by including protocol state in the
packets themselves has been described in a general framework by Aura and Nikander [106]. Yet
another example of moving state to packets is the per-packet dynamic state QoS approach in [107],
where QoS requirements are specified in each packet rather than based on out-of-band signaling to-
gether with complex queuing and resource reservations mechanisms at routers.

Trading packet headers for packet processing [100] argues for a series of mechanisms to add in-
formation to packet headers to speed up packet processing. More precisely, Chandranmenon and
Vargheses propose three mechanisms based on this principle: (i) source hashing – where the source
adds a random label acting as a probabilistically unique hash key field (similar to IPv6 Flow La-
bel [108]), (2) threaded indices – where packets carry per hop index for each destination, and (3)
a data manipulation header with information required for data processing (e.g., destination buffer
names, encryption keys) and dispatch (e.g., destination process IDs).

Following the same principle, Bremler-Barr et al. [109] propose a distributed IP lookup based on
adding a “routing clue” to each packet. The so-called clue consists of additional bits in the IP header
(5 in IPv4, 7 in IPv6) to tell downstream routers where the last IP lookup ended in terms of longest
prefix match. This way, the IP lookup work gets distributed. The idea of passing a clue within packets
in a way that routers can share what they have learned from a packet with succeeding routers may
have other generalizations and applications in different domains (e.g., distributed packet classification
for QoS or firewall purposes). In IPv6 [110], a 20-bit Flow Label field [108] has been specified to be
used by a source to label those packets with special handling requirements by IPv6 routers, such as
non-default quality of service or “real-time” service, or as a pseudo-random flow identifier suitable
for use as a hash key by routers to look up the associated flow state. 1

While source routing has appealing properties in terms of reduced in-network state requirements
and explicit path control, there are important shortcomings that have limited the wide adoption of
source routing and multi-path routing in multi-domain, connection-less networks. The traditional
downsides of source routing include the inefficient coding of source routes (overheads in every
packet), the requirement of global routing information at sources, the lack of incrementally deploy-
able strategies, required signaling upon topology changes, and a number of security issues [53, 54].

Despite the extensive adoption of IP communications, the tension between connection-oriented
and connection-less networking techonologies is still alive [101]. Connection-oriented technologies
are a fundamental underpinning in today’s data network layers below IP. The most recent trends in
achieving fast forwarding and enhanced packet transport services include the GMPLS [112] control
capabilities to Ethernet data plane and determine the behaviour of the IP layer on top of these new
solution(s). GMPLS controlled Ethernet Label Switching (GELS) is a clear example of the demand

1See [111] for a recent draft document discussing use cases and issues of the IPv6 flow label.
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for flexible and flow-oriented efficient transport over any link layer. Like other technologies in the
past, by separating control and forwarding plane, GMPLS introduces more flexibility and important
performance gains due to the pure hardware fast label switching technology.

In general, any packet forwarding approach can be classified into four strategies [113]:

1. Modify both router forwarding state and forwarding information in packet headers (e.g., most
Active Network proposals [87, 114]).

2. Modify router state but not packet headers (e.g.,“active storage” type of networks [115]).

3. Modify packet forwarding information but not routing state (e.g.,i3 [116], NATs and middle-
boxes in general i.e., DOA [12]).

4. Modify neither router forwarding state nor packet state (e.g., original IP).

As discussed by Popa, Stoica and Ratnasamyl [113], each class poses different trade-offs between
flexibility and security. For instance, allowing data packets to modify router forwarding state opens
significant security risks. At the limit, an application could implement complicated distributed pro-
tocols (e.g., routing protocols) whose safety would be notoriously hard to verify. As a consequence,
the first two, active-networks-like approaches are commonly disconsidered for public Internet-scale
deployments. In contrast, the last strategy (no state modification at all) offers limited flexibility, as
users (end-users, network operator) have no control on packet forwarding.

3.1.3 Towards the Future Internet Architecture

There is nothing more difficult to take in hand, more perilous to conduct, or more

uncertain in its success, than to take the lead in the introduction of a new order of things.

- Niccolo Machiavelli, The Prince (1532)

Dated back to 1991, Request for Comments 1287 [17] is probably the first holistic effort “Towards
the Future Internet Architecture.” Lead by the Internet Engineering Task Force (IETF) – famous for
its motto of running code and rough consensus – the Internet community recognized the need for a
major discussion of Internet architectural issues.

In addition to contributing the historical debate on the relevance of the TCP/IP with respect to the
OSI protocol suite, several important areas for architectural evolution were identified and coarse-grain
research agenda was proposed around (1) routing and addressing, (2) multi-protocol architectures, (3)
security architecture, (4) traffic control and state, and (5) advanced applications. As a consequence
of this call for action, during the next 5 to 10 years multiple protocols were developed to address
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the acknowledged issues, including extensive work on providing a QoS-oriented service model for IP
networks [18].

It is worth to note that many of recent hot topics in network research were already devised at that
time. For instance, resembling modern location/identifier split approaches, RFC 1287 contemplates
the possibility of including a 64 bit field as a “flat” host identifier together with a mapping service be-
tween the host id and the Autonomous System (AS) or the Administrative Domain (AD). Moreover,
research directions on further means for aggregation suggested to consider routing on ADs. Other re-
markable suggestions include support to in-network store and forward services in the spirit of DTNs
or even the provision of a Global File System, in line with the current trend in content-centric net-
works. More along the requirements of the latter appears when a new definition of the Internet was
proposed based on a new unifying concept [17]:

“Old” Internet concept: IP-based. The organizing principle is the IP address, i.e., a common net-
work address space.

“New” Internet concept: Application-based. The organizing principle is the domain name system
and directories, i.e., a common - albeit necessarily multiform - application name space.

This early form of name-oriented identifier/locator separation suggests changing the coupling
of “connected status” from the traditional IP address (i.e., network numbers) to names and related
identifying information contained in the distributed Internet directory (i.e., DNS).

Saltzer [117] was one among the firsts that recognized the requirement of having clear distinctions
among network elements; the most common, and least practiced, of these distinctions is between a
host identifier and its address. With dynamic bindings at multiple levels, names of objects can become
location independent and some naming architectures support different types of mobility (e.g., nodes
or services) and the notion of indirection [118] or delegation [119].

During the past decade, so-called future network research (mainly by the academia) has prompted
creative architectural proposals, such as LNA [119], FARA [120], Plutarch, Triad [121], i3 [118],
SNF, TurfNet, IPNL [122] and NodeID [123], among others. At the core of these new generation
network architectures are naming and addressing frameworks that are significantly more flexible,
expressive, and comprehensive than the Internet hierarchical IP address space. These naming frame-
works are key components that enable advanced inter-networking capabilities, such as multi-homed
mobility, dynamic composition of networks, or delay and disruption-tolerant (DTN) communication.

A common approach adopted by most of the new architectures includes the identifier and locator
split with the intrinsic benefits for mobility, multi-homing and security, the last due to the coupling
between the identifier and the hashing of a corresponding public key [31]. These approaches recover
the original Internet end to end transparency with the end host being the most important element in
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the sender-controlled IP architecture. One of the main consequence of this model is the huge power
given to the sender side, that by knowing the destination identifier (i.e., network locator), is able to
send unwanted traffic to the receiver side.

Researchers and visionaries around the world have claimed the need to rethink the Internet (r)evolution.
The so-called ‘clean slate’ approach has its roots in a research program at Stanford University2 and
places two basic questions:

a) with what we know today, if we were to start again with a clean slate, how would we
design a global communications infrastructure?

b) how should the Internet look in 15 years?

Since then, research to circumvent current Internet limitations has been commonly divided into
those advocating new architecture designs (clean-slate), and those defending an evolutionary ap-
proach due to incremental deployability concerns [25]. From a pure research perspective, however,
clean-slate design does not presume clean-slate deployment and aims at innovation through question-
ing fundamentals.

3.2 The Rise of a Content-Oriented Internet

If content is King, then distribution is King Kong.

— An old media saying

Networks today were designed for the technologies of the ’70s, when people accessed limited
information, on a static network, through a single computer system. Current networking approaches
focus on moving packets of data, which are attached to a fixed machine location and unique IP address
from source to destination. This is in profound contrast to today’s Internet environment, where people
access unprecedented amounts of digital information, through dynamic networks, and with multiple,
often mobile devices.

At the same time, the available network access capacity has increased significantly in recent years
with more homes worldwide having broadband connections. This increased bandwidth has led to the
proliferation of rich multimedia content that are accessed either from Content Distribution Networks
(CDN) or through the file-sharing peer-to-peer (P2P) networks. The vast majority of Internet usage
today is data retrieval (e.g., HTTP video, direct download, P2P) and not specific host-to-host conver-
sational services (e.g., VoIP, SSH, VPN). In fact, recent studies [124] show that with larger amount

2http://cleanslate.stanford.edu/



36 Background

of data being transferred over HTTP, today, most Internet inter-domain traffic by volume flows di-
rectly between large content providers (e.g., Google, Microsoft, Facebook), hosting / CDNs (e.g.,
Akamai, LimeLight) and consumer networks. As shown in Figure 3.2, this content-driven changes
in the peering relationships translate into an evolution of the Internet logical topology. This bypass-
ing of Tier-1 ISPs accompanied by the deployment of content-provider owned wide-area networks
and edge cache/front-end servers directly inside ISPs has been also touted as a ‘flattening’ Internet
topology [125].

(a) Traditional Internet logical topology. (b) Emerging new Internet logical topology.

Fig. 3.2: The left figure generally reflects the hierarchical historical BGP topology. The figure on the
right illustrates emerging content-oriented Internet traffic patterns. Source: [124]

P2P and CDNs have become so successful because they fill the Internet design gap of optimizing
data delivery [126]. The Internet was designed to provide good support for end-to-end host commu-
nications. However, today’s Internet is mostly used for data dissemination, which is a quite different
task than reaching a particular host. As a result, tasks like content distribution have become unneces-
sarily hard, and have required the deployment of ad-hoc overlay systems like Akamai or BitTorrent
that had not been previously foreseen.

Actually, users do not care where the data comes from, as long as timeliness, data integrity and
authenticity are ensured. Most Akamai content is served from caches co- located within provider
infrastructure and IP address space. The majority of the available data can be classified as long-tail
content because it is not relevant to everyone except for certain groups of people. On the other hand,
a small part of the data (head-tail content), is relevant for large groups of people demanding tools in
the service level (e.g., monitoring, caching, DNS re-direction) to create and consume these different
types of data efficiently. From the networking side, CDN approaches to provide some sort of content
routing and caching running over TCP/IP represent a huge cost due to the several overlap of functions
and the manageability demanded by the several protocol levels.

These changes in the Internet pattern usage and the advances and cost reduction of storage and
processing power have lead to the concept of “storage in the network,” that suggests to look at the
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Internet as a database [127], or to re-design the Internet to act natively as an efficient CDN [126].

In addition, there is a notable evolution in information technology developments that confirm
this shift in the focus of network evolution from packets to content. Traffic engineering trends are
moving from data flows (e.g. QoS - Quality of Service) to application-level services (e.g. QoE -
Quality of Experience). This shift is accompanied by the demand of deep packet inspection (DPI)
technologies at edge routers. Moreover, we are assisting to an emergence of application and service
oriented architectures (SOA) and a fast growth of the publish/subscribe model and enterprise service
buses (ESBs). In this context, XML-based routers [128] have been developed and further reaffirm
this content-oriented trend in networking.

Answering to the clean-slate questions, if today we were to design things from scratch, we would
probably add content-awareness and massive storage capacity at Internet routers. This is not a discus-
sion on network versus host intelligence but rather a reconsideration of what should be the first-class
object in the new Internet. A naming approach based on data rather than end-hosts would enable a
democratization of scalable content dissemination and make it part of the Internet core in the same
way that connectivity was democratized as IP emerged.

This is precisely the point that Van Jacobson [129] has recently risen up. His content-centric
networking vision suggests to shift the point of view of the ongoing approaches to solve the problems
of the current Internet. He argues that current networking protocols are inadequate, because they
were designed for a conversational network, where two people/machines talk to each other, while
today the majority of network traffic comes from a machine acquiring named chunks of data (web
pages, multimedia files, E-mails, sensor data, etc.). The user cares about content and is oblivious to
its location. For data retrieval, the current Internet architecture (and many host-centric future Internet
approaches) is far from convenience and carries both naming- and protocol-level issues.

In TCP/IP, connected is a binary attribute meaning you are either part of the Internet and can talk
to everything or you are isolated. In addition, connecting requires a globally unique IP address that is
topologically stable on routing timescale (minutes to hours). This makes it difficult and inefficient to
handle mobility and opportunistic transport in the Internet [129, 130].

Under a content-oriented paradigm, information is indexed by keys (labels, data names) and re-
trieved by request. Protocols are declarative (i.e., say what you want, not where/who to get it from).
Network nodes (former routers) are caches of content, indexes, and buffers. They cache and forward
information, very much in the style of mobile ad-hoc, delay-tolerant, sensor networks, peer-to-peer
systems and content delivery networks:

Peer-to-Peer (P2P) Most of the innovations in networking space during the last years have come
from P2P systems (new routing algorithms based on distributed hash tables (DHT), swarm-
ing protocols, NAT traversal, overlay naming, etc). P2P provides an overlay solution to the
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networking shortcomings of the Internet in assisting current usage demands, which include
support IP multicast, anycasting, content-based naming, efficient content distribution, full host
reachability, and so on.

Instead of waiting for an overall infrastructure upgrade involving ISPs around the world, users
have realized the power of deploying new services with a simple piece of software that turns
personal computers into network elements, resulting in some of the most successful and scal-
able systems ever deployed like Skype, BitTorrent, Freenet, and more to come.

The beauty of P2P systems is that one can deploy hugely scalable services completely by-
passing ISPs and without the need for end-to-end multicast, in a similar way that the Internet
created a network that could route packets without having to go through the centralized control
of telecom operators.

Future generation Internet architectures may consider adopting into their core design concepts
and ideas from the P2P overlay (key-based routing, resource location algorithms, content nam-
ing, indexing, etc.). Recent work (VRR [131], ROFL [132]) has demonstrated how the ideas
of structured routing overlays can be pushed down into the network layer, thereby potentially
replacing IP with new, key-based (flat labels) routing protocols. A similar concept of key-based
forwarding is label switching applied in several contexts. For instance, in mobile ad-hoc net-
works very short-lived local labels are used (LUNAR, Lilith), and in ISP backbones, long-lived
local labels such as in MPLS or VLAN tags are common.

Content Delivery Network (CDN) CDNs emerged as an innovative technology to improve the ef-
ficiency of static, time-dependent, and rich media content delivery atop large-scale IP-based
networks [133]. CDNs are based on smart URL names and DNS redirection services to resolve
requests for data to the best candidate server taking into consideration the estimated user loca-
tion and the observed network performance (e.g., shortest RTT). See [134] for a comprehensive
survey and taxonomy of CDNs.

By enhancing the content retrieval experience to end-users through close-by storage capabilities
and additional intelligence in the network (i.e., monitoring, enhanced control plane based on
DNS resolution requests), CDNs constitute an ad-hoc overlay solution that try to close the gap
of the original host-centric Internet design [126] and today’s focus on data and service access.
The problem of distributing the actual content served within a CDN or federation of CDNs
has been extensively studied in a recent PhD dissertation [135]. The practical outcome of this
work is called Coral, a free peer-to-peer content distribution network comprising a world-wide
network of web proxies and name servers.
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Peer-accelerated content delivery technologies like Bittorrent Distributed Network Accelera-
tor (DNA)3 merge the P2P and CDN worlds to efficiently deliver faster and more reliable
downloads from multiple nearby sources in parallel. This way, peer-assisted content deliv-
ery combines the efficiency and scalability of peer networking with the control and reliability
of traditional CDNs.

Wireless Sensor Networks (WSN) The nature and spirit of sensor networks point out the needs for
data-centric approaches [136] instead of traditional address-centric approaches. Data-centric
approaches consist in finding routes from multiple sources to a destination that allows in-
network consolidation of data, where aggregation of multiple input packets into a single output
packet is performed by en-route nodes. In this way, data aggregation may be performed to re-
duce data transmission by eliminating the redundancy. In the literature, this kind of approaches
can be classified as reactive (require flooding of data queries in the entire network) and proac-
tive (storing relevant data by name). Thus, a goal here is to allow queries for data with a
particular name to be sent directly to the node storing that named data, instead of flooding the
entire network.

Due to its service model, algorithms and mechanisms for content routing (epidemic, direct
diffusion, greedy incremental trees, adaptive clustering hierarchy, etc.) may well suit the needs
of content-oriented protocols.

Delay-Tolerant Network (DTN) The field of delay/disruption-tolerant network (DTN) [137, 138]
looks at enabling communication in the absence of end-to-end connectivity or in the presence
of links which are subject to long delays. The idea is to explore the fact that users are nowa-
days more and more equipped with wireless devices, and that users that are physically close
are potential data exchangers. It seems then interesting to exploit the resources of any avail-
able wireless communication possibility to deliver and/or storage collected data in networks of
intermittent connectivity.

Activities around the IETF DTN WG have consolidated onto several standards documents (e.g.,
RFC 4828 [138]), promoting content-oriented concepts like data message delivery, opportunis-
tic transport, storage in the network edges, identity-based security and so on.

Publish/Subscribe (pub/sub) Publish/subscribe is a communication paradigm in which the interac-
tion between the information producer (publisher) and consumer (subscriber) is mediated by
a set of brokers. Publishers publish events (or publications) to the broker network, and sub-
scribers subscribe to interesting events by submitting subscriptions to the broker network. It is

3http://www.bittorrent.com/dna/
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the responsibility of the brokers to route each event to interested subscribers.

In content-based pub/sub systems, subscribers can specify constraints on the content of the
events, and the broker network is said to perform content-based routing of events. These sys-
tems can efficiently deliver messages to large numbers of subscribers and is therefore consid-
ered an appropriate technology for large-scale, event-based applications.

In topic-based pub/sub, the basic unit of publication and subscription is a topic, identified by a
unique identifier. From an architectural point of view, in a topic-based pub/sub a topic can be
thought as an identifier of a channel. Whenever there are events related to the topic, information
is delivered over the channel from the event source to the subscribers.

To improve the network layer performance in topic-based pub/sub systems, one approach is
mapping pub/sub topics to IP multicast groups, so data can be directly sent to subscribers with
a single message on the wire. However, this method, though network efficient, does not help to
solve the scalability issues of IP multicast. In case of many concurrent active receiver groups,
the routers are forced to maintain huge forwarding states due to the lack of aggregation.

While the application and scope traditional event-centric pub/sub systems differ from a global
Internet-scale content-oriented paradigm, they share a core communication model. An at-
tempt to formalize the pub/sub communication model has been presented in [139]. Surveys
on the many applications and implementation options of pub/sub systems include [140] [141]
and [142].

3.2.1 A new Networking Paradigm

In theory, there is no difference between theory and practice. But, in practice, there is.

— Jan L. A. van de Snepscheut / Yogi Berra.

In contrast to the traditional IP-centric model, content-oriented networking provides a new model
for communication where the focus is on data, not nodes [22]. Hence the underlying networking
substrate (i.e., network nodes and end hosts) becomes less relevant, possibly to an extent where it can
be no longer based on IP-address-like names (cf. with [143]). The name of the node that hosts and
converts the original information into the form in which it is finally delivered becomes optional or
even dispensable, as long as the received data is timely and correct.

Content-oriented architectures go beyond trying to solve the host reachability problem by provid-
ing more flexible, expressive, and comprehensive naming and addressing frameworks (e.g., FARA,
Plutarch, UIP, IPNL, HIP) mainly aimed at solving the shortcomings of the hierarchical, host-centric
IP address space. This new research thread on interconnecting information can be observed in recent
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projects – under the future Internet umbrella – such as PSIRP [144], 4Ward [145], CCN [146], and
other activities supported by EU and US funding agencies. As a result, the first content-oriented ar-
chitectures have started to emerge (e.g., DONA [24], Haggle [147], RTFM [148]). Later in Sec. 3.2.3
we outline the principles of some remarkable proposals.

The unifying approach of service-centric [149] [150], data-oriented [24], content-centric [146],
and information-centric networking [144] is to revolve around the data itself and to solve the problem
of efficiently delivering a particular piece of data. Being a content-oriented network, the flow of
messages is driven by the nodes that have expressed their interest and the information identifiers
of the messages. Reachability of destinations is not any more delimited by topological boundaries
but by new information-centric means, e.g., scoped information (cf. PSIRP vision in Section 3.2.3).
Having the data location hidden makes the semantics of what defines a sender or receiver of data
less relevant than the data itself, intuitively providing enhanced security (e.g., DoS mitigation) due
to a receiver-controlled content-oriented type of communication – also well suited for connectivity
challenged underlying networks.

The publish/subscribe paradigm [142] is a promising approach to implement a so-sought modern
communication API [151] for information-centric systems. The suitability and benefits of moving the
pub/sub layer downwards into the networking stack is one of the challenging objectives of content-
oriented interest-driven architectures where naming, routing, forwarding and addressing get fresh
semantics (see Table 3.1).

Tab. 3.1: Concepts of content-oriented networking versus the original Internet design. Source: [A]

Original Internet Content-Oriented Networking
Sender Content producer (publisher)
Receiver Content consumer (subscriber)
Sender-based control Receiver-based control
Client/Server Publish/Subscribe
communications Sender and Receiver uncoupled
Host-to-host Service access / Information retrieval
Topology / Domain Information scope
Unicast Unified uni-, multi- and anycast
Explicit destination Implicit destination
End-to-End (E2E) End-to-Data (E2D)
Host name Data/Content name
(look-up oriented) (“search” activity)
Secure channels, Integrity and trust
host authentication derived from the data
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3.2.2 Naming, Routing and Forwarding

Internet Protocol (IP) routing is based on the destination address inserted by the sender of the
message. In contrast, a content network is a network that supports some form of content routing, i.e.,
messages are routed based on their contents rather than an explicit destination IP address appended
by sending nodes to the messages.

Many types of content networks have been developed in various contexts such as P2P systems,
cooperative Web caching, CDNs, publish/subscribe and content-based sensor networks. Kung et

al. [152] propose a taxonomy for content networks based on their attributes in two dimensions:
content aggregation (semantic vs. syntactic) and content placement (content-sensitive vs. content-
oblivious). In the field of content delivery networks such as Akamai, HTTP request routing mecha-
nisms can be classified according to the variety of request processing (cf. with the CDN taxonomy
proposed by Pathan and Buyya [134]): Global Server Load Balancing (GSLB), DNS-based request-
routing, HTTP redirection , URL rewriting, anycasting, and CDN peering.

A finer classification of a content network can be made based on how content is identified (gran-
ularity, naming, etc.) and the routing and forwarding approach (e.g., overlay, in-network matching,
etc.). In general, routing and addressing in content-based networks are fundamentally different from
traditional host-centric communication services and group-based multicast services, as shown in Ta-
ble 3.2.

Tab. 3.2: Main characteristics of the unicast. multicast and content-based modes of communication
services. Source: [153].

- unicast multicast content-based
Destination specified by
producer

explicit explicit implicit

Attribute of consumer
used in routing

pre-assigned,
unique identity

group identity expression of interest in
content

Information flow directed directed emergent, indirected

For its service model, content-based networking can be related to a number of advanced network
services and distributed-system technologies, including IP multicast, distributed publish/subscribe
systems, other rendezvous-based communication services such as the Internet Indirection Infrastruc-
ture (i3) [116], intentional naming [154], XML routing [155], and basically any information system
implementing some sort of message indirection based on the packets’ content and not on explicit
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destination addresses. In some cases, depending on where and how the routing decision is made,
content-based routing can also described as an example of application-layer routing. For instance,
the term “content-addressable network” as proposed by Ratnasamy et al. [156] refers to a network
providing a lookup service to map keys (i.e., resource identifiers such as file names) to values (usually
locations).

As per Carzaniga et al. [153], the service provided by a content-based network consists of message
delivery to all interested receivers whose predicates match the content of the message – instead of
traditional numerical network addresses. Receivers declare their interests to the network by means
of predicates, while senders simply inject messages into the network at the periphery. The network
is responsible for delivering to each receiver any and all messages matching the selection predicate
declared by that receiver. Hence, content-based routing supports a more powerful mechanism of
routing messages based on message content to those destinations that are known to be interested in
that content type. A content-based routing protocol maintains a content-based forwarding table. This
type of content-based forwarding table maps predicates to interfaces, where a predicate associated
with each interface represents the union of the predicates advertised by downstream reachable nodes.

Although not explicitly called that way, the problem of content-based routing has been studied
quite extensively under multiple applications of distributed systems like publish/subscribe and event
notification services [128, 157, 158, 159, 160].

The general problem of content-based routing has been characterized by Carzaniga et al. [161],
providing a general framework on the structure of the routing state and the corresponding forwarding
functions used to realize the algorithm within a particular content-based routing scheme. In content-
based publish/subscribe systems, the message content is typically structured as a set of attribute/value
pairs (AVPs), and a selection predicate is a logical disjunction of conjunctions of elementary con-
straints over the values of individual attributes. Routing schemes commonly rely on propagating
predicates along the necessary topological information in order to forward the messages across the
network to the interested users.

According to Carzaniga and Wolf [162], content-based forwarding (CBF) can be defined as a
function of three inputs: a message m, a set of broadcast output interfaces B, and a content-based
forwarding table T = p1, p2, . . . , pI , where I is the total number of interfaces. The function computes
the subset of the broadcast output B that includes all the interfaces in T associated with a predicate
matched bym. The focus of CBF lays on the predicate-matching algorithm, since this is the novel as-
pect of the forwarding function in content-based networks where the content of a messagem contains
a set of AVPs. Formally, CBF can be expressed as: CBF (m,B, T ) = i : i ∈ B ∧matches(pi,m)

Content networks are usually overlayed on top of IP networks and are not intended as a replace-
ment for IP or other traditional network services like unicast or multicast. Rather, it is intended to
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implement the specific communication style embodied in publish/subscribe middleware in a way that
is superior to current approaches. Though, there is no conceptual obstacle to implement a native
content-based networking stack, it is still to be proven whether it would be better (or even feasible)
from an engineering standpoint, especially at Internet scales.

Scalability challenges

The major challenge faced by a content-based forwarding plane that takes port-forwarding deci-
sions based on the content identifier (or a more expressive descriptor) is maintaining in-network state
for every routable object in a way that the network scales and handles line-speed data rates.

Content-oriented networks can be seen as providing a generalized multicast communication ser-
vice with the main difference that they do not rely on the existence or maintenance of group address
spaces, but on the advertisement and propagation of available content based on an interest-driven
routing service. Hence, content-based routing and IP multicast service models are similar in that they
allow senders and receivers to communicate indirectly through a logical rendezvous point. There are
however significant differences in their flexibility and the applicable forwarding strategies, depending
on the nature of the content identifier, i.e., whether it is a structured name like a FQDN, a flat label
resulting from a hash computation, or a less rigid structure, consisting of arbitrary sets of AVPs.

The basic communication scheme of topic-based publish/subscribe is functionally similar to IP-
based source specific multicast (SSM) [163], with IP multicast groups replaced by content identifiers
(i.e., topics). IP multicast [164] and topic-based pub/sub systems[165] use almost the same forward-
ing approaches in addressing more than one receiver in each connection. IP multicast typically creates
lot of state in the network if one needs to support a large set of small multicast groups. An IP network
is originally an unicast network with multicast as an additional service. However, in pure pub/sub
based inter-networking, multicast is expected to be the native routing and forwarding approach.

Many efforts have been put to minimize the forwarding state problem by trying to aggregate state
in the network [166] or moving some routing information to the packet headers as in Xcast [167].
Xcast source nodes encode the list of multicast channel destinations into the Xcast header. Each
router along the way parses the header, partitions the destinations based on each destination’s next
hop, and forwards a packet appropriately until there is only one destination left where the Xcast packet
is unicasted. In the PoMo architecture [168], the authors suggest a routing/forwarding solution that
trades over-deliveries for reduced state and reduced dependence of node network locators. Their
approach [169] employs link identities rather than network locators as the pivotal role.

When the content identifier is synthesized into a certain bit string, rather than a full content de-
scriptor such as a XML or AVP schema, the problem of routing such content objects falls into the
category of name-based routing and the means for aggregation depend on the nature (structure, form,
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semantics) of the content identifier/name.

Shue et al. [170] researched on general name-based versus IP-prefix based packet forwarding con-
cluding that it is within the margins of feasibility. In this case, the name structure of a fully-qualified
domain name (FQDN) is the key factor to enable the system scale to Internet-wide sizes. This should
not come as a surprise since the scaling capabilities of name-based systems can be compared to the
hierarchical IP-based aggregation, with IP subnets being replaced with domain names. However, such
a strategy for name-based fast forwarding system is likely to face scalability issues if the granularity
of content goes beyond naming hosts to individually naming pieces of content.

In the case of content identifiers generated as a result of hash-based method (e.g., a label resulting
from a hash over the content itself), the routing problem falls into the category of flat routing, since
the content identifier lacks of any topological information or network location semantics useful for
routing. Related work aiming at routing on flat labels includes ROFL [132], a proposal for Internet-
scale routing on flat host identifiers based on neat DHT constructs. VRR [131] applies the same
core ideas on identity-routing in the field of wireless ad-hoc networks. i3 [116] separates the acts of
sending and receiving by using a combination of packet identifiers (triggers) and a DHT. Receivers
insert a trigger consisting of the data identifier and their network address into the DHT. Triggers
reach an indirection point in DHT network and are then routed to the appropriate sender, who in
turn satisfies the request by sending a packet containing the same identifier and the requested data.
SEATTLE [171] utilizes flat addressing within Ethernet networks based on a one-hop DHT acting as
a directory service for reactive address resolution and service discovery.

A fundamental difference of flat identifiers used in content-oriented networks include the different
semantics and the contrasting architectural principles (cf. with Table 3.1). For instance, the end-to-
data characteristics imply that the same piece of content may be reachable from different sources
(i.e., advertised from different network locations), including caches embedded in the forwarding in-
frastructure. Moreover, if any of the above-mentioned systems were used for content routing, each
piece of data would be required to be explicitly published in the DHT along its location before it can
be retrieved, a hardly scalable approach considering the potential magnitude of content objects.

Content-Oriented Naming

Although the Internet is now widely used by users and applications to gain access to identifiable
services and data, the Internet lacks of a mechanism for directly and persistently naming data and
services. The DNS namespace does not accomplish this goal. DNS names are another example of
semantic abuse – similar to IP addresses embodying both identification and location information.
Today’s DNS design overloads DNS names with multiple semantics (e.g., trademarking and web
objects) and rigidly associates them with specific domains or network locations (i.e., in a host-centric
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manner), difficulting the movement and replication of service instances and data.

Handling information objects as first-class citizens introduces the need of a new, global content-
oriented namespace. Closely related, in addition to new primitives, some form of metadata infor-
mation is required to enable the self-authentication of the data, fragmentation, scope delimitation,
inter-domain policies, in-network management, caching, and so on [144]. Such global namespace
around data items enables caching capabilities for every type of communications. In comparison,
caching over TCP/IP is costly and application-specific. In case of non-mutable information objects
caching becomes trivial, whereas for streaming applications, caching can be seen as long in-network
buffers. Hence, content-oriented architectures can natively play the role of current CDNs and promise
avoiding redundant traffic over network links [172]. Furthermore, a new namespace for information
objects could unify multi-, any-, con- and unicast types of communication in addition to enable novel
forms of network coding to increase the network’s efficiency and resilience.

Named Content Security

Content-based security compared to traditional channel-based security aims at allowing secure
content retrieval by name and authentication regardless of where the content comes from. New se-
curity and network primitives are required that enable referring to, and authenticating content itself,
rather than the host and file containers where it resides [173].

A common approach consists of self-certifying names (e.g., for hosts [28, 174] or content items [24,
175]) where the name itself is cryptographically constructed in a way that it allows to verify whether
a given piece of content matches a given name. The simplest form of self-certification is hash-verified
data, where the content names are the direct result of its cryptographic (e.g. SHA-1) digest [175, 176].
While this approach allows the receiver to assess validity (i.e. integrity plus authenticity) it does not
help with regard to the provenance (i.e. the publisher trusted by the receiver as a content supplier) or
relevance (i.e. the content answers the question the receiver asked) [173]. Some degree of provenance
can be granted by means of key-verified names, where a piece of content is named with the digest of
the public key used to sign that data [175, 177].

The main drawback of both approaches is requiring a secure indirection mechanism to map from
the (human-understandable) names understood by users to the self-certifying name for a piece of
content. In essence, the original content security problem turns into the problem of securing this
mapping. If the mapping gets compromised, the user ends up with the secure, self-verifying name for
a wrong or even malicious piece of content, falling back to a situation they tried to circumvent at first
by relying on so-called “semantic-free” names [178, 179] and indirection architectures [119, 154].

According to the Zooko’s Triangle [180], names can be simultaneously at most two of global,
secure, and memorable. For instance, domain names are global and memorable, but as demonstrated
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by the rise of phishing issues, they are not secure. In contrast, self-certifying names are secure and
unique but hard for humans to remember. Petname systems [181] advocate for building a naming sys-
tem that dynamically translates between different possible kinds of names, i.e., the edges of Zooko’s
triangle.

The content-centric networking (CCN) approach [173] addresses the named content security is-
sue by separating the roles of the human-relevant content identifiers and network-relevant locators

from the security-critical authenticator used to assess the validity of the content. While the above-
mentioned self-certifying naming schemes overload names with both roles simultaneously, CCN’s
approach to content naming is centered on authenticating the linkage between names and content
rather than either names or content alone. Retrieved content can be authenticated regardless of how,
or from whom, it is obtained, for any arbitrary (even human-readable) name form.

3.2.3 Architectural Proposals

Main Entry: architecture

Function: noun

1. the art and science of designing and superintending the erection of buildings and

similar structures

2. a style of building or structure: Gothic architecture

3. buildings or structures collectively

4. the structure or design of anything: the architecture of the universe

5. the internal organization of a computer’s components with particular reference to the

way in which data is transmitted

6. the arrangement of the various devices in a complete computer system or network

— Collins English Dictionary - Complete Unabridged 10th Edition

In the following, we briefly review a series of remarkable architectural proposals towards enabling
content itself to become a first-class object in the Internet.

Layered Naming Architecture (LNA)

The Layered Naming Architecture (LNA) by Balakrishnan et al. [119] exploits the introduction
of new levels of indirection as a powerful concept to correct the semantic overloads of IP addresses
and DNS names. LNA embodies a number of cumulative efforts in re-designing Internet naming and
addressing. LNA proposes four layers of names: (1) user-level descriptors (e.g., search keywords,
E-Mail identities), (2) service identifiers (SIDs), (3) endpoint identifiers (EIDs), and (4) IP addresses
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or other forwarding directives. Their goals include (i) making services and data first-class Internet
objects, i.e., named independently from network location or DNS domains, (ii) enabling unfettered
migration or replication in a mobile and multi-homed environment, and (iii) accommodating network-
layer and application-layer intermediaries to be interposed as valid architectural components on the
data path between communicating endpoints. The design principles of LNA include:

• Principle 1: Names should bind protocols only to the relevant aspects of the underlying struc-
ture; binding protocols to irrelevant details unnecessarily limits flexibility and functionality.

• Principle 2: Names, if they are to be persistent, should not impose arbitrary restrictions on the
elements to which they refer.

• Principle 3: A network entity should be able to direct resolutions of its name not only to its own
location, but also to the locations or names of chosen delegates.

• Principle 4: Destinations, as specified by sources and also by the resolution of SIDs and EIDs,
should be generalizable to sequences of destinations.

The LNA has a strong focus on the naming architecture and disconsiders on purpose changes in
forwarding plane due to the deployability issues of changing a large installed routing infrastructure.
The bottom line is that a re-design restricted to the naming layer could render important benefits in
an independent manner of data plane issues like denial-of-service protection, routing scalability and
new services, or QoS enhancements. A new naming approach to enable innovation below the com-
munication API has been argued by the work at UC Berkeley [182] on a NetAPI that lets applications
specify communication intents without network-specific bindings as with today’s Sockets API and
its strong coupling to a destination IP address. Similarly, name-based sockets have been proposed
by Vogt [183] to overcome Internet routing scalability issues while relieving applications from IP
address management responsibilities.

TRIAD

TRIAD [121] proposes a new Internet architecture following the observation that today’s Internet
tries to solve what they define as the content routing problem. Their goal of content routing is to
reduce the time needed to access content. This is accomplished by directing a client to one of many
possible content servers; the particular server for each client is chosen to reduce round-trip latency,
avoid congested points in the network, and prevent servers from becoming overloaded. These content
servers may be complete replicas of a popular web site or web caches which retrieve content on
demand. User clients express access not to a particular server or IP address but to some piece of
content, specified by name (typically a URL).
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The network-integrated content routing aims at providing support in the core of the Internet to
distribute, maintain, and make use of information about content reachability. This is performed by
content routers (CRs) acting as both conventional IP routers and name servers, i.e., participating in
both IP routing and name-based routing. This integration forms the basis of the TRIAD content layer.

The proposed Name-Based Routing Protocol (NBRP) performs routing by name with a structure
similar to BGP. Just as BGP distributes address prefix reachability information among autonomous
systems, NBRP distributes name suffix reachability to content routers. Like BGP, NBRP is a distance-
vector routing algorithm with path information; an NBRP routing advertisement contains the path of
content routers toward a content server.

TRIAD performs content routing in the sense that routes on URLs by mapping URLs to next-
hops. Actually, routing is done at the granularity of server names (e.g., FQDN) rather than full
URLs. Routing is done as a longest-suffix match on FQDNs at gateways (firewalls/NATs) between
realms and BGP-level routers between ASes (through theoretically every network router could act as
a content-router).

Forwarding state is built up in intermediate content routers as packets are routed, and name suffix
reachability is distributed among address realms as in BGP. TRIAD thus relies on name aggregation
to scale, and will fail if object locations do not follow the DNS hierarchy closely. In order to overcome
this issue, name-level redirection mechanisms are used to handle hosts whose names do not match
network topology, becoming essentially a name-resolution mechanism. This observation also applies
to IPNL [122], which also proposes some form of routing on FQDNs. TRIAD tackles thus the
content-routing problem through a name-based routing approach, where names refer to FQDNs that
form part of a larger content name like a full URI.

Data-Oriented Network Architecture (DONA)

DONA [24] explores an alternative content-based architecture, essentially allowing a client to
request a piece of data by its name (a flat self-certifying label), rather than the owner’s address. To do
so, the architecture exposes two fundamental operational primitives, namely:

• FIND : allows a client to request a particular piece of data by its name (not its location).

• REGISTER: using this operation, content providers periodically indicate their intent to serve a
particular data object.

To support these primitives, DONA introduces a new class of network entities, the Data Handlers
(DHs), which combine the functions of name resolution and data caching. Collectively, DHs assume
the responsibility for routing clients’ requests to nearby copies of the data.
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Basically, DONA replaces DNS names with flat, self-certifying names and a name-based anycast
primitive above the IP layer. While names in DONA are a cryptographic digest of the publisher’s
key and a potentially user-friendly label. The lack of secure binding to the content opens the door
to substitution attacks. Another limitation of DONA is that content must first be registered along a
hierarchical tree of trusted resolution handlers (RHs) to enable retrieval. As a consequence RHs must
maintain a large forwarding table to reach each next hop for every piece of content published in the
network. After locating the content, data packets are exchanged using standard IP routing. While
this data-oriented anycast approach over IP simplifies deployability, it does not solve many of the
intrinsic problems of IP like security, routing table size exhaustion, or mobility. In case of a change
of the location of a piece of content, new requests for that piece of content will remain unresolved
until the new registration propagates through the network.

Content-Centric Networking (CCN)

Content-Centric Networking (CCN) [19] defines a novel communications architecture built on
named data - a packet ‘address’ names content, not location. The new waist’ of the stack (i.e., the
traditional network layer) is now based on named data, and becomes the only layer requiring global
agreement. Figure 3.3 compares the IP and CCN protocol stacks. Like in the traditional layers of
the hourglass model of IP, layers of the stack reflect bilateral agreements (e.g., L2 framing protocol
between ends of a physical link, L4 transport protocol between data producer and consumer). CCN
preserves the design decisions that make TCP/IP simple, robust and scalable, including minimal
demands on layer 2 (i.e., stateless, unreliable, unordered and best-effort delivery). As a consequence,
CCN can be layered over anything, including IP itself.

Fig. 3.3: CCN replaces the global component of the network stack (IP) with chunks of named content.
Source: [19]

In addition to name-based routing and caching support, there are two critical aspects where CCN
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differs from IP, namely strategy and security, which appear as new layers in the protocol stack. The
strategy layer is in charge of making fine-grained, dynamic optimization choices to best exploit mul-
tiple connectivities under changing conditions. Security in CCN [173] is based on the content itself,
rather than the connections over which it travels.

Communications in CCN is receiver-driven in that a consumer asks for content by broadcasting
its interest (content request) over all available interfaces. CCN defines two types of packets: Interest

and Data. Any node hearing the interest and having the matching piece of data can respond with a
Data packet. Hence, Data is transmitted only in response to an Interest and consumes that Interest
packet - maintaining thus a strict flow balance similar to TCP data and acknowledgement packets.

CCN uses user-friendly, hierarchical names like URLs. Similar to P2P file swarming approaches,
the original content is divided into multiple chunks. Each packet contains the content URL-like
name along a chunk identifier (e.g., a hash over the chunk) and a signature that secures the binding
between name and content chunk (i.e., a standard digital signature of name+content). The content
publisher signs each chunk along with its name, enabling intermediate routers to (optionally) validate
an incoming chunk using this per-chunk signature or letting this task to the end content consumer.

Content publishers announce content availability in the spirit of BGP prefix announcement or
TRIAD name-based routing protocol. The basic operation of a CCN router is very similar to an IP
router. Upon an Interest (or request) packet arrives on an interface, a longest-match look-up — in
parallel to a local cache look-up — is done on its name to make a forwarding decision. If there
are multiple servers announcing content availability, an interest packet is forwarded toward all these
content sources.

CCN routers have three main data structures: (1) the FIB (Forwarding Information Base), (2)
the Content Store (buffer memory), and the PIT (Pending Interest Table). The FIB is used to forward
Interest packets toward potential source(s) of matching Data. It is almost identical to an IP FIB except
it allows for a list of outgoing interfaces rather than a single one. Only Interest packets are routed
toward potential Data sources using the FIB.

To forward Data packets back to the requester(s), the PIT is maintained by forming a sort of
trail of ‘bread crumbs’. Entries in the PIT are removed as soon as they have been used to forward a
matching Data packet, i.e., on Data packet consumes’ one Interest entry. A ‘soft-state’ model is used
to time out PIT entries which never were consumed by the corresponding Data packets, letting the
requesters responsible for re-issuing Interest packets – if they still want the Data.

The Content Store is (at least) the same as the buffer memory of an IP router but has a different
replacement policy in that it can act as a cache to satisfy other requests (Interest packets) due to
CCN packets being idempotent, self-identifying and self-authenticating. In contrast, point-to-point IP
packets have no value after being forwarded to the destination and are thus discarded after forwarding.
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When an Interest packet arrives over some interface, it will be first looked-up on the ContentStore
(acting as cache) and served returned upon match, or forwarded towards the data source based on a
longest-match lookup on the FIB. If another matching PIT entry exists, it is updated by adding the
interface to the PIT entry’s requesting interfaces list. Once the Interest packet hits a router with a
fresh copy or it reaches a server which has advertised availability of the desired content, the actual
Data packets are sent back following the chain of PIT entries all the way to the original requester(s).

CCN is not without challenges. Focusing on those around content-oriented routing and forward-
ing, one fundamental issue is how to scale a system with a potentially unlimited name space given
the feasibility constraints of available in-network fast forwarding state. While the FIB to route inter-
est packets towards the data sources can be arguably aggregated with requirements matching those
of today’s IP networks (cf. name-based vs. prefix-based packet forwarding [170]), the PIT repre-
sents a potential bottleneck for state, as it needs to hold enough entries (at least for a brief period
of time in the order of one RTT) to forward data packets back to the requesters. This calls for re-
search in suitable designs of high capacity packet buffers to hold the Content Store and the PIT –
recalling that the full benefits of CCN would depend on enabling high capacity caches (together with
appropriate policies and storage management). Novel fast forwarding engines are required that allow
memory-efficient switching decisions based on variable-length, hierarchical names and support for
fast updates of the forwarding tables upon name-based routing protocol changes, and, more critically,
Interest/Data traffic. [184]

RTFM

The RTFM architecture [148] is one design choice to map the design principles of the PSIRP
project [185]. PSIRP starts from a viewpoint where all network operations are based on named
information items across all layers. It is assumed that each piece of information has a statistically
unique name and that applications can request the network to deliver named information. Hence, the
primary function of the network is to locate and deliver information rather than to locate hosts and
arrange communications between them. The design principles of PSIRP are [20]:

• Principle A1: Everything is information: The architecture is based on information throughout
all layers, including in particular the inter-networking one. An information item is defined
as the simplest unit transmitted by the network and identify each with a rendezvous identifier
(RId), a statistically globally unique identifier.

• Principle A2: Information is scoped: Information exists in a context called scope. This concept
supports grouping information that is relevant to specific application domains, as well as reduc-
ing the space to be searched for a RId and the application of access control policies enforced by
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the scope. It therefore supports composition of information, enabling the mapping of higher-
level concepts onto the concepts of information items and scopes. In order for information to
be found it must reside in at least one scope, but is not limited to only one. Scopes themselves
are also information. Their RIds are called scope identifiers (SId).

• Principle A3: Equal control: Publishing information is sender-controlled while retrieval of
information is receiver-controlled, provided access has been granted. Thus, communication
will not take place without both parties having agreed through a trusted party. With that, the
architecture provides a balance of power between publishers and subscribers, offering a new set
of network services that shifts the network from send-receive between endpoints to a publish-
subscribe model of information.

The RTFM architectural proposal gets its name from the functional building blocks that are re-
cursively applied. The rendezvous (R) is in charge of matching subscriptions to publications and in-
formation scoping. The topology (T) management creates and maintains (sub-optimal) delivery trees
used for traffic forwarding, acting both pro-actively (optimization) and re-actively (on-demand). The
forwarding (F) functions perform the actual datagram delivery based on label switching techniques.
Finally, mediation (M) refers to the node-to-node physical data transmission.

Fig. 3.4: High level overview of the RTFM architecture. Source: [D]

A high level operational overview of the RTFM is as follows (see Fig. 3.4). After a node sub-
scribes to a publication, a distributed rendezvous system (e.g. a type of DHT or semi-hierarchical
solution as in DONA [24]) must first find a copy of the publication’s metadata. Using the distributed
rendezvous structure to route to a copy of the wanted data, the topology management systems are
expected to gather enough information to identify the delivery trees needed to forward the actual



54 Background

data to the subscriber(s). Note that the RTF functions are not necessary co-located in nodes and are
distributed and recursive in nature.

Basically, this approach to content-oriented networking separates the act of routing content re-
quests (subscriptions) –potentially over a ‘slow path’ in the spirit of DNS resolutions or DHT-based
routing– from the act of delivering the actual data from convenient sources and at line rate through
a so-called ‘fast path’. The fast path data delivery can be then implemented by explicitly includ-
ing forwarding directives (i.e., source-routing) to move the content packets from the sources to their
destinations.

In the black box rendezvous based networking approach [186], the key idea is to regard the net-
work as a collection of black boxes based on a set of recursive rendezvous functions. The boxes
operate in trusted domains hiding their internal topology and exposing outwards only labels and in-
terest definitions. Recursivity [81] and scoped information layers are pivotal architectural patterns
with a major goal: scalability.

With the same goal of scalability but at a lower layer, efficient data structures enabling the content-
oriented forwarding functions (e.g., switching, label processing, caching) are called for to achieve the
challenging scalability requirements of information-oriented networks heavily based on a virtually
‘unlimited’ set of flat identifiers.
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3.3 Networking with Probabilistic Data Structures

When the only tool you have is a hammer, then every problem begins to look like a nail.

— Abraham Maslow (1908 - 1970)

Advances in efficient packet forwarding techniques have been central to continuously moving
traffic smoothly through the Internet at increasing rates. IP address lookup is one of the major bot-
tlenecks in high-performance routers due to the challenges of the longest prefix matching operations.
The speed and scalability of the IP lookup or packet classification schemes largely determines the
performance of routers, and hence the Internet as a whole. Therefore, much work has been invested
in data structures and algorithms for packet forwarding and classification [40, 43]. Research in the
design of forwarding table compacting techniques has been a continuum since the early 90’s [38, 39],
and still goes on, yielding novel compact representations for structured graphs such as tries [42], new
algorithms and data structures for IP lookups, packet classification and conflict detection [41], and
advances in high-speed memory technologies among others.

Content-oriented network architectures – such as those discussed in the previous Section 3.2.3
– are characterized by introducing new namespaces for content objects. A common property of the
proposed naming schemes is relying on flat identifiers (e.g., 256-bit hash values [148]) and/or long,
non-fixed size URL-like names (e.g., TRIAD [121], CCN [19]) to uniquely identify single pieces of
content. Other network architectures that separate identifiers from locators [29, 31, 123, 132] or aim
at scalable Ethernet designs [171, 187], face similar challenges when handling packets carrying flat
identifiers. A flat naming scheme simplifies address administration or content identification but is
hard to scale due to the lack of aggregation capabilities. Hierarchical names of arbitrary sizes (e.g.,
CCN named data [19]) are also hard to handle at wire speed due to the challenges of performing
LPM-like lookup operations on arbitrary long identifiers resulting from non-fixed size components.

Similar to the advances in algorithms and data structures that enabled the feasibility of high-
performance IP routers, we surmise that new enablers in the forwarding plane may be fundamental to
the realization of content-oriented networks. More specifically, we expect probabilistic techniques to
play a key role to guide the construction of data structures well-suited for the requirements of packet
forwarding in content-oriented networks.

The remainder of this Chapter provides an overview of probabilistic algorithms and data struc-
tures, their fundamental trade-offs, and examples of their application in the field of distributed systems
and packet forwarding technologies.
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3.3.1 Probabilistic Algorithms and Data Structures

Deterministic algorithms are commonly characterized by fundamental properties such as running
time (speed) and memory usage (space). In practice, both attributes are in a trade-off relationship
resulting in algorithmic solutions that require either low memory or a short running time, but not both
simultaneously.

Probabilistic data structures are data structures based on algorithms that employ a certain degree
of randomness in their operations. Probabilistic or randomized algorithms – and the companion data
structures – introduce correctness as a new dimension in the traditional inter-play of fundamental
properties (e.g., speed, memory). By inserting a certain amount of randomness into a given problem,
lower memory usages and shorter running times can be obtained. For many difficult problems, if
an approximate solution is acceptable, this relaxation on correctness is worth to pay and leads to
practical implementations with (average) higher system performance and efficiency levels. In such
cases, a randomized approach can be the simplest, the fastest, or both.

There is a broad field of applications where randomized algorithms outperform deterministic al-
gorithms with provably high probability, examples of which include [188]: data structures (e.g., set
membership, sorting, order statistics, searching), algebraic identities (e.g., polynomial and matrix
identity verification, interactive proof systems), graph algorithms (e.g., minimum spanning trees,
shortest paths, minimum cuts), counting and enumeration (e.g., matrix permanent counting combi-
natorial structures), parallel and distributed computing (e.g., deadlock avoidance, distributed consen-
sus), probabilistic existence proofs, mathematical programming, etc.

Probabilistic data structures used to encode a collection of information are commonly termed
as “lossy”, as they usually require discarding some information. In information technology, lossy
compression refers to as a data encoding method that reduces the size of the representation at the cost
of some loose of fidelity at the time of decompressing. In exchange for losing data, lossy probabilistic
data structures can store all information in constant space and respond to membership queries in
constant time.

Under the specific application category of data structures, in addition to a myriad of variants
relying on hashing techniques, popular probabilistic data structures include skip lists [189], Bloom
filters [50], and lossy dictionaries [190]:

• A skip list [189] is probabilistic data structures, based on parallel linked lists, that uses prob-
abilistic balancing rather than strictly enforced balancing. As a result of the randomized ad-
ditions of links (following a geometric/negative binomial distribution), the insert and deletion
operations in skip lists are much simpler and significantly faster than equivalent algorithms for
balanced trees. The search performance of skip lists is restricted as only one key is stored per
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data structure node. Skip lists are an attractive data structure alternative for a variety of applica-
tions such as peer-to-peer distributed search, multiple predicate matching in database systems,
high-dimensional approximate nearest neighbor search, and concurrent lock-free information
retrieval.

• A Bloom filter [50] is a space-efficient probabilistic data structure to store an approximate
representation of a set S. Each element is mapped to k bit positions in an m-bit array as
determined by k independent hash functions over the element. Due to hash collisions, the set of
elements is subject to an amount of false positive members, but all elements of S are included
(i.e., no false negatives). False positives are those events for which the data structure claims an
element to be in S even though it was not actually inserted.

• A lossy dictionary [190] is a probabilistic data structure that stores and retrieves key/value
pairs in a space-efficient manner at the cost of two-sided errors. That is, in addition to false
positives, lossy dictionaries are also subject to false negatives (claiming an inserted key not to
be present). The false negative relaxation allows a very fast and simple data structure making
almost optimal use of memory. The lossy encoding reduces the memory requirements for a set
of data by changing the encoding characteristics of the data, introducing an intuitive trade-off
between the quality of the lossy data and how much space is required.

Relying on hash functions to compress the information into a new, compact data space is the
common denominator of Bloom filters, lossy dictionaries, and other probabilistic data structure gen-
eralizations. One way to efficiently transform a string of data into a probabilistic data structure is by
using a hash function to generate a reproducible signature (i.e., fingerprint) of each piece of the data.
The fingerprint of each item can then be stored in a smaller space. A hash function maps elements
from a universal set S ⊆ U of size w to a smaller domain of size b. If the set S contains many ele-
ments and b� w, elements of S will be allocated to the same sub-space in the new domain, leading
to what is commonly known as a collision. To minimize collisions it is important that hash functions
uniformly distribute the values of S into the smaller domain.

While both the Bloom filter and the lossy dictionaries allow set membership queries of the sort,
“Is x ∈ S?”, only the lossy dictionaries support value retrievals. The caveat of lossy dictionaries is
the occurrence of false negatives. While false negatives may be tolerable for some applications (e.g.,
distributed caching systems) other applications require a strict policy of always returning the correct
answer to the inserted elements (i.e. no false negatives) plus a certain rate on false positives. This is
the case of packet forwarding applications that express the forwarding algorithm as set membership
problem. In probabilistic port-forwarding algorithms of the sort “is packet x in port P?” or “is link

l in route R?”, a false negative would compromise the packet delivery to the intended destination(s),
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while false positives only cause some packets being unnecessary duplicated along their way to the
destination.

In the following, we describe in more detail the Bloom filter probabilistic data structure and review
its main variants and applications in the field of routing and forwarding.

3.3.2 Bloom Filters

Due to its simplicity and wide applicability, Bloom filters have become very interesting objects of
study and a daily aid of system implementations. Burton H. Bloom’s 40-year-old data structure [191]
is beloved by theoreticians due to the mathematics that underpin the randomized flipping of 0s into
1s, and is beloved by practitioners as a powerful ally when aggregating data sets. Bloom filters turn
resource-intense (memory, computation) operations into simple, resource-friendly set membership
problems. The Bloom domain [60, 192] spans from hardware implementations, all the road up the
system stack to the software application domain, where it first saw the light to perform space- and
time-efficient dictionary lookups [191]. Broder and Mitzenmacher have coined the Bloom filter prin-
ciple [60]:

Whenever a list or set is used, and space is at a premium, consider using a Bloom filter if

the effect of false positives can be mitigated.

The basic operations involve adding elements to the set and querying for element membership
based on the state (1 or 0) of bit positions as determined by the outputs of a number of independent
hash functions over the element. The basic Bloom filter does not support the removal of elements;
however, a number of extensions have been developed that also support removals. The accuracy of a
Bloom filter depends on the size of the filter, the number of hash functions used in the filter, and the
number of elements added to the set. The more elements are added to a Bloom filter, the higher the
probability that the query operation reports false positives.

A Bloom filter is an array of m bits for representing a set S = {x1, x2, . . . , xn} of n elements.
Initially all the bits in the filter are set to zero. The key idea is to use k independent hash functions,
hi(x), 1 ≤ i ≤ k to map items x ∈ S to a random number uniform in the range 1, . . .m. An element
x ∈ S is inserted into the filter by setting the bits hi(x) to one for 1 ≤ i ≤ k. Conversely, y is
assumed a member of S if the bits hi(y) are set, and guaranteed not to be a member if any bit hi(y) is
not set.

Figure 3.5 presents an overview of a Bloom filter of length 32 where three elements (n = 3) have
been inserted, namely x, y, and z. Each of the elements is hashed using k = 3 hash functions to bit
positions in the bitstring. The corresponding bits are set to 1. Now, when an element not in the set, w,
is looked up, it will be hashed using the same three hash functions into bit positions. In this case, one
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Tab. 3.3: Parameters of the Bloom filter data structure.
Parameters Increase

Number of hash functions (k) More computation, lower false positive rate as k → kopt

Size of filter (m) More space is needed, lower false positive rate

Number of elements in the set (n) Higher false positive rate

of the positions is zero and hence the Bloom filter reports correctly that the element is not in the set. It
may happen that all the bit positions of a not inserted element report that the corresponding bits have
been set. When this occurs, the Bloom filter will erroneously claim that the element is a member of
the set. These erroneous reports are called false positives. We observe that for the inserted elements,
the hashed positions correctly report that the element bits are set in the bitstring.

m=32 bits

x                    y                    z                    w?

1 0 00
0 1 2 3

0 1 00
5 6 74

0 0 10
9 10 11

0 1 00
13 14 15128

1 0 00
17 18 19

0 1 00
21 22 2320

0 0 10
25 26 27

0 0 00
29 30 31282416

n=3
k=3

Fig. 3.5: Overview of the Bloom filter probabilistic data structure.

For optimal performance, each of the k hash functions should be a member of the class of universal
hash functions, which means that the hash functions map each item in the universe to a random
number uniform over the range. The development of uniform hashing techniques has been an active
area of research. An almost ideal solution for uniform hashing is presented in [193]. In practice, hash
functions yielding sufficiently uniform distributed outputs, such as MD5 or CRC32, are useful for
most probabilistic filter purposes [194]. For candidate implementations, see the empirical evaluation
of 25 hash functions by Henke et al. [195]. For further details, deeper theoretical foundations, and
system-specific applications, we refer to related work, such as [44, 45, 195, 196].

A Bloom filter constructed based on S requires space O(n) and can answer membership queries
in O(1) time. Given x ∈ S, the Bloom filter will always report that x belongs to S, but given y 6∈ S
the Bloom filter may report a false positive claiming y ∈ S.

Table 3.3 examines the behaviour of three key parameters when their values are either decreased or
increased. Increasing or decreasing the number of hash functions towards kopt can lower false positive
ratio while increasing computation in insertions and lookups. The cost is directly proportional to the
number of hash functions. The size of the filter can be used to tune the space requirements and the
false positive rate (fpr). A larger filter will result in fewer false positives. Finally, the size of the set
that is inserted into the filter determines the false positive rate.
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One noteworthy property of Bloom filters is that the false positive performance depends only on
the bit-per-element ratio (m/n) and not on the form or size of the hashed elements. As long as the size
of the elements can be bounded, hashing time can be assumed to be a constant factor. Considering
the trend in computational power versus memory access time, the practical bottleneck is the amount
of (slow) memory accesses rather than the hash computation time. Whenever a filter application
needs to run at line speed, resource-friendly and hardware-amenable per-packet operations become
critical [44].

3.3.3 Improved Bloom Filters

The basic Bloom filter design has been matter of multiples extensions and enhancements, result-
ing in many shapes and forms, optimized for the specific application requirements and the underlying
trade-off between size and accuracy. Making this choice and optimizing the parameters for the ex-
pected uses cases are fundamental factors to achieve the desired performance in practice.

There is a large body of work [192] on extended Bloom filter designs aiming at addressing spe-
cific functional concerns regarding space and transmission efficiency, false positive rate, dynamic
operation in terms of increasing workload, dynamic operation in terms of insertions and deletions,
counting and frequencies, popularity-aware operation, and mapping to elements and sets instead of
simple set membership tests among others. Table 3.4 summarizes the distinguishing features of the
Bloom filter variants proposed in the literature. Each variant can be classified by the output type (e.g.,
boolean, frequency, value), and whether counting (C), deletion (D), or popularity-awareness (P) are
supported (Yes/No/Maybe), in addition to whether false negatives (FN) are introduced. Bloom filter
variants with counting capabilities can also be used to probabilistically encode arbitrary functions by
considering the cardinality of each set element being functional value and each set element being a
variable.

Related work on enhanced Bloom filter designs aiming for better false positive rates include the
Power of Two Choices filter [62] and the Partitioned Hashing [197], which combine the power of
choices at hashing time to improve the performance of Bloom Filters. The main idea of [62] is for
each element to choose one of c sets of hash functions so that the number of ones in the filter is
reduced. The penalty in the on-line scenario is that each query has to hash using all c sets of hash
functions and will return a positive if any one of these c sets of hash functions return true. The
authors have shown that in low bits per element scenarios the benefits of the power of choices are
not noticeable. On the other hand, [197] reduces the false positive probability by a careful choice
of the group of hash functions that are well-matched to the complete set of input elements. The
caveats of this scheme are that it is not well suited for dynamic sets and not practical in distributed
environments where the hash functions need to be the same in each distributed instance. Similarly, the
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Best-of-N method [63] proposes a standalone Bloom filter design where N candidate Bloom filters
are constructed using different hash functions for a given set of elements. Then, the candidate with
least amount of bits set is chosen to be deployed.

Bloom filter derivatives marked as popularity-aware share the approach of tuning the Bloom filter
parameters (e.g., number of hash functions k) in accordance to the expected or observed element
queries, optimizing thus the false positive rate for the most queried items. The Retouched Bloom
filter [198] introduces a new tradeoff that achiever better false positive rates at the cost of introducing
false negatives.

Since there is none Bloom filter that fits all, one key question that application designers should ask
is whether false negatives are tolerable or not. Relaxing this constraint can help drastically in reducing
the overall false positive rate (cf. retouched Bloom filters [198]), but raises also the question whether
the Bloom filter is the right data structure choice despite alternative designs specific to the application
domain (cf. [199]), approximate dictionary-inspired approaches [200, 201], cache-efficient variants
(blocked Bloom filter) and Golomb coding implementations as proposed by Putze et al. [202], space-
efficient versions of cuckoo hashing [203], and more complex but space-optimal alternatives [200,
204].

Each Bloom filter variant or replacement introduces a specific trade-off involving execution time,
space efficiency, functionality, etc. Ultimately, which probabilistic data structure is best suited de-
pends a lot on the application specifics. Indeed, the variations of the standard Bloom filter are com-
monly the result of specific requirements of network and distributed system applications.

3.3.4 Routing and Forwarding Applications

Bloom filters have been around in systems applications since 1970 when it was first proposed as a
compact probabilistic data structure to represent words in a dictionary. However, interest for network-
ing applications emerged only around 1995, after which this area has gained widespread attraction
from both academia and industry. Today, Bloom filters are one of the most popular data structures,
with manyfold applications in distributed environments such as P2P networks, Web proxies, caches
and database servers, and hardware implementations enabling resource-efficient network functions
such as IP look-ups, packet classification, measurement, security, and so on.

Bloom filters can be a powerful tool whenever you have a set of elements and space is an issue
(e.g., high speed memories, packet headers). Since the false positive performance of hash-based
data structures like the Bloom filters does not depend at all on the nature of the elements (i.e., size,
structure, type) but on the ratio memory/elements, they become an appealing environment to deal
with large sets of identifiers that may be too long, unstructured (i.e., non-aggregatable), or both.

In the remainder of the section, we focus on remarkable uses of Bloom filters (and its main vari-
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Tab. 3.4: Key features of the Bloom filter variants, including the additional capabilities: Counting (C),
Deletion (D), Popularity-awareness (P), False-Negatives (FN), and the output type. Source: [192]

Filter Key feature C D P FN Output

Standard Bloom filter Is element x in set S? N N N N Boolean

Adaptive Bloom filter Frequency by increasing number of hash functions Y N N N Boolean

Bloomier filter Frequency and function value Y N N N Freq., f(x)

Compressed Bloom filter Compress filter for transmission N N N N Boolean

Counting Bloom filter Element frequency queries and deletion Y Y N M Boolean or freq.

Decaying Bloom filter Time-window Y Y N N Boolean

Deletable Bloom filter Probabilistic element removal N Y N N Boolean

Distance-sensitive Bloom filters Is x close to an item in S? N N N Y Boolean

Dynamic Bloom filter Dynamic growth of the filter Y Y N N Boolean

Filter Bank Mapping to elements and sets Y Y M N x, set, freq.

Generalized Bloom filter Two set of hash functions to code x with 1s and 0s N N N Y Boolean

Hierarchical Bloom filter String matching N N N N Boolean

Memory-optimized Bloom filter Multiple-choice single hash function N N N N Boolean

Popularity conscious Bloom filter Popularity-awareness with off-line tuning N N Y N Boolean

Retouched Bloom filter Allow some false negatives for better false positive rate N N N Y Boolean

Scalable Bloom filter Dynamic growth of the filter N N N N Boolean

Secure Bloom filters Privacy-preserving cryptographic filters N N N N Boolean

Space Code Bloom filter Frequency queries Y N M N Frequency

Spectral Bloom filter Element frequency queries Y Y N M Frequency

Split Bloom filter Set cardinality optimized multi-BF construct N N N N Boolean

Variable-length Signature filter Popularity-aware with on-line tuning Y Y Y Y Boolean

Weighted Bloom filter Assign more bits to popular elements N N Y N Boolean
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ants) in routing and forwarding tasks. These cases include IP lookups, loop and duplicate detection,
forwarding engines, deep packet scanning, publish/subscribe systems and multicast.

Forwarding Engines

Bloom filters can be applied in various parts in a routing and forwarding engine. Probabilistic
techniques have been used for efficient IP lookups. IP routers forward packets based on their address
prefixes. Each prefix is associated with the next hop destination. CIDR-based routing and forward-
ing uses the longest prefix match for finding the next hop destination. This is commonly solved
using a binary search, a trie search, or a TCAM. IP lookups can be made more efficient by dividing
the addresses into tables based on their length and then utilizing binary search to find the longest
common prefix. The d-left hashing technique has been used to make this lookup more compact and
efficient [205].

Another example on probabilistic structures developed for fast packet forwarding, is an algo-
rithm [206] that uses Bloom filters for Longest Prefix Matching (LPM). The algorithm performs
parallel queries on Bloom filters, to determine address prefix membership in sets of prefixes sorted
by prefix length. This work indicates that Bloom filter–based forwarding engines can offer favorable
performance characteristics compared to TCAMs used by many routers. The main idea is to have
different regular Bloom filters for different address prefixes. These Bloom filters are implemented
in hardware and updated by a route computation process. The route manager uses counting Bloom
filters to keep track of how the regular Bloom filters should be instrumented.

Asymmetric Bloom filters that allocate memory resources according to prefix distribution have
been proposed for LPM. By using direct lookup array and Controlled Prefix Expansion (CPE), worst-
case performance is limited to two hash probes and one array access per lookup. Performance analysis
indicates that average performance approaches one hash probe per lookup with less than 8 bits per
prefix [206]. The system employs a set of W Counting Bloom Filters where W is the length of input
addresses, and associates one filter with each unique prefix length. A hash table is also constructed
for each distinct prefix length. Each hash table is initialized with the set of corresponding prefixes,
where each hash entry is a (prefix, next hop)–pair.

In enterprise and data center networks, the scalability of the data plane has become increasingly
challenging with the growth of forwarding tables and link speeds. Simply building switches with
larger amounts of faster memory is not appealing, since high-speed memory is both expensive and
power hungry. Implementing hash tables in SRAM is not appealing either because it requires sig-
nificant over-provisioning to ensure that all forwarding table entries fit. The BUFFALO architec-
ture [187] proposes Bloom filters stored in a small SRAM to compress the information of the ad-
dresses associated with each outgoing link. Leveraging the flattening of IP addresses and the shortest-
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path routing, BUFFALO proposes a practical switch design that gracefully handles false positives
without reducing the packet-forwarding rate, while guaranteeing that packets reach their destinations
with bounded stretch with high probability. Routing changes are handled by dynamically adjusting
the filter sizes based on Counting Bloom Filters stored in slow memory.

Bloom filters have been used to improve network router performance [207]. Song et al. used a
Counting Bloom Filter to optimize a hash table used in network processing, such as maintaining per-
flow context, IP route lookup, and packet classification. The small, on-chip Bloom filter eliminates
slow, off-chip lookups when the searched flow is not found, and minimizes the number of lookups
required when the flow is found. This is done by associating a hash table bucket with each Bloom
filter counter. The bucket associated with the counter with the lowest value and lowest index is then
always accessed, and the corresponding item is stored in that bucket. Counters are also artificially
incremented to eliminate collisions. This leads to one worst-case off-chip lookup for flows stored.

Bloom filters can also be used in multicast forwarding engines. A multicast packet is sent through
a multicast tree. A multicast router maps an incoming multicast packet to outgoing interfaces based
on the multicast address. Initially, Grönvall suggests an alternative multicast forwarding technique
using Bloom filters [208]. In this technique, a router has a Bloom filter for each outgoing interface.
The filters contain the addresses associated with the interfaces. When a multicast packet arrives on
one interface, the Bloom filters of each outgoing interface are checked for matches. The packet is
forwarded to all matching interfaces. This technique is interesting, because it does not store any
addresses at the router; however, the addition and removal of multicast addresses requires that the
Bloom filters are updated, for instance, by adapting the parameters (m,n, k) and/or by relying on a
Bloom filter variant that supports deletions.

Another approach to support multicast is to move state from the network elements to the packets
themselves in form of Bloom filter–based representations of the multicast trees. This notion has been
exploited by Ratnasamy et al. in “Revisiting IP multicast” [55]. The authors propose source border
routers to include an 800-bit Bloom-filter-based shim header (TREE_BF) in packets. TREE_BFs rep-
resent AS-level paths of the formASa : ASb in the dissemination tree of multicast packets. Moreover,
a second type of Bloom filters is used to aggregate active intra-domain multicast groups piggybacked
in BGP updates. The presented method uses standard IP-based forwarding mechanisms enriched with
the built-in TREE_BF to take the inter-domain forwarding decisions.

The BANANAS framework [209] for explicit and multipath routing in the Internet is based on
the observation that a path can be encoded as a short hash (PathID) of a sequence of globally known
identifiers. This per packet dynamic state can be compressed into a hash or a Bloom filter, with
optional soft-state information computed by intermediate routers.

Bloom filters can be used for loop detection in network protocols. IP uses the Time-To-Live
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(TTL) field to detect and drop packets that are in a forwarding loop. The TTL counter is incremented
for each network hop. For small loops, TTL may still allow a substantial amount of looping traffic
to be generated. Icarus [210] is a system that uses Bloom filters for preventing unicast loops and
multicast implosions. The idea is straightforward, namely to use a Bloom filter in the packet header
as a probabilistic loop detection mechanism. Each node has a corresponding mask that can be ORed
with the Bloom filter in the header of a packet, and then determine whether or not a loop has occurred.
Detection accuracy can be traded off against space required in the packet header.

Content-Based Routing

As discussed in Section 3.2.2 on the problem of content routing [161], the content-based pub-
lish/subscribe paradigm for system design offers unique benefits for many data-intensive applica-
tions. Coupled with peer-to-peer technology, it can serve as a central building block for developing
data-dissemination applications deployed over a large-scale network infrastructure. A key open prob-
lem in creating large-scale content-based pub/sub infrastructures relates to efficiently and accurately
matching subscriptions with various predicates to incoming events [211].

A Bloom filter-based approach has been proposed for general content-based routing with predi-
cates [212]. Achieving expressive and efficient content-based routing in publish/subscribe systems is
a difficult problem. Traditional approaches prove to be either inefficient or severely limited in their ex-
pressiveness and flexibility. The routing method based on Bloom filters shows high efficiency while
simultaneously preserving the flexibility of content-based schemes. The resulting implementation
contributes to a fast, flexible and fully decoupled content-based publish/subscribe system.

Bloom filters and additional predicate indices were used in a mechanism to summarize subscrip-
tions [213, 214]. An Arithmetic Attribute Constraint Summary (AACS) and a String Attribute Con-
straint Summary (SACS) were used to summarize constraints, because Bloom filters cannot directly
capture the meaning of other operators than equality. The subscription summarization is similar to
filter merging, but it is not transparent, because routers and servers need to be aware of the summa-
rization mechanism. In addition, the set of attributes needs to be known a priori by all brokers and
new operators require new summarization indices. The benefit of the summarization mechanism is
improved efficiency, since a custom-matching algorithm is used that is based on Bloom filters and the
additional indices.

The authors of [215] introduce a novel approximate method for XML data filtering, in which
a group of Bloom filters represented a routing table entry and filtered packets according to XPath
queries encoded to it. In this method, millions of path queries can be stored efficiently. At the same
time, it is easy to deal with the change of these path queries. Performance is improved by using Prefix
Filters to decrease the number of candidate paths. This Bloom filter-based method takes less time
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to build a routing table than an automaton-based method. The method has a good performance with
acceptable fpr when filtering XML packets of relatively small depth with millions of path queries.

Deep Packet Scanning and Packet Classification

Bloom filters have found applications also in deep packet scanning, in which applications need to
search for predefined patterns in packets at high speeds. Bloom filters can be used to detect predefined
signatures in packet payloads. When a suspect packet is encountered, it can then be moved for further
investigation. One advantage of Bloom filters is that they can be efficiently implemented in hardware
and parallelized [216, 217, 218], which can result in high-performance and energy-efficient operation.

Packet classification continues to be an important challenge in network processing. It requires
matching each packet against a database of rules and forwarding the packet according to the highest
priority matching rule. Within the hash-based packet classification algorithms, an algorithm that is
gaining interest is the tuple space search algorithm that groups the rules into a set of tuple spaces
according to their prefix lengths. An incoming packet can now be matched to the rules in a group
by taking into consideration only those prefixes specified by the tuples. More importantly, matching
of an incoming packet can now be performed in parallel over all tuples. Within these tuple spaces,
a drawback of utilizing hashing is that certain rules will be mapped to the same location, also called
a collision. The negative effect of such a collision is that it will result in multiple memory accesses
and subsequently longer processing time. The authors of [219] propose a pruned Counting Bloom
Filter to reduce collisions in the tuple space packet classification algorithm. The approach decreases
the number of collisions and memory accesses in the rule set hash table in comparison to a traditional
hashing system.

The storage requirements of the well-known crossproduct algorithm used in packet classification
can be significantly reduced by using on-chip Bloom filters. For packets that match p rules in a rule
set, a proposed algorithm requires 4 + p + e independent memory accesses to return all matching
rules, where e is a small constant that depends on the false positive rate of the Bloom filters [220].

While the problem of high-performance packet classification has received a great deal of attention
in recent years, the research community has yet to develop algorithmic methods that can overcome the
drawbacks of TCAM-based solutions. A hybrid approach, which partitions the filter set into subsets
that are easy to search efficiently, is introduced in [221]. The partitioning strategy groups filters that
are close to one another in tuple space, which makes it possible to use information from single-field
lookups to limit the number of subsets that must be searched. Running time can be traded off against
space consumption by adjusting the coarseness of the tuple space partition. The authors find that
for two-dimensional filter sets, the method finds the best-matching filter with just four hash probes
while limiting the memory space expansion factor to about 2. They also introduce a novel method
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for Longest Prefix Matching (LPM), which is used as a component of the overall packet classification
algorithm. The LPM method uses a small amount of on-chip memory to speed up the search of an off-
chip data structure, but uses significantly less on-chip memory than earlier methods based on Bloom
filters.

Efficient and compact state representation is needed in routers and other network devices, in which
the number and behaviour of flows needs to be tracked. The Approximate Concurrent State Machine
(ACSM) approach was motivated by the observation that network devices, such as NATs, firewalls,
and application level gateways, keep more and more state regarding TCP connections [52]. The
ACSM construction was proposed to track the simultaneous state of a large number of entities within
a state machine. ACSMs can return false positives, false negatives, and ‘do not know’ answers. Their
construction follows the Bloom filter principle and proposes a space-efficient fingerprint compressed
d-left hash table design.

Security

The hashing nature of the Bloom filter makes it a natural fit for security applications. Spafford
(1992) was perhaps the first person to use Bloom filters to support computer security. The OPUS sys-
tem [222] uses a Bloom filter which efficiently encodes a wordlist containing poor password choices
to help users choose strong passwords. Two years later, Manber and Wu [223] presented two exten-
sions to enhance the Bloom-filter-based check for weak passwords.

The privacy-preserving secure Bloom filters by Bellovin and Cheswick [224] allows parties to
perform searches against each other’s document sets without revealing the specific details of the
queries. The system supports query restrictions to limit the set of allowed queries.

Bloom filters have been used by Aguilera et al. [225] to detect hash tampering in a network-
attached disks (NADs) infrastructure. Also in the field of forensic filesystem practices, the md5bloom

manipulation tool [226] employs Bloom filters to efficiently aggregate and search hashing informa-
tion, demonstrating its practicality of identifying object versioning in Linux libraries.

Attig, Dharmapurikar and Lockwood [227] describe an FPGA implementation of an array of
Bloom filters and a hash table used for string matching to scan malicious Internet packets. The
system searches 25 Bloom filters with string signature lengths from 2 to 26 bytes in parallel. False
positives are resolved by exact match search using the hash table. Matches generate UDP packets that
notify the user, a monitoring process, or a network administrator.

Antichi et al. [228] used Counting Bloom Filters to detect TCP and IP fragmentation evasion
attacks. Attack signatures were split to 3-byte substrings which were inserted into a CBF. One CBF
per attack signature string per flow was used. Incoming fragmented packet data was then matched
against the CBF’s and attack substrings detected. Each substring detected was removed from the
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corresponding CBF. Corresponding full string matchers were also enabled when a substring was
detected. When the CBF was empty to the degree α, the attack string was considered detected, and
the full string matcher was used to check for false positives. In case the full string matcher detected
the attack, the flow was blocked. The authors report a greater than 99% detection rate and false
positive ratios of 1% or less.

Bloom filters are used in the Trickles stateless network stack and transport protocol for preventing
replay attacks against servers [105]. Two Bloom filters of identical size and using the same family of
hash functions are used to simplify the periodic purge operation. The counting variant (CBF) is used
in [229] to provide a lightweight route verification mechanism that enables a router to discover route
failures and inconsistencies between advertised Internet routes and the actual paths taken by the data.

Focusing on the distributed denial-of-service (DDoS) issues, Ballani et al. [230] were among the
first to use in-network Bloom filters to pro-actively filter out attacks, allowing each host to explicitly
declare to the network routing infrastructure what traffic it wants routed to it. In addition to perform-
ing the standard longest-prefix match before forwarding packets, a router performs a reachability
check using Bloom filters. Similar in their reliance on Bloom filters, Phalanx [231] combines the
notion of capabilities with a multi-path-aware overlay, implementing Bloom filters to reduce state
requirements while still providing probabilistic guarantees for in-network security. Wang et al. [232]
propose congestion puzzles to mitigate bandwidth-exhaustion attacks. Congested routers challenge
clients to generate hashes that match certain criteria in order to obtain bandwidth. Basic Bloom filters
are maintained at routers to detect duplicate solutions.

In [233], Wolf presents a mechanism where packet forwarding is dependent on credentials rep-
resented as a packet header size Bloom filter. Credentials are issued by en-route routers on flow
initiation and later verified on a packet-basis.

In wireless sensor networks (WSNs), a typical attack by compromised sensor nodes consists of
injecting large quantities of bogus sensing reports, which, if undetected, are forwarded to the data
collector(s). The statistical en-route filtering approach [57] proposes a detection method based on
a Bloom filter representation of the report generation (collection of keyed message authentications),
that is verified probabilistically and dropped en-route in case of incorrectness. In order to address the
problem of multiuser broadcast authentication in WSNs, Ren et al. [234] propose a neat integration
of several cryptographic techniques, including Bloom filters, the partial message recovery signature
scheme and the Merkle hash tree.

The current Internet architecture allows a malicious node to disguise its origin during denial-
of-service attacks with IP spoofing. A well-known solution to identify these nodes is IP traceback.
The main types of traceback techniques are (1) to mark each packet with partial path information
probabilistically, and (2) to store packet digests in the form of Bloom filters at routers and reconstruct
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attack paths by checking neighboring routers iteratively.

The Source Path Isolation Engine (SPIE) [235] implements a packet attribution system, in which
the system keeps track of incoming and outgoing packets at a router. Simply storing all the resulting
information is not feasible. Therefore, Snoeren et al. proposed to use Bloom filters to reduce the state
requirements. A Bloom filter stores a summary of packet information in a probabilistic way. One
key observation is that each router maintains its own Bloom filters and thus their hash functions are
independent. A SPIE-capable router creates a packet digest for every packet it processes. The digest
is based on the packet’s non-mutable header fields and a prefix of first 8 bytes of the payload. These
digests are then maintained by a network component for a predefined time.

When a security component, such as an intrusion detection system, detects that the network is
under attack, it can use SPIE to trace the packet’s route through the network to the sender. A single
packet can be traced to its source given that the routers on the route still have the packet digest
available. A false positive in this setting means that a packet is incorrectly reported as having been
seen by a router. When the source of a packet is traced, false positives mean that the reverse path
becomes a tree (essentially branches to multiple points due to false positives).

The notion of packet attribution was extended to payload attribution by Shanmugasundaram et

al. [236] with the Hierarchical Bloom filter. This probabilistic data structure allows the query of
a part of a string. SPIE uses the non-mutable headers and a prefix of the payload, whereas with
Hierarchical Bloom filters it is sufficient to have only the payload to perform a traceback.

The key idea of the IP traceback [237] is to sample only a small percentage (e.g., 3%) of the
digests of the sampled packets. Relying on a low sampling rate is critical to relax the storage and
computational requirements and allow link speeds to scale to OC-192 or higher rates.

The Generalized Bloom filter (GBF) [58] was conceived to address single-packet IP traceback in
a stateless fashion by probabilistically encoding a packet’s route into the packets themselves. The key
feature of the GBF is the double set of hash functions to set and reset bits hop-by-hop, which provides
built-in protection against Bloom filter tampering at the cost of some false negatives.

Counter braids [238] revisits the problem of accurate per-flow measurement. The authors present
a counter architecture, called Counter Braids, inspired by sparse random graph codes. In a nut-
shell, Counter Braids “compresses while counting.” It solves the central problems (counter space
and flow-to-counter association) of per-flow measurement by ‘braiding’ a hierarchy of counters with
random graphs. Braiding results in drastic space reduction by sharing counters among flows; and
using random graphs generated on-the-fly with hash functions avoids the storage of flow-to-counter
association.
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3.4 Summary

In this chapter, the fundamental properties of the original Internet architecture were described
laying the motivation and rationale of ongoing efforts towards novel approaches to networking with
focus on the access and distribution of named content. The content-oriented networking paradigm
fundamentally departs from the traditional host-centric approaches to naming, routing and forward-
ing. Data structures and algorithms to implement core networking functions play a fundamental role
in enabling the realization and adoption of new network technologies. The sub-field of probabilistic
techniques and data structures has been shown to be powerful ally of networking application de-
signers. In content-oriented networks, where flat identifiers and new naming spaces pose important
challenges to scalable packet forwarding at line rates, the trade-offs introduced by probabilistic ap-
proaches appear worth to consider in order to support the packet forwarding needs of content-oriented
architectures.

In the next chapter, we discuss the thesis contributions in exploring the application of probabilistic
data structures to realize compact forwarding methods. The novelty of the developed techniques
will be discussed along their application in architectural proposals and the resulting principles of a
compact forwarding plane for content-oriented networks.



Chapter 4

Contributions and Discussion

This chapter presents a more detailed discussion of the contributions around the concept of com-
pact forwarding in content-oriented architectures. The chapter starts by reviewing the research ques-
tions posed in the introductory Section 2.3. Then, the guiding principles that appear in the proposed
compact forwarding methods are discussed, highlighting the essence of the lessons learnt and the
technical merits of the author´s contributions. Throughout the discussion, the reader is referred to the
annexed publications [A]-[H] for further details.

4.1 Reviewing the Contributions

The motivating trigger for this thesis is the emergence of network architectures that put content
objects at the center of the architecture in detriment of traditional network node addressing. This am-
bitious endeavor calls for a profound rethinking of the communication paradigm. At the lowest layers,
i.e., the hardware-based packet forwarding substrate, we face scalability and performance challenges
when trying to move labeled pieces of content at line speed and to potentially multiple destinations si-
multaneously. Similar to IP multicast group addresses, which, in effect, are flat identifiers that do not
easily lend themselves to topological aggregation, naive approaches to forwarding require in-network
forwarding state to grow linearly with the number of endpoints, or potentially worse in the case of
content-oriented architectures, with the number of advertised content objects.

During the characterization of the compact forwarding research problem (Section 2.3) we raised
a series of questions that have been addressed throughout the publications [A]-[H]. In the following,
we synthesize the answers to these questions:

What is a suitable forwarding substrate for content-oriented networks departing from the host-
centric paradigm of IP? Which are candidate features and data structures of such forwarding
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planes? Putting identifiable pieces of bits (information/content/data) at the heart of network archi-
tectures – able to scale and evolve as network demands changes – calls for a forwarding plane that
is simultaneously scalable, resource-efficient, namespace-agnostic, and secure from design. To this
end, we have identified and applied a series of principles and techniques: (1) the separation of control
plane functions from the fast-forwarding data plane, (2) the flexible use of hash-based data structures
to compactly embody inter-networking namespaces such as links, nodes, and content identifiers, (3)
the multicast model of communication, and (4) secure considerations to hide the network proper-
ties and resources from potential attackers while allowing the receivers more control over the packet
delivery.

When trying to take forwarding decisions on a large space of non-aggregatable identifiers, and
memory space is an issue, a hash-based probabilistic data structure like the Bloom filter can be a
powerful tool. Its capacity to answer set membership questions (i.e. false positive performance) does
not depend at all on the nature of the elements (i.e., size, structure) but on the ratio of memory to
number of inserted elements. Therefore, hash-based data structures like Bloom filters appear conve-
nient to handle large sets of probabilistically unique identifiers that are either too long, unstructured
(i.e., non-aggregatable), or both.

With the challenges of content-oriented forwarding in mind, we have studied, designed and pro-
posed implementations for compact port-forwarding functions i = F (I, L,H) based on probabilistic
data structures to resolve the output port(s) {i} of packets carrying information I , using local state
memory L, and performing headers-in-headers functions H .

The SPSwitch [A] is a Bloom-filter-inspired port-forwarding engine well-suited for forwarding
on a flat label space. As can be seen in the SPSwitch model of Figure 4.1, each possible message out-
put is represented by a Bloom filter. For an incoming message with a label I , the compact forwarding
function F (L, I,H) of the switching engine basically asks each port p (in parallel) a set member-
ship question of the sort “is label I in outport Lp?” Note that output destinations (i.e. ports) are not
just limited to physical port-in/out interfaces but should be regarded as generic outputs, potentially
including also local processes, virtual ports, recursive operations, and cache systems. A companion
‘control plane’ is responsible to maintain the Bloom filters per outport by inserting into the Bloom
filter(s) the corresponding packet label(s). Upon data packet arrival, all possible outputs in the dat-
apath are queried in parallel to make the forwarding decision. As Bloom filters do not return false
negatives, packets are forwarded along the intended outputs, and, with some error probability, packets
are duplicated on extra outports.

A naive p-bank Bloom filter approach consisting of allocating one fixed-size Bloom filter per
potential outport, presents some limitations inherent of basic Bloom filter constructs: a) lack of as-
sociated values: just binary probabilistic set-membership responses; b) expensive deletion: counting
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Fig. 4.1: The SPSwitch forwarding engine. Source: [A]

Bloom filters are costly in memory sizes; c) no notion of time: missing association of filter elements
or cells with timing information; d) unbalanced usage of memory per outport: unpredictable destina-
tion demands difficult the overall system design and memory allocation. In order to overcome these
issues, we proposed an implementation of the SPSwitch based on leveraging a hash-based packet
classification technique by Bonomi et al. called d-left fingerprint compressed filter (FCF) [52]. Act-
ing as a probabilistic hash table where element fingerprints are stored along the outport value, the FCF
behaves as a fast forwarding table with some probability of falsely returning additional values. Due to
its hash-based nature, the forwarding decisions can be taken at constant time and may accommodate
a variety of packet headers (e.g., 256-bit content IDs, flat forwarding labels). By storing probabilistic
keys together with fixed size values (e.g. outport information), the FCF-based SPSwitch design (i)
makes a more efficient usage of the total memory available, (ii) gracefully and fairly degrades the
false positive performance among all possible outputs as more elements are inserted, (iii) simplifies
element deletions and aging mechanisms, and (iv) yields better false positive performance in practice,
especially when targeting very low false positive rates and large port densities.

When exploring the solution space of source routing alternatives, the simplest form consists of
concatenating the forwarding nodes’ network identifiers on the path between the communicating par-
ties. Concerns with traditional source routing solutions include the overhead of extra packet headers
and the security implications of disclosing network information and allowing the sending nodes to
explicitly determine how packets are routed.

We have contributed to the design of a compact forwarding method in LIPSIN [B] based on en-
coding and carrying a Bloom filter in the packet header containing a list of elements (e.g., source
path/tree). This way, LIPSIN addresses one of the main caveats of source routing, namely the over-
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head of having to carry all the routing information in the packet. Moreover, in-packet Bloom filters
(iBF) do not reveal these identifiers to the sending nodes, nor the sequence or amount of hops in-
volved.

For each point-to-point link, a Link ID (e.g. −→AB,←−AB) is assigned per direction without requiring
a common agreement between the nodes. Link IDs take the form of a single element Bloom filter of
length m (256) and with k (5) bits set to 1 and form thereby a probabilistically unique link naming
space (m!/(m − k)! ≈ 1012). Assuming enough network topology information (e.g., by network-
wide views or gathered during flow initiation / content request messages), a delivery tree can be
constructed by inserting (bitwise ORing) the required Link IDs between source(s) and sink(s) into
the forwarding iBF. On packet reception, each forwarding node checks its candidate outgoing Link
IDs against the iBF-labeled incoming packet (see Figure 4.2). On match, the packet is forwarded
along that link. False positives will cause packets duplicated over some extra links. In this case, the
proposed compact forwarding function i = F (L, I,H) basically consists of concurrently asking set
membership questions of the sort “is link identifier Li in packet label I?”

Fig. 4.2: The LIPSIN forwarding engine based on in-packet Bloom filters. Source: [B]

As a clear advantage of a source routing approach, forwarding state L becomes independent of the
global address space and is limited to the set of neighbouring nodes (plus additional default or back-
up entries and a number of multi-hop virtual links). The reduced state required in forwarding nodes
makes source routing attractive for obvious scalability and performance reasons such as hardware-
friendly fast forwarding due to small table lookups and the lack of heavy header-rewriting operations.

The main caveat of vanilla iBF forwarding is that as long as the network topology is stable, any
host with a valid iBF is able to send unwanted traffic to overwhelm the links over the iBF-defined path
and attack the destination(s). To protect the iBF forwarding plane from malicious abuses, we have
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proposed the Z-formation compact forwarding method – the main contribution of the publication [D].
The core idea is a dynamic computation of link identifiers based on packet contents and a time-
based shared secret kept in the forwarding substrate. The edge-pair labels are computed on a per-
packet basis and take the local time varying context (e.g., time-based secret key K(t), in/out interface
numbers) as input to the computation function (see Figure 4.3(a)).

Basically, the Z-formation can be defined as header manipulation function H that dynamically
determines every possible packet output Li based on in-packet information I and additional node
state L(K). The function H is used on a per-node basis but does not alter the content of iBF after the
forwarding decision has been made. In contrast, the header-in-header functions H proposed by the
Deletable Bloom filter design [F] and the per-hop permutations introduced in [H] and experimentally
validated in [51] result in a permanent change of the packet state I represented by the iBF.

The cryptographic computation of edge-pair labels enables the iBF to simultaneously act as a
capability and a source routing identifier for the multicast tree. The inclusion of the previous edge
makes it more difficult for an attacker to inject traffic into an existing flow and reduces the prob-
ability of loops. Without explicit authorization of the receiver and/or involvement of the topology
system, data packets are not forwarded in the network due to the absence of static host addressing
mechanisms. Secure iBFs act as “encrypted” source routes (ala capabilities) compactly represented
in fixed-size iBFs, maintaining the link identities undisclosed and meaningful (i.e. routable) only for
nodes en-route, bound to additional packet information (e.g., content identifier, IP 5-tuple, type-of-
service field), and expirable after some time period (e.g. a factor of the secret K(t) renewal time).

(a) The Z-formation probabilistic port-forwarding func-
tion.

(b) Secure compact forwarding with self-routing capa-
bilities.

Fig. 4.3: The Z-formation compact forwarding method. Source: [D]

What are the dimensions and limits of the solution space to move content objects at scale? Can
we do better than the fundamental trade-offs of distributed systems theory by introducing non-
deterministic (probabilistic) techniques? Our dissertation around compact forwarding explores
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forwarding mechanisms based on probabilistic data structures that require less space in packet head-
ers and in-network forwarding tables than traditional, deterministic approaches. The application of
lossy probabilistic data structures to the packet forwarding problem opens a new vector in the design
space, namely transport network efficiency due to erroneous packet duplications. Hence, a proba-
bilistic approach to packet forwarding introduces a memory-correctness trade-off, where memory is
represented by the amount of packet header and network state information, and correctness is traduced
in extra bandwidth consumption due to unnecessary packet duplications. By introducing randomized
techniques into the packet forwarding problem, lower memory usages and shorter running times can
be obtained, which turn the probabilistic compact forwarding methods more scalable and resource-
friendly than alternative, deterministic approaches.

Compact forwarding methods based on network-hosted Bloom filters [A] require fewer bits per
entry in network forwarding tables than the size of the packet header identifiers I on which forwarding
decisions are taken. The compact in-network state approach of the SPSwitch requires a fixed amount
of space per entry independently from the specific namespace. While memory-efficient on a per entry
basis (see [Table 2, A]) and without other means for aggregation other than synthetically (i.e. lossy
compression), the main scaling challenge is the O(n) memory requirement of the compact content-
oriented forwarding table proposed in the SPSwitch design.

When Bloom filters are carried in packet headers, it allows for fixed packet header sizes acting as a
forwarding identifiers that compactly represent multi-hop routing state information – potentially cou-
pled with security credentials (cf. Z-formation [D]). As a consequence, forwarding tables at network
nodes are kept small and require only one entry per next-hop (e.g., physical and/or logical neigh-
bours plus multi-hop virtual links). The compact iBF forwarding method introduces however larger
packet headers as they represent another header in addition to the content identifier. The probabilistic
approach enables to keep the size of the packet header constant while offering different forwarding
efficiency levels in function of how much network state is to be saved (e.g., network-based virtual
links vs. more filled iBFs as discussed in [C]). This compact forwarding approach enables moving
state (forwarding information) between packets (iBFs) and network nodes. For instance, with 256-
bit iBFs (the size of two IPv6 addresses), stateless multicast can be supported by including around
35 links (cf. Figure 4.4) or enable Internet-wide unicast communications, which can be assumed to
require less than 14 hops.

A topology system having internal representation of the delivery trees and knowing which links
the packets need to pass, can determine when to use Link IDs and when to create state in the form
of virtual Link IDs or specific forwarding identifier mappings. If larger multicast groups are required
then network state can be installed by defining virtual links spanning multiple hops or by adding
entries in the SPSwitch deployed at domain boundaries (cf. [Figure 6, B][C]). Additionally, a series of
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Fig. 4.4: False positive (right axis) and forwarding efficiency (left axis) simulation results for AS
6461 with d=8 Link ID Tag optimization and k=5 hash functions. Source: [B]

iBFs can be stacked (similar to MPLS) to increase the total routing information carried, for instance,
when large multicast groups are required.

Traditional deterministic approaches to packet forwarding are commonly constrained by the max-
imum capacity of the forwarding tables (i.e. FIB size) and suffer from limitations to additional packet
headers due to maximum transfer unit (MTU) specification of the transport networks. Probabilistic
approaches like the SPSwitch or the iBFs allow to operate beyond these limits (e.g., adding more el-
ements to the fixed-sized Bloom filters) at the cost of forwarding efficiency penalties. The SPSwitch
design based on variable size fingerprints allows for an optimized usage of the available fast mem-
ory, and gracefully has its false positive rate adapted to the number of inserted elements. Similarly,
compact forwarding based on fixed-sized iBFs does not place a hard limitation on the number (or
nature) of the (source routing) elements carried in the iBF-based packet header. However, due to
security concerns and a minimum forwarding performance, the number of bits set to 1 in the iBF will
be commonly restricted to a certain fill factor ρ (typically around 0.5).

The Z-formation forwarding method [D] requires only minimal network state L in form of a
forwarding context consisting of a numbered list of interfaces (physical plus virtual) and a time-
varying secret key K(t). The associated cost is additional per-packet processing, since edge-pair
identifiers need to be computed on a per-packet basis to include packet information (e.g. content/flow
ID) and the link that the packet came in from.

Fundamental parameters when dealing with one-sided error prone forwarding methods include
defining a target threshold on bandwidth efficiency to account for both penalties due to extra packet
duplications and potentially larger packet header sizes. Given a fixed amount of memory space,
either in network-based forwarding tables or packet header size, different operational points can be
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achieved to scale up by compacting more forwarding information (i.e., forwarding directives) at the
cost of reduced bandwidth efficiency.

What considerations and enhancements are needed to build a correct distributed forwarding
gear on top of one-sided error prone forwarding decisions? One-sided error hash-based data
structures in the spirit of Bloom filters represent an appealing way of providing synthetic aggregation
of location-independent (non-aggregatable) namespaces, if the effects of false positives can be man-
aged. Consequently, the gains of using lossy data structures like the Bloom filter are only attainable
if the compact forwarding methods can be made practical, i.e., if false positives can be contained to
guarantee correctness of the forwarding functions under finite resource usage (i.e. loop-free).

The key observation that motivated our exploration of one-sided error data structures for packet
forwarding is the bounded effect of false positives in content-oriented, interest-driven architectures
based on publish/subscribe primitives or similar data-oriented APIs. Firstly, content oriented primi-
tives like publish/subscribe inherently tolerate false positives, since non-requested content items have
a limited live in the network and do not create forwarding states. Moreover, end-nodes are expected
to effectively process only those pieces of information for which they have explicitly expressed their
interest. Secondly, with support for opportunistic caching in the network, falsely forwarded pack-
ets result in copies of data being replicated and potentially used to fulfil future requests of nearby
receivers. Thirdly, packets forwarded due to false positives are not propagated over many hops due
to the large label space (uniqueness) and the exponentially decreasing probability of chained false

positive forwarding decisions.

The price of relying on probabilistic data structures that give up correctness and transport effi-
ciency in favor of less state and manageability is requiring some extra considerations to have en-
hanced control over the effects of false positives. Here is where this thesis makes a series of technical
contributions in the form of extensions to probabilistic data structures. While initially designed to
deal with false positives of the compact forwarding methods, the algorithmic techniques are general
enough to be applied to other applications relying on probabilistic data structures.

In the design space of lossy compressed forwarding tables, we found that the d-left fingerprint
compressed filter (FCF), originally designed to approximately track the state of network traffic flows
in dynamic environments [52], may be a better approach than maintaining a Bloom filter per outport
for the performance and functional reasons previously discussed and detailed in [A]. Our in-depth
study of the iBF design space [G] includes the development and practical validation of three useful
extensions (1) to increase the practicality and performance of iBFs by exploiting the power of choices
at hashing time to choose the best performing iBF among d candidates, (2) to enable false-negative-
free element deletions by encoding collision-free iBF regions, and (3) to provide a secure method for
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iBF constructions by coupling packet-specific information and a time-based hashing mechanism to
the iBF set/check operations. As a general data structure, iBFs can be useful for networking designs
that tolerate false positives and decide to move state to the packets themselves.

The application of the power of choices technique enables choosing the most convenient set of
hash functions (i.e. iBF bit pattern combination) or best network path has been shown to be a very
powerful and handy technique to deal with the probabilistic nature of hash-based data structures;
providing finer control over false positives and enabling compliance to system policies and design
optimization goals. The performance benefits of having d candidate Bloom filter representations
is shown in Figure 4.5 and been verified in practice with the forwarding efficiency gains shown in
Figure 4.4.
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The contribution of the Deletable Bloom filter (DlBF) [F] is a space-efficient element deletion
technique that allows (probabilistic) element deletions without the overhead and limitations of previ-
ous work on Counting Bloom filters or false-negatives-prone solutions. This way, forwarding entries
compacted in Bloom filters can be dynamically updated at a fraction of the cost in terms of memory.
In case of iBF forwarding approaches, the DlBF enables removing already processed forwarding di-
rectives (i.e., link identifiers) as the iBF traverses the network. Other alternatives to the DlBF that
support element deletions would be too space consuming when placed in small packet headers. Fig-
ure 4.6 shows the capability of the DlBF to remove elements by using only a small amount of bits (r)
to encode the bit regions where collisions happened.

A straightforward approach to handle element deletions in standalone network-based Bloom fil-
ters (as in the SPSwitch model [A]) consists of keeping a copy of the data structure (i.e. shadow
forwarding table) in the control plane memory containing the full (or partially extended) information
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(e.g., uncompressed forwarding table, counting Bloom filters), and, upon updates, reconstruct the
Bloom filter that should be used on the fast forwarding plane (i.e. working forwarding table). Such
a per-port Bloom filter re-computation has been proposed elsewhere [187], and although feasible,
a periodical replacement of the working forwarding table may be more costly than direct element
removal/updates on the fingerprint compressed forwarding table proposed for the SPSwitch, where
single entries can be tracked individually and only elements subject to false positives would require
additional conflict resolution using additional control plane (slow path) information.

Security issues need to be considered in a networking environment like the Internet where at-
tackers may have incentives to infer the network topology, send unauthorized traffic, or cause denial
of services with broadcast storms or amplified targeted attacks to specific nodes. For the sake of
yielding a correct and practical iBF forwarding machinery, we have contributed to the understand-
ing of forwarding anomalies [51] and security implications [H] of a multicast-capable forwarding
plane based on iBFs. The properties themselves that make multicast attractive (e.g., efficient 1:n and
m:n data transfer) are at the same time the root of the challenges of providing a secure networking
environment. Similarly, the probabilistic nature of the hash-based Bloom filter data structure is si-
multaneously the base for its appealing features (e.g, compact state, simplicity) and the door for a
number of attack vectors.

In order to guarantee forwarding service availability of Bloom filter based data planes under
malicious attacks [H], additional data plane mechanisms are required in order to ensure that only
packets from authorized users are forwarded, providing thus resistance to (potentially distributed)
DoS attacks. Solutions to the three forwarding anomalies (packet storms, forwarding loops, and
flow duplication) include adapting the Bloom filter parameters and performing hop-specific bit per-



4.1 Reviewing the Contributions 81

mutations [51], in addition to the cryptographically generated dynamic link identifiers [D]. We have
experimentally validated the effectiveness of the solution suggesting that a probabilistic approach to
packet forwarding based on iBFs can be made practical also from a security perspective – provided a
series of mechanisms are included from design.

More specifically, the Z-formation method [D] enables including additional parts of the content
of a packet as an input to the keyed edge-pair label computation. As an example, it becomes possible
to tie the edge-pair labels to the IP 5-tuple and the type-of-service field in the packet. This means that
the iBF is only valid on its intended path, only for a specific time and quality of service, and only with
the given 5-tuple. The proposed coupling of iBFs to time and packet contents provides an effective
method to secure iBFs against tampering and replay attacks.

To our knowledge, Z-formation based iBFs is the first approach that combines forwarding identi-
fiers and capabilities in an efficient way, thereby creating the notion of self-routing capabilities. By
virtue of the Bloom-filter-based construction of the capabilities, even the link names remain statis-
tically undisclosed. By binding the routing capabilities to specific flows, time periods, and network
paths, we create a high barrier for attackers, making it hard to forge valid capabilities. Moreover,
the iBF approach places the state requirement at the source, instead of the routers, which greatly
alleviates the potential for DoS attacks against the network infrastructure.

Along this journey, we have learned about the gap between theory and practice via extensive sim-
ulation work and practical networking environments like a publish/subscribe networks [B,C], inter-
domain multicast [H][51], and data center networks [E][239]. We were able to confirm the obser-
vation that hashing techniques in practice do differ from theoretical expectations [G]. For instance,
for the same memory to element ratio, small sized Bloom filters exhibit higher false positive rates
than larger sized Bloom filters. Compact forwarding based on iBFs calls for algorithmic techniques
that help in rectifying the divergences from theoretical models to practical applications, in addition
to guarantee forwarding correctness and address the security concerns of a public networking infras-
tructure.

Correct forwarding despite false positives

Basically, a false positive at packet forwarding time results in multiple values being returned from
the port-forwarding function F (I, L,H). The strategies to deal with these events are multi-fold.

In the case of unicast communications, one approach is to choose one candidate outgoing link and
rely on the completeness of a (shortest-path) routing scheme. The forwarding decision is encoded
in the packet information I so that if the packet returns to the same forwarding node (e.g., because
lacking of a matching forwarding entry at the next hop), the same forwarding decision is not repeated.
This approach has been proposed by the authors of the BUFFALO architecture [187], showing its
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practicality in enterprise networks with shortest path routing. Packets are guaranteed – with high
probability – to reach their destinations with bounded stretch increase following a “trial-and-error”
approach to handle false positive unicast forwarding.

The approach we have proposed in unicast networks with centralized network control and known
network topology (i.e. data center forwarding services [E]) consists of leveraging path-multiplicity
and network-wide information to have multiple candidate iBF representations (i.e. bit patterns). This
strategy allows to choose either the set of hash functions that exhibits no false positive for a given path
(as proposed with the Link ID Tags in [B]), or to exploit the multiple paths to select an alternative path
between the communicating parties (as in the multi-path oblivious routing service [E]). In a way, this
approach to circumvent false positives re-inserts determinism in the one-sided error-prone forwarding
substrate.

In the case of multicast communications, a false positive event at packet forwarding time is in-
distinguishable from an explicitly programmed multicast directive. In this scenario, reducing the rate
of false positives is paramount to keep the forwarding efficiency levels acceptable and avoid critical
false positive events (e.g., forwarding loops). The d-candidate Link ID Tag extension [B] allows to
construct iBFs that can be optimized, e.g., in terms of the false positive rate, compliance with net-
work policies, or multi-path selection. The basic idea consists of constructing a series of candidate
iBFs each using a different combination of hash functions and to select the best-performing candidate
according to any appropriate metric or network policy (e.g., expected false positive rate, avoid false
positives over inter-domain, congested, and/or low capacity network links).

In either approach, in the event of a packet reaching a network node without a matching for-
warding entry due to a false-positive-driven forwarding decision, the packet might be returned to the
previous hop (e.g. as in [187]) over the incoming interface with a mark (i.e. changing the in-packet
state) to note this dead end. A new forwarding decision can now leverage the updated in-packet
state along additional context information like the new incoming interface. In such situations, one
optimization approach may consist of a temporal cached decision to block further packets within the
same flow being forwarded along that interface. Another strategy we have validated in [51] consists of
performing per-hop permutations of the iBF bit vector. This way, packet forwarding becomes history-
dependent, i.e., a falsely forwarded (or duplicated) packet returning to a node in the path defined by
the iBF would have the bit patterns changed in a way that infinite loops can be avoided with very
high probability. The use of a deletable extension as proposed in the DlBF [F] is another example
of changing the packet state I by removing already processed elements in the iBF. This way, loops
can be avoided with very high probability requiring only that one bit of the looping links being in a
deletable region.

The above packet state manipulation techniques correspond to headers-in-headers functions H
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that result in a permanent change of the packet information I and consequently alter the result of the
compact forwarding functions F (L, I,H).

Alternative solutions may consider passing falsely forwarded packet(s) over a ‘slow-path’ to a
control entity (running either at the control plane of the forwarding node or at a remote centralized
location) to resolve the issue (e.g. Rack Managers [E]). This solution is acceptable as long as the rate
of false positive events is low enough so that (i) it does not burden the control channel, and (ii) the
additional delays are tolerable.

One common theme in our probabilistic approach of compact forwarding has been tackling the
randomly looking flat identifiers with randomized algorithms: (1) fighting flat identifiers with hash-
based probabilistic data structures that act as (lossy) data aggregators (e.g. SPSwitch [A]), and (2)
fighting the randomness of hash function outputs with a multiplicity of choices in (i) the set of hash
functions used to succinctly represent the same information collection (e.g. Link ID Tags [B]), or
(ii) candidate collection of forwarding identifiers that result in packets reaching the same target(s)
over alternative paths (e.g. false-positive-free iBF routing table [E]). Moreover, a randomized mul-
tipath forwarding technique like Valiang Load Balancing (VLB) has been shown to be very useful
to cope with the randomly-looking and time-varying traffic matrices observed in cloud data center
networks [E].

4.2 Principles and Applications

Those are my principles, and if you dont like them... well, I have others. — Groucho
Marx

We now state several design and technical principles that we found fundamental for the conception
of the compact forwarding enablers towards scalable content-oriented network architectures. Design
principles are deduced from design goals — also known as requirements — that cover both functional
and performance objectives. Table 4.1 summarizes how those principles have been repeatedly utilized
in the proposed forwarding methods and applied in the network architectures.

Principle 1: Separate routing from forwarding

Content-oriented routing protocols should be separated from the forwarding elements. Disaggre-
gation of the routing functions (e.g., path computation) from the individual routing elements seems to
be the best way to cope with the scale of the envisioned namespace for information objects. Separating
the control plane from the data plane is not a new idea but rather a traditional, even controversial, net-
working perspective well-known from the context of the public switched telephone network (PSTN),
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Tab. 4.1: Summary of principles and applications of the contributions to compact forwarding.

Principle Applications and algorithmic techniques
P1: Separate routing from
forwarding

Slow-path to match communication interests and fast-path for
content delivery [A-C]
Handle routing intelligence at resource-rich control entities un-
coupled from the forwarding substrate [E]

P1a: Generality Hash functions apply to any namespace (form, size) [A,B,G]
P1b: Simplicity Simple O(1) insert and query operations [A,B,G]

P2: Allow a flexible
operation point

Tunable trade-off memory (network, packet) for efficiency [A-C]
Move forwarding state to packet headers [B]
Install virtual links to offload packet headers [B,C,H]

P3: Multicast-friendliness
Parallelizable next-hop query on all possible outputs [A,B]
Compact encoding of information flows / multicast trees [B,C]

P4: Receiver-controlled
data plane security

Hide network identities (links and nodes) by generating
randomly-looking forwarding identifiers [B,D]
Default-off unless valid forwarding identifiers are granted [B-D]
and renewed by receivers [H]
Forwarding identifiers are path-dependent and expirable [D]

Synchronous Optical Networking (SONET) or Synchronous Digital Hierarchy (SDH). Modern router
architectures are already built upon a clean split of the hardware-based forwarding elements (i.e., line
cards) from the software-based control plane modules. Ongoing trends [88, 89] suggest taking this
separation further and running the control plane in remote boxes which communicate with the for-
warding elements via a well-defined protocol (e.g. OpenFlow [89]).

As observed by Feamster et al. [84], the growth of the Internet has introduced considerable com-
plexity into the global routing infrastructure, with features being added to BGP to support more
flexibility at a larger scale. Arguably, this complexity has made routing protocol behaviour hardly
understandable, increasingly unpredictable, and error prone [85]. In an IP world, separating routing
from forwarding means IP “routers” becoming “lookup-and-forward” switches to move packets as
rapidly as possible without being concerned about path selection. The forwarding path of carrier-
grade networks must be highly optimized and is commonly assisted by hardware – relatively costly
and difficult to change over time.

One approach for scalable information-centric networks is relying on a ‘slow’ plane to route
requests for content to (rendezvous) repositories where information from the sources can be convened,
keeping the fast data plane “limited” to fast hardware-based forwarding operations plus additional
supporting functions (e.g., caching) [148]. The separation of routing from forwarding allows for a
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separation of concerns that enables complementary approaches to perform the act of locating the
content from its delivery.

The rendezvous functions to match the interests of the communicating parties can evolve in a
way that multiple parties can join and provide this service similar to over-the-top content providers,
search engines, or more open, in the spirit of P2P/BitTorrent-like communities and DHT overlays.
With regard to the latter, forwarding methods in traditional DHTs are not considered compact as they
typically maintain entries in the forwarding table of the size of the identifier to be routed. However,
if we allow multicast-type of forwarding in the DHT resolution process compact forwarding tables
based on probabilistic data structures (cf. SPSwitch FCF [A]) could be considered.

Like any clean functional separation in networking, this approach allows to deal with the un-
expected and unknown complexity of the resulting content-oriented routing (or resolution) system,
which is better suited to evolve independently from the fast forwarding stratum and allows innovation
at both packet level forwarding and control plane functionality. The following two sub-principles
offer further guidance for the design of the compact forwarding methods.

Sub-Principle A: Generality The forwarding methods should be generic enough with regard to the
identifiers on which the forwarding decisions are taken. This enables setting flexible network
indirection points in the network potentially based on different namespaces (e.g., with poten-
tially different granularities) while still re-using the same basic hardware-assisted switching
operations. Being generic in its operations, hash-based forwarding mechanisms can be applied
in different networking scenarios, not only with regard to the semantics of the naming space but
also to the layer at which the indirection decisions are taken (e.g., traditional L2, L3 or L4-L7).

Hence, the assumptions of the upper layer control plane and namespaces can be kept to a
minimum. The main abstraction is a (flat) label which is essentially a bit string representing
any higher level information (e.g. information object, network link, virtual machine, multicast
tree). In this sense, the compact forwarding methods try to address the requirements of the
most challenging namespace, namely the name-independent schemes that enable routing on
topology-independent or arbitrary identifiers.

Hash functions are well-suited for these naming purposes as their operations are agnostic to the
nature and actual identity of the input elements. Bloom-filter-like data structures are hence a
convenient place holder for large amounts of non-aggregatable identifiers. The hash-based link
identifiers and the resulting routing iBF-based “channel” abstraction provides a great deal of
flexibility concerning the underlying network that carries data between two entities: it could be
an actual point-to-point link, or an IP network, on ATM network, or a SONET, for example.

The result is a more polymorphic nature of forwarding, at least imposing no restrictions to a
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variety of routing (i.e. network control) paradigms, and ideally offering parallel support to a set
of them with the same underlying hardware.

Sub-Principle B: Simplicity The forwarding methods should be based on simple per-packet primi-
tives. That is, the forwarding decision functions should be resource-friendly and work at line
speeds. Clearly, the underlying mechanisms must not only be feasible but should also give a
fixed, hardware-amenable target to implement, avoiding the uncontrolled growth of options and
features that force an endless re-engineering of routers’ chipsets (cf. [113]).

Simplicity should be favored for the design of time-constraint forwarding functions return-
ing the outport(s) of incoming packets based on local context and the in-packet information.
While not enough to fully define a forwarding engine that in practice is formed by a number of
pipelined functional blocks (e.g., QoS scheduling, caching, counter updates, logging, etc.), the
compact port-forwarding functions developed can be easily plugged at different stages of the
packet processing pipeline of networking hardware.

As a synergistic relation, simplicity positively affects complexity i.e., the time or pace essen-
tial to complete the forwarding operations. Indeed, in many ways, we try to follow C.A.R.
Hoare’s statement about the relationship of simplicity and reliability: the price of reliability is
the pursuit of the utmost simplicity.

Principle 2: Allow a flexible operation point

The forwarding machinery should enable the network architect/operator to find a sweet spot for
a given networking scenario, for instance, being able to trade network resources usage (e.g. band-
width efficiency due to larger packet headers and unnecessary packet duplications) for network state
reduction (e.g. smaller forwarding tables). This principle allows the same forwarding methods to
be optimized for the available (technology-dependent) resource pool (e.g., bandwidth, high-speed
memory, link stability). After deployment, some resources may be hard to upgrade (e.g. on-chip
memories), and flexibility in choosing the operation point (even at runtime) enables giving up on
some dimension to postpone costly hardware upgrades or to adapt to temporal usage spikes.

While decoupling the control plane and upper layer identifier space from details of the forwarding
engine facilitates their independent evolution, flexible forwarding functions allow the system to adapt
(at run-time) to changes in scale due to unexpected network usages.

Bloom filters naturally allow for a flexible operation point as they can accommodate larger quanti-
ties of forwarding information (than initially planned) for a fixed memory size at the cost of transport
network efficiency. The probabilistic approach to packet forwarding based on Bloom-filter-like data
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structures allows to be able of have a non-fixed (virtual) capacity in terms of quantity of (approximate)
routing information.

The same principle of flexibility appears in the proposed approach to move network state to packet
headers (i.e. iBFs) and backwards in form of network-installed virtual links. The core idea is to add
some information to the packet header to assist routers along the packet path to perform the forward-
ing decisions using less resources (e.g., per packet computation plus memory accesses). Notable
examples of such methods include ATM, IP/Tag switching , (G)MPLS, and so on. While offloading
routing state to packet headers to make packet processing easier is an old idea [100], the proposed
compact forwarding mechanisms based on this principle have taken a probabilistic approach that
introduce the dimension of forwarding efficiency in the routing and forwarding space [C].

Principle 3: Multicast-friendliness

The forwarding methods should provide native multicast capabilities. In contrast to the IP host-
centric background, content-oriented networking provides a new model for communication focused
on data and not nodes. This way, the underlying networking substrate can be abstracted possibly to
an extent where it can be no longer based on persistent, IP-address-like names (cf. with [143]).

As is well known, the traditional approach to IP multicast [164] has both scalability and deploya-
bility problems [78], since it involves adding state to all of the intermediate routers. The IP network
is originally an unicast network where multicasting is offered as an additional service in this net-
work. In contrast, content-oriented networking regard multicast as its native routing and forwarding
approach, with unicast being relegated to “just” an especial case. Under such networking model,
hosts names lose their pivotal role in favour of giving a name to the data that a communicating entity
is interested in. Which specific node converts the original information into the form that is finally
delivered becomes less relevant, as long as the data is timely and correct. In addition to handling
packet multicasting as a natural primitive, the forwarding plane should offer scalable alternatives.

Expressing the packet forwarding problem as a set membership answered by either in-packet
of in-network Bloom-filters makes support for multicast a natural operation at packet forwarding
time. The compact representation of a multicast tree into in-packet Bloom filters is a promising
approach to make multicast scalable to large number of multicast groups. By separating the multicast
group management and multicast forwarding we can avoid the need for distributed multicast route
computation and per group state in multicast routers. Instead of managing the group state in the
routing system, the state can be maintained either at the source or in a separate group management
component operated by the network owner or even outsourced to resource-rich, distributed data center
facilities.
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Principle 4: Receiver-controlled data plane security

The forwarding methods should be designed with security in mind and not as an afterthought.
In open/commercial networking environments, network architecture designers need to assume that
if some resource can be exploited, it will be. This requires assuming from the beginning that the
architecture will be subject of malicious usages. While security is an overarching solution spanning
the complete networking and application stack, the forwarding plane should provide built-in security
features that contribute to a secure architecture.

The traditional host-oriented way of inter-networking is based on routing packets using the desti-
nation host IP address. The network was designed to serve the packet sender by delivering packets to
the receiver the best it can. However, this scheme does not consider the possibility that the receiver
may not be willing to receive that particular piece of data and assumes that the sender will always
honour the recipient’s consent. This is a root cause for a number of well-known problems, such
as unwanted traffic. Existing network architectures protect against unwanted traffic mainly based
on add-ons on top of the architecture like flow or packet classification combined with proactive or
reactive filtering.

The forwarding plane should provide a building block addressing questions of (1) what packets
can be forwarded, and (2) ensuring that approved communications occur as described. If as the result
of a number of parties agreeing to communicate a particular network path(s) is approved as such, then
the forwarding plane should provide mechanisms to enforce that packets in fact are delivered through
the authorized path(s). Moreover, the forwarding plane should contribute to blocking the initiation
(or continuation) of unapproved communications effectively blocking the communications early on
close to the source, before they can escalate and consume network resources or deny the service to
specific targets (e.g., DDoS attacks).

Our security considerations to protect the forwarding plane include (i) moving the control of
which packets to receive and for how long, (ii) having the fast data plane off per-default, and (iii)
hiding network topology and location information. At the cost of extra per-packet computations,
the secure iBF forwarding can be used to provide a network-assisted DDoS protection scheme that
empowers the receivers. In the resulting approach, the hosts have no names; only links are named. To
be able to send, any prospective sender needs to acquire a forwarding identifier that simultaneously
acts as a path capability. By delegating capability creation to a rendezvous component that explicitly
considers both the senders’ and receivers’ interest, the power shifts from senders to receivers, which
are in control of what they want to receive.
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It is all about trade-offs

As is so often in engineering disciplines, network design is all about trade-offs. In the seminal
example discussed in the original paper by Saltzer, Reed and Clark [91], the authors claim that “some-
times an incomplete version of the function provided by the communication system may be useful as
a performance enhancement.” That is, the End-to-End argument was pioneering in recognizing the
existence of cost-performance trade-offs that justify the incorporation of economic considerations in
networked system designs.

A more recent illustration of such trade-offs in the Internet architecture has been eloquently pro-
posed by Doyle et al. [16] by using the paradox “robust yet fragile” when referring to the nature of
the Internet. According to the authors, the Internet is an example of “organized complexity” and can
be described as a H.O.T. network, or Highly Optimized/Organized Tolerance/Trade-offs. This no-
tion represents the trade-offs made by networks engineers when connecting computer routers, where
both economic and technological trade-offs play an important role. Other noteworthy trade-offs in
the Internet include the memory-stretch trade-offs of compact routing [113], the dilemma between
flexibility-security [93], the control-openness tension between the Internet and the traditional telecom
networks evolution to IMS/NGN architectures [240], protocol optimality versus simplicity [241], and
many more.

By considering a probabilistic approach to packet forwarding, this thesis explores the trade-off
between reducing forwarding state and consuming extra bandwidth. We are certainly not the first
to apply this principle in networking. For instance, the PoMo architecture [168] also proposes a
routing and forwarding solution that trades overdeliveries for reduced state and reduced dependence
of node network locators. A probabilistic data structure like the Bloom filter challenges traditional
space-time trade-offs of deterministic algorithms in exchange for correctness. Indeed, the design of
Bloom filters and its derivatives is fundamentally about trade-offs striking the right balance between
memory, computation and (false positive) performance. When applied to packet forwarding, this
probabilistic approach allows for new solutions in the four orthogonal metrics of packet routing,
namely, in-network state, in-packet state, efficiency, and adaptation costs.

Previous work [100] that noted the fact of bandwidth being cheap compared to expensive process-
ing and memory accesses proposes forwarding techniques to trade larger packet headers for reduced
per-packet processing requirements. Along the network state versus packet processing trade-offs, the
secure Z-formation forwarding method brings the in-network state requirements down to a minimum
at the cost of additional packet processing overhead to dynamically generate link identifiers.

The novel design of the DlBF [F] contributes with a yet unexplored trade-off in probabilistic data
structures to enable false-negative-free element deletions. Depending on the fraction of bits devoted
to encode the regions where collisions are detectable, different degrees of element and bit deletabil-
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ity can be obtained. Similarly, increasing the number of candidates consumes valuable bitspace to
include the index d in the iBF-based packet header, but yields greater opportunities of generating a
better performing bit pattern candidate. Yet another trade-off appears in our exploration of scalable
multi-path forwarding services in data center networks, where the compact forwarding methods allow
for a stateless switching approach at the cost of some reduced path multiplicity [E].

One historical example of trade-offs in networking is packet-switching versus circuit-switching
technologies. Packet switching technologies were developed in a time when capacity was costly
and introduced the paramount idea of multiplexing demand into fine granular packets in contrast
to breaking up the end-to-end capacity into coarse circuits. Instead of provisioning costly capacity
for peak demands (as in circuit-switching), packet-switching only requires to guarantee that average
capacity satisfies average demands, leading to statistical multiplexing gains.

While there is no debate around the benefits of this approach, as network economies evolved
and transport capacity became cheap, at the core of ISP networks, circuit-oriented designs are com-
monly demanded, as evidenced by the adoption of connection-oriented services (e.g., T-MPLS, PBT),
DWDM and optical technologies in general. Fast re-provisioning control planes like G-MPLS bring
down the over-provisioning costs of traditional circuit-switching technologies like TDM or ATM. The
tension between the two technologies (circuit vs. packet-oriented) is alive and connection-oriented
technologies will continue to play a significant role below the global inter-networking layer, let it
be IP or a content-oriented alternative. In a way, source routing based on iBFs is in line with the
needs and evolution of carrier networks to provide flexible connection-oriented services in the spirit
of MPLS, the so-sought approaches for flow-based networking [242, 243], and the separation of the
control planes from the forwarding elements [88, 89, 244].

4.3 Summary

This chapter provides a more detailed discussion of the thesis contributions, which can be divided
into three sets: (i) principles, (ii) algorithmic techniques, and (iii) applications. The departure from
previous approaches and the major achievements were discussed, including the involved trade-offs.
The probabilistic approach to packet forwarding taken in this thesis represents one exciting front that
allows for new trade-offs with appealing properties in the field of what this thesis refers to as com-

pact forwarding, an area open for additional methods, alternative approaches, and new networking
scenarios.
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Concluding Remarks and Future Work

A paradigm shift is brewing in networking moving the focus to accessing and distributing named
pieces of content rather than host-centric conversational communications. While the overall blueprint
of a pure content-oriented network architecture is a complex endeavour at its early stage, initial efforts
have already started, and more importantly from a technical point of view, the first architectural
approaches are being proposed and evaluated.

A common challenge in content-oriented networks is the need to take scalable forwarding de-
cisions at high speed to move packets labeled with a potentially infinite universe of flat identifiers.
Towards the technical viability of a forwarding plane capable of satisfying the needs of a content-
oriented paradigm, we have departed from the host-centric forwarding approach of the hierarchical
IP world dominated by deterministic algorithms (e.g., longest IP prefix matching), in favor of proba-
bilistic packet forwarding methods that guarantee the packet delivery to the intended destination(s).

From the broader architectural considerations of content-oriented networking, this thesis only
grasps the tip of the iceberg by seeking to challenge the commonly held view that networking needs
to be sender-driven, centered on endpoint (network interface) identifiers, and implemented based on
deterministic techniques (e.g., exact match lookup, binary tree search, TCAM). We have explored
this avenue by introducing the concept of compact forwarding based on relaxing the outport match
condition on packet fields to tolerate extra values – in addition to the correct one(s) – as acceptable
outcomes of the compact forwarding methods. We have applied this idea in both network-based and
packet-based (approximate) forwarding information approaches following on the unifying (Bloom)
principle of reducing state requirements and simplifying multicast support by tolerating some band-
width penalties due to false positives and potentially larger packet headers. By exchanging correctness
(traduced in forwarding efficiency penalties) for space/memory time requirements (traduced in lossy
aggregated forwarding information), the compact forwarding methods allow for new trade-offs in the
traditional routing and forwarding design space.

91
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The broader issue of the specific scalable content-oriented routing approach (i.e. how to distribute
the state to the nodes and the in-packet information) is still to be solved by the specific content net-
work. Its overall feasibility will depend on the introduced namespace(s) and the means to scope and
work with higher-level aggregates (i.e., information domains, scopes, etc.) to address the challenges
of information-centric inter-networking (cf. [20]).

At the core of our probabilistic approach is expressing the packet forwarding problem as two
extreme set membership problems solved by virtue of variations of the popular hash-based data struc-
ture Bloom filter that succinctly represent the forwarding state information in both network nodes
and packet headers. The cost of simplifying the port-forwarding operations and lossy compacting
the forwarding information base is additional considerations to manage the effects of false positives.
Hence, one central question this thesis contributes to, is whether a one-sided error prone forwarding
substrate can serve as a suitable data plane holding approximate state upon which content-oriented
networks can be deployed. We found that, provided the right choice of parameters and a handy set of
algorithmic techniques, a probabilistic approach to packet forwarding yields an useful design space
beyond traditional deterministic techniques.

Considering the definition proposed for the problem of compact forwarding, other strategies and
companion data structures – probabilistic or not – may be conceived to match the features and objec-
tives of the forwarding methods that we have worked out. Potential solutions may be biased towards
specific trade-offs in the design space, propose alternative packet classification and fast forwarding
techniques, or develop enhancements to the encoding of the approximate forwarding state. Specific
open questions related to the latter include research on more compact or variable size encoding of the
deletable regions [G] (e.g. based on erasure- or error-correcting codes?).

At the same time, we believe that the field of applications of the compact forwarding methods
developed is open to other inter-networking scenarios such as overlay solutions (e.g. application-
layer routing) and resource-constraint networks (e.g. wireless sensor networks). Deployability of new
network architectures is certainly an issue and replacing running infrastructure is a costly proposition.
An initial overlay solution (cf. [245]) and advances in network virtualization and software-defined
networks are the most promising avenues to see new forwarding primitives in real networks. On
this direction, the generality of the hash-based forwarding methods allows for an easy adaptation
to other distributed system incarnations. We hope that our work on generalized probabilistic data
structure extensions [F] becomes subject not only of new applications but also motivate enhancements
or alternative solutions. We strongly believe that further optimized approaches are possible.

One specific application that would be interesting to explore is the applicability of the SPSwitch
forwarding engine to compactly represent the Pending Interest Table and/or the Forwarding Informa-
tion Base of the CCN network node model [184]. A probabilistic approach (in the spirit of Bloom
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filters) could be well suited to perform fast and memory-efficient name lookups, especially as the po-
tential problem of forwarding loops may be circumvented through the cache-friendly flow-balanced
design of CCN (i.e. Data packets consume Interest entries). Open challenges include how to deal with
the unbounded, hierarchical name space and the required techniques for fast updates of the forwarding
and caching engine memory [246].

Along the iBF solutions, we expect the maturity of techniques for fast host mobility [247], mul-
ticast VPN services [65], edge-controlled inter-domain multicast [H], data center forwarding ser-
vices [E], and the marriage with optical technologies. Moreover, handling failure scenarios (e.g. fast
iBF re-route [248]) is an area that requires further studies that may largely benefit from the long-year
experience in IP/MPLS deployments, and more recently, carrier Ethernet solutions. Topology- and
fault-carrying iBFs together with preventive backup forwarding entries in network nodes are certainly
within the scope of future work.

Data centers are indeed a networking scenario calling for innovation in the routing and forwarding
space due to the challenges of dynamic virtual machine connectivity, multi-tenancy, and ware-house
scale facilities. At the same time, the tightly managed environment of data center networks allow for
innovative solutions being deployable without Internet-wide agreements to address the needs of the
infrastructure provider and the cloud-scale applications. In addition, turning prototypes into reality is
expected to become less of a challenge due to the rise of software-defined networks enabled by open
interfaces to directly program the forwarding behavior of commercial networking gear, as targeted by
the OpenFlow community.

The potential impacts of general purpose computer programmability with the line-rate perfor-
mance of commercial hardware are far-reaching and well aligned with the principle of separating
routing from forwarding. For instance, networking inside the data center can be turned into a soft-
ware problem, tractable by the same developers of the cloud content providers and bypassing thereby
the traditional development cycle to have new features and functionalities brought to production only
by equipment vendors. We have argued about this trend [239] and the first industry efforts towards
operational software-defined networks are already undertaken [249]. Yet another example is our on-
going work [250] to combine line-rate forwarding with (remote) open-source routing stacks towards
high-performance, cheap, and novel network designs enabling virtual network services and scale-out
router architectures.

From a broader perspective, there is an amazing list of research questions around content-oriented
networking proposals, spanning from potential additional features of the forwarding plane (e.g. net-
work coding) to broader architectural considerations such as the fundamental dichotomy between flat
and hierarchical naming schemes. Remarkable efforts towards enabling content-oriented networks
are being undertaken in the continuation of pioneering work at EU FP7 PSIRP [185] and PARC
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CCN [184] into the newly started follow-up projects Name Data Networking (NDN) [246] and Pub-
lish Subscribe Internet Technology (PURSUIT) [251]. Paramount questions arising from the ability
to expose named content being exchanged include the development of scalable name-based routing
plane(s), the role of caching and its implications on congestion and error control, content-oriented
transport functions and forwarding strategies, validation of the security foundations, delay tolerant
operations, and the further specification of suitable fast forwarding engines as we have pursued with
the SPSwitch [A], LIPSIN [B], and SiBF [E].
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ABSTRACT
In response to the limitations of the Internet architecture
when used for applications for which it was not originally
designed, a series of clean slate efforts have emerged to
shape the so-called future Internet. Recently, visionary voices
have advised a shift in the networking problem under re-
search, moving from seamless host-reachability to internet-
working of information. We contribute to the healthy debate
on future Internet design and discuss ongoing information
oriented efforts. Inspired by recent works in Bloom-filter-
like data structures, we propose the SPSwitch as a novel
switching engine to make wire speed forwarding decisions
on flat information labels. We address part of the scalability
issues in a data-oriented forwarding layer by trading overde-
liveries for state reduction and line speed operations.

Categories and Subject Descriptors
C.2.1 [Packet-switching networks]: Network communica-
tion

1. INTRODUCTION
For a few years, funding agencies around the world have

been promoting the research towards the so-called future In-
ternet. Clean-slate design has been a buzz term for network-
ing project proposals. However, the lack of palpable results
and clear business models raises doubts whether network
revolution makes sense at all. Today’s use of the Internet
reveals well known limitations in terms of mobility, secu-
rity, address space exhaustion, routing and content delivery
efficiency. Nevertheless, it works reasonably well [14]. For
the long term, continuously patching the Internet with ad-
hoc protocol extensions and overlay solutions seems to be a
complex and costly solution.
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The Internet has shifted from being a simple host connec-
tivity infrastructure to a platform enabling massive content
production and content delivery, transforming the way in-
formation is generated and consumed. From its original de-
sign, the Internet carries datagrams inserted by sending hosts
in a best effort manner, agnostic to the semantics and pur-
pose of the data transport. There is a sense that the network
could do more and better given that today’s use of the net-
work is about retrieval of named pieces of data (e.g., URL,
service, user identity) rather than specific destination host
connections [15]. Hence, the enhancements at the internet-
working layer should not be limited to QoS or routing effi-
ciency: data persistence, availability and authentication [17]
of the data itself leveraged with timeliness are beneficial in-
network data-centric capabilities to be embraced from de-
sign.

Last decade’s efforts towards rearchitecturing the Inter-
net have mainly focused on end-host reachability with novel
concepts (e.g., id/loc split) addressing the ‘classic’ end-to-
end security, mobility and routing issues. All of these pro-
posals are more-or-less host centric. However, this trend is
changing, and senior researchers that have participated in
the Internet development since its beginning, have advised
tackling the future Internet problem from an information in-
terconnection perspective. Van Jacobsen [15] provides a vi-
sion to understand the motivation for a networking revolu-
tion; while the first networking generation was about wiring
(telephony) and the second generation was about intercon-
necting wires (TCP/IP), the next generation should be about
interconnecting information at large. This architectural shift
implies rethinking many fundamentals by handling informa-
tion (data, content) as a first-class object.

Recent concerning events (and more to come) may poten-
tially promote and accelerate the adoption of new internet-
working paradigms. Today’s economy is Internet-sensitive,
service outages due to DDoS attacks1 or due to limitations
of BGP insecure routing2 carry important worries and ex-

1Internet reports claim potential costs of $31.000 per minute for
Amazon’s two hour outage in June 2008.
2Pakistan Telecom routing mis-configuration for YouTube’s ad-
dress block propagated internationally, breaking the reachability of
the popular video service in February 2008.



penses. Additionally, new forms of SPAM and evolving
phishing methods are threatening today’s so successful IP-
based communication’s experience.

This paper is certainly not the first to turn into data-oriented
networking or to leverage the publish / subscribe communi-
cation paradigm. First, we discuss on the significance of fu-
ture internetworking research (§ 2) and gather a set of newly
emerged concepts from ongoing information-oriented Inter-
networking activities (§ 3) that set the context and motiva-
tion of our work. We move a step towards the feasibility of
new data-oriented architectures by proposing the SPSwitch,
a novel switching application based on recent Bloom-filter-
inspired data structures (§ 4), validated through preliminary
experimental results (§ 5). The goals of our future work (§ 6)
are hardware-friendly forwarding schemes for a global scale
information-oriented architecture.

2. RE-ARCHITECTING THE INTERNET
Research to circumvent current Internet limitations can be

divided into those advocating a completely new architecture
(clean-slate), and those defending an evolutionary approach
due to incremental deployability concerns. From a research
perspective, clean-slate design does not presume clean-slate
deployment and aims at innovation through questioning fun-
damentals.

A key question is to what extent a new paradigm think-
ing ‘out-of-the-TCP/IP-box’ for the future network is really
necessary, e.g., as packet switching was to circuit switching
in the 70’s. The reasoning is based on the large scale use
of the Internet for dissemination of data [15]. Tons of con-
nected devices are generating and consuming content, with-
out caring about the actual data source as long as integrity
and authenticity are assured [17].

We can also observe this shift toward information-centric
networking in the momentum of service oriented architec-
tures (SOA) and infrastructures (SOI), XML routers, deep
packet inspection (DPI), content delivery networks (CDN)
and P2P overlay technologies. A common issue is the ne-
cessity to manage a huge quantity of data items, which is
a quite different task than reaching a particular host. In to-
day’s Internet, forwarding decisions are made not only by
IP routers, but also by middleboxes, VLAN switches, MPLS
routers, DPIs, load balancers, mesh routing nodes and other
cross-layer approaches. Moving down data-centric functions
to the lower networking layers could be in tune with the
trend in access and backbone technologies represented by
the coupling of the dominant Ethernet access protocol and
label switched all optical transport networks.

More than an endless discussion around clean-slate de-
sign and actual network (r)evolution deployment, what we
really need for the future Internetworking is 1) ‘clean-slate
thinking’ beyond the TCP/IP heritage to foster innovation
through questioning paradigms; and 2) feasibility work on
an information-oriented infrastructure capable of supporting
the actual and future demands over the network of networks.

3. PARADIGMS OF INFORMATION ORI-
ENTED INTER-NETWORKING

Until recently, research in a new generation Internet has
prompted architectural proposals (e.g., TRIAD, FARA, Plutarch,
UIP, IPNL, HIP, ROFL) that mainly aimed at solving the
host reachability problem by providing more flexible, ex-
pressive, and comprehensive naming and addressing frame-
works than the Internet hierarchical IP address space. A
move towards information interconnection can be observed
in recent projects addressing the future Internet such as PSIRP [8],
4Ward [12], Trilogy, ICT’s FIRE and other activities within
EU FP7 and NSF FIND. Data-centric architectural propos-
als have started to emerge (e.g., DOA, i3, DONA, Haggle)
and are similar in spirit to ‘peer-to-peer’, ‘content-delivery’,
‘sensor’ and ‘delay-tolerant’ networks.

3.1 Information-centric concepts
In information/content/data - oriented/centric networks,

the flow of messages is driven by the nodes that have ex-
pressed their interest and the information identifiers of the
messages, rather than by explicit destination host interface
names (IP addresses) assigned by senders. Reachability of
destinations is not anymore delimited by topological infor-
mation but by the notion of information scope [21]. Having
the data location hidden makes the semantics of what de-
fines a sender or receiver of data less relevant than the data
itself, intuitively providing enhanced security (e.g., DDoS
mitigation) and bridging connectivity challenged underlying
networks (e.g., DTN).

The publish/subscribe paradigm [11] is a promising trend
to instantiate the so sought modern communication API [10]
for information-centric systems. Pub/sub systems have been
widely studied and employed for specific event-dissemination
applications and have appealing characteristics like spatial
and temporal decoupling [11]. In Internet-scale topic-based
pub/sub internetworking [8, 20, 21], topics are unique in-
formation identifiers at different layers in the architecture
accommodating different granularities and semantics (e.g.,
messages, channels, documents) to support every type of
communications (e.g., transactional, interactive, etc.).

The suitability and benefits of moving the pub/sub layer
downwards into the networking stack is one of the challeng-
ing objectives of interest-driven architectures where naming,
routing, forwarding and addressing get fresh semantics (see
Table 1).

In the envisioned internetworking service bus, informa-
tion objects are first-class citizens introducing a new global
unmanagednamespace. A form of publication metadata in-
formation is required to enable the self-authentication of the
data, fragmentation, scope delimitation, inter-domain poli-
cies, in-network management, caching, and so on [8].

A global namespace for data items enables caching capa-
bilities for every type of communications. In comparison,
caching over TCP/IP is costly and application-specific. In
case of non-mutable information objects caching becomes



Table 1: Concepts of information-oriented networking versus the original
Internet design. Rethinking fundamentals.

Original Internet Information-Oriented /
Content-Centric Internetworking

Sender Content producer (publisher)
Receiver Content consumer (subscriber)
Sender-based control Receiver-based control
Client/Server Publish/Subscribe
communications Sender and Receiver uncoupled
Host-to-host Service access / Information retrieval
Topology / Domain Information scope
Unicast Unified uni-, multi- and anycast
Explicit destination Implicit destination
End-to-End (E2E) End-to-Data (E2D)
Host name Data/Content name
(look-up oriented) (“search” activity)
Secure channels, Integrity and trust
host authentication derived from the data

trivial, whereas for streaming applications, caching can be
seen as long in-network buffers. Hence, the architecture na-
tively plays the role of current CDNs and avoids redundant
traffic over network links [1]. Furthermore, a new names-
pace for information objects could easily accommodate multi-
, any-, con- and unicast types of communication in addition
to novel forms of network coding to increase the network’s
efficiency and resilience.

3.2 A few reference architectures
In this section, we briefly introduce the basics of two re-

cent design choices from the EU FP7 Publish/Subscribe In-
ternetworking Routing Paradigm (PSIRP) project [8] we se-
lected as reference architectures.

The RTFM architecture [20] gets its name from the func-
tional building blocks that are recursively applied. The ren-
dezvous (R) is in charge of matching subscriptions to publi-
cations and information scoping. The topology (T) manage-
ment creates and maintains (sub-optimal) delivery trees used
for traffic forwarding, acting both proactively (optimization)
and re-actively (on-demand). The forwarding (F) functions
perform the actual datagram delivery based on label switch-
ing techniques. Finally, mediation (M) refers to the node-to-
node physical data transmission.

A high-level operational overview of the RTFM could be
as follows. After a node subscribes to a publication, a dis-
tributed rendezvous system (e.g. a type of DHT or semi-
hierarchical solution as in DONA [17]) must first find a copy
of the publication’s metadata. Using the distributed ren-
dezvous structure to route to a copy of the wanted data, the
topology management systems are expected to gather enough
information to identify the delivery trees needed to forward
the actual data to the subscriber(s). Note that the RTF func-
tions are not necessary co-located in nodes and are distributed
and recursive in nature.

In the black box rendezvous based networking approach [21],
the key idea is to regard the network as a collection of black

boxes based on a set of recursive rendezvous functions. The
boxes operate in trusted domains hiding their internal topol-
ogy and exposing outwards only labels and interest defini-
tions. Recursivity [9] and scoped information layers are
pivotal architectural patterns with a major goal: scalability.
With the same goal but at a lower layer, efficient data struc-
tures enabling the data-centric networking functions (e.g.,
switching, label processing, caching) are called for to achieve
the challenging scalability requirements of information-oriented
networks heavily based on virtually ‘unlimited’ set of flat
identifiers.

4. FAST FORWARDING ON FLAT LABELS
The overall picture of an information-oriented network

architecture is complex and deserves very detailed discus-
sions spanning multiple disciplines (internetworking, net-
work management, semantic layer, etc.). However, there is a
common challenge in any data-oriented paradigm: the need
to take switching decisions at wire speed (Gbps) based on
a large universe of flat (non-topological, non-aggregatable)
identifiers (e.g., 256-bit cryptographic hash values).

Related work relying on flat labels includes ROFL [7],
a proposal for Internet-scale routing on flat host identifiers
based on neat DHT constructs. In our work we focus on flat
identifiers with fundamentally different architectural princi-
ples (see Table 1). DONA [17] employs flat self-certifying
labels for data objects operated by find/register primitives
over IP networks, whereas our work is more ambitious and
could run on top of L2 and L3.

For the sake of generality and the objectives of this paper,
we use the term flat label for data identifiers or any topology-
independent packet header forwarding identifiers.

4.1 Publish/Subscribe Switch
The Publish/Subscribe Switch (SPSwitch) is an abstract

switching element that relays messages through strict port-
forwarding operations. In a more elaborated design, the SP-
Switch performs more complex actions like label switching
or querying the cache system.

For the purposes of this work, it is enough to consider the
generic problem of having to take switching decisions based
on large flat identifiers (labels). Note that output destinations
(ports) are not just limited to physical port-in/out interfaces
but should be regarded as generic outputs, including also lo-
cal processes, virtual ports, recursive operations, and cache
systems.

In the SPSwitch representation of Figure 1, each possible
message output is represented by a Bloom filter [3], forming
our first p-bank switching approach (§ 4.3) and a reference
switching model for an enhanced data structure (§ 4.4).

4.2 The role of Bloom filters and space effi-
cient probabilistic data structures

Given the huge space and flatness of the information iden-
tifiers, our intuition is that Bloom filters and other compact



Figure 1: Switching model for incoming datagrams carrying flat labels.
Generic destinations (ports) are aggregated in Bloom filters.

hash-based data structures will play a fundamental role as
efficient data aggregators in any information-centric archi-
tecture. Basically, a Bloom filter (BF) [3] is a space-efficient
hashing-based data structure that answers set membership-
queries (e.g., is labelx in output Py?) with some probability
of being wrong (false positive rate). BFs are useful when-
ever you have a set of elements and space is an issue. Then,
an approximate representation like a BF may be a powerful
alternative if the effects of false positives can be managed.
The performance of a BF does not depend at all on the size
of the items but on the ratiomemory/elements. Therefore,
hashing-based data structures are an ideal room to handle the
large set of flat identifiers. We refer to the large literature on
BFs [3, 4, 6, 16] for details and mathematical background.

Bloom filters are commonly used in IP forwarding and
other widely studied networking applications (e.g., caches,
P2P, measurement, packet classification) [6]. We expect in-
creasingly more useful applications of BFs and its deriva-
tives in new data-intense networking proposals (e.g., Internet
accountability [2], flow management [4], credential-based
network security [22], IP multicast revisited [19]) with strict
performance and memory requirements. The authors of [13]
briefly sketched the idea of aggregating active IP multicast
addresses per output interface to achieve scalability.

Due to space limitation we do not compare the SPSwitch
design with existing hardware designs for fast networking.
We are aware that compact hash tables and hashing func-
tions are a daily aid in IP networking. However, there are
notable operational differences and challenges (e.g., longest
IP prefix vs. long flat identifier matching).

4.2.1 False positives
It is important to place emphasis on the bounded effect of

false positives in data-centric interest-driven architectures.
First, the pub/sub paradigm inherently tolerates false posi-
tives, since datagrams corresponding to non subscribed items

do not progress in the network and do not create forward-
ing states. Moreover, end-nodes will only process explic-
itly subscribed pieces of information. Second, with support
for opportunistic caching, copies of data can be used to ful-
fill possible future requests of close by subscribers. Finally,
packets forwarded due to false positives are not propagated
over many hops due to the large label space and the decreas-
ing probability of consecutive false positives.

4.2.2 Hardware requirements
Since hashing is performed on a per packet basis, the hash

tables are implemented directly into the hardware to achieve
low processing times (‘constant’ time to hash and easily par-
allelized). The position of the element in the memory array
can be directly given by the hash value. Built-in dedicated
hashing modules are already available in networking hard-
ware. Moreover, we can even skip the hashing operations by
taking advantage of the randomness of the hash-based labels
under consideration.

In order to achieve to achieve high data rates, memory ac-
cesses and computations must be kept to a minimum during
packet processing. Routers are limited in expensive high-
speed memory. Projections for routers capacity for the next
decade [2, 18] let us assume the availability of high speed
memory in routers in the order of tens of Mbits3.

4.3 Naive p-bank Bloom filter approach
Our first natural approach was to define a SPSwitch formed

by a bank of BFs, maintaining a BF for each possible output
(2p). The ‘control plane’ inserts the label(s) in the required
output BFs and upon message arrival all possible outputs are
queried in parallel to make the forwarding decisions. Recall
that a BF does not return false negatives.

After gaining some practical experiences, we identified
some limitations of our naive p-bank BF approach inherent
to basic BF constructs [4]: a) lack of associated values: just
binary probabilistic set-membership responses; b) expensive
deletion4: counting BFs are costly in memory sizes; c) no
notion of time: costly association of filter elements or cells
with timing information; d) unbalanced usage of memory
per output: unpredictable destination demands difficult the
overall system design and memory allocation.

We realized that a more flexible and expressive data struc-
ture was required enabling dynamic port-value assignment
and per element handling capabilities. Nevertheless, stan-
dard BFs are expected to play a role as filters for large caching
systems and in other elements of the architecture due to its
simplicity, ease of use, and excellent performance.

3Typically SRAM, DRAM, (T)CAM and newly RLDRAM. CAMs
are expensive fully associative memories - highest available single-
chip CAM is 18Mbit [18].
4Deletions potentially introduce false negatives. This is inherent to
any probabilistic data structure and needs to be carefully handled.



Figure 2: In the stateful d-left Bloom filter, a label fingerprint and its output
value are inserted into the least loaded bucket among d candidates.

4.4 Stateful d-left Bloom filter with Dynamic
Bit Reassignment

The goal is to build upon a more flexible data structure that
could return the output port-value(s) for each programmed
label, while still allowing false positives in the form that la-
bels not in the set return a value and labels in the set return
more than one value (aka ‘multicast’) when only one entry
was programmed.

Looking for a candidate structure that could store val-
ues (stateful), we took on recent results in BF-inspired data
structures by Bonomi et al [4, 5], where the authors define
a d-left fingerprint compressed filter (FCF) to track the state
of network traffic flows in a dynamic environment. Due to
space limitation we refer to [4, 5, 6] for deeper details and
rigorous mathematical analysis. In this work, we present our
application of the d-left FCF data structure to the specifics
of our switching problem and validate it with experimental
results.

The d-left scheme is based on the power of two choices
(or multiple-choice hashing) and its key feature is yielding
near-perfect hash functions, something impractical for dy-
namic sets. The procedures for insertion (label:port) and
look-up (label) of the stateful d-left FCF are as follows (see
Fig.2). A hash table stored in memory is divided into d equal
subtables. On insertion, d hash functions (Hi(s)) uniformly
provides a candidate bucket b in each subtable. The least
loaded bucket is chosen (breaking ties to the left) to place the
item’s f -bit fingerprint (e.g., last f bits of the label hash) and
the p-bit value. On look-up, d buckets need to be checked
for fingerprint match and the companion port-value(s) is re-
trieved.

False positives happen after a fingerprint match when in-
specting h elements in d buckets (Pr = d ·h ·2−f ). The neat
idea of dynamic bit re-assignment (DBR) [5] is to adjust the
size of the fingerprint in function of the bucket’s load, yield-
ing better false positive rates due to larger average finger-
prints (f ‘DBR > f ). The counterpart is having to maintain

a counter per bucket and the increased complexity on ele-
ment insertion due to fingerprint down-resizing (easily im-
plementable with bit shift operations). Further bucket space
optimization via semi-sorting of items can be achieved, how-
ever, the gain/complexity trade-off is not appealing in our
setting where we require to store additional p bits per entry.

5. EXPERIMENTAL RESULTS
The relation between the number of targeted labels n, the

amount of buckets b and subtables d determines the aver-
age load per bucket that can be determined asymptotically
as in [5]. By choosing b equal to n/12 and d = 3, a bucket
high h = 6 provides a safe margin for overflow (≈ 10−31)
and a reasonable table utilization u = n/(dbh) = 2/3 [4].
Finally, we used the following construction for our experi-
ments: 1M 256-bit flat labels (n), 20-bit fingerprints (f) and
10-bit outputs (p). We inserted the n elements into the filters
and used a disjoint test set of 10 ·n labels for counting actual
false positives.

Table 2 compares the different forwarding table schemes
analytically and includes the predicted calculations and the
actual values averaged over 50 experiments. As expected,
a simple forwarding table indexed per flat labels has pro-
hibitive costs in both memory and computation. When fixing
the available memory, the d-left FCF based approach outper-
forms the alternative probabilistic structures in actual false
positive rates. The gains in performance from the d-choice
technique [5] comes from the reduction of the maximum
bucket load to about loglogn/logd in the well studied balls
into bins problem. The DBR optimization results in larger
fingerprints (equiv. f ′ ≈ 22.27) and thereby substantially
lower false positive rates.

We should stress that the beauty of the d-left FCF data
structure is not only the gains in terms of memory but in the
low and constant memory accesses (O(1)). Moreover, a key
differentiator of the fingerprint-based approach is to have a
powerful probabilistic key (the fingerprint) for managing in-
serted elements (e.g., querying, updating, deleting).

The actual low performance of the p BFs can be explained
due to 1) the fact of aiming very low error rates (0.6185M/n ≈
10−9) per BF compared to the theoretical convergence rate
θ(1/nBF ); and 2) practical issues of the double hashing
technique [16] to efficiently generate the optimal k hash func-
tions (ln(2) ·M/n ≈ 31).

The actual results are very promising; we may conclude
that our envisioned forwarding layer (SPSwitch) based on d-
left FCF data structures could evolve to a real system with
e.g., 18 Mbits high speed single-chip memories per subtable
and handle labels in the order of millions with very low false
positive rates (10−6) and bounded worst case performance.
The specific system parameters are not so relevant (yet) and
mainly serve as a first proof of concept. The most important
results are the orders of magnitude and the performance that
can be achieved with an optimized d-left FCF inspired data
structure.



Table 2: Analytical and experimental comparison of different data structures for the switching procedures.

Mem. access Mem. size M (Mbits)** (bpe) False positive (predicted)** (actual)**
Standard Table O(n) — O(1)* n ∗ (s + p) 253.68 266.0 0 0 -
Fingerpr. Table O(n) — O(1)* n ∗ (f + p) 28.61 30.00 2−f 9.54 ∗ 10−7 -
p-bank BF O(1) 2p ∗m *** 43.63 45.75 ≈ 2p ∗ 0.62M/n 2.91 ∗ 10−7 4.33 ∗ 10−3

d-left FCF O(1) d ∗ b ∗ h ∗ (f + p) 42.92 45.00 < d ∗ h ∗ 2−f 1.72 ∗ 10−5 1.51 ∗ 10−5

d-left FCF DBR O(1) d ∗ b ∗ (h ∗ (f + p) + c) 43.63 45.75 < d ∗ h ∗ 2−f ′
3.57 ∗ 10−6 3.46 ∗ 10−6

* Assumes a perfect hash function. ** Parameters: n = 1.000.008; d = 3; b = 83.334; f = 20; p = 10; h = 6; c = 3; s = 256.
*** Total memory of the p-bank Bloom filters equal to the value M of the d-left FCF DBR. m = M/2p; kopt = 31.

6. FUTURE WORK
Our very next step is to leverage the proposed data struc-

ture to work in steady states alternating deletions and inser-
tions, with deletions being handled by timing mechanisms or
explicitly. We require further studies on how to apply cache
management algorithms (e.g., LRU, LFU) and BF exten-
sions to handle deletions. Upcoming efforts include design
optimizations considering memory technology specifics and
efficient in/off-chip memory element reallocation. Last but
not least, our roadmap includes experimental validation with
regard to hardware implementation (NetFPGA) and feasibil-
ity on a large scale testbed infrastructure (e.g., Onelab2).

7. CONCLUSIONS
The information-centric usage of today’s Internet has changed

our daily lives with regard to content generation, consump-
tion and communication patterns. We discussed the rele-
vance of ‘clean-slate’ research on future Internetworking cen-
tered around information and move a step forwards in terms
of feasibility. We presented the SPSwitch, a generic for-
warding engine based on hashing data structures promising
a seedbed of new lines of fast scalable forwarding on flat
identifiers. Basically, the SPSwitch trades a small amount of
overdeliveries for state reduction and line speed operations.
We expect Bloom-filter-inspired systems to play a key role
in routing and aggregation of information in data-oriented
networks.
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ABSTRACT
A large fraction of today’s Internet applications are inter-
nally publish/subscribe in nature; the current architecture
makes it cumbersome and inept to support them. In essence,
supporting efficient publish/subscribe requires data-oriented
naming, efficient multicast, and in-network caching. De-
ployment of native IP-based multicast has failed, and over-
lay-based multicast systems are inherently inefficient. We
surmise that scalable and efficient publish/subscribe will re-
quire substantial architectural changes, such as moving from
endpoint-oriented systems to information-centric architec-
tures.

In this paper, we propose a novel multicast forwarding
fabric, suitable for large-scale topic-based publish/subscribe.
Due to very simple forwarding decisions and small forward-
ing tables, the fabric may be more energy efficient than the
currently used ones. To understand the limitations and po-
tential, we provide efficiency and scalability analysis via sim-
ulations and early measurements from our two implementa-
tions. We show that the system scales up to metropolitan
WAN sizes, and we discuss how to interconnect separate
networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.6 [Computer-Communica-
tion Networks]: Internetworking

General Terms
Design

Keywords
Bloom filters, publish/subscribe, multicast, forwarding

1. INTRODUCTION
Many networking applications are internally publish/ sub-

scribe in nature [8]; the actual acts of information creation
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and consumption are decoupled in time and/or space, and
oft en there are multiple simultaneous receivers. For exam-
ple, RSS feeds, instant messaging, presence services, many
typical web site designs, and most middleware systems are
either based on a publish/subscribe-like information para-
digm or internally implement a publish/subscribe system.

In general, publish/subscribe [15] is a data dissemination
method which provides asynchrony between data producers
and consumers. Key ingredients include handling data itself
as a first class citizen at the naming level, efficient caching
to loosen the coupling between producers and consumers in
the time dimension, and multicast to efficiently disseminate
new data, including both user-published data and system-
internal metadata. In addition to pure pub/sub applica-
tions, peer-to-peer storage systems and some data-center
applications may also benefit from these ingredients [34, 42].

In topic based pub/sub networks, the number of topics is
large while each topic may have only a few receivers [24]. IP
multicast [13] and application level multicast have scalability
and efficiency limitations under such conditions. Similarly,
while multicast is a natural choice for data centers, it has the
drawback of requiring routers to maintain additional state
and performing costly address translations [42]. Hence, the
main challenge in efficient pub/sub network design is how to
build a multicast infrastructure that can scale to the general
Internet and tolerate its failure modes while achieving both
low latency and efficient use of resources.

In this paper, we propose a novel multicast forwarding
fabric. The mechanism is based on identifying links in-
stead of nodes and using Bloom filters [6] to encode source-
route-style forwarding information into the packet header,
enabling forwarding without dependency on end-to-end ad-
dressing. This provides native support for data-oriented
naming and in-network caching. The forwarding decisions
are simple and the forwarding tables are small, potentially
allowing faster, smaller, and more energy-efficient switches
than exists today. The proposed model aims towards bal-
ancing the state between the packet headers and the network
nodes, allowing both stateless and stateful operations.

The presented method takes advantage of ”inverting” the
Bloom filter thinking [9]. Instead of maintaining Bloom fil-
ters at the network nodes and checking if incoming packets
are included in the sets defined by the filters, we put the
Bloom filters themselves in the packets and allow the nodes
on the path to determine which outgoing links the packet
should be forwarded to.

In addition to the design, we briefly describe the two im-
plementations we have built and evaluate the scalability and



efficiency of the proposed method with simulations. Further,
we give an indication of the potentially achievable speed
from our early measurements on our NetFPGA-based im-
plementation.

The rest of this paper is organized as follows. First, in
Section 2, we discuss the overall problem and outline the
proposed solution. In Section 3, we go into details of the de-
sign. Next, in Section 4, we provide scalability evaluation of
our forwarding fabric in networks up to metropolitan scales.
Section 5 discusses how to inter-connect multiple networks,
scaling towards Internet-wide systems, and Section 6 briefly
describes our two implementations. Section 7 contrasts our
work with related work, and Section 8 concludes the paper.

2. BACKGROUND AND BASIC DESIGN
Our main focus in this paper is on a multicast forward-

ing fabric for pub/sub-based networking. First, we briefly
describe the overall pub/sub architecture our work is based
on, and then present our forwarding solution, in the con-
text of that architecture. The presented solution, provid-
ing forwarding without end-to-end addressing, is a first step
towards an environment preventing DDoS attacks, as the
data delivery is based on explicit subscriptions. Finally, at
the end of the section, we briefly describe how our proposed
forwarding fabric could be used within the present IP archi-
tecture.

2.1 A pub/sub-based network architecture
In general, pub/sub provides decoupling in time, space,

andsynchronization [15]. While publish/subscribe, as such,
is well known, it is most often implemented as an over-
lay. Our work is based on a different approach where the
pub/sub view is taken to an extreme, making the whole sys-
tem based on it. In the work we rely on, inter-networking
is based on topic-based publish/subscribe rather than the
present send/receive paradigm [32, 39, 41].

The overall pub/sub architecture can be described through
a recursive approach, depicted in Figure 1. The same archi-
tecture is applied in a recursive manner on the top of itself,
each higher layer utilising the rendezvous, topology, and for-
warding functions offered by the lower layers; the idea is
similar to that of the RNA architecture [20] and the one
described by John Day [12]. At the bottom of the architec-
ture lies the forwarding fabric, denoted as “forwarding and
more”, the main focus of this paper.

The structure can be divided into a data and control
plane. At the control plane, the topology system creates a
distributed awareness of the structure of the network, simi-
lar to what today’s routing protocols do. On the top of the
topology system lies the rendezvous system, which has the
responsibility of handling the matching between the pub-
lishers and subscribers. The rendezvous does not need to
differ substantially from other topic-based pub/sub systems;
cf. [15, 23, 36]. Whenever it identifies a publication that has
both a publisher (or an up-to-date cache) and one or more
active subscribers, it requests the topology system to con-
struct a logical forwarding tree from the present location(s)
of the data to the subscribers and to provide the publisher
(or the caches) with suitable forwarding information for the
data delivery. While being aware of the scalability require-
ments for rendezvous and topology systems, we do not de-
scribe them in details, but refer to our ongoing work in these
areas [41, 45].

Forwarding and more

Topology

Rendezvous
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Figure 1: Rendezvous, Topology, Forwarding

The data plane takes care of forwarding functionality as
well as traditional transport functions, such as error detec-
tion and traffic scheduling. In addition to that, a number of
new network functions are envisioned (referred to as more),
such as opportunistic caching [14, 40] and lateral error cor-
rection [3].

The data and control plane functions will work in concert,
utilizing each other in a component wheel [41], similar to the
way Haggle managers are organized [33] into an unlayered
architecture, providing asynchronous way of communicating
between different functional entities in a node.

In this paper, we focus on the forwarding layer, including
the required information needed to be passed to it. The ren-
dezvous and topology systems have responsibility for higher-
layer operations, such as scalable handling of publish/sub-
scribe requests (multicast tree join/leave in IP); they do not
affect the forwarding performance directly.

2.2 Recursive bootstrapping
To achieve initial connectivity in the pub/sub network, the

rendezvous and topology systems need to be bootstrapped
[30]. Bootstrapping is done bottom-up, assuming that the
layer below offers (static) connectivity between any node and
the rendezvous system. At the lowest layer, this assumption
is trivially true, since any two nodes connected by a shared
link (wireline or wireless) can, by default, send packets that
the other node(s) can receive.

During the bootstrap process, the topology management
functions on each node learn their local connectivity, by
probing or relying on the underlying layer to provide the in-
formation. Then, in a manner similar to the current routing
protocols, they exchange information about their perceived
local connectivity, creating a map of the network graph
structure. The same messages are also used to bootstrap
the rendezvous system, allowing the dedicated rendezvous
nodes to advertise themselves [32, 41].

2.3 Forwarding on Bloomed link identifiers
In our approach, we do not use end-to-end addresses in

the network, and instead of naming nodes, we identify all
links with a name. To forward packets through the network,
we use a hybrid, Bloom filter based, approach, where the
topology system both constructs forwarding identifiers by
encoding the link identifiers into them in a source routing
manner (see Figure 2), and on demand installs new state at
the forwarding nodes. In this section, we present the basic
ideas in a somewhat simplified form, ignoring a number of
details such as loop prevention, error recovery, etc., which
are described in Section 3.



Figure 2: Example of Link IDs assigned for links, as
well as a publication with a zFilter, built for forward-
ing the packet from the Publisher to the Subscriber.

For each point-to-point link, we assign two identifiers,
called Link IDs, one in each direction. For example, a link

between the nodes A and B has two identifiers,
−→
AB and

←−
AB.

In the case of a multi-point (e.g. wireless) link, we consider
each pair of nodes being connected with a separate link.
With this setup, we do not need any common agreement
between the nodes on the Link IDs – each Link ID may be
locally assigned, as long as the probability of duplicates is
low enough.

Basically, a Link ID is an m-bit long name with just k
bits set to one. In Section 4 we will discuss the proper
values for m and k, and what are the consequences if we
change the values. However, for now it is sufficient to note
that typically k ¿ m and m is relatively large, making the
Link IDs statistically unique (e.g., with m = 248, k = 5, #
of Link IDs ≈ m!/(m− k)! ≈ 9 ∗ 1011).

The topology system creates a graph of the network us-
ing Link IDs and connectivity information. When it gets a
request to determine a forwarding tree for a certain publi-
cation, it first creates a conceptual delivery tree using the
network graph and the locations of the publisher and sub-
scribers. Once it has such an internal representation of the
tree, it knows which links the packets need to pass, and it
can determine when to use Link IDs and when to create
state [45]. The topology layer is also responsible for react-
ing to changes in the delivery tree, caused by changes in the
subscriber set.

In the default case, we use a source-routing-based ap-
proach which makes forwarding independent from routing.
Basically, we encode all Link IDs of the tree into a Bloom
filter, and place it into the packet header. Once all link
IDs have been added to the filter, a mapping from the data
topic identifier to the BF is handed to the node acting as the
data source and can be used for data delivery along the tree.
The representation of the trees in packet headers is source
specific and different sources are very likely to use different
BFs for reaching the same subscriber sets. To distinguish
the BFs in the actual packet headers from other BFs, we
refer to the in-packet Bloom filters as zFilters1.

1The name is not due to zFilter.com nor the e-mail filter
of the same name, but due to one of the authors reading

Each forwarding node acts on packets roughly as follows.
For each link, the outgoing Link ID is ANDed with the zFil-
ter in the packet. If the result matches with the Link ID, it
is assumed that the Link ID has been added to the zFilter
and that the packet needs to be forwarded along that link.
With Bloom filters, matching may result with some false
positives. In such a case, the packet is forwarded along a
link that was not added to the zFilter, causing extra traffic.
This sets a practical limit for the number of link names that
can be included into a single zFilter.

Our approach to the Bloom filter capacity limit is twofold:
Firstly, we use recursive layering [12] to divide the network
into suitably-sized components; see Section 5. Secondly, the
topology system may dynamically add virtual links to the
system. A virtual link is, roughly speaking, a unidirectional
delivery tree that consists of a number of links. It has its
own Link ID, similar to the real links. The functionality in
the forwarding nodes is identical: the Link ID is compared
with the zFilter in the incoming packets, and the packet is
forwarded on a match.

2.4 Forwarding in TCP/IP-based networks
While unicast IP packets are forwarded based on address

prefixes, the situation is more complicated for multicast. In
source specific multicast (SSM) [19], interested receivers join
the multicast group (topic) and the network creates specific
multicast state based on the join messages. The state is
typically reflected in the underlying forwarding fabric, for
example, as Ethernet-level multicast groups or multicast for-
warding state in MPLS fabrics.

From the IP point of view, LIPSIN can be considered as
another underlying forwarding fabric, similar to Ethernet
or MPLS. When an IP packet enters a LIPSIN fabric, the
edge router prepends a header containing a suitable zFilter,
see also Sect. 5.1; similarily, the header is removed at the
egress edge. For unicast traffic, the forwarding entry simply
contains a pre-computed zFilter, designed to forward the
packet through the domain to the appropriate egress edge.

For SSM, the ingress router of the source needs to keep
track of the joins received on multicast group through the
edge routers, just like any IP multicast router would need to.
Hence, it knows the egress edges a multicast packet needs to
reach. Based on that information, it can construct a suitable
zFilter from the combination of physical or virtual links to
deliver the packets, leading to more flexibility and typically
less state than in current forwarding fabrics.

3. DESIGN DETAILS AND EXTENSIONS
In this section, we present the details of our link-identity-

based forwarding approach. We start by giving a formal
description of the heart of the forwarding design, the for-
warding decision. Then, we focus on enhancements of the
basic design: Link ID Tags generation and selection of can-
didate Bloom filters. Next, we discuss additional features
that make the scheme practical: virtual links, fast recovery
after failures, and loop prevention. In the end, we consider
control messages and return paths.

3.1 Basic forwarding method
The core of our forwarding method, the forwarding deci-

sion, is based on a binary AND and comparison operations,

Franquin’s Zorglub for the Nth time during the early days
of the presented work. The name stuck.



Figure 3: An example relation of one Link ID to the
d LITs, using k hashes on the Link ID.

both of which are very simple to implement in hardware.
The base decision (Alg. 1), i.e. whether to forward on a
given outbound link or not, can be easily parallelised, as
there are no memory or other shared resource bottlenecks.
From now on, we build an enhanced system on the top of
this simple forwarding operation.

Algorithm 1: Forwarding method of LIPSIN

Input: Link IDs of the outgoing links; zFilter in the
packet header

foreach Link ID of outgoing interface do
if zFilter & Link ID == Link ID then

Forward packet on the link
end

end

3.2 Link IDs and LITs
Due to the nature of Bloom filters, a query may return

a false positive, leading to a wrong forwarding decision. To
reduce the number of false positives, we now introduce Link
ID Tags (LITs), as an addition to the plain Link IDs. The
idea is that instead of each link being identified with a single
Link ID, every unidirectional link is associated with a set of
d distinct LITs (Fig. 3). This allows us to construct differ-
ent candidate zFilters and to select the best-performing one
from the candidates, e.g., in terms of the false positive rate,
compliance with network policies, or multi path selection.

The forwarding information is stored in the form of d for-
warding tables, each containing the LIT entries of the active
Link IDs, as depicted in Fig. 4. The only modification of the
base forwarding method is that the node needs to be able to
determine on which forwarding table it should perform the
matching operations; for this, we include the index in the
packet header.

Construction: When determining the actual forwarding
tree based on the network graph, and the locations of the
publisher and subscribers, we can apply various policy re-
strictions (e.g. link-avoidance) and keep traffic engineering
in mind (e.g. balancing traffic load or avoiding temporarily
congested parts of the network). As a result, we get a set
of unidirectional links to be included into the zFilter. The
final step is ORing together the corresponding LITs of the
included links, yielding a candidate BF. As each link has d
different identities, we get d candidate BFs that are “equiv-
alent” representations of the delivery tree. That is, a packet
using any of the candidates will follow, at minimum, all the
network links inserted into the BF.

Selection: Recall that a false positive will result in an

Figure 4: Outgoing interfaces are equipped with d
forwarding tables, indexed by the value in the in-
coming packet.

excess delivery; i.e., a packet will be forwarded over a link
that is not part of the delivery tree. To achieve better per-
formance in terms of lower false positive probability, we first
consider two relatively simple strategies:
(i) Lowest false positive after hashing (fpa): The se-
lected BF should be the one with the lowest false probability
estimate after hashing: min{ρ0

k0 , . . . , ρd
kd}, where ρ is the

fill factor, i.e. the ratio of 1’s to 0’s.
(ii) Lowest observed false positive rate (fpr): Given
a test set Tset of link IDs, the candidate BF can be chosen
after counting for false positives against Tset. The objective
is to minimize the observed false positives when querying
against a known set of Link IDs active in the forwarding
nodes along the delivery tree.

The fpa strategy is simple and aims at lower false posi-
tives rates for any set of link IDs under membership test.
On the other hand, the fpr yields the best performance of
false positives for a specific test set at the expense of higher
computational complexity.

To further enhance fpr, false positives at different places
can be weighted; i.e., we can consider some false positives
less harmful than others. For example, we can avoid for-
warding towards non-peered domains, resource constrained
regions, or into potential loops. We call such selection cri-
teria as link avoidance, since they are based in penalizing
those candidate BFs that yield false positives when tested
against certain links. For example, the following kinds of
criteria could be considered:
(i) Routing policies: A Tset of links to be avoided due to
routing policies.
(ii) Congestion mitigation: A static Tset of links avoided
due to traffic engineering (e.g., low capacity links) and a dy-
namic Tset of congested links.
(iii) Security policies: A Tset of links avoided due to se-
curity concerns.

As a consequence, having multiple candidate representa-
tions for a given delivery tree is a way to minimise the num-
ber of false forwardings in the network, as well as restricting
these events to places where their effects are smallest.

3.3 Stateful functionality
So far, we have considered stateless operations, where each

forwarding node maintains only a static forwarding table



storing the LITs. We now carefully introduce state to the
network in the form of virtual links and fast failure recovery.
While increasing hardware and signaling cost, the state re-
duces the overall cost due to increased traffic efficiency when
facing large multicast groups or link failures.

3.3.1 Virtual links
In the case of dense trees, especially when a number of

trees share multiple consecutive links, it becomes efficient to
identify sets of individual links with a separate Link ID and
associated LITs. We call such sets of links as virtual links.
The abstraction introduces the notion of tunnels (or link
aggregation) into our architecture – a notion more general
than traditional one-to-one or one-to-many tunnels, being
able to represent any link sets, including partial one-to-many
trees, forests of partial trees, many-to-one concast trees, etc.

A virtual link may be generated by the topology layer
whenever it sees the need for such a tree. The creation
process consists of selecting the individual links over which
the virtual link is created, assigning it a new Link ID, and
computing the LITs. To finalize the creation process, the
topology layer needs to communicate the Link ID, together
with the LITs, to the nodes residing on the virtual link.

Note that virtual link maintenance does not need to hap-
pen in line speed; there are always alternative ways of send-
ing the same data. For example, if a virtual link is needed
to support a very large multicast tree, the sender can still
send multiple packets instead of one, each covering only a
part of the tree.

Once the virtual link creation process is finished, we can
use a LIT of this virtual link in any zFilter instead of in-
cluding all the individual LITs into it. This reduces the
probability for false positives when matching the zFilter on
the path. On the other hand, adding forwarding table en-
tries into nodes increases the sizes of the forwarding tables.
Given the typical Zipf-distribution of the number of mul-
ticast receivers [24], the sizes of the forwarding tables will
still remain small compared to the current situation with
IP routers. Unfortunately, falsely matching to a virtual link
will mean falsely forwarding packets through the entire con-
nected part of the denoted subgraph; however, this can be
mitigated by careful naming of the virtual links (e.g. more
1-bits than in the case of physical links) and explicitly avoid-
ing these false positives during BF-selection.

3.3.2 Fast recovery
Whenever a link or a node fails, all delivery trees flowing

through the failed component break. In this section, we
consider two approaches for fast re-routing around single
link and node failures.

Our first approach is to replace a failed link with a func-
tionally equivalent virtual link. We call this as VLId-based
recovery. The idea is to have a separate virtual backup path
pre-configured for each physical link ID, to be dynamically
used in case of failure. This virtual backup path has the
same Link ID and LITs as the physical link it replaces, but
is initially inactive to avoid false forwarding.

The main advantage of this solution is that there is no
need to change the packets. Basically, it is enough that the
node detecting a failure sends an activation message over
the replacement path, activating it for both the failed phys-
ical link and any virtual links flowing over the physical link,
and then starts to forward the packets normally. When re-

ceiving the activation message, the nodes along the backup
path reconfigure their forwarding tables, and as a result, the
unmodified packets flow over the replacement path.

Another approach is to have a pre-computed zFilter en-
coding the replacement path. In this method, when a node
detects a failure, it simply needs to add the appropriate
LIT(s) representing the backup path into the zFilter in the
packet. This method does not add any additional signaling
or state to the forwarding nodes, but it increases the prob-
ability of false positives by increasing the fill factor of the
zFilter.

Both of the mechanisms are capable of re-routing the traf-
fic with zero convergence time and without service disrup-
tion. Besides protecting against single link failures, they are
also able to recover from single node failures, if the operator
has configured multiple backup paths or a backup tree to-
wards all the neighbours of the failed node. These two types
of failures cover around 85% of all unplanned outages [27].
In the complex cases where the proposed mechanisms are
not able to perform local rerouting, new zFilters need to be
computed.

3.3.3 Loop prevention
In some cases false positives can result in loops; for in-

stance, consider the case where a zFilter encodes a forward-
ing path A→ B → C, but, due to a false positive, the zFilter
also matches with a separate link C → A, which is used to
forward packets from C to A. Without loop prevention, this
will cause an endless loop of A→ B → C → A. Obviously,
as the constructed delivery tree may cause a loop, we can
still use the fpr method to select only loopless candidate
BFs. However, this does not guarantee loop freeness as the
network changes.

As an alternative solution, we start with each node know-
ing the neighboring nodes’ outgoing Link ID and LITs to-
wards the node itself; we call these the incoming Link ID
and LITs. Now, for each incoming packet, the node checks
the incoming LITs of its interfaces, except the one from
where the packet arrives, and compares them to the zFilter.
A match means that there is a possibility for a loop, and
the node caches the packet’s zFilter and the incoming Link
ID for a short period of time. In case of a loop, the packet
will return over a different link than the cached one. Our
early evaluation is based on this approach and suggests that
a small caching memory does not penalize the performance.

As a third alternative, at the inter-AS level we can di-
vide the links into up, transit, and down ones, and utilise
the valley-free traffic model. As a final method, it remains
always possible to use TTL similar to what IP uses today.

3.3.4 Explicitly blocking false positives
Most false positives cause a packet to be sent to a node

that will drop it. In some cases, the traffic generated as a
result of a false positive should be fully truncated; e.g., in the
case of low capacity or congested links, heavy non-cacheable
traffic flows, or inter-domain link policies it may be necessary
to locally disable forwarding of some traffic. Hence, we need
a means to explicitly block the falsely forwarded traffic flows
at an upstream point.

Therefore, any node can signal upstream a request to
block a specific zFilter over that physical link. This can
be implemented as a “negative” virtual Link ID, where a
match blocks forwarding over the link instead of enabling it.



3.4 Control messages, slow path, and services
To inject packets to the slow path on forwarding nodes,

each node can be equipped with a local, unique Link ID
denoting the node-internal passway from the switching fab-
ric to the control processor. That allows targeted control
messages to be passed to one or a few specific nodes, if de-
sired. Additionally, there may be virtual Link IDs attached
to these node-local passways, making it possible to multicast
control messages to a number of forwarding nodes without
needing to explicitly name each of them. If the messages
need to be modified, or even stopped on a node, the simul-
taneous forwarding should be blocked. This can be done
by using zFilters constructed for node-to-node communica-
tion, or using a virtual Link ID especially configured to pass
messages to the slow path and make the forwarding decision
after the message has been processed.

Generalising, we make the observation that the egress
points of a virtual link can be basically anything: nodes,
processor cards within nodes, or even specific services. This
would allow our approach to be extended to upper layers.

Another usage of control messages is collecting a symmet-
ric reverse path from a subscriber to the publisher for the
purpose of e.g. providing feedback. The publisher can ini-
tiate a control message triggering reverse path collection.
Getting the message, each intermediate node bitwise ORs
the appropriate reverse LIT with the path already collected
and forwards it towards the subscriber. When the message
finally reaches the subscriber, it will have a valid zFilter
towards the publisher. The zFilter was created without in-
teracting with the topology system.

4. EVALUATION
We now study some of the design trade-offs in detail.

First, we introduce a few performance indicators, and then
explore scalability limits and system performance. We use
packet-level ns-3 simulations over realistic AS topologies,
gaining insights on the forwarding efficiency of the proposed
solution. Finally, we consider security aspects.

4.1 Performance indicators
A fundamental metric is the false positive rate of the in-

packet Bloom filter. Link ID Tags are already in the form
of m-bit vectors, with k bits set to one, as they are added
to a candidate BFi. An accurate estimate of the basic false
positive rate can be given once the fill factor ρ of the BF is
known. The false positive after hashing fpa is the expected
false positive estimate after BF construction:

fpa = ρk (1)

The fpa-optimized BF selection was introduced in Sec. 3.2
and is based on finding the set of LITs with the smallest
predicted fpa. The observed false positive probability is the
actual false positive rate (fpr) when a set of membership
queries are made on the BF:

fpr =
#Observed false positives

#Tested elements
(2)

Note that the fpr is an experimental quantity and not a
theoretical estimate. The minimum observed fpr of the d
candidate BFs provides a reference lower bound for a specific
BF design.

These two metrics form the basic BF-selection criteria.
While fpa-optimized selection is cheaper in computational

AS 1221 3257 3967 6461 TA2

Nodes (#) 104 161 79 138 65
Links (#) 151 328 147 372 108
Diameter 8 10 10 8 8
Radius 4 5 6 4 5
Avg (Max) degr. 2 (18) 3 (29) 3 (12) 5 (20) 3 (10)

Table 1: Graph characterization of a subset of
router-level AS topologies used in the experiments.

terms, the fpr-optimized selection will give better results as
the actual topology is more precisely considered in this pro-
cess. However, the fpr describes the overall network per-
formance only indirectly. In order to capture better the
actual bandwidth consumption due to false positives, we in-
troduce forwarding efficiency as a metric to quantify the
bandwidth overhead caused by sending packets through un-
necessary links:

fwe =
#Links on shortest path tree

#Links during delivery
(3)

In other words, forwarding efficiency is 100% if the packets
strictly follow the shortest path tree for reaching the sub-
scribers. Consequently, this metric is representative and use-
ful in the scenarios where larger subscriber sets are reached
with multiple smaller delivery trees, or in virtual link scenar-
ios, where false positives may be costly by causing deliveries
over multiple hops.

4.2 Packet level simulations
First, we used the intra-domain AS topologies from Rock-

etfuel [1] to simulate the protocol behaviour. Though not
completely accurate, they are a common (best) practice to
experiment with new forwarding schemes in real world sce-
narios2. A second useful data set is SNDlib [28], from where
we selected the largest network (TA2 ). The most important
properties of these networks are shown in Table 1.

Using ns-3, we implemented a zFilter-based forwarding
layer and a simple topology module, which computes zFil-
ters based on publisher and subscriber locations and the
actual network map; the selected tree is always defined by
the shortest paths between the publisher and each of the
subscribers. We set m, the size of the BF to 248 bits; a
fair comparison to the IPv6 source and destination fields
(2 · 128). We briefly considered m = 120 and m = 504, but
abandoned the former due to poor performance and the lat-
ter due to relatively small overall gains compared to the per-
packet cost. A more flexible design, allowing m to vary per
packet, is left for further study. We investigated the effect
of different numbers of forwarding tables (d), the number
of subscribers (n), and the different LIT-sets for the nodes
(constant k = 5, variable k ∈ [3, 3, 4, 4, 5, 5, 6, 6] ), as well as
different BF-selection strategies.

Stateless forwarding: We present the essence of our
simulation results on Tables 2 and 3. Table 2 contains results
using the fpa selection criteria with the variable distribution

2Recent studies [35] have pointed out some limitations in
Rocketfuel data, suggesting that the number of actual phys-
ical routing elements may be less than inferred by their mea-
surement technique. However, this particular inaccuracy in
the present data places more stress on our mechanism than
the suggested corrected scheme would place.



Users AS
Links (#) Efic. (%) fpr (%)

mean 95% mean 5% mean 95%

4

TA2 8.6 12.7 99.92 100 0.02 0
1221 9.7 13.6 98.08 88.89 0.37 2.13
3257 9.6 13.5 99.83 100 0.02 0

8

TA2 15.6 20.0 99.6 94.12 0.2 1.59
1221 16.8 21.3 97.78 90.89 0.54 2.02
3257 17.9 22.9 98.95 91.3 0.28 1.25

16

TA2 25.7 30.9 97.92 91.67 0.83 2.67
1221 27.4 31.0 95.51 88.22 1.28 3.17
3257 31.3 36.7 92.37 79.58 1.76 3.86

24

TA2 34.1 38.8 95.2 87.18 1.95 4.63
1221 36.1 41.0 92.06 83.33 2.65 5.19
3257 42.2 48.1 82.27 67.69 4.17 6.96

32

TA2 41.4 46.0 92.04 84.31 3.46 6.46
1221 44.0 48.3 88.22 78.95 4.32 7.45
3257 52.2 57.9 71.47 59.34 7.3 10.41

Table 2: ns-3 results for d=8, variable k-distr.

Users AS
links fprfpa (%) fprfpr (%) Stdrd
mean kc kd kc kd k = 5

8

TA2 15.6 0.12 0.2 0 0 0.18
1221 16.83 0.44 0.54 0.26 0.26 0.55
3967 17.72 0.28 0.33 0.03 0.03 0.48
6461 17.18 0.32 0.39 0.06 0.07 0.36

16

TA2 25.7 0.54 0.83 0.01 0.03 0.8
1221 27.37 1.17 1.28 0.36 0.45 1.57
3967 29.04 1.13 1.29 0.24 0.34 1.48
6461 29.31 1.55 1.57 0.71 0.83 1.89

24

TA2 34.1 1.65 1.95 0.38 0.58 2.03
1221 36.14 2.48 2.65 1.21 1.33 3.55
3967 37.65 2.55 2.78 1.31 1.48 3.22
6461 39.60 3.72 3.79 2.81 2.86 4.86

Table 3: Mean fpr values for different configurations.

of k. The performance appears adequate in all of the topolo-
gies, up to 23 subscribers (≈ 32 links); forwarding efficiency
is still above 90% in the majority of the test cases. The
result is much better than multiple unicast, where the same
links would be used multiple times by the same publication.
For example, in AS3257 the unicast forwarding efficiency is
only 43% for 23 subscribers.

Table 3 sheds light on the difference between fpa and fpr
algorithms. There is an interesting relation between the dis-
tribution of k and the optimization strategies: in our region
of interest, kc = 5 performs better than the variable k dis-
tribution (kd). As expected, fpr-optimization successfully
reduces the false positive rate, and outperforms the non-
optimised (d = 1) approach by 2–3 times in the scenarios
with 16 users. The gain of using fpa instead of the non-
optimised algorithm is clear, although not as significant as
with fpr. These improvements can be also observed in the
sample results of AS6161, see Fig. 5.

Of course, as the link IDs are inserted into the zFilters,
delivery trees are only present in the packet headers, and
therefore completely independent from each other. Hence,
the number of simultaneous active trees does not affect the
forwarding performance.

Stateful forwarding: In networks with scale-free prop-
erties, a large part of the traffic flows between high-degree
hubs. We experimented with the effects of installing virtual
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Figure 5: ns-3 simulation results for AS 6461.
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Figure 6: Stateful dense multicast efficiency

links covering different parts of the network. We built vir-
tual links from the publisher towards the core and between
the hubs, but that enhanced the performance only slightly,
as virtual links substituted only a couple of physical links.

Significant performance enhancements can be reached if
we install virtual links rooted at (high-degree) core nodes
and covering a set of subscribers, avoiding thereby the pres-
ence of many LITs in the zFilter. The results on Fig. 6 show
that dense multicast can be supported with more than 92%-
95% forwarding efficiency even if we need to cover more than
50% of the total nodes in the network (cf. Table 2).

Forwarding table sizes: Assuming that each forward-
ing node maintains d distinct forwarding tables, with an
entry consisting of a LIT and the associated output port,
we can estimate the amount of memory we need for the for-
warding tables:

FTmem = d ·#Links · [size(LIT ) + size(Pout)] (4)

Considering d = 8, 128 links (physical & virtual), 248-bit
LITs and 8 bits for the outport, the total memory required
would be 256Kbit, which easily fits on-chip.

Although this memory size is already small , we can design
a more efficient forwarding table by using a sparse represen-
tation to store just the positions of the bits set to 1. Thereby,
the size of each LIT entry is reduced to k ·log2(LIT ) and the
total forwarding table requires only ≈ 48Kbit of memory, at
the expense of the decoding logic.

4.3 Discussion
To support larger trees than we can comfortably address

with a single zFilter, two choices can be considered. First,
we can create virtual links to maintain the fill factor and
to keep the overdeliveries under control. This comes at the



price of control traffic and the increase of state in forwarding
nodes. Second, we can send multiple packets: instead of
building one large multicast tree we can build several smaller
ones, thereby keeping zFilters’ fill factor reasonable. The
packets will follow the desired route with acceptable false
delivery rates, but exact copies will pass through certain
links where the delivery trees overlap. Depending on the
scenario specifics, this can result in more bandwidth waste
than in the case of a single larger tree.

So far, we have calculated the performance of zFilters for
specific sized subscriber sets. A further step is to estimate
the overall performance of the network, where the traffic ma-
trix is consisting of a large variety of different subscriber sets.
Here we rely on current systems centered around dissemi-
nating information objects. First, according to RSS work-
load data collected at Cornell, the number of subscribers
for different topics follows a Zipf distribution [24]. Second,
YouTube video popularity also shows a power-law distribu-
tion in a campus network [17]. Third, IPTV channel pop-
ularity [11] was measured to have the same characteristics
even with a faster drop in the case of unpopular channels
than the Zipf-distribution would suggest. Fourth, in typical
data centers there is a need for a large number of multicast
groups, albeit all contain only a small amount of receivers [5].

Based on these observations, assuming a long tail in the
popularity of topics, with m = 248 our results confirm that
our fabric needs no forwarding state for the large majority
of topics and requires virtual links or multiple sending only
for the few most popular topics. This is a clear advantage
compared to IP multicast solutions, where even the small
groups need forwarding states in the routers. Furthermore,
as we can freely combine the stateful and stateless methods,
we can readily accommodate a number of changes in the
popular topics before needing to signal a state change in the
network, avoiding unnecessary communication overhead.

4.4 Security
The probabilistic nature of Bloom filters directly provides

the basis for most of our security features. Furthermore, as
zFilters are location specific, it is unlikely that any given
zFilter could induce any usable traffic if used outside of its
intended links. Without knowledge of the actual network
graph, including the active Link IDs and LITs, it is unprac-
tical trying to guess a zFilter that would reach any particular
set of nodes.

In a simple zFilter contamination attack, the attacker tries
to get a single packet to be broadcasted to all possible links
by using a BF containing a large amount of 1’s (or even only
1’s). A simple countermeasure for such attack, also observed
in [44], is to limit the fill factor, e.g., to 50–70%. We have
implemented this in hardware, without causing any addi-
tional delay. As a result, a randomly generated zFilter will
match outgoing links only at the false positive rate resulting
from the maximal allowed fill factor.

In a more advanced attack, combining a LIT learning at-
tack and a zFilter re-use attack, an attacker may first at-
tempt to figure out the LITs of the links nearby it by at-
tempting to lure lots of subscribers from different parts of
the network. The attacker learns a number of valid zFil-
ters originating at it and, using AND for the received LITs,
guesses the LITs of the next few links. This attack, however,
requires a lot of work, and there are a few direct counter-
measures. First, the number of parallel LIT’s close to the

publisher can be increased and the uplink Link IDs can be
changed more often. Second, by varying the selection of the
Bloom filter (Sec. 3.2), though not optimal, we may increase
the probability that the attacker gets a too full zFilter.

More generally, we can avoid many of the known, and
probably a number of still unknown attacks, by slowly chang-
ing the Link IDs over time. Our on-going work is focusing
on hash chains and pseudo-random sequences in this area,
meaning that with a shared secret between the individual
forwarding nodes and the topology system the control over-
head of communicating the changes could be kept at a min-
imum. The caveat would be that the zFilters being used in
the network need to be re-calculated once in a while.

Overall, no forwarding state is created if there aren’t a
fairly large number of subscribers that have explicitly in-
dicated their interest in data delivery. We thereby avoid
the typical problems of multicast routers maintaining state
of unnecessary multicast groups, e.g., an attacker joining
many low-rate multicast groups.

Finally, consider a situation where an attacker has suc-
cessfully launched a DDoS attack. Initially, the victim can
quench the packet stream by requesting the closest upstream
node to filter traffic according to the operation defined in
Section 3.3.4. After that, the LITs on the forwarding nodes
can be changed to extinguish the attack. However, the latter
is a slower operation, requiring updates to the topology layer
and recalculation of zFilters for affected active subscriptions.
Additional future work will consider how legitimate traffic
can exploit the multi-path capabilities of the zFilters.

5. FEASIBILITY
We now turn our attention to the overall feasibility of

our approach, focusing on the inter-networking aspects. In
particular, we consider how our forwarding fabric can be
extended to cover inter-domain forwarding. We discuss the
efficiency and scalability aspects for the pure pub/sub case.
For the IP-based multicast case, described in Section 2.4,
we need to use currently existing mechanisms, limiting the
breadth of the issues. We also discuss how the proposal is
(slightly) better than IP in supporting data-oriented naming
and in-network caching.

5.1 Full connectivity abstraction
As mentioned in Sect. 2, the overall architecture we rely

on is based on a recursive approach, where each layer pro-
vides a full connectivity abstraction. Hence, to implement
inter-domain forwarding, we need to attach two forwarding
headers into a packet, an intra-domain and an inter-domain
one, and replace the intra-domain header at each domain
boundary. For IP multicast, the IP header with the IP mul-
ticast address takes the place of the inter-domain header.

To provide the full mesh abstraction, a domain provides
an inter-domain Link ID (IdLId) for each of its neighboring
domains. Furthermore, the domain provides a distinct Link
ID to be added to packets that have local receivers. Hence,
in the inter-domain zFilter of an incoming packet, there is
the incoming IdLId for the link from the previous to this
domain, the outgoing IdLIds for the links from this domain
to any next domains, and if there are any local receivers, the
IdLId denoting their existence.

When we receive a packet from outside, we first may ver-
ify that the packet is forwarded appropriately, e.g., that
the inter-domain zFilter contains the incoming IdLId. Af-



Figure 7: Inter-domain forwarding with distributed
RVSs

ter that, we match the zFilter against all outgoing IdLIds,
simultaneously looking up the corresponding intra-domain
zFilters. The intra-domain zFilters can usually be simply
merged. If the inter-domain zFilter indicates local recipi-
ents, more processing is needed.

We assume that the data topic identifier, carried inside
the packet, or other suitable identifier such as an IP mul-
ticast address, is used to index the set of local recipients.
For IP multicast addresses, it is reasonable to expect the
edge nodes to maintain the required state. For the pub/sub
case, where the number of active topics may be huge, the
subcriber information may be divided between a set of intra-
domain rendezvous nodes (see Figure 7), providing load dis-
tribution.

Eventually, a rendezvous node looks up the intra-domain
zFilter by using the topic identifier. As it takes time to pass
the packet to the right rendezvous node, and as the lookup
may take some time, the rendezvous nodes can construct
cache-like forwarding maps and distribute them to the edge
nodes.

5.2 Resource consumption
We now estimate the amount of resources needed to main-

tain topic-based forwarding tables, needed for the recursive
layering in the pub/sub case. To estimate the storage re-
quirements, we consider the number of indexable web pages
in the current Internet as a reasonable upper limit for the
number of topics subscribed within a domain. In 2005 there
was around 1010 indexable web pages [18]; today’s number is
larger and we assume it to be around 1011. Considering that
each topic name would take 40 bytes and each forwarding
header takes 32− 34 bytes, in the order ≈ 10 TB of storage
would be needed.

Following the argumentation by Koponen et al [23] and
assuming similar dynamics, it is plausible that even a single
large multi-processor machine could handle the load. How-
ever, a multi-level lookup caching system is needed to reduce
per-packet lookup delay to a reasonable level. For example,
each edge node could cache a few million most active topics,
each rendezvous node could keep in their DRAM a few bil-
lion less active topics, and the information about rest could
be stored on a fast disk array. If only a small fraction of
subscriptions would be active at any given point of time,
the suggested multi-level caching may make it possible to
handle the typical lookup load with just one or a few large
server PCs.

We note that the approach may be problematic for appli-
cations where the inter-packet delay is long but latency re-

quirements are strict. If needed, the problem can be solved
by introducing explicit signaling that would allow certain
topics to be always kept in the cache, even when not ac-
tively used3.

An interesting open problem is to consider potential space
saving techniques, such as determining commonalities be-
tween inter-domain zFilters, perhaps allowing them to be
used as indices. If the topics sharing a single inter-domain
zFilter can be distinguished with only a few bits, it may be
possible to develop clever data structures for compressing
the topic-based forwarding tables.

5.3 Policy compliance and traffic engineering
For the IP case, we expect no real changes to traffic engi-

neering or policies, as the forwarding fabric would be invisi-
ble outside of the domain. In the recursive pub/sub case, we
have to make sure that the inter-domain zFilters are policy-
compliant. As a starting point, each edge node can verify
that all traffic is either received from a paying customer or
passed to a paying customer. However, due to multicast,
there are difficult cases not covered by the typical IP-based
policy compliance rules, such as traffic arriving from one
upstream provider and destined both to a paying customer
and another upstream provider. In general, we will eventu-
ally need a careful study of the issues identified by Faratin et
al [16]. As observed in [30], it is an open problem how the
kind of source routing we propose may change the overall
market place and policies.

Considering traffic engineering, sender-based control would
be easy. At this point, however, open questions include how
the transit operators may affect the paths or how the re-
ceivers can express their preferences. We surmise that those
aspects have to be implemented elsewhere in the architec-
ture, as our forwarding layer can redirect traffic only by
redirecting links.

5.4 Naming and caching
As mentioned earlier, both data-oriented naming and in-

network caching are needed for efficient pub/sub. Our stack
structure and independence of end-node addresses in zFil-
ter forwarding, make both of these functions simpler com-
pared to IP networks. Our architecture treats data as first
class citizens. The focus is on efficient data delivery instead
of connecting different hosts for resource sharing. The de-
fault choice of multicast brings natural separation of ren-
dezvous (addressing/naming) and routing. The resulting
identifier/locator split gives better support for data-oriented
naming than the current IP-based architecture, cf. e.g. [2].
Once routing is based on location-independent identifiers,
any kind of native naming and addressing on the infrastruc-
ture turns out to be a straightforward task.

The zFilter forwarding eases in-network caching by sup-
porting the required decoupling between publishers and sub-
scribers. Publishers can publish data in the network, inde-
pendent of the availability of subscribers. Packet caching
and further delivery from the caches is relatively simple, as
node based addressing is not needed. Caching can also be
used for other purposes, e.g., enhancing reliability. Com-
bining data-oriented naming and caching, we can turn the
traditional packet queues and the sibling recipient memories
into opportunistic indexable caches, allowing, for example,

3Obviously, such a service would either need strict access
controls or an explicit fee structure.



Figure 8: FreeBSD prototype structure

any node to ask for recent copies of any missed or garbled
packets; cf. [3, 14]. The fine-grain path control allows us to
easily determine those nodes that may have copies of recent
packets in their memory. Multicast, in turn, allows local
control queries to be sent efficiently. The falling prices of
memory compared to bandwidth indicates the economical
feasibility of our model.

6. IMPLEMENTATION
There are currently two partial prototypes of the sys-

tem. The FreeBSD-based end-node prototype consists of
some 10000 lines of C code, implementing both the pub/sub
subsystem and the forwarding fabric. Our NetFPGA-based
forwarding node prototype has currently some 390 lines of
Verilog, implementing the main ideas from this paper. In
this section, we briefly describe the implementation details
and present early measurements of the NetFPGA forward-
ing module.

6.1 End node
The structure of the end-node prototype is depicted in

Fig. 8. The I/O module implements a few new system
calls for creating new publications (reserving memory ar-
eas), publishing, and subscribing. When allocating mem-
ory for a publication, the pager is set to be a vnode pager,
and the backing file to be in the Filesystem in Userspace
(FUSE)[38]. Hence, each publication is backed up by a vir-
tual file, located in a separate virtual file system running
under FUSE.

Currently, forwarding and other network traffic is handled
in separate threads running within the Pub/Sub daemon,
simply sending and receiving raw Ethernet frames with lib-

net and libpcap. While we use Ethernet frames, we always
broadcast the frames, basically using each Ethernet cable as
a point-to-point link, disregarding any Ethernet bridging or
switching.

6.2 Forwarding node
We have implemented an early prototype of a forward-

ing node using Stanford NetFPGA [25]. Starting from the
Stanford reference switch implementation, we removed most
of the for-us-unnecessary code in the reference pipeline and
replaced it with a simple zFilter switch. At this point, we
have implemented the basic LIT and virtual link ideas, and
tested it with 4 real and 4 virtual LITs per interface. With
this configuration, the total usage of NetFPGA resources
for the logic is 4.891 4-input LUTs out of 47.232, and 1.861
Slice Flip/Flops (FF) out of 47.232. No BRAMs are re-
served. For the whole system, the corresponding numbers

# of Average Std. Latency/
NetFPGAs latency Dev. NetFPGA

0 16µs 1µs N/A
1 19µs 2µs 3µs
2 21µs 2µs 3µs
3 24µs 2µs 3µs

Table 4: Simple latency measurement results

are 20.273 LUTs, 15.347 FFs, and 106 BRAMs.
To get some understanding of the potential speed, we have

made some early measurements. The first set of measure-
ments, shown in Table 4, focused on the latency of the for-
warding node with a very low load. In each case, the latency
of 10000 packets was measured, varying the number of NetF-
PGAs on the path from zero (direct wire) to three. Packets
were sent at a rate of 25 packets/second; both sending and
receiving was implemented directly in the FreeBSD kernel.

The delay caused by the Bloom filter matching code is
56ns (7 clock cycles), which is insignificant compared to
the measured 3µs delay of the whole NetFPGA processing.
With background traffic, the average latency per NetFPGA
increased to 5µs.

To get an idea of the achievable throughput, we compared
our implementation with the Stanford reference router. This
was quantified by comparing ICMP echo requests processing
times through a plain wire, our implementation, and the ref-
erence IP router with five entries in the forwarding table. To
compensate the quite high deviation, caused by sending and
receiving ICMP packets and involving user level processing,
we averaged over 100 000 samples. The results are shown in
Table 5.

While we did not directly measure the bandwidth (due to
lack of test equipment to reliably fill the pipes), there are no
reasons why the implementation would not operate at full
bandwidth. The code is straightforward and should be able
to keep the pipeline full under all conditions.

7. RELATED WORK
Related work falls into various categories, which we briefly

discuss in the following paragraphs.
Network level multicast: Our basic communication

scheme is functionally similar to IP-based source specific
multicast (SSM) [19], with IP multicast groups replaced by
topic identifiers. The main difference is that we support
stateless multicast for sparse subscriber groups, with uni-
cast being a special case of multicast; IP multicast typically
creates lot of state in the network if one needs to support a
large set of small multicast groups.

In“Revisiting IP multicast” [31], Ratnasamy et al propose
source border routers to include an 800-bit Bloom-filter-
based shim header (TREE_BF) in packets. TREE BFs rep-
resent AS-level paths of the form ASa : ASb in the dissemi-
nation tree of multicast packets. Moreover, a second type of
Bloom filters is used to aggregate active intra-domain mul-
ticast groups piggybacked in BGP updates. The presented
method uses standard IP-based forwarding mechanisms en-
riched with the built-in TREE BF to take the inter-domain
forwarding decisions. However, our multicast fabric uses the
in-packet Bloom filter directly for the forwarding decisions,
removing the need for IP-addresses and proposing Link IDs



Path Avg. latency Std. Dev.
Plain wire 94µs 28µs
IP router 102µs 44µs
LIPSIN 96µs 28µs

Table 5: Ping through various implementations

as a generic indirection primitive.
In Xcast [7], source nodes encode the list of multicast

channel destinations into the Xcast header. Each router
along the way parses the header, partitions the destinations
based on each destination’s next hop, and forwards a packet
appropriately until there is only one destination left where
the Xcast packet is unicasted. Our fixed size Bloom filter
approach shares the simplicity and stateless operations of
Xcast while it avoids costly header re-writings and the des-
tination IP packet header overhead.

Data-center applications and multicast: In [4] Bhar-
gava et al discuss the performance achieved with kernel-level
multicast for distributed databases. Due to the problems of
IP multicast, such approaches are not commonly used in
data-center applications. Recently, there has been some ef-
forts on mapping traditional IP multicast to new models to
ease wider use of IP multicast in these applications [42]. Our
approach provides some new ground for considering multi-
cast and explicit routing (e.g., middlebox serialization) in
data-center environments.

Explicit routing: The simplest form of source routing
[37] is based on concatenating the forwarding nodes’ net-
work identifiers on the path between senders and receivers.
Our approach addresses the main caveats of source routing,
including the overhead of having to carry all the routing in-
formation in the packet. Moreover, our approach does not
reveal node or link identifiers, not even to the sending nodes,
nor the sequence or exact amount of hops involved.

GMPLS [26] is being marketed as a solution to provide fast
forwarding. By separating control and forwarding planes, it
introduces more flexibility and promises performance gains,
with the hardware-based fast label switching. However, it
does not directly scale for massive multicast due to the lim-
ited label space and no capability for label aggregation.

In PoMo [29], Poutievski, Calvert, and Griffioen suggest
an approach that trades overdeliveries for reduced state and
reduced dependence of node network locators. In [10], the
same authors propose an architectural approach with link
identities having a pivotal role.

The BANANAS framework [22] is based on encoding each
path as a short hash (PathID) of a sequence of globally
known identifiers. The focus of BANANAS is on host-centric
multipath communications, while ours is centered around
non-global, opaque Link IDs and their compact represen-
tation. Some of the schemes developed in [22] for route
computation and deployability over existing connectionless
routing protocols (e.g., OSPF and BGP extensions) may be
used to support LIPSIN over legacy networks.

Routing and forwarding with Bloom filters: Mul-
tiple flavours of Bloom filters [9] have been proposed to as-
sist the forwarding operations of diverse systems (e.g., P2P,
WSN, pub/sub). In the field of content-based pub/sub [21],
Bloom filters are employed to represent a conjunction of
subscriptions’ predicates (SBSTree) used at content-based

event forwarding time. In comparison, our pub/sub prim-
itives are topic-based and the Bloom filters are built into
packets to carry link IDs and not summarized subscriptions
stored in network elements. Other forms of in-packet Bloom
filters include the loop detection mechanism in Icarus [43],
the credentials-based data path authentication in [44], and
the aforementioned AS-level path representation for IP mul-
ticast [31].

8. CONCLUSIONS
Building on the idea of placing a Bloom filter into data

packets, we have proposed a new forwarding fabric for mul-
ticast traffic. With reasonably small headers, comparable
to those of IPv6, we can handle the large majority of Zipf-
distributed multicast groups, up to some 20 subscribers, in
realistic metropolitan-sized topologies, without adding any
state in the network and with negligible forwarding over-
head. For the remainder of traffic, the approach provides
the ability to balance between stateless multiple sending and
stateful approaches. With the stateful approach, we can
handle dense multicast groups with very good forwarding
efficiency. The forwarding decisions are simple, energy effi-
cient, parallelised in hardware, and have appealing security
properties. All these attributes make our work, in its current
form, a potential choicer for data-center applications.

While a lot of work remains, the results indicate that it
may be feasible to support Internet-wide massive multicast
in a scalable manner. Technically, the main remaining ob-
stacles are related to determining the right local delivery
tree for traffic arriving from outside of a domain. Our cur-
rent proposal scales only linearly. The problems related to
the deployment and business aspects are likely to be even
harder, but fall beyond the scope of this paper.

From a larger point of view, support for massive multi-
cast is but one component needed for Internet-wide pub-
lish/subscribe. The other two components, data-oriented
naming and in-network caching, we touched only indirectly.
However, we hope that our work allows others to build upon
it, allowing experimentation with network architectures that
are fundamentally different from the currently deployed ones.
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S. Tarkoma. Incentive-compatible caching and peering
in data-oriented networks. In ReArch’08, 2008.

[31] S. Ratnasamy, A. Ermolinskiy, and S. Shenker.
Revisiting IP multicast. In SIGCOMM’06, 2006.
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Abstract—We envision an information-centric future Internet
where the network is built around named pieces of data instead
of explicitly addressable hosts. One clear way of implementing
information-centric networking is using publish and subscribe
(pub/sub) operations instead of the send and receive primitives.
Internet-like pub/sub networking requires completely different
routing protocols and forwarding mechanisms compared to those
that are extensively used today. Consequently, we are facing a
clean-slate design exercise, where we should start our adventure
by exploring the new design space. We identify four key metrics
(signalling overhead, state in nodes, information in packets and
routing stretch) to help us evaluating the different proposals.
We present a general five-step approach for routing in pub/sub
networks. The presented approach is recursive, so it can be
repeated as many times as necessary until we reach manageable
sized problem instances. The final part of the mechanism is to
glue together the created and assigned forwarding structures to
the publication to ensure that all interested subscribers at any
domains in the network will get the requested data.

I. INTRODUCTION

In addition to the prominent World Wide Web, new forms of
Internet usage have appeared rapidly in the last years. People
read news feeds, listen to webradios, watch (RT or non-RT)
video streaming, and download huge amount of data using
BitTorrent. A common characteristic of these applications is
that the users indicate their wish to get some specific pieces of
information and they are not interested in the sources of data
as long as the data comes in its original, unmodified form.

The first one to prominently advertise this shift in the
application space from connections to information was Van
Jacobson in his talk in 2006 [1]. Since that, it has become a
common direction to propose clean-slate solutions for solving
the problems of IP [2]. Researchers are aiming for new inter-
networking solutions that have native support for mobility,
multi-homing, privacy, accountability, or other clearly missing
features. Furthermore, many of the proposed solutions use data
instead of the hosts as the basis for the design [3].

As a specific example, the EU FP7 PSIRP project [4]
has a goal of building a pub/sub-based network, where the
architecture uses pieces of data as the first-class citizens. With
the publish operation, an endpoint can indicate that it wants
to associate a document or a one-way channel with the given
(possibly randomly looking) identifier. With the subscribe, an
endpoint can signal its desire to get (read only) access to the
named document or channel. Based on the subscriptions, the
network is responsible for delivering the document or any data
appearing on the channel, to all the subscribers. As typical to
pub/sub-, multicast is the natural mode of communication.

In this paper, we explore the new design space we are
facing when attempting to design the routing and forwarding
components of the PSIRP architecture [4]. First, we discuss the
problem of designing a scalable routing mechanism for mul-
ticast and multicast-based publish/subscribe (Sec. II). Next,
we briefly overview the RTFM architecture [5], the variant of
the PSIRP architecture that our work is based on, including
various possible forwarding components (Sec. III). The core
contribution of this paper is our Divide&Conquer approach to
tackle the problems of scalable routing (Sec. IV). We divide
the routing problem in two dimensions: first, vertical and
second, horizontal. The former is hierarchical division and the
latter is dividing the overall problem of multicast routing in
each area of the hierarchy to smaller subproblems, each of
which is easily manageable as such. Finally, we discuss related
work (Sec. V) and provide our tentative conclusions (Sec. VI).

II. THE PROBLEM

Our aim is to create an information-oriented network based
on the pub/sub paradigm. The data transmission with unicast in
such networks is clearly not optimal w.r.t. transport efficiency,
while the same data is delivered over the same connections
multiple times. Thus, we have selected multicast as the primary
transport mechanism. As a consequence, it is more natural to
consider delivery trees rather than forwarding paths.

A forwarding tree for a given publication contains the
publisher and all subscribers. It may be optimal w.r.t. an
appropriate metric, e.g. delay. We call such trees as ideal trees.

It appears that the routing&forwarding solution space for
multicast tree implementations is 4-dimensional, as they can
be evaluated by four rather orthogonal metrics. The first is
the transport efficiency measured in stretch, meaning that the
packets follow the shortest possible paths (in any appropriate
metric). The second concerns the amount of network state
needed in the forwarding nodes. This must grow sublinear
w.r.t. the number of nodes and subscribers and strongly sublin-
ear w.r.t. the number of publications. The third aspect involves
the number of bits included in the packet headers, encoding
the information that helps the forwarding node to determine
the outgoing interface. The final one is the signalling overhead
caused by routing and other related control protocols.

Assume two examples: a) source routing requires a high
amount of information in the packet headers but relatively little
state in the forwarding nodes. The downside is the signaling
overhead in scenarios under subscribers’ churn, as the sender
of the data should be always up-to-date on the information



encoded in the headers. Moreover, the transport utilization
depends to a large extent on the algorithms the overall system
uses to compute the forwarding trees for data delivery.

In the second example, b) network state installed to describe
directly the ideal trees into the forwarding nodes provides
high levels of transport efficiency and minimal number of
bits in packet headers (just a tree identifier). Potentially, each
forwarding node may need to have a separate entry for each
single active publication tree in the globe. Moreover, every
change in any tree would need to be signalled to a potentially
large number of forwarding nodes.

To avoid potential state explosion (as our estimation total
number of possible publications ≈ 1015), we are looking for
solutions that use good enough forwarding trees, i.e., which
are close to ideal but require only a reasonable amount of state
in the network. When trying to save state, we may end up with
a little higher overhead, for example in terms of unnecessarily
sent packets. However, this may be remedied by other means,
for instance by utilising opportunistic caching.

In this paper, our goal is to work towards a solution that
finds a good balance among the contradictory aspects. To get
there, we first present the overall PSIRP architecture, and then
briefly discuss our ongoing work in the forwarding domain.

III. THE PSIRP COMPONENTS

We start by briefly outlining the RTFM architecture [5],
an early design choice from the PSIRP project. Our present
contribution can be regarded as an evolutionary step building
upon RTFM. The RTFM consists of recursive functional
building blocks:

1) A Rendezvous system is in charge of matching subscrip-
tions to publications within information scopes.

2) The Topology system, our main focus in this paper, is
responsible for collecting and managing network topol-
ogy information, as well as creating and maintaining the
required multicast delivery trees both proactively (estab-
lishment, optimization) and re-actively (on-demand).

3) The Forwarding functions perform the actual datagram
delivery, based on the forwarding identifiers in the
packet headers and the state installed in the forwarding
nodes by the topology system.

4) Finally, More refers to the additional data mediation
functions at forwarding time, such as opportunistic
caching or network coding.

At the bottom of the architecture we have the forwarding
layer. Above it, the structure can be divided into a data and
control plane (see Fig. 1). The functions are present seperately
in different network levels (e.g. in domain(AS)-level, core
network level). The control plane consists of the topology
and rendezvous systems. At the data plane, in addition to
the traditional transport functions, we envision a number of
new network functions, e.g. opportunistic caching and lateral
error correction. The transport functions will work in concert,
utilising each other in a component wheel [4], similar to the
way Haggle managers are organised [6].

In our design, the basic communication scheme is function-
ally similar to IP-based Source Specific Multicast (SSM) [7],
with the IP multicast groups having been replaced by an iden-
tifier identifying the publication, similar to the topic identifier
described in [8].

Each publication, be it a single packet, a one-way multicast
channel or a document, is identified with a Rendezvous Iden-
tifier (RId). More precisely, each publication is identified with
a < SId,RId > pair, where the Scope Identifiers < SId >
are just specific RIds, identifying scopes, which help the
rendezvous system to scale and to organise the publications.

When a publisher wants to publish a new piece of informa-
tion, it picks up a RId and hands the publication data to the
system. Correspondingly, subscribers acquire the RIds through
application-specific means and ask the system to arrange the
data to be received. Once the rendezvous system has identified
a publication that has both a publisher (or an up-to-date cache)
and one or more subscribers, the topology system is requested
to build a forwarding tree from the present location of the data
to the subscribers. The high-level operations of this routing
function are the main concern of this paper.

A. Forwarding components

First, we outline four solution components: using in-packet
Bloom filters to encode delivery trees, using Merkle trees
to represent partial forwarding trees, and scaling these ap-
proaches up to more dense trees through installing explicit
state within the forwarding nodes, and finally, we briefly
outline how the latter approaches could work together.

1) Encoding delivery trees with Bloom filters: Bloom fil-
ters (BFs) [9] are data structures for representing subsets of a
given maximum size without listing the individual elements.
BFs are applicable in any situation where a small number of
false positives is acceptable. When used to take forwarding
decisions, false positives are translated into packets being
transmitted over additional links than the ones originally
programmed. As long as the false positive rate is low enough,
we consider that acceptable due to active caching and the
decreasing probability of concatenated false positives over
multiple hops; for the details, see [10].

To encode delivery trees, we form a set L of directed links.
That is, for the forwarding nodes A and B, we represent the

Fig. 1: High level arquitectural overview.



link from A to B as
−−→
AB, and the link from B to A as

←−−
AB.

So, any forwarding tree can be seen as a set of unidirectional
links. For example, encoding a simple tree with links from A
to B, and from B to C, we should add

−−→
AB and

−→
AC into the

BF.
We place the BF describing the delivery tree into the packet

header. Checking the header, each forwarding node tests which
of its outgoing links are included in the set. Since this is a
simple binary and operation, the checks can be done parallel
in hardware, producing a very fast forwarding plane.1

As we show in [10], using 248-bit BFs, it is possible to
encode up to about 40 link names (out of trillions) into a single
BF, while still having an acceptable false positive rate (of
around 4%.) That means that we can forward unicast packets
over 40 links, well over the maximum practical hop count in
the current Internet. For multicast, if we assume Internet-like
AS topologies, we can use a single BF to address up to 20
receivers scattered all over a large AS topology. If more is
needed, state can be added into the network in the form of
virtual links as shown below.

Hence, using BFs in packets seems to provide us with an
efficient way of source routing in arbitrary trees over Internet-
like topologies.Our approach aims to work in intra- and inter-
domain scenarios over any transport technology.

2) Merkle tree representation: Merkle trees [11] are data
structures that contain summary information about a larger
tree-like data structure. We propose to use them as an alterna-
tive compact form to represent forwarding trees and to derive
chained forwarding labels.

Every node in the Merkle tree has a view of its vicinity and
knows about the active trees it participates in. The active tree
structures need to be consistent among the domains partici-
pating in the inter-domain routing, requiring the existence of
a routing protocol to maintain the tree structures. The actual
labels forming the hash trees can be constructed for each active
tree. The node compares the received label with the compiled
root hashes of its active network trees to resolve the next
hop(s) and include the updated forwarding identifiers. Hence,
the chained hashing mechanism of Merkle trees provide an
uniform way to derive compact labels that aggregate paths
recursively.

3) Utilising subtrees as virtual links: When the capacity of
a single BF is not sufficient, the system can be extended by
representing some subtrees as a virtual link. Basically, a virtual
tree is a subtree that has a distinct name and associated state
in the network nodes. That is, while we use BFs to encode
the links of a tree in the packet header, we can also include
trees as virtual links in this Bloom-filter-based representation.

Given the scale-free characteristics of the Internet, a major
part of the data travels through a very small hub (tier-1).
With virtual links, we can define forwarding subtrees that
take advantage of the common path towards the center of
the network that can be assumed for the vast majority of the

1There is a small possibility that this simple method would create forward-
ing loops. For loop prevention, see [10].

traffic from any source. By defining virtual links spanning
over multiple hops towards the domain edges, more stable fast
forwarding paths can be installed explicitly in the network.

Hence, with this construction, the problem of mapping
rendezvous identifiers to forwarding identifiers can be reduced,
deeper in the network, to a smaller mapping problem of active
flows (partly defined by virtual links), which is well within the
scope of feasibility.2

4) Approximate fast stateful edge switching: False-positive-
prone fast forwarding decisions can also be performed through
stateful operations between domain boundaries. At the edges,
making a switching or mapping decision between the large
rendezvous identifier space and the smaller forwarding identi-
fier space needs to be efficient both in space (small amounts
of high-speed memory) and time (few computation cycles per
packet).

The SPSwitch in [2] is a promising approach to solve the
problem: with only a few bits per entry (40-50 bits), switching
of packets identified by long flat identifiers (e.g., 256-bit) can
be performed in a fast and efficient way. Again, the price is a
fairly small amount of traffic delivered over unrequested paths.

B. Putting the components together

As described above, we have different forwarding mecha-
nisms (in-packet BFs and Merkle-trees). The idea of virtual
links combines both approaches by allowing explicit stateful
trees to be included into the in-packet Bloom filters. Finally,
the SPSwitch approach tackles the mapping problems we are
likely to have at domain boundaries.

We need to combine these mechanisms so that we create
state on-demand and only where required, adapting to the
actual traffic patterns. This is achieved by relying on semi-
stable subtrees represented by virtual links spanning multiple
hops. In addition, by employing false-positive-prone forward-
ing schemes over suboptimal trees, we achieve state reduction
and line speed at the cost of some extra delivery. It is a
fair and currently necessary trade-off to reach the required
levels of scalability. Indeed, a clever design can convert this
apparent bandwidth waste into a strength of the architecture
(e.g. opportunistic caching, resilience etc.).

IV. DIVIDE AND CONQUER

We present our Divide&Conquer-based approach to tackle
the scalability problem of massive amount of overlapping
multicast trees for efficient data delivery. We split the problem
space along two dimensions: we use hierarchies in the network
to achieve scalability and we divide the problem into smaller,
more manageable steps.

A. Hierarchical aggregation

As a first approach, we use the traditional and successful
way for achieving scalability: hierarchical aggregation. Our
requirement can be explained in what we call scalability

2Consider as a reference the current performance of MPLS/VPN devices
under route reflector operations handling up to few millions of flows.



principle: In any given domain A, the amount of state cor-
responding to any remote domain B should not depend on the
number of subscribers in domain B. The key of this principle
is that any node in domain A should see domain B as only one
subscriber, even if there are many real subscribers within B.
Changes inside domain B, therefore, should only cause change
in the forwarding states within domain B. Topology hiding,
like in today’s Internet, not only meets the operators’ business
interest but also helps achieving scalability.

Hierarchy can be implemented recursively on different lev-
els, e.g. consider OSPF areas, autonomous systems (ASes), AS
confederations etc. in today’s networks. We should, however,
not restrict ourselves to this division, as the introduction
of the new paradigm may not only change the current AS
structure but also the fundamental policies [12] that define
what autonomous system means. We should not introduce a
constraint in the number of levels to be used: when an operator
feels necessary it could introduce a new hierarchy level at any
time. For the sake of easier explanation, in the following we
will work only with two-level hierarchies: intra-domain and
inter-domain levels.

B. A five-step approach

Now we turn our attention towards the other dimension of
the division. Our approach can be described as taking a few
steps, one after each other. All these operations should take
place within each single area that we have in the hierarchy.
The steps are as follows:

1) Compute an ideal tree.
2) Determine the gaps between the ideal tree and any

existing trees.
3) Select tree-creation strategies or gap filling strategy for

each gap.
4) Compute the needed changes according to the strategies.
5) Apply the changes to the network.

1) Ideal tree: The first step is to compute an ideal for-
warding tree that connects the publisher to all the subscribers.
We envision that this will be performed in the vicinity of
rendezvous and topology layers, in a (possibly) distributed
manner. The ideal forwarding tree is the best tree regarding
any appropriate metrics (delay, hop count, etc.). The resulting
forwarding tree will usually span several different domains.
By introducing hierarchies, we can reduce the problem of
creating one overall ideal forwarding tree to creating several
intra-domain forwarding trees and an inter-domain (AS-level)
forwarding tree connecting them.3 These ideal forwarding
trees will guide us as a reference when we assign the actual
trees for the ultimate data delivery.

2) Gaps: In the second step, the topology layer compares
the existing forwarding trees to the ideal ones and selects the
best matching existing trees in each domain. There are no
restrictions on the number of existing trees used, logically
combining several existing trees is allowed. The resulting

3Note that the resulting overall tree may not be ideal but that it will be
policy compliant and that each subtree will be ideal.

best-matching tree either covers all the subscribers in the
domain, and therefore can be utilized for publication delivery
if other criteria are met (e.g delay requirements) or does
not cover some subscribers. In the latter case, it cannot be
used for publication delivery in its current form, before it
gets expanded. However, we may be able to avoid the latter
situation by default including trivial broadcast and short-range
unicast trees in each domain.

3) Tree-creation and gap filling strategies: The third step
is to select a tree-creation strategy, separately in each domain,
for creating the actual forwarding tree. If the combination of
the existing trees already covers all the subscribers inside a
domain, then this combination could be used as the actual
delivery tree. However, if any of the determined further
constraints are not met, more work is needed. For example, if
the best-matching tree contains too many subtrees where there
are no interested subscribers, an action must be taken, either
immediately or later. In general, it seems a viable strategy
to first use the existing, non-optimal tree, and build one or
more new trees in parallel, and switch over to the new trees
once they are ready. An alternative may be to modify some
existing trees, provided that the modified trees still fulfill the
requirements of their other use. The exact details, however,
depend on how the trees are built and installed, i.e. how much
the solution is based on source-routing like approaches and
how much on actually representing the trees with explicit state
in the forwarding nodes. Our present solution is largely flexible
here, as it became apparent from the description of the solution
components in Section III-A.

If the combination of the existing trees does not cover all
the subscribers, the network must select a gap filling strategy.
For example, it may decide to modify existing trees or create
new ones in order to reach all the subscribers and meet other
constraints. Note that the compulsory requirement for the new
combination of forwarding trees is that it must cover all the
subscribers for the given publication.

4) Compute the changes: After the routing entity has
selected the strategies, it should compute the new/modified
trees accordingly. This process is eventually mapping the
internal representation of the tree to the representation that is
used in the network. Here, different forwarding solutions yield
different actions: either installing elements to Bloom filters, or
encoding tree structures into Merkle trees, or more possibly
combining both of them. Finally, the routing entity should
identify the places (network elements) where state injection
or update is needed.

5) Apply changes: As the last step, the changes must be
signaled to all affected entities. This involves sending control
messages ordering nodes to install or modify forwarding states,
as well as notifying the source of the data delivery if a new
forwarding identifier is to be placed into the packet header.

C. An example scenario

Figure 2 illustrates the hierarchical aggregation. The entities
contain nested entities (e.g. today ASes contain areas and areas
contain routers). Consider that on a level of hierarchy Entity
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Fig. 2: Example of hierarchical aggregation and tree selection

A is the publisher (which means that it contains the publisher
host) and Entity D and E are the subscribers. From the hop
count point of view, the tree A-D-E is the ideal. Assume
that there exists another publication which has the tree A-
C-D-E. The routing system therefore can assign this tree for
the new publication as well, as it contains all subscribers.
Consequently, we should not add new forwarding state as we
have not created any new tree on that level. Finally, when
the publication reaches e.g. E, it should switch to an internal
tree to reach the subscribers residing inside. However, there
will not be any internal forwarding tree for this publication
in Entity C. By caching the publication, Entity C may as
well increase the network performance by supporting e.g.
faster error correction (implementing the network coding More
functions envisioned in RTFM). Of course, if some policy
dictates that the ideal tree should be used or any requirements
are not met, the delivery of the publication can be switched
to it as soon as all the necessary states are installed in the
network.

D. Towards a pub/sub routing protocol

A key to implement the five-step mechanism is to have a
(distributed) entity in the network that is topology-aware. We
suggest a GMPLS Path Computation Element (PCE)-like [13]
topology manager, adopted into our pub/sub world.

The pub/sub PCE collects the topology information of
the network domain by subscribing to link advertisements
coming from the nodes (this requires to have a default path
between any node and the PCE). The content of the link
advertisements may vary depending on the actual forwarding
mechanism used. Finally, the pub/sub PCE will have a full
view of the topology of the domain. Assuming that publish
and subscribe messages collect the path between the PCE and
the publishers/subscribers, the PCE can locate all the entities
and can compute the trees.

The difference of the current practice is the absence of
link advertisement flooding, as only the PCE should build the
network graph and other participants do not need to subscribe,
meaning that changes trigger less control messages than today.
Considering the inter-domain case, the cooperation of pub/sub
PCEs results in the appropriate inter-domain forwarding struc-
ture.

E. Challenges of the division

The operations at the hierarchical boundaries (e.g., edge
router mapping of trees) represent the main scalability chal-
lenge of our Divide&Conquer approach. Obviously, a full
source-route would circumvent the edge-mapping problem.
However, strict source-routing has its limitations and price
(see Sec. II). Therefore, we need to consider suitable label
swapping and stacking mechanisms with an optimal balance
of the size of network state and packet headers, and signaling
overhead.

During the tree construction phase, the appropriate set of
forwarding trees (potentially multi-domain) has to be chosen
so that all domain internal subscribers are covered. At the
domain boundaries, when an edge forwarding node receives
a packet over an inter-domain tree, the edge node must
determine the right internal tree; similarly, after receiving
packet on an intra-AS tree, it must determine the right inter-
domain tree. Obviously, there will be no one-to-one mapping
between the trees at different levels..

To change between the hierarchy levels, one possibility is to
look inside the packet, using the publication-level identifiers.
This approach seems unfeasible from a scalability point of
view considering the potential amount of active rendezvous
identifiers travelling an edge during a certain time window
(publication data delivery time).

To benefit this fact that potentially many publication iden-
tifiers will require the same mapping of trees, we propose
the use of a special set of ”non-routable” link IDs with the
goal of triggering the mapping. Typically, we need at least
one virtual link from each edge node in the AS to the rest
of the edge nodes. The amount of intra-domain virtual links
“bridging” edge routers and providing a fast path to each
neighbouring AS will be in the order of a few hundreds.4

On packet reception, the edge node checks for the presence of
this special link idenitifiers in the Bloom filter and will push
the appropriate forwarding label for intra-domain delivery
avoiding the publication identifier look-up.

Another solution space of the mapping problem is deter-
mined by the notion of information scoping. While scope
identifiers (SIds) are meant to guide the pub/sub directives to
the suitable rendezvous points in the network for matching, we
consider to include the SId in the actual data packets to take
edge filtering decisions at this granularity. Since scopes are
aggregating data in a semantic layer, it makes sense to think
of re-using this aggregation for communal transport services
at the forwarding layer.

We are aware of additional challenges that deserve more
attention, including extensive evaluation of the trade-offs,
Bloom filter check performance, implications of the delay
in the multi-step approach, and specific issues w.r.t. content-
orientation of inter-domain routing policies. Each of these
challenges will be the subject of upcoming papers.

4Given the power-law distribution of an AS degree. In practice, maximal
1024 AS neighbours can be assumed [14], [15].



V. RELATED WORK

We are certainly not the first to work with rout-
ing&forwarding problems in future networks. However, to the
best of our knowledge no prior work has proposed the adoption
of the pub/sub paradigm throughout the stack in Internet-scale,
and described its relation to routing.

TRIAD [16] was among the first proposals of a content-
based routing design in the sense that it routes on URLs by
mapping fully qualified domain names (FQDN) to next-hops.
While similar in the spirit of data-centrism, our work is more
ambitious and aims at a finer granularity of content, namely
individual pieces of information objects (pub/sub channels or
documents).

IP multicast can be viewed as a special case of a data-
oriented networking service. In practice, a multicast address
is a name (cf. a pub/sub topic) rather than a true network
identifier. IP multicast issues w.r.t. complexity and deploya-
bility incentives have been widely discussed [15]. The authors
of [15] revisit the case of IP multicast and propose Bloom
filters to aggregate the active multicast groups inside a do-
main, piggybacking this information in BGP updates. Their
IP multicast design also includes a Bloom-filter- based shim
header in packets to represent AS-level paths of multicast
packets. Our work handles links as more general destination
information than IP prefixes and explores more dimensions of
the routing&forwarding space.

ROFL [17] proposes Internet-scale routing scheme on flat
host identifiers based on neat DHT constructs, but suffers from
policy-compliancy issues [12] and larger stretch. AIP [18] is
based on a two-level (domain and host) routing architecture
with self-certifying domain and host identifiers to account
on an Internet scale. The future internetworking proposal in
[19] also combines the notion of separating of routing and
forwarding using generic link identities.

DONA [3] employs flat self-certifying labels for data objects
operated by find/register primitives over the legacy IP network.
The main difference in our work is that we do not assume
underlying IP forwarding. Besides policy and incentive com-
patibility issues, DONA suffers from scalability problems [12]
near Tier-1 operators as they require an entry for each single
registered publication in the global network. This suggests that
a new data plane design is required to support global data-
oriented internetworking.

VI. CONCLUSION AND FUTURE WORK

This paper explored the routing options and problems of a
new (inter-)networking layer based on the publish/subscribe
paradigm. We moved a step forward towards pure pub/sub
routing by dividing the problem in two dimensions. First, we
use hierarchical aggregation; second we describe five steps
that together solve the problem of routing: (1) Construct the
best possible (ideal) forwarding tree on the known topology.
(2) Examine the existing forwarding trees and combine them
to best match the ideal tree. (3) If it does not reach all
subscribers, or it does not meet any additional requirements,
select tree-creation and gap-filling strategies, then (4) compute

the modifications. Finally, (5) push the necessary information
to the affected entities and update the source of the data
delivery, if needed.

The ultimate goal we strive to achieve is to find a solution,
which has (A) reasonable signalling overhead in dynamic
condititions and (B) fairly low stretch, and which minimizes
(C) the unnecessarily used network resources and (D) the per-
packet overhead. Finding a right balance will be crucial for
future work. Our plan for future work also includes validating
the overall solution with implementation (NetFPGA routers,
FreeBSD nodes) and ns-3 simulation works.
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Abstract—In this paper, we propose and analyze an in-packet
Bloom-filter-based source-routing architecture resistant to Dis-
tributed Denial-of-Service attacks. The approach is basedon for-
warding identifiers that act simultaneously as path designators,
i.e. define which path the packet should take, and as capabilities,
i.e. effectively allowing the forwarding nodes along the path
to enforce a security policy where only explicitly authorized
packets are forwarded. The compact representation is basedon
a small Bloom filter whose candidate elements (i.e. link names)
are dynamically computed at packet forwarding time using a
loosely synchronized time-based shared secret and additional in-
packet flow information (e.g., invariant packet contents).The
capabilities are thus expirable and flow-dependent, but do not
require any per-flow network state or memory look-ups, which
have been traded-off for additional, though amenable, per-packet
computation. Our preliminary security analysis suggests that the
self-routing capabilities can be an effective building block towards
DDoS-resistant network architectures.

I. I NTRODUCTION

An old question is whether routing should happen in a hop-
by-hop manner or as source routing. With the proliferation
of the Internet, hierarchical hop-by-hop routing won the day.
Unfortunately, that came with a price: the network serves
more the sender than the receiver. The hop-by-hop approach
makes its best to deliver a packet to the destination, whether
the receiver wants to receive it or not, opening a venue for
unwanted traffic. Various remedies, such as firewalls, deep
packet inspection (DPI), and explicit capabilities, have been
proposed to address the problem, with variable success.

Network capabilities, as introduced by Anderson et al. [1],
are architectural approaches that enable secure statements
attached to packets, allowing routers to easily check if a packet
has been approved by the receiver. They are typically based on
cryptographic approaches that enable routers to verify packets
in a stateless way, though some statements, such as those
related to a maximum bandwidth, do require state [24]. When
capabilities are required, any prospective sender must first
retrieve a suitable capability, either directly from the receiver
(using explicit bandwidth reserved for that), out of band, or
through a trusted third party [19].

In this paper, we present a system where there is no need
to have capabilities separate from forwarding identifiers;i.e.,
where the capabilities work as a forwarding identifier and
vice versa. Building upon LIPSIN [10], a native multicast
forwarding method based onin-packet Bloom filters (iBF), we
introduce a DDoS resistant forwarding service. We construct

a system where having separate capabilities is unnecessary,
as with our iBF-based forwarding identifiers it becomes com-
putationally hard to extract path information for constructing
new capabilities, without insider help.

Addressing Denial-of-Capability (DoC) attacks [2], which
aim at preventing new (legitimate) capability-setup packets
from reaching the destination by overwhelming the system
with capability requests, is out of scope of this work. Recent
work has shown effective means to mitigate DoC attacks. For
instance, in addition to treating capability request packets as
best-effort packets [1], [22], the system can allocate scarce
link bandwidth for connection establishment packets basedon
per-computation fairness (cf. Portcullis puzzle system [14]),
or by allowing a well provisioned third party service to
act as capability service [19]. Depending on the needs of
the service to be contacted, such third party may require
cryptographic identity verification, monetary payment or a
guarantee, or require a user to solve a hard AI problems
e.g. CAPTCHAs [18].

Our approach differs from existing capability-based systems
in that (1) the capability has afixed size, independent of the
number of hops,1 (2) the capability acts also as aforwarding
identifier in a stateless fashion with no forwarding table
lookups, and (3) the system ismulticastfriendly.

The rest of this paper is organized as follows. In Sec. 2,
we briefly recap the LIPSIN forwarding approach and discuss
associated DoS vulnerabilities. In Sec. 3, we describe our
proposed DDoS-resistant enhancements. Sec. 4 contains a
statistical analysis of the DDoS-resistance properties. In Sec. 5,
we briefly discuss related work, concluding the paper in Sec.6.

II. BACKGROUND

Using the approach of [16], we divide networking into three
components: rendezvous [17], topology [25], and forward-
ing [10]. The rendezvous is responsible for matching sources
and sinks and for instructing the rest of the system. From
the security point of view, it acts as a capability distribution
center [19], [5]. The division between the topology and the
forwarding components is similar to those of the routing
as a service proposal [12] and the direct network control
approaches, such as 4D [23]. We believe such a division can

1There is a practical upper limit (of≈ 40) for the number of hops; see [10]
for a detailed analysis.



Fig. 1. zFilter creation and forwarding in LIPSIN.

be achieved with a (distributed) topology service, similarto
the Path Computation Entity (PCE) [8] in (G)MPLS.

Within this networking model, there are three main avenues
for Distributed Denial-of-Service (DDoS) attacks. (1) An at-
tacker may try to attack ’legitimately’, i.e. through rendezvous
(gaining one or more forwarding identifiers). (2) An attacker
may try to overload the rendezvous system with excess
requests. (3) The attacker may try to guess or construct a
forwarding identifier so that it can overload the target, without
receiving help from the rendezvous or topology components.
In this paper, we focus on the last one, relying on existing
work on capability-based systems, over provisioning, and
contractual relationships to solve the former two [1], [22],
[14]. Additionally, we exclude insider threats (e.g., Byzantine
routers), leaving them for future work.

A. The LIPSIN forwarding mechanism

The LIPSIN [10] forwarding solution does not name nodes
or interfaces. Instead, links are named, separately in eachdi-
rection. Consequently, each forwarding identifier is essentially
a set of Link IDs, denoting a delivery tree or a path compressed
as a Bloom filter [4] called zFilter.

In practise, each Link ID is anm-bit long string withk bits
set to one, withk ≪ m, andm relatively large. This makes
Link IDs statistically unique. For instance, withm = 256 and
k = 5, we get≈ m!/(m− k)! ≈ 1012 different Link IDs.

The Link IDs are used at two distinct instances. First, to
construct a zFilter for a given delivery treeT , the topology
component takes a binary OR over the IDs of the links forming
the tree (see Fig. 1). The resulting zFilterZT is then passed to
the source, allowing it to send packets along the delivery tree
using the zFilter as the forwarding identifier. Second, when
a forwarding node receives a packet, it needs to determine
where to forward the packet to. For each outgoing linko, the
node checks if the zFilterZT contains1s in those bit positions
where the Link IDLo does. If so, the node forwards the packet
along that link; i.e., if(ZT∧Lo) ≡ Lo, then forward the packet
overo. If the zFilter contains multiple outgoing Link IDs, then
the packet is forwarded to each of them, resulting in multicast.
Also, as is well known, using Bloom filters introduces the

possibility of false positives; their probability rises asmore
links are included in the iBF.

The Link ID Tag (LIT) mechanism, also described in [10],
provides control over the false positives by definingd different
names for each outgoing link. Consequently, any given deliv-
ery tree can be described withd different iBFs, each of them
having different bit patterns. This allows iBF selection based
on different criteria, such as fewer false positives.

B. Remaining forwarding vulnerabilities

There appears to be a few vulnerabilities that the basic
LIPSIN approach, and any naive source routing forwarding
scheme, does not protect from. First, while a given zFilter
works only from its source to its sink(s), the same zFilter can
be used also for other traffic that what it was meant for. We call
this a zFilter replay attack. Second, while the used encoding
helps to hide the link identifiers, correlation between iBFs
is still possible, creating acomputational attack; see below.
Third, while each zFilter is directly usable only by the source
and anyen-routenodes, if an attacker can figure out another
zFilter that passes through any of the en-route nodes, it can
inject traffic to the delivery tree.

In the computational attack, an attacker collects valid,
related zFilters and analyses them. Wherever the bit patterns
are similar among a group of zFilters, it is likely that any
reoccurring bits represent a partial graph common to those
zFilters. Hence, knowledge over a large number of〈source,
sink(s), zFilter〉 triples may allow an attacker to create valid
zFilters towards a target. By merging correlation pairs from
multiple sites (e.g., using bots), DDoS attacks might well be
possible. While the introduction of the LIT construction makes
this attack computationally more expensive, especially when
d is large, the attack appears to remain practical.

To analyse the difference between the original zFilter pro-
posal and our proposal, we introduce a formal security model
in Sec. IV. There we evaluate a few attacks in terms of success
probabilities and associated costs.

III. SECURE IN-PACKET BLOOM FILTERS

To address the above-described security problems (and
potentially other, still undiscovered ones), we now propose
a system in which the link names are periodically changed
and tied to the path and to an upper layer flow identifier. By
this we mean an identifier that upper layer, e.g. transport, uses
to identify packets belonging to different applications. The
link names (and consequently the zFilters) are tied to upper
layer flow identifiers to ensure that only packets belonging to a
flow requested or approved by some application is delivered.
The flow identifier can, but does not need to, be based on
IP addresses. Any identifier that upper layers decide to use
suffices e.g., topic ID in pub/sub systems.

Instead of relying on a set of pre-defined (but perhaps time-
dependent) names for each link, our solution is based on
dynamically computing link names depending on the packet
contents, the path the packet is taking, and perhaps other
context-dependent parameters.



Fig. 2. z-Formation function.

Fig. 3. z-Formation creation and check in the forwarding node.

A. z-Formation

The key idea of the z-Formation is to enable forwarding
decisions in a completely dynamic, computational fashion
where the iBF, the packet content, and the processing context is
used to determine where the packet should be forwarded, if at
all. Instead of maintaining a fixed forwarding table containing
the Link IDs (or LITs) for each outgoing interface, thez-
Formationdynamically computes the names of the candidate
links on a packet-basis. A functionZ computes the LITs using
(i) some in-packet informationI (a Flow ID), (ii) a periodically
changing secretK, (iii) the incoming and outgoing interface
indices (In, Out), and (iv) the Link ID Tag indexd (see
dynamic LIT computation in Fig. 2). As in LIPSIN, also here
each LITO = Z(I, K(ti), In, Out, d) is a Bloom mask ofm
bits. As the zFilter is now constructed using these dynamic
LITs instead of static LITs, the resulting zFilter becomes
additionally bound to the Flow ID, a specific time period,
and the input port. Especially, having the Flow IDI as an
input parameter ties the given zFilter to only those packets
carrying the specified Flow ID, which, for example, makes
reactive filtering an easier task (cf. Sec. IV-D).

To construct the time-bound shared secretsK, each for-
warding nodei shares a master keyKm

i with the topology
manager. For any time periodt, forwarding nodes compute
Ki(t) = F (Km

i , t), where F is cryptographically secure
pseudo-random function. For example,t may be a seeded
counter or wall time clock at a coarse enough granularity; in
either case, the forwarding nodes and the topology manager
need to have loosely synchronized clocks [6]. The topology
manager always uses the current valid value oft while
forwarding nodes also acceptj (one or a few previous) values.
In this way, if t is advanced every∆t seconds, even ifKi(t)
is compromised for a specifict, the attack is limited to the

single forwarding node using the key and to the maximum
time of j∆t.

Finally, as Z takes in both theoutgoing and incoming
interface indices as inputs, any given zFilter is tightly bound
to the corresponding forwarding path or delivery tree. That
is, this feature blocks the injection attack, preventing off-path
attackers from sending data towards a delivery tree even if they
know both the Flow ID and the zFilter. Additionally, including
the incoming interface index as an input-parameter allows us to
introducevirtual interfaceswithin forwarding nodes, thereby
enabling on-path services.

Secure iBF generation:Identical to the LIPSIN approach,
we expect the topology component to generate a zFilter as a
result of a path formation request. Using the Flow IDI from
the request, the current secret keysKi(t) and the required
interfaces from the nodes in the computed network graph
(cf. [8], [12]), the topology component appliesZ for each
d. Note that as partial results can be easily combined, this
operation may be distributed along multiple (e.g., per-domain)
topology components. Given the finald candidate iBFs, the
topology component picks the best one and hands it over to
the source. Section III-B elaborates on how zFilters updates
can be pre-computed, requested by receivers, and redistributed
to sources every∆t seconds.2

Secure iBF forwarding: When a data packet arrives at a
forwarding node, the node extractsd and I from the packet.
With I, d, the incoming interface index, and the currentKi(t)
(plus optionalj older) value(s), it computes the LIT for each
outgoing link. If the iBF matches the on-the-fly generated
LIT, the packet is forwarded along the interface. Dynamic LIT
computation can be easily done in parallel for each interface.
Note that forwarding nodes are freed from storing any per-
flow state or traditional FIB table lookups. Only theseedof the
secret K and the current accepted values need to be maintained.

Z-function implementation: The Z-function can be im-
plemented as a stream-cipher-like construction, tailoredto
give constantly out≈ k 1-bits instead of the usual average
of ≈ m/2 1-bits. Internally, the function may resemble a
keystream generator, initialized with a combination of the
values K, I, d, In, Out. As typical stream ciphers can be
implemented in hardware with only a few shift registers and
logic gates (see e.g. [9], [21]), we surmise that the needed
circuit could work at full OC-768 line speed.

B. Updating zFilters

If a flow is valid for longer than(j − 1)∆t, the source
needs a new zFilter once the old one is about to expire.
However, we defer the specific description and evaluation of
updating zFilters to future work and merely note that there are
at least two methods for doing so. The sink can indicate its
willingness to continue receiving by responding to the traffic
and instructing the intermediate forwarding nodes to construct
an up-to-date zFilter en-route. This can be embedded in upper
layer messages, e.g. in transport protocol acknowledgements.

2Due to the ability to combine partial results, each part of the network may
have a different∆t.



Alternatively, a source can obtain a new zFilter from the
rendezvous system. This is similar to other rendezvous-based
solutions (e.g., HIP RVS servers [11], mailboxes in [7]). Iten-
ables both the sender and the receiver to express their interest
in extending their communication. The topology system needs
to be instructed to construct the new zFilter, typically using
the same path but with the current value for eachKi along the
path. AsKi(t + 1) can be generated locally, zFilter updates
can be easily pre-computed and conveyed to the source (even
before the oldest valid key expires), which can use it as the
new routing capability for data delivery.

C. Applicability to IP networks

We believe that the z-Formation could be used with IP net-
works, though there are still many open issues related to NATs
and other middle-boxes, partial deployment, and security,to
name a few. The 5-tuple〈IPsrc, IPdst, Psrc, Pdst, prot.〉 can
serve as the flow ID and the z-Filter will be used for routing
decisions within those ASes already deployed. The best place
for the z-Filter is likely to be as an extension header after the
IPv6 header (or as an IP protocol on top of IPv4).

A group of interconnected ASes can use zFilters to route all
traffic within and coming to the group. If a packet without a
zFilter comes, it will be sent to the rendezvous system, which
will determine whether an approval in the form of zFilter tied
to the used 5-tuple will be given to the sender. Support for
zFilters can be implemented as a shim layer between IP and
transport, or as a separate proxy. Assuming, the victim does
not respond to attack traffic, even a single, or a few ASes can
reduce the severity of attack by several orders of magnitudeas
shown in Section IV-B. Additionally, attacks based on copying
a single zFilter to multiple attackers are simple to filter, as they
require the same 5-tuple in all packets.

IV. A NALYSIS

Preventing an attacker from injecting large numbers of pack-
ets without approval via rendezvous is a necessary, though not
sufficient condition for DDoS resistant architecture. We now
evaluate the effectiveness of the z-Formation forwarding mech-
anism when malicious nodes try to compromise the network
availability by injecting unwanted traffic. First, we introduce
the mathematical framework to describe the forwarding model.
Then, we use probabilistic methods to quantify the achievable
levels of DoS protection. Later on, we discuss the effects our
architecture has on replay attacks and computational attacks.

A. Label-based forwarding model

Let G = (V, E) be a network graph, in which all
edges are named with Link IDs, i.e. directional bit vectors
e = {0, 1}m, where the number of 1s in each bit vector
e(vi, vj) ∈ E, vi, vj ∈ V is exactlyk and the 1s are randomly
distributed. Letp(v0, vn) be a path in the network such that
〈vi, vi+1〉 ∈ E, ∀i < n.

Define zFilterz = {0, 1}m as an m-bit long string with
maximum densityρmax such that zFilterz1 ∧ z2 = z1 ⇐⇒
z1 ⊆ z2 and edgee(vi, vj) ∈ z, ⇐⇒ e ∧ z = e. Thus, a

TABLE I
CAPACITY IN TERMS OF EDGES BEFORE REACHING THE MAXIMUM

ALLOWED I BF DENSITY

ρmax
m = 256 m = 196 m = 128

fprk=5#e #eopt #e #eopt #e #eopt

0.45 30 34 23 27 15 17 1.85%
0.50 35 39 27 31 18 20 3.13%
0.55 40 44 31 35 20 22 5.03%

path is encoded in the zFilter if each edge within that path is
encoded in the zFilter. We writep(v, w) to denote the smallest
zFilter that encodes path p, i.e.p(v0, vn) =

⋃n
i=1 e(vi−1, vi).

Assumptions: No forwarding node on any path is hostile.
The Link IDs are random and uniformly distributed, that is
the secret valueK is random and the Z-formation has the
property that ifK is random,O = Z(K, I, ...) is sufficiently
random. The z-Formation produces a different Link ID for
each link depending on the incoming interface of the packet.
This effectively adds a single hop to the length of the path that
the attacker must guess. We use the above described formalism
with constant Link IDs in the analysis.

B. Attack description and evaluation

We assume the attackervm knows a legitimate zFilter
z(p(s, t)) between a non-malicious sourcevs and targetvt

and show that it is difficult for the attacker to create a valid
zFilter from malicious nodes to target with it.Vp = (vs, ..., vt)
is the set of nodes on path p.

Givenz with a fill rate ofρ, the number of possible edgese
included is

(
ρ·m

k

) ≈ 3 ∗ 108 for m = 256, ρ = 0.5 andk = 5.
With no way to test off-line for the validity of single edges
within z, the first attack strategy consists of randomly trying
a set ofzi ⊇ z to see if it can deliver packets through, i.e. if
p(vm, v) ∈ zi, v ∈ Vp. Hence, the attack model is based on
brute forceand is equivalent to a randomly generatedz causing
false positives along the path(s) toward the set of nodesVp (as
the pathVp is included in each zFilterzi). However, if a known
z is used at its maximum capacityρmax, the attacker cannot
set additional bits to include extra edges inz.

In both cases, we can assume thatz hasρmax ∗m bits set
to 1. The threat consists ofp(vm, v), v ∈ Vp being encoded in
z. The probability of a non-included edge having itsk bits set
to one in anyz depends only on the fill factor and is equal to
ρk

max. Table I shows the estimated false positive rate and the
average number of edge labels, with and without thed = 8
LIT optimization, that can be inserted before reachingρmax.

When an attacking node ish hops away from any node
in Vp, the attacker needs to causeh false positives to get
the packet forwarded to and through the valid path. Thus,
the probability of a successful attack, i.e.z ∧ p(vm, v) =
p(vm, v), v ∈ Vp, is equal toPa = ρk·h

max. Figure 4 shows, at
the left axis, the estimates ofPa for different maximum fill
factors and attack path lengthsh. An attack path length of one
means that the attacker is a neighbor of some node on path. In
this case, the probability of falsely forwarding a forged packet
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Fig. 4. On the left axis, attack success probability for differentρmax. On
the right axis, the line with square points represents the attempts required to
success with probability 1/2.

is around 3%. When the malicious nodevm is more hops away
from the valid path, this probability sinks drastically, i.e.10−9

for vm to guess a working label path over 5 hops.
Finally, we can determine how expensive it is to guess a

zFilter fromvm to any other target nodevt. We estimate how
many attack attempts (x), consisting of randomly generating
maximally filled z, are required to have some probabilityPr
of obtaining at least one valid path label to a destinationvt h
hops away fromvm (the right axis on Fig. 4 showsPr = 0.5):

x = log1−Pa (1− Pr) (1)

C. Discussion

Tying the zFilter to a set of periodically changing keys, one
for each forwarding node, makes replay attacks less severe,
as they can only be used during the joint lifetime of the keys.
It also makes computational attacks more difficult. Even if
the attackers know the full topology of the network, tying the
zFilter to each forwarding node’s secret key reduces the best
attack strategy to a brute force attack consisting of generating
random labels and hoping that at least one of them reaches the
target(s). At the same time, the seed-based re-keying scheme
is local and introduces low communication overhead (low
frequency seed exchanges) between forwarding nodes and
distributed topology instances, which can easily anticipate to
zFilters update requests.

Assuming that the attacking node is capable of injecting
106 packets per second (e.g., 1Gbps edge link and 1000 bits
per packet), a malicious node will need over 40 minutes to
guess, with probability 1/2, a working label for a 5-hop path.
If the receiver of the traffic does not answer to such packets,
then the system reduces the magnitude of attack traffic by
the percentage of packets filtered enroute. An attacking host
sending packets 2 hops away from the target, withρmax = 0.5,
would only be able to get (approximately) 0.1% of the attack
traffic into the path. Thus, changing keys as slow as once every
20 minutes, the forwarding plane can be protected for paths
longer than 4 hops with very high probability.

Under some circumstances, we may want to shorten the time
for which any host can receive unwanted traffic, empowering

the receiver by means of the capabilities renewal mechanisms.
For instance, a re-keying frequency of around 1 minute would
be short enough to (i) protect very short paths and to (ii)
limit the duration of DDoS attacks based on the misuse of
legitimate zFilters. Typically, an expiration interval inthe order
of a few dozens of seconds is long enough to complete average
transactional traffic without requiring zFilter renewal.

Note that we have not only assumed a very high and
constant attack traffic injection rate (106 pps) but also the
existence of a return channel to know whether randomly
generatedz reach the intended victim(s). As a final re-
mark, the DDoS protected forwarding plane only complements
additional security measures at the end node higher level
stacks similar to end-host firewall implementations where only
solicited (subscribed) data flows are allowed and processed.

D. Attack detection and mitigation

By virtue of the time-based re-keying mechanism, a forged
path lasts only forj∆t in the worst case. After that, a
malicious node would need to re-initiate the attack process.
As the most efficient attacks we are aware of require excessive
probing, an attack can be detected early by the sudden increase
on false positives caused by the falsely labeled packets injected
by the attacking node(s). Hence, a blacklist mechanisms can
be used to block or shape down any suspicious traffic. By
definition of an in-packet flow identifier (I), each attack needs
to be tailored for a specificI. This does not only limit the
scope of an attack but also eases any blacklisting mechanisms
based onI.3

V. RELATED WORK

Anderson et al. [1] were the first to propose in-packet
capabilities. More generally, [1], [5], [7], [24] are all close
to our approach in the sense that for sending the sender needs
a permission from the receiver. Compared to our work, the
main difference is that in our case the forwarding identifier
(bound to an upper layer flow identifier), acts by itself as the
capability; additional capability fields or cryptographicend-
to-end schemes are not needed.

SANE [5] was, to our knowledge, the first proposal to
combine centralized computed source routes and capabilities
together. It achieves that, by encrypting each hop in layers,
with a big routing identifier of10 + 14 · hops bytes; e.g. a
13-hop path would require 1536 bits. Therefore it cannot be
considered scalable to Internet-wide scales.

Our secure fast-path forwarding mechanism is close to
the stateless path pinning service provided by SNAPP [13],
where IP forwarding decisions are cached into the flow into
the flow initiating packets. The chain of securely constructed
forwarding directives is returned to the sender who is now
able to use them as packet headers enabling fast switching
decisions and additional benefits from the separation of routing
from forwarding, including sender-controlled paths, expensive

3Of course, if the underlying link technology offers any trustful node
identification mechanism, the filter rule can be built on the network node
identity of the malicious node.



route lookups, sender anonymity, and accountability. A key
difference of our solution is using an in-packet Bloom filterto
encode the pinned path, whith the main performance benefits
of a fixed header size independent from the number of hops
at the cost of some amount of false positives. While our
presented networking model involves a rendezvous service
using topology information, an en-route capability formation
similar in spirit to IP switching could be easily supported.

Also advocating for the separation of routing and for-
warding, Platypus [15] proposes a capability-based systemto
enable authenticated and policy-compliant IP source routing.
Functionally similar to our Z-function is their usage of a
distributed temporal secret to verify flow binding capabilities
at line speed. However, our capabilities are not transferable
per design as they securely embed the routing information.

Ballani et al. [3] were the first to use in-network Bloom
filters for pro-actively filtering distributed denial-of-service
attacks. Our forwarding plane attains a similar off-by-default
behaviour but does this by matching the communication inter-
est of sources and sinks over a slow-path rendezvous network
instead of propagating over the network routing infrastructure
explicitly reachability directives signaled by end hosts.

Phalanx [7] combines capabilities with a multi-path-aware
overlay and shows that Bloom filters can be used to reduce
state requirements while providing probabilistic guarantees for
in-network security. Yang et al.propose TVA [24] , a capability
approach that shows how the router state can be bounded even
when routers enforce bandwidth limits for capabilities.

In [20], Wolf presented a mechanism where packet forward-
ing is dependent on credentials. If the packet does not contain
a correct credential, it will not be forwarded. The credentials
are packed into a small in-packet Bloom filter and each router
verifies that its credentials are included. Compared to ours, in
their work routing is based on traditional IP addresses and the
credentials are issued for a specific IP 5-tuple flow.

VI. CONCLUSION

In this paper, we have proposed a source-routing-based
packet forwarding mechanism that is highly resistant to dis-
tributed denial-of-service attacks. In essence, in our approach
the hosts have no names; only links are named. To be able to
send, any prospective sender needs to acquire a forwarding
identifier that simultaneously acts as a path capability. By
delegating capability creation to a rendezvous component that
explicitly considers both the senders’ and receivers’ interest,
we shift power from senders to receivers. In our approach,
receivers are in control of what they want to receive.

To our knowledge, our approach is the first that combines
forwarding identifiers and capabilities in an efficient way,
thereby creatingself-routing capabilities. By virtue of the
Bloom-filter-based construction of the capabilities, eventhe
links names remain statistically undisclosed. By binding the
routing capabilities to specific flows, time periods, and network
paths, we create a high barrier for attackers, making it hardto
forge valid capabilities.

While the forwarding operation in our scheme is compu-
tationally heavier than in LIPSIN, we surmise that it still
can be implemented in line-speed hardware, as no memory
lookups are required, the number of logic gates appears to
be moderate, and the required dynamic per-packet state can
be stored in simple shift registers. The verification of this
assumption remains as future work.
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Abstract. This paper describes a networking approach for cloud data center ar-
chitectures based on a novel use of in-packet Bloom filters to encode randomized
network paths. In order to meet the scalability, performance, cost and control
goals of cloud infrastructures, innovation is called for at many areas of the data
center environment, including the underlying switching topology and the packet
forwarding paradigms. Motivated by the advent of high-radix, low-cost, com-
modity switches coupled with a substrate of programmability, our proposal con-
tributes to the body of work re-thinking how to interconnect racks of commodity
PCs at large. In this work, we present the design principles and the OpenFlow-
based testbed implementation of a data center architecture governed by Rack
Managers, which are responsible to transparently provide the networking and
support functions to cost-efficiently operate the DC network. We evaluate the
proposal in terms of state requirements, our claims of false-positive-free for-
warding, and the load balancing capabilities.

1. Introduction

With the advent of Internet cloud services, the underpinning data center networks (DCN)
have become a matter of intense research to raise their scale, performance, and cost-
efficiency to unprecedented levels [Greenberg et al. 2009a]. In order to meet these goals
without sacrificing service quality, innovation is called for at many areas of the data center
environment, including the hosting infrastructure itself (e.g., energy management, wiring)
and the network and system engineering (routing, virtualization, monitoring, etc.)

Recent research in re-architecting data center networks has spurred creative de-
signs to interconnect servers at large, including shipping-container-tailored designs with
servers acting as routers and switches as crossbars (BCube [Guo et al. 2009]), com-
moditized fat-tree topologies [Al-Fares et al. 2008], forwarding on position-based pseudo
MAC addresses (Portland [Niranjan Mysore et al. 2009]), or load-balanced switching
clouds providing the illusion of a single virtual layer 2 (VL2 [Greenberg et al. 2009b]).
Traditional DCN architectures consist of a tree of networking elements (L2/L3 switches)
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with progressively more specialized and expensive equipment moving up the network hi-
erarchy. Unfortunately, even when scaling up, resulting topologies may only offer a frac-
tion of the aggregate capacity available at the end hosts, with reported over-subscription
rates as high as 1:240 [Greenberg et al. 2009a].

While diverging in their architectural approach (e.g., server-centric vs. network-
centric), every next generation DCN design proposal aims at providing a scalable, cost-
efficient networking fabric to host Web, cloud and cluster applications. Many of these
applications require bandwidth-intensive, one-to-one (e.g., video coding/streaming), one-
to-several (e.g., distributed file systems), one-to-all (e.g., application data broadcasting),
or all-to-all (e.g., MapReduce) communications among servers. Non-uniform band-
width among data center nodes complicates application design and limits the overall
system performance, turning the inter-node bisection bandwidth the main bottleneck in
large-scale DCNs. Recent data center traffic characterization studies [Benson et al. 2009,
S. Kandula and Patel 2009] have shed some light on the nature of DCN traffic, conclud-
ing that traffic demands are unpredictable and highly bursty, two factors that hamper tra-
ditional traffic engineering solutions (e.g., VLAN QoS). A closely related issue is the
necessity of avoiding the fragmentation of resources (i.e., available servers and network
paths) throughout IP subnets and VLAN domains. In highly virtualized cloud DCs, net-
work agility is key to achieve high levels of server utilization and let virtual machines
(VM) be dynamically instantiated (and live migrated) in any available physical server. An
example of a job demanding agility might be to accommodate VMs on-demand to host
Web services dedicated to the World Cup football championship during two months. In
order to have an agile and unfragmented DCN, ideally, the underpinning interconnection
fabric should behave like a big Ethernet domain that exploits the path diversity and scales
sub-linearly to the number of addressable endpoints. Unfortunately, the flat routing na-
ture of Ethernet does not scale beyond certain boundaries due to the lack of aggregation
capabilities, the constraints of MAC-based forwarding tables, and the ARP flooding.

In this paper, we present SiBF (Switching with in-packet Bloom filters), a DCN
proposal motivated by the changes in networking driven by the advent of high-radix,
low-cost, commodity switches coupled with a substrate of programmability (e.g., Open-
Flow [McKeown et al. 2008]). Our design borrows characteristics from a few new
generation DCN designs, for instance building upon proven interconnection topolo-
gies (e.g., Clos networks) and reliance on logically centralized controllers in spirit of
4D [Greenberg et al. 2005]. Compared to related work, our key difference is the forward-
ing approach based on an in-packet Bloom filter (iBF) expedited by what we call a new
entity in the data center: the Rack Manager (RM). The RM follows a direct network
control approach to transparently provide the networking functions (address resolution,
route computation) and support services (topology discovery, monitoring, optimization)
to unmodified (physical and virtual) servers behind Top-of-Rack (ToR) switches.

Forwarding in SiBF takes on the idea of moving network state to the packet head-
ers in form of a compact, multicast-friendly source route representation amenable to
low-cost, high performance networking gear [Jokela et al. 2009]. Basically, SiBF effi-
ciently interconnects any pair of communicating nodes within the DCN by compactly
representing the packet’s source route into a Bloom filter carried in the Ethernet MAC
fields. Design goals include conserving the IP semantics and yield a false-positive-free
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forwarding fabric by leveraging DC’s topological properties and exploiting the multiple
paths available. We address the issue of having a system with two mutually conflicting
requirements: 1) flat (non-hierarchical) L2 addresses, and 2) aggregation. Our approach
is to open another vector of the design space, namely potential efficiency penalties due
to false positives resulting in some packets using unnecessary links. The proposed solu-
tion makes better use of the 96-bit space of source and destination MAC fields, avoiding
thereby encapsulation and shim-header overheads, and at the same time, conserving the
nice plug and play properties of the Ethernet MAC addressing. The iBF-based fine con-
trol over the path traveled by packets enables multiple load balancing schemes to avoid
hot-spots, for instance, by bouncing off traffic flows to intermediate switches.

The rest of the paper is organized as follows. Section 2 introduces background
information on the rationale behind rethinking DCN architectures and outlines highlights
of related work. Section 3 presents the design principles adopted for our solution and
describes the key functional blocks. In Section 4, we detail the prototype implementation
and the testbed environment. Section 5 evaluates SiBF in terms of network state require-
ments, false positive performance, and load balancing capabilities. Finally, Section 6
concludes the paper and outlines the future work.

2. Background

Current efforts towards low-cost powerful computing facilities span from large-scale
(geo)-distributed application programming, innovation in the DC infrastructure, and re-
thinking how to interconnect commodity PCs at large. Our work is focused on the latter.
In this section, we first introduce networking requirements of the cloud, and then provide
a snapshot of two remarkable new generation DCN proposals. Finally, we present the
Bloom filter data structure, which is at the heart of our proposed forwarding mechanism.

2.1. Networking requirements of cloud data centers

The existing DCN literature seems to agree that efficiently networking the cloud DC
calls for re-thinking the underpinning architecture to meet a reviewed set of requirements,
which we have summarized as follows:

Resource Pooling:Offering the illusion of infinite computing resources available
on demand requires means for elastic computing and agile networking. Such degree of
DCN agility is possible (i) if IP addresses can be assigned to any VM within any physical
server, and (ii) if all network paths are enabled and load-balanced.

Scalability: Networking (dynamically) a large pool of location-independent IP
addresses (i.e., in the order of millions of VMs) requires a large scale Ethernet forwarding
approach. Unfortunately, ARP broadcasts, MAC forwarding table sizes, and spanning tree
limitations place a practical limit on the size of the system.

Performance: Available bandwidth should be high and independent from the end-
points’ location, which requires congestion-free routing for any traffic matrix in addition
to fault-tolerance (i.e., graceful degradation) to link and server instabilities.

Middlebox support: An ordered sequence of middlebox services (e.g., firewalls,
WAN optimizers, load balancers) is commonly required to be (transparently) placed on
the network paths of DCN traffic. Conventional solutions (e.g., SPT, VLAN, OSPF) turns
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the overall configuration into a costly and tedious operation, besides unnecessary resource
and performance inefficiencies [Joseph et al. 2008].

2.2. Related work

There is a large body of work tackling the cloud DCN research issues resulting in a collec-
tion of customized architectural proposals. We briefly outline the essence of two proposals
which have inspired parts of our design.

PortLand proposes a scalable Ethernet-like layer 2 routing and for-
warding protocol for data centers with three-tiered hierarchical topolo-
gies [Niranjan Mysore et al. 2009]. The approach to overcome the scalability limi-
tations of Ethernet is based on modifying the control plane of the network, leaving
the switch hardware and end hosts untouched. The main idea behind PortLand is the
locator/identifier split, where nodes are identified by their actual MAC (AMAC) address,
and located by a pseudo MAC (PMAC) address, which encodes hierarchical location
information in its structure. Mapping between the two addressing spaces is done by the
edge switches after querying a central fabric manager, which is responsible for tracking
each correspondence of IP to pseudo MAC address within the discovered topology. Edge
switches perform AMAC-PMAC rewriting for outgoing and incoming traffic.

VL2 provides a scalable Virtual Layer 2 to empower huge data centers with
uniform high capacity between servers, performance isolation, and Ethernet seman-
tics [Greenberg et al. 2009b]. Building upon existing technologies, in order to support
agility, VL2 uses flat addresses in the IP layer to separate names from locators. VL2
yields uniform high capacity and traffic fairness by virtue of Valiant Load Balancing to
randomize the traffic throughout the 3-tiered switching fabric using IP-in-IP encapsulation
and Equal Cost Multi-Path (ECMP). Address resolution (i.e., application IP to location
IP) is done modifying the end-systems and querying a scalable directory service.

2.3. Bloom filters

The Bloom filter is a popular data structure capable of answering questions of the form “is
elementx in setS?”, with some tunable probability of returning false positives, i.e., claim-
ing thatx belongs toS even when this is not true. A typical implementation consists of a
bit array of sizem andk independent hash functions used to set/check bit positions when
inserting/querying elements, which in our case are going to be switch MAC addresses
forming a source route. The probability of false positives after insertingn elements is
commonly approximated as (cf. [Bose et al. 2008]):

pk =

[
1−

(
1− 1

m

)k∗n]k

(1)

3. Design

The data center, as an interconnection network to perform distributed processing tasks,
has three key dominant elements that determine its performance: (1) the network archi-
tecture (i.e. naming, address resolution, etc.), (2) the routing scheme, and (3) the inter-
connection topology. In this section we describe the design principles adopted to address
(1) and (2) which can be summarized as an identifier/locator separated approach where IP
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addresses act solely as identifiers and oblivious routing is provided by forwarding based
on in-packet Bloom filters (iBF) encoding randomly selected routes between the com-
municating endpoints. As for (3), the interconnection topology, in line with the existing
literature, we assume a 3-tier topology with a lower layer of ToR switches, an intermedi-
ate layer ofp1-port Aggregation (AGGR) switches, and an upper layer ofp2-port CORE
switches (see Fig. 1). Our solution is not restricted to a particular topology, and works on
e.g., 3-level fat-trees with identical p-port switches (like Portland) or 3-tier 5-stage Clos
arrangements (withp1 6= p2 like VL2). Moreover, we note that other scale-out topologies
could be considered (e.g., DHT-like rings, Hypercubes, Torus, etc.), as long as they offer
large path diversity and low diameter.

Figure 1. A 3-tier fat tree using 4-port switches.

3.1. Design Principles

We adopted the following principles for the proposed data center network architecture:

Separating Names from Locations: Identifier-locator split is the fundamental
capability to enable resource pooling of IP addressable services, which can expand or
contract their footprint in the DC as required (agility). IP addresses are used to identify
physical servers (and VMs) within the DC. That is, no topological constraints are imposed
on how IP addresses are assigned or translated in case of communications towards external
networks (i.e., public Internet). In this context, IP addresses are not meaningful for packet
routing, which is solely based on a revisited source-routing capable Ethernet layer.

Source explicit routing with zero-overhead: Leveraging the small diameter
of data center topologies, our approach to meet the scalability goals is based onstrict
source routing. Routing in 3-tier DCN topologies is fairly simple, as any route be-
tween two ToRs, has an upward phase towards a common CORE switch and then a
downward path to one AGGR switch connected to the destination ToR. Forwarding is
based on an iBF containing only three elements, namely the Bloomed MAC identifiers
of 〈COREi, AGGRdown, T oRdst〉 switches. Source ToRs encode the iBFs in the MAC
fields of outgoing packets which are sent to a next hopAGGRup switch. Hence, three
iBF-based forwarding decisions are taken, one at the first AGGR, one at the CORE and
one at the down-path AGGR. The destination ToR needs to re-write the source and des-
tination MAC fields before delivering the packet to the destination server. By carrying
the iBF in the 96 bit space of the MAC fields and re-writing packets at ToRs, we avoid
encapsulation techniques or additional shim headers. Source routing not only minimizes
FIB requirements of intermediate switches but also eases the inclusion of middleboxes.

Direct network control and logically centralized directory: SiBF embraces the
4D [Greenberg et al. 2005] philosophy of simplifying the data plane and centralizing the
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control plane to enforce the data center goals. We introduce the role of a Rack Manager
(RM) to take the routing decisions and program the state of programmable switches. In
order to construct source routes, two pre-requisites are required: (1)topology information,
and (2)server location. We surmise that a directory service to track host locations and
the underlying switching topology are implementable and able to scale to the envisioned
DCN demands as shown by related work (e.g., Tesseract, Bing‘s Autopilot, VL2).

Load Balancing through path randomization: The approach to provide load
balancing is based onoblivious routing, i.e., traffic independent randomized packet rout-
ing [Yuan et al. 2007]. More specifically, like VL2, we implement valiant load balancing
(VLB) using the routing iBFs to “bounce off” flows at random intermediate switches.

Unmodified endpoints and plug-and-play:The forwarding fabric does not rely
on end-host modifications. Legacy servers, operating systems and applications are sup-
ported off-the-shelf. Moreover, the plug-and-play behaviour of Ethernet is to be con-
served, with auto-configuration of end-hosts and switches being part of the solution.

3.2. False-positive-free forwarding on Bloomed MAC identifiers

The key innovation comes when “switching” in the AGGR and CORE layers. Forwarding
tables of switches are initially empty and get filled with one flow entry per neighboring
switch detected. A flow entry is wildcarded except for the 96 bits of the source and des-
tination MAC fields. However, instead of traditional exact matching of MAC fields, each
flow entry contains a 96-bit mask generated fromk hashes of the neighbouring switch
unique MAC address. Similar to Link IDs in [Jokela et al. 2009], aBloomed MAC IDis
a 96-bit vector where onlyk bits set, but with the key difference that it isnot directional,
i.e., generated on a network interface pair basis. Forwarding decisions are trivial. On
packet arrival, only thek 1s of each Bloomed MAC ID are checked for presence in the
Ethernet MAC fields carrying the iBF. Upon match, the packet is forwarded.

Generation of Bloomed MAC identifiers: Instead of makingk independent
hashes of the neighboring switch MAC address, we make only one hash using a crypto-
graphic function (e.g., MD5) and concatenate the output with the least significant 24-bits
of the MAC address (unique per Ethernet vendor). Thereby, we obtain a randomly gen-
erated128 + 24 bit vector, which we slice in 7-bit segments to obtaink “pseudo” hashes
that determine the bit positions in the 96-bit Bloom filter:

iBF [i] = (MAC24:48|MD5(MAC))[7i : 7(i + 1)]mod96 (2)

Bloomed MACs IDs generated this way are still statistically unique e.g.,m!/(m− k)! ≈
1013 for m = 96 andk = 10. The algorithm defined by Eq. 2 is a system wide parameter
that can be changed or optimized for a given set of MAC addresses (if required).

False positives:The well-known caveat of Bloom filters is the possibility of re-
turning false positives to set membership queries, i.e., returning true when a set element
was not inserted. In our case, this means that in addition to the explicitly inserted next
hop switch, additional switch(es) appear(s) as next hop candidate(s). The resulting con-
flict can be solved either (i) by multi-casting the packet along all matching interfaces,
or (ii) by picking only one. In any case, we requireiBF forwarding completeness, i.e.,
loop-free and guaranteed delivery of packets to the intended destination(s). After a care-
ful analysis of every false positive case of our implementation choice, we claim to have
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a loop-free, high solution that circumvents any potential issue arising from false posi-
tives. The factors that contribute to this result are multi-fold, some of them are due to
an iBF-forwarding design tailored for multi-rooted tree topologies, and the remaining are
implementation-specific, i.e. forced/enabled by our OpenFlow implementation choice.
To start with, note that due to the high bit per element ratio (m/n ≈ 30 for m = 96 and
n = 3), false positives are extremely rare i.e. in the order of10−7 (see details in Sec. 5.2).

Our strategy to avoid the potential effects of false positives is to exploit the notion
of power of choicesalong two dimensions: (1) multiple paths, and (2) multiple iBF repre-
sentations. That is, we compute the iBFs of the multiple available paths, and for each we
generated additional candidates using different sets of hash functions. Using the topology
information, the routing service can easily checka priori whether any candidate iBFs is
prone to false positives along the path. If so, those candidate iBFs are discarded from the
random path selection. For the sake of brevity, we omit some details of the OpenFlow
implementation and the analysis of why some false positives are self-healed by virtue
of the multi-rooted topology. In a nutshell, false positives result in multiple flow entries
matching the wildcardedk bits in the iBF. Since only the actions associated to one entry
can be executed (per OpenFlow specification), a packet may be wrongly forwarded to a
switch not included in the source route. Such packets lacking of matching flow entries
are forwarded to the RM, which computes an alternative path and installs the required
flow entries to temporarily fix the issue. However, recall that our strategy to avoid false
positives is to detect themprior to their use. With knowledge of the topology, the RM
pre-computes and maintains a source to destination ToR matrix filled only with false-
positive-free iBFs for the multiple available network paths. In Sec. 5.3 we experimentally
quantify the penalties on path multiplicity, which we anticipate to be insignificant.

3.3. Tree and Role Discovery Protocol

Topology knowledge is a prerequisite to allow source routing. A point which is not so ev-
ident and trivial is how to correctly infer the tree topology and the role of each switch (i.e.,
ToR, CORE or AGGR.), more critically at bootstrap time, since one of our requirements
is to mimic the Ethernet plug & play behavior to avoid any manual intervention. This fea-
ture does not only reduce operational efforts to e.g., replace misbehaving switches, but is
critical for the correct (and optimized) routing of packets. To this end, we have designed
a Role Discovery Protocol (see Algorithm 1) that automates the inference of the switch-
ing tree by simply extending the link layer discovery protocol (LLDP) with an extension
TLV to include the discovered role. We note that Portland faced a similar challenge in
order to switches discovering their specific location within the DCN hierarchy to form a
pseudo MAC address of the formpod.position.port.vmid. Our protocol is fairly simpler
and requires only to identify the layer in which it is located.

4. Prototype implementation and testbed

Implementation of the iBF-forwarding mechanism is based on OpenFlow
switches [McKeown et al. 2008], and the Rack Manager (RM) has been implemented
as an application on top of the NOX controller [Gude et al. 2008]. In the following, we
describe the key issues of the implementation work and the testbed environment. For
details on the prototype implementation and on how to replicate our testbed we refer to
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Algorithm 1 : Role Discovery Protocol.

beginswitch join
ROLE← UNDEFINED;
SendAllPorts(llpd, ROLE);

end

beginarpreceiveserver
if ROLE ! = TORthen

ROLE← TOR;
end

end

begin lldp receiveneighbors
NBROLE← neighbors.ROLE;
if NBROLE= (COREor TOR)then

ROLE← AGGR;
else ifNBROLE= AGGRthen

ROLE← CORE;
end

end

the publicly available source files and how-to instructions.1

4.1. OpenFlow

An OpenFlow (OF) switch separates the fast packet forwarding (data path) from the high
level routing decisions (control path) of a router or switch. While the data path portion
still resides on the switch and runs using the same underlying hardware, high-level packet
handling decisions (i.e. routing) are moved to a separate controller. OF-enabled devices
and the controller(s) communicate via the OF protocol, which defines messages, such as
packet-received, send-packet-out, modify-forwarding-table, and
get-stats.

The disruptive aspect of OF is to define a clean interface in form of a flow table
abstraction with entries containing a set of packet fields to match from the 10-tuple:
〈inport, Ethsrc, Ethdst, V LAN, EthType, IPproto, IPsrc, IPdst, TCPsrc, TCPdst〉, and
a list of hardware-supported actions, i.e.,send-out-port, modify-field, or
drop. When an OF switch receives a packet for which it has no matching flow entry,
it sends this packet to the controller, which in turn decides on how to handle the packet.
The decision is sent to the switch, which can be instructed to cache the decision for some
period of time by adding a flow entry to handle upcoming packets at line rate.

In order to support the iBF-based forwarding, only a minor modification was re-
quired to the current OpenFlow reference implementations (v.0.89rev2 and v.1.0). The
key of iBF-based forwarding is the Bloomed MAC identifier which is a wildcardedbit-
maskwith only k arbitrary bits set to one. Thus, we needed to add this special behav-
ior support to the OpenFlow datapath implementation. Fortunately, this required only
changes in two lines of code2 of the fast path flow matching function.

1To be published in http://www.dca.fee.unicamp.br/ chesteve/dcn/
2function flow fields match in openflow1.0.0/udatapath/switchflow.c or

openflow0.9.0/datapath/flow.c
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Figure 2. Component Architecture.

4.2. Rack Manager

The Rack Manager acts as a controller of OF switches, and as such, the natural im-
plementation is as an application on top of the open source OF controller named
NOX [Gude et al. 2008]. In a nutshell, NOX’s programmatic interface is built upon
events, triggered by NOX core components, thrown by user-defined applications, and gen-
erated directly from OF messages likepacket-in,switch join,switch leave,
etc. Figure 2 depicts our implementation of the RM functionality, which we have divided
into three separate NOX user components.

4.3. Message sequence

The packet flow diagram of Fig. 3 shows how communications happen in the prototype
implementation. Regular arrows are single data packets and the dotted arrows represent
OF protocol messages. A server’s network activity starts by sending an ARP request to
some destination IPx (Step 0), for instance, to resolve the address of the DNS server. The
ARP request reaches the ToR, which has no matching entry and informs the controller.

Figure 3. Packet flow sequence in an OpenFlow-based SiBF insta ntiation.
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The packet-inevent is passed to all the modules which have expressed interest in ARP
packets. The RM learns the server location and registers it as being attached to a port of
the OF switch triggering the event (Action A). It then sends aflow-modcommand to in-
stall a semi-permanent flow entry for future incoming packets containing the destination
IP equal to the server IP, and the associated actions set to (i) re-write the MAC fields with
the ToR and server original MAC addresses, and (ii) forward to the attached port. The
Tree Discovery identifies the switch as a ToR and updates the state of the Role Discovery
Protocol (Action T). The ARP replier responds with a “fake” ARP reply containing the
ToR MAC (Action R). In Step 1, a server sends an ARP request for a destination IP, and
like any originating ARP, it acts as a trigger for the server discovery actions described in
Step 0. After receiving the ARP reply (Step 2), the source node sends a TCP SYN packet
which hits the ToR switch and is accordingly forwarded to the controller (Step 3). The
RM picks one iBF towards the destination ToR (Action C), and orders the installation
of an OF entry (10 sec. soft-expiration) to re-write packets belonging to the fully spec-
ified 10-tuple flow. Packets within this flow description get the iBF written in the MAC
fields and are forwarded at line rate across the AGGR and CORE layers based on the iBF
source route (Action F). When the iBF-labeled packet hits the destination ToR, it matches
the flow entry installed in Step 0 (Action A) and is delivered to the destination server after
re-writing the MAC headers (Action D). In Step 4, the destination server replies with a
TCP SYN ACK which lacks of a flow entry and is delivered to the RM (Action C). After
iBF selection and the installation of the flow entry (Action C), the TCP SYN ACK is for-
warded based on the iBF. Upon reception at the originating server, the 3-way handshake
can be completed (Step 5) and both entities can exchange data at line rate.

4.4. Testbed

The testbed consists of 5 physical nodes, one hosting the NOX controller with the RM
components and the remaining 4 were partitioned into 9 virtual machines: 5 instantiating
an OF switch each, and 4 hosting linux-based VMs. Figure 4 shows the testbed envi-
ronment, where the solid lines represent direct links between virtual machines and the
dashed lines represent the connections between VMs from different physical machines.
The topology on each physical machine is configured with OpenFlowVMS, which in-

Figure 4. Testbed environment.
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Table 1. Evaluation of the state requirements in terms of entr ies at switches.
Physical hosts 2.880 23.040 103.608

Racks 144 1152 5184
Aggr. Switches 24 (p1 = 24) 96 (p1 = 48) 144 (p1 = 144)
Core Switches 12 (p2 = 24) 24 (p2 = 96) 72 (p2 = 144)

VL2 Portland SiBF VL2 Portland SiBF VL2 Portland SiBF
Entries at ToR 200 120 120 1292 120 120 5420 120 120

Entries at AGGR 180 24 24 1272 48 48 5400 144 144
Entries at CORE 180 24 24 1272 96 96 5400 144 144

cludes a useful set of scripts to automate the creation of networked VMs using QEMU
and VDE. Additional scripts were developed to distribute the environment across different
physical machines usingsshconnections and virtual dumb-switches based on VDE. Our
extended script set enables to quickly define a target topology and automate the bootstrap-
ping of the virtual nodes and OF switches, including the IP configuration, the creation of
data-paths, the start-up of OF modules and the connection to the controller.

5. Evaluation

After validating the prototype implementation by verifying the full connectivity among
the pool of servers (16 VMs), the next question is to evaluate the iBF-based forwarding
fabric in terms of (i) state requirements, (ii) potential effects of false positives, and (iii) the
load balancing capabilities. Due to the limitations of a virtualized testbed, performance
aspects like goodput and flow completion times are left out of scope here.

5.1. State analysis

We start by comparing analytically the state requirements of SiBF with VL2 and Port-
land. The network setup is a 3-tier Clos topology, with ToRs connecting to 20 servers via
1 Gbps ports and to two AGGRs via 10 Gbps links. Thep1 ports of AGGRs are used to
connect top1/2 ToRs andp1/2 COREs equipped withp2 high speed ports. In line with re-
lated work [Tavakoli et al. 2009], we assume an average of 10 concurrent flows per server
(5 in and 5 out). Table 1 presents the scalability requirements for different switch config-
urations. By virtue of strict source routing, SiBF requires minimal state at COREs and
AGGRs, namely only one entry per interfacing neighbor. Moreover, scaling-out the DCN
does not impact the number of flow entries in the switches which is constant and equal to
the number of neighbors. At ToRs, the amount of flow entries grows with the number of
concurrent outgoing flows plus a constant amount of entries, one for each hosted server in
order to re-write terminating flows. By comparison, VL2 requires forwarding entries in
proportion to the total number of switches in order to route packets along the two-levels of
IP encapsulation:〈LACORE , LAToR〉. On the other hand, Portland has the same state re-
quirements as SiBF, namely only one forwarding entry per interface, sufficient to perform
the hierarchical forwarding on PMACs.

5.2. False positives

Now, we turn our attention to the practical false positive performance of small 96-bit
Bloom filters when holding only 3 elements, namely the three Bloomed MAC addresses.
More than the theoretical estimates (i.e., Eq. 1), what practitioners are really interested is
in the observed false positive rate (fpr) after the iBF is queried for elements. Therefore,
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Table 2. Evaluation of the false positive rate of the 96-bit iB F.
k 5 6 7 8 9 10 11 13 15 17 19 21
Theor. Eq 1 (·10−6) 64.89 25.7 11.68 5.95 3.33 2.03 1.32 0.68 0.42 0.31 0.25 0.23
fpr (·10−4) 2.41 1.81 1.5 1.7 1.83 2.23 3.09 4.92 7.17 11.46 16.09 21.07
fprmin (·10−6) 0.93 0.58 1.74 1.85 2.78 5.56 9.72 28.6 95.1 182 355 591

from a pool of 1M unique, randomly generated 48-bit values, oneach experiment round
(10.000 in total) we randomly insert 3 of them into a 96-bit BF using the Bloom MAC ID
algorithm (Eq. 2) and test for presence of 432 (= 144 * 3 hops) randomly selected MACs.
Table 2 shows the observedfpr for basic BFs constructs and when the power of choice
optimization (withd = 4, m′ = 94) is used (fprmin). In theory, the optimal number of
hash functions (kopt = m

n
ln2) that minimizes the false positive probability would be as

many as 22. However, in our practical setup, the lowestfpr was obtained fork around
7. The deviation from the theoretical estimates can be explained by the accurate equation
and bounds for small size Bloom filters by Bose et al. [Bose et al. 2008, Theorem 3].
Even without the d-candidate extension, only a few false positives per 10.000 queries
were observed in plain 96-bit iBFs, which suggests that the effect of a false positive (if
any) could be easily handled on a per-case basis.

5.3. False-positive-free forwarding on large-scale DCN topologies

We now evaluate the viability and efficiency of our false positive avoidance strategy based
on discarding false-positive-prone iBF candidates prior to their use. Our thesis is that,
given the lowfpr of the 96-bit iBF data structure, there are plenty of false-positive-
free paths between any two communicating nodes. In this experiment, we use an ns-3
implementation to explore thefpr performance on large-scale DCN topologies by send-
ing an iBF for each of the available path between every ToR. Following the approach
described in Sec. 5.1, we generate a topology with 48-port AGGRs and COREs to inter-
connect 576 ToRs, enough to host 11.520 physical servers. Testing every combination
of 〈ToRsrc − ToRdst〉 (i.e., 331.200 ToR pairs) along each available path, results in over
30M iBFs sent and accounted for false positives. The summary results are as follows:
74% of the ToR pairs were false-positive-free for every available shortest path. Among
those with some false positive (26%), the average number was 3 out of the 96 multiple
paths. The maximum number of false positive paths for any ToR combination was 10. As
a result, only 0.92% of all network paths exhibited some false positive and should be kept
out of the pool of iBFs used for load balanced routing. Based on these results, we may
conclude that false-positive-free forwarding comes at an affordable cost (less than 1%) in
reduced path multiplicity. Moreover, considering the d-candidate optimization with e.g.,
d = 4, we could, with very high probability, get rid of the remaining 1% of false-positive
iBFs by choosing alternative bit representations, and thereby utilize every available path.

5.4. Load balancing capabilities

Now, we investigate the load balancing capabilities of implementing VLB with iBFs over
our testbed environment. Given a traffic matrix (TM), the goal is to evaluate how well
the traffic is spread among the available links. We compare the link utilization of our
VLB implementation with a vanilla Spanning Tree (SPT) implementation over the same
topology. Two types of TMs were tested, one to mimic the all-to-all characteristics of DC
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applications like MapReduce, and one with random communicating endpoints. We used
ITG [Avallone et al. 2004] as the traffic generator configured with TCP flows to last for
10s, with exponentially distributed payload sizes around 850 Bytes, which are reasonable
assumptions for the majority of the reported DCN traffic. Figure 5 shows the normalized
link utilization after ten experiment runs. As expected, SPT under- and over-utilizes the
network links, whereas SiBF spreads traffic remarkably well, with the maximum and
minimum normalized utilization of any link deviating only around 20% from the ideal
value, i.e., 1. In the case of randomly chosen endpoints (Fig. 5(b)), the conclusion is
the same, VLB using iBFs achieves a nice utilization of the available links in a TM-
independent manner. The distribution of the normalized link utilization is comparable to
the numbers reported in the VLB implementation of VL2, with min values (0.78 vs. 0.46)
and max values (1.23 vs 1.2) [Greenberg et al. 2009b, Fig. 15]. The divergence of the
min values can be explained by the nature of the operational traffic in VL2 compared to
our synthetic TMs.
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Figure 5. Evaluation of the load balancing behaviour. CDFs of the link utilization.

6. Conclusion

We have presented SiBF, a data center network architecture based on a simple data plane
layer below IP that forwards packets based on the contents of an in-packet Bloom filter.
SiBF embraces the (upcoming) category of commodity switches leveraged with a flow-
oriented API extending the next frontier in data center networks from “commoditization”
to “customization.” The DCN proposal presents many appealing characteristics such as
not requiring any modification of end-hosts, reusing the Ethernet packet header bit space,
minimal FiB consumption, and a fine control over the packet routes across the data cen-
ter. The evaluation on a small-scale virtualized testbed implementation not only provides
a proof of concept that helped to feedback the design cycles, but also shed light on the
actual capacity of providing load balancing with randomized iBFs. In future implemen-
tation rounds, the prototype will be improved (e.g., to handle failure cases) and extended
with additional features like distributed database management (e.g., topology and host
directory) and transparent middlebox traversal, making it all together a real candidate to
be deployed as an in-house cloud DCN playground.
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a b s t r a c t

The Bloom filter (BF) is a well-known randomized data structure that answers set member-
ship queries with some probability of false positives. In an attempt to solve many of the
limitations of current network architectures, some recent proposals rely on including small
BFs in packet headers for routing, security, accountability or other purposes that move
application states into the packets themselves. In this paper, we consider the design of such
in-packet Bloom filters (iBF). Our main contributions are exploring the design space and
the evaluation of a series of extensions (1) to increase the practicality and performance
of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security
enhancements. In addition to the theoretical estimates, extensive simulations of the multi-
ple design parameters and implementation alternatives validate the usefulness of the
extensions, providing for enhanced and novel iBF networking applications.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal survey work by Broder and Mitzenm-
acher [1], the Bloom filter (BF) [2] has increasingly become
a fundamental data aggregation component to address
performance and scalability issues of very diverse network
applications, including overlay networks [3], data-centric
wireless networks [4], traffic monitoring, and so on. With
the caveat of one-sided errors, the use of Bloom filters
turns memory and computational expensive operations
into simple, resource-friendly set membership problems
(e.g. ‘‘is x 2 S?’’).

In this work, we focus on the subset of distributed net-
working applications that use packet-header-size Bloom
filters to share some state (i.e. information set S) among

network nodes. The specific state carried in the Bloom fil-
ter varies from application to application, ranging from se-
cure credentials [5,6] to IP prefixes [7] and link identifiers
[8], with the shared requirement of a fixed-size packet
header data structure to efficiently verify set memberships.
The commonality of recent inter-networking proposals
[5–10] is relying on Bloom filters to move application state
to the packets themselves in order to alleviate system bot-
tlenecks (e.g. IP multicast [7], source routing overhead [8]),
enable new in-network applications (e.g. security [5,6,9])
or stateless protocol designs [11].

We refer to the BF used in this type of applications as an
in-packet Bloom filter (iBF). In a way, an iBF follows a re-
verse approach compared to a traditional standalone BF
implementation: iBFs can be issued, queried, and modified
by multiple network entities at packet processing time.
These specific needs benefit from additional capabilities
like element removals or security enhancements. More-
over, careful design considerations are required to deal
with the potential effects of false positives, as every packet
header bit counts and the actual performance of the dis-
tributed system is a key goal.
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In this paper, we address common limitations of naive
iBF designs and provide a practical foundation for net-
working application designs requiring to solve set-mem-
bership problems on a packet basis (Section 3). Our main
contribution consists of assembling and evaluating a series
of practical extensions (i) to increase the system perfor-
mance, (ii) to enable false-negative-free element deletion,
and (iii) to provide security-enhanced constructs at wire
speed (Section 4). Via extensive simulation work, we ex-
plore the rich design space and provide a thorough evalu-
ation of the observed trade-offs (Section 5). Finally, we
relate our contributions to previous work on Bloom filter
designs and briefly discuss the applicability of the iBF
extensions to existing applications (Section 6).

2. Networking applications

iBFs are well suited for applications where one might
like to include a list of elements in every packet, but a
complete list requires too much space. In these situations,
a hash-based lossy representation, like a BF, can dramati-
cally reduce space, maintaining a fixed header size, at the
cost of introducing false positives when answering set-
membership queries. From its original higher layer
applications such as dictionaries, BFs have spanned their
application domain down to hardware implementations,
becoming a daily aid in network applications (e.g., routing
table lookups, DPI, etc.) and future information-oriented
networking proposals [12]. As a motivation to our work
and to get some practical examples of iBF usages, we first
briefly survey a series of networking applications with the
common theme of using small BFs carried in packets.

2.1. Data path security

The credential-based data path architecture [5] pro-
poses the following network router security feature. Dur-
ing the connection establishment phase, routers
authorize a new traffic flow request and issue a set of cre-
dentials (aka capabilities) compactly represented as bit
positions of a BF. The flow initiator constructs the creden-
tials by including all the router signatures into an iBF. Each
router along the path checks on packet arrival for presence
of its credentials, i.e., the k bits resulting from hashing the
packet 5-tuple IP flow identifier and the routers (secret)
identity. Hence, unauthorized traffic and flow security vio-
lations can be probabilistically avoided in a stateless, per
hop fashion. Using 128 bits only, for typical Internet path
lengths, the iBF-based authorization token reduces the
probability that attack traffic reaches its destination to a
fraction of a percent.

2.2. Wireless sensor networks

A typical attack by compromised sensor nodes consists of
injecting large quantities of bogus sensing reports, which, if
undetected, are forwarded to the data collector(s). The
statistical en-route filtering approach [6] proposes a detec-
tion method based on an iBF representation of the report
generation (collection of keyed message authentications),

that is verified probabilistically and dropped en-route in
case of incorrectness. The iBF-based solution uses 64 bits
only and is able to filter out 70% of the injected bogus reports
within 5 hops, and up to 90% within 10 hops along the paths
to the data sink.

2.3. IP traceback

The packet-marking IP traceback method proposed in
[9] relies on iBFs to trace an attack back to its approximate
source by analyzing a single packet. On packet arrival, rou-
ters insert their mark (IP mask) into the iBF, enabling a re-
ceiver to reconstruct probabilistically the packet path(s) by
testing for iBF presence of neighboring router addresses.

2.4. Loop prevention

In Icarus [10], a small iBF is initialized with 0s and then
filled as forwarding elements add their Bloomed interface
mask (setting k bits to 1). If the OR operation does not
change the iBF, then the packet might be looping and
should be dropped. If the Bloom filter changes, the packet
is definitely not looping.

2.5. IP multicast

Revisiting the case of IP multicast, the authors of [7]
propose inserting an iBF above the IP header to represent
domain-level paths of multicast packets. After discovering
the dissemination tree of a specific multicast group, the
source border router searches its inter-domain routing ta-
ble to find the prefixes of the group members. It then
builds an 800-bit shim header by inserting the path labels
(ASa: ASb) of the dissemination tree into the iBF. Routers
receiving the iBF check for presence of next hop autono-
mous systems and forward the packet accordingly.

2.6. Source routing & multicast

The LIPSIN [8] forwarding fabric leverages the idea of
having interface identifiers in BF-form (m-bit Link ID with
only k bits set to 1). A routing iBF can be constructed by
ORing the different Link IDs representing a source route.
Forwarding nodes maintain a small Link ID table whose en-
tries are checked for presence in the iBF to take the for-
warding decision. In a typical WAN topology and using
256-bit iBFs, multicast trees with around 40 links can be
constructed to reach up to 24 users while maintaining
the false positive rate (�3%) and the resulting forwarding
efficiency within reasonable performance levels.

3. Basic design

The basic notation of an iBF is equivalent to the stan-
dard BF, that is an array of length m, number of indepen-
dent hash functions k, and inserted elements n. On
insertion, the element is hashed to k hash values and the
corresponding bit positions are set to 1 (see example in
Fig. 1). On element check, if any of the bits determined
by the hash outputs is 0, we can be sure that the element
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was not inserted (no false negative property). If all the k
bits are set to 1, we have a probabilistic argument to be-
lieve that the element was actually inserted. The case of
collisions to bits set by other elements causing a non-in-
serted element to return ‘true’ is referred to as a false posi-
tive. In the example of Fig. 1, a false positive for w would be
returned if all three hashes would map to 1s.

For the sake of generality, we refer simply to elements as
the objects carried in the iBF. Depending on the applica-
tion, elements may take different forms such as interface
names, IP addresses, certificates, and so on. False positives
manifest themselves with different harmful effects such as
bandwidth waste, security risks, computational overhead,
etc. Thus, a system design goal is keeping false positives
to a minimum.

3.1. False positive estimates

The a priori false positive estimate, fpb, is the expected
false positive probability for a given set of parameters
(m,n,k) before actually adding the elements. Let
p = 1 � (1 � 1/m)kn be the probability that a particular bit
is set to 1. Then,

fpb ¼ ð1� ð1� 1=mÞknÞk: ð1Þ

The number k that minimizes the false positive probability
can be obtained by setting the partial derivative of fpb with
respect to k to 0. This is attained when k = m/n ln 2, and is
rounded to an integer to determine the optimal number of
hash functions to be used [1].

While Eq. (1) has been extensively used and experimen-
tally validated as a good approximation, for small values of
m the actual false positive rate is larger. Recently, Bose
et al. [13] have shown that fpb is actually only a lower
bound, and a more accurate estimate can be obtained by
formulating the problem as a balls-into-bins experiment:

pk;n;m ¼
1

mkðnþ1Þ

Xm

i¼1

iki!
m
i

� �
kn

i

� �
: ð2Þ

According to [13, Theorem 4], Eq. (2) can be lower- and
upper-bounded as follows:

pk < pk;n;m < pk � 1þ O
k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln m� k ln p

m

r ! !
: ð3Þ

Hence, the difference between the observed false posi-
tive rate and the theoretical estimates can be significant
for small size BFs, a fact that we (and others) have empir-
ically observed (see evaluation in Section 5.1.2). Thus,
small iBFs are prone to more false positives than larger iBFs
for equivalent m/n ratios.

Both Eqs. (1) and (2) do not involve knowing exactly
how many bits are actually set to 1. A more accurate esti-
mate can be given once we know the fill factor q; that is
the observed fraction of bits that are actually set to 1 after
elements have been inserted. We can define the posterior
false positive estimate, fpa, as the expected false positive
probability after inserting the elements:

fpa ¼ qk: ð4Þ

Finally, the observed false positive rate (fpr) can be ob-
tained after testing for the presence of elements:

fpr ¼ Observed false positives
Tested elements

: ð5Þ

Note that the fpr is an experimental quantity obtained via
simulation or system measurements and not a theoretical
estimate. Hence, the fpr is the key performance indicator
we want to measure in a real system, where every ob-
served false positive will cause some form of degradation.
Therefore, practitioners are less interested in the asymp-
totic bounds of the hash-based data structure and more
concerned with the actual false positive rates, especially
in the case of space-constrained iBFs.

3.2. Naming and basic operations

A nice property of hash-based data structures is that
they do not depend on the form of the inserted elements.
Independent of its size or representation, every element
carried in the iBF contributes with at most k bits set to 1.
In order to meet the line speed requirements of iBF opera-
tions, one design recommendation is to have the elements
readily in a pre-computed BF-form (m-bit vector with k
bits set to 1), avoiding thereby any hashing at packet pro-
cessing time. Element insertion becomes a simple, parallel-
izable bitwise OR operation. Analogously, an iBF element
check can be performed very efficiently in parallel via fast
bitwise AND and COMPARE operations.

A BF-ready element name, also commonly referred to as
element footprint, can be stored as an bit vector of size m
or, for space efficiency, it can take a sparse representation
including only the indexes of the k bit positions set to 1.
In this case, each element entry requires only klog2m bits.

4. Extensions

In this section, we describe three useful extensions to
basic in-packet Bloom filter designs in order to address
the following practical issues:

Fig. 1. Overview of the Bloom filter probabilistic data structure.
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(i) Performance: Element Tags exploit the notion of
power of choices in combining hashing-based ele-
ment names to select the best iBF according to some
criteria, for instance, less false positives.

(ii) Deletion: Deletable regions introduce an additional
header to code collision-free zones, enabling thereby
safe (false-negative-free) element removals at an
affordable packet header bit space.

(iii) Security: Secure constructs use packet-specific infor-
mation and distributed time-based secrets to pro-
vide protection from iBF replay attacks and bit
pattern analysis, preventing attackers from misusing
iBFs or trying to infer the identities of the inserted
elements.

4.1. Element tags

The concept of element Tags (eTags) is based on extend-
ing BF-compatible element naming with a set of equivalent
footprint candidates. That is, instead of each element being
identified with a single footprint, every element is associ-
ated with d alternative names, called eTags, uniformly
computed by applying some system-wide mapping func-
tion (e.g., k � d hash functions). That allows us to construct
iBFs that can be optimized in terms of the false positive
rate and/or compliance with element-specific false positive
avoidance strategies. Hence, for each element, there are d
different eTags, where d is a system parameter that can
vary depending on the application. As we see later, a prac-
tical value of d is in the range of multiples of 2 between 2
and 64.

We use the notion of power of choices [14] and take
advantage of the random distribution of the bits set to 1
to select the iBF representation among the d candidates
that leads to a better performance given a certain optimi-
zation goal (e.g., lower fill factor, avoidance of specific false
positives). This way, we follow a similar approach to the
Best-of-N method applied in [15], with the main differ-
ences of (1) a distributed application scenario where the
value d is carried in the packet header, and (2) the best can-
didate selection criterion is not limited to the least amount
of bits set but may include other optimization criteria (e.g.,
Section 5.2 bit deletability), including those that involve
counting false positives against a training set (e.g. Section
4.1.2 fpr-based selection).

The caveats of this extension are, first, it requires more
space to store element names, and second, the value d
needs to be stored in the packet header as well, consuming
bits that could be used for the iBF. However, knowing d at
element query time is fundamental to avoid checking mul-
tiple element representations, which would traduce in
potentially more false positives (cf. [14]). Upon packet ar-
rival, the iBF and the corresponding eTag entries can be
ANDed in parallel.

4.1.1. Generation of eTags
To achieve a near uniform distribution of 1s in the iBF, k

independent hash functions per eTag are required. In gen-
eral, k may be different for each eTag, allowing to adapt
better to different fill factors and reducing the false posi-
tives of more sensitive elements. Using the double hashing

technique [16] to compute the bits set to 1 in the d eTags,
only two independent hash functions are required without
any increase of the asymptotic false positive probability.
That is, we rely on the result of Kirsch and Mitzenmacher
[16] on linear combination of hash functions, where two
independent hash functions and can be used to simulate i
random hash functions of the form:

giðxÞ ¼ ½h1ðxÞ þ i � h2ðxÞ� modm: ð6Þ

As long as h1(x) and h2(x) are system wide parameters,
sharing i = d � k integers is only required to derive the eTags
for any set of elements. For space efficiency, another opti-
mization for the sparse representation of the candidates
consists of defining the d eTags by combinations among

k + x iBF positions, i.e., d ¼ kþ x
k

� �
.

4.1.2. Candidate selection
Having ‘‘equivalent’’ iBF candidates enables to define a

selection criteria based on some design-specific objectives.
To address performance by reducing false positives, we can
select the candidate iBF that presents the best posterior
false positive estimate (fpa-based selection; Eq. (4)). If a ref-
erence test set is available to count false positives, the iBF
choice can be done based on the lowest observed rate (fpr-
based selection; Eq. (5)). Other types of selection policies
can be specified to favor the candidate presenting less false
positives for certain ‘‘system-critical’’ elements (fp-element
avoidance selection).

4.1.3. False positive improvement estimate
Following the same analysis as in [15], the potential

gain in terms of false positive reduction due to selecting
the iBF candidate with fewer 1s can be obtained by esti-
mating the least number of bits set after d independent
random variable experiments (see Appendix A for the
mathematical details). Fig. 2 shows the expected gains
when using the fpa-based selection after generating d can-
didate iBF for a given element set. With a few dozen candi-
dates, one can expect a factor 2 improvement in the
observed fpr when selecting the candidate with fewer
ones. Note that the four iBF configurations plotted in
Fig. 2 have the same m/n ratio. In line with the theoretical
predictions [13], smaller bit vectors are subject to slightly
larger false positive probabilities. However, as shown in
Fig. 2(b), the fpr improvement factor of smaller iBFs due
to the d-eTag extension is larger. Hence, especially for
small iBFs, computing d candidates can highly improve
the false positive behavior, a fact that we have validated
experimentally in Section 5.

4.2. Deletable regions

Under some circumstances, a desirable property of iBFs
is to enable element deletion as the iBF packet is processed
along network nodes. For instance, this is the case if some
inserted elements are to be processed only once (e.g., a hop
within a source route), or, if bit space is required to add
more elements upfront. Unfortunately, due to its compres-
sion nature, bit collisions hamper naive element removals
unless we allow introducing false negatives into the
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system. To overcome this limitation (with high probabil-
ity), so-called counting Bloom filters (CBF) [17] were pro-
posed to expand each bit position to a cell of c bits. In a
CBF, each bit vector cell acts as a counter, increased on ele-
ment insertion and decreased on element removal. As long
as there is no counter overflow, deletions are safe from
false negatives. The main caveat is the c times larger space
requirement, a prohibitive price for the tiny iBFs under
consideration.

The key idea of the deletable region extension is to keep
track of where the collisions occur at element insertion
time. By using the property that bits set to 1 by just one ele-
ment (collision-free bits) are safely deletable, the proposed

extension consists of encoding the deletable regions as part
of the iBF header. Then, an element can be effectively
removed if at least one of its bits can be deleted.

Encoding the deletable region information should con-
sume a minimum of bits from the allocated iBF space. A
straightforward coding scheme is to divide the iBF bit vec-
tor into r regions of m0/r bits each, where m0 is the original
m minus the extension header bits. As shown in Fig. 3, this
extension uses r bits to code with 0 a collision-free region
and with 1 a non-deletable region. The probability of ele-
ment deletion, i.e., the chances of an element having at
least one bit in a collision-free region, can be approximated
to (see Appendix B for the mathematical details):

pd ¼ ð1� ð1� pcÞ
m0=rÞk: ð7Þ

Fig. 4(a) plots pd against the number of regions r and con-
firms the intuition that increasing r results in a larger pro-
portion of elements being deletable. As more elements are
inserted into the iBF, the number of collisions increases
and the deletion capabilities (i.e., bits in collision-free re-
gions) are reduced (see Fig. 4(b)). As a consequence, the
target element deletion probability pd and the number of
regions r establish a practical limitation on the capacity
nmax of a deletable iBF.

Fig. 4(b) plots pd against the filter density m/n for differ-
ent memory to regions ratios m/r. As expected, increasing r
results in a larger portion of deletable elements. As more
elements are inserted (lower m/n and more collisions),
the deletion capabilities are reduced. Hence, the parameter
r can be chosen by defining a target element deletion prob-
ability pd and estimating the upper bound of the set cardi-
nality n. For instance, allocating only 5 % of the available
bits (m/r = 20) to code the collision bitmap, we can expect
to remove around 90 % of the elements when the bits per
element ratio m/n is around 16.

From a performance perspective, enabling deletions
comes at the cost of r bits from the iBF bit space. However,
removing already processed elements decreases the fill
factor and consequently reduces the probability of false
positives upfront. Later in Section 5.2 we explore the
trade-offs between the overhead of coding the deletable
regions, the impact on the fpr, and the implications of the
candidate selection criteria.

4.3. Secure constructs

The hashing nature of iBFs provides some inherent
security properties to obscure the identities of the inserted
elements from an observer or attacker. However, there are
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Fig. 2. False positive probability gains of the power of choices extension.

Fig. 3. An example of the DlBF with m = 32, k = 3 and r = 4, representing the set x,y,z. The 1s in the first r bits indicate that a collision happen in the
corresponding region and bits therein cannot be deleted. Since each element has at least one bit in a collision-free zone, all of them are deletable.
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a series of cases where improved security means are desir-
able. For instance, an attacker is able to infer, with some
probability, whether two packets contain an overlapping
set of elements by simply inspecting the bits set to 1 in
the iBFs. In another case, an attacker may wait and collect
a large sample of iBFs to infer some common patterns of
the inserted elements. In any case, if the attacker has
knowledge of the complete element space (and the eTags
generation scheme), she can certainly try a dictionary at-
tack by testing for presence of every element and obtain
a probabilistic answer to what elements are carried in a
given iBF. A similar problem has been studied in [18] to se-
cure standalone BFs representing a summary of documents
by using keyed hash functions. Our solution follows the
same approach i.e. obscuring the resulting bit patterns in
the filter by using additional inputs to the hashes. How-
ever, our attention is focused to the specifics of distributed,
line-speed iBF operations.

The main idea to improve the security is to bind the iBF
element insertion to (1) an invariant of the packet or flow
(e.g., IP 5-tuple, packet payload, etc.), and (2) system-wide
time-based secret keys. Basically, the inserted elements
become packet- and time-specific. Hence, an iBF gets expi-
rable and meaningful only if used with the specific packet
(or authorized packet flow), avoiding the risk of an iBF re-
play attack, where the iBF is placed on a different packet.

4.3.1. Binding to packet contents
We strive to provide a lightweight, bit mixing function

O = F(K, I) to make an element name K dependent on addi-
tional in-packet information I. For this extension, an ele-
ment name K is an m-bit hash of the element and not the
eTag representation with only k bits set to 1. The function
F must be fast enough to be done at packet processing time
over the complete set of elements to be queried by a node
processing the iBF. The output O is the k bit positions to be
set/checked in the iBF. Using cryptographic hash functions
(e.g., MD5, SHA1) for F becomes unpractical if we want to
avoid multiple (one per element) cycle-intense hashing
per packet.

As an example resource-efficient implementation of F,
we propose the lightweight Algorithm 1 to mix each ele-
ment K with a fixed bit string I. Taking I as an input, the
algorithm runs in parallel on each element K and returns
the k bit positions in the iBF to be set or checked. After an
initial bitwise XOR operation (Step 1), the output O is di-
vided into k segments of m/k bits (Step 2). To build the fold-
ing matrix in Step 3, each segment is transformed into a
matrix of clog2m bits.1 For instance, with m = 256 and
k = 4, each segment Ok would be a 64-bit bit vector trans-
formed into a 8 � 8 matrix. Finally, each of the k output val-
ues is computed by XORing the rows of each matrix into a
log2m bit value that returns the bit position to be set/checked
(Step 4). The d-bit shifting enables the power of choices.

We are faced with the classic trade-off between security
and performance. An heuristic evaluation suggests that the
proposed F provides a good balance between performance
and security. First, F involves only bit shifting and XOR

operations that can be done in a few clock cycles in parallel
for every K. Second, the k bit positions depend on all the
bits, within an m/k bit segment, from the inputs I and K.
The security of F depends on how well I and K are mixed.
For security sensitive applications, the XOR operation in
Step 1 should be replaced with a more secure transforma-
tion P(K, I) i.e., using lightweight hash functions or line-
speed stream ciphers (see e.g. [19]). The final choice of F
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Fig. 4. Element deletability probability (m = 256).

1 Note that depending on the values of m and k, some padding bits (e.g.,
from within segments) may be required to complete the matrix.
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should take the application specifics into account (e.g., nat-
ure of K, computation of I per-packet) and the target secu-
rity level.

4.3.2. Time-based keyed hashing
A more elaborate security extension consists of using a

keyed element name construction, and change the secret
key S(t) regularly. We can define S(t) as the output of a
pseudo random function Si = F(seed, ti), where seed is the
previous value and t a time-based input. Then, we can in-
clude the current S value in the algorithm for element
check/insertion e.g., O = F(K, I,S(t)). Thereby, we obtain a
periodically updated, shared secret between iBF issuers
and iBF processing entities, with the benefit that an iBF
cannot be re-utilized after a certain period of time or after
an explicit re-keying request. Moreover, by accepting Si

and Si�1 the system requires only loose synchronization
similar to commercial time-coupled token generators. At
the cost of initial synchronization efforts and computa-
tional overhead, this method provides an effective means
to make iBF applications secure (e.g., forwarding availabil-
ity [20,21]).

4.4. Density factor

Finally, a basic security measure for iBFs, also proposed
in [5], is to limit the percentage of 1s in the iBF to 50%–75%.
A density factor qmax can safely be set to k � nmax/m, as each
legitimate element contributes with at most k bits. Then,
the probability of an attacker guessing a bit combination
that causes a single false positive can be upper bounded
by qk

max.

5. Practical evaluation

We now turn our attention to the practical behavior of
the iBF in function of the multiple design parameters and
carry out extensive simulation work to validate the useful-
ness of the three extensions under consideration. For these
purposes, we use randomly generated bit strings as input
elements and the double hashing technique using SHA1
and MD5. The section concludes exploring the potential
impact of different types of iBF elements (flat labels, IP ad-
dresses, dictionary entries) and the hash function imple-
mentation choice.

5.1. Element tags

We are interested in evaluating the gains of the power
of choices that underpins the element Tag extension (Sec-
tion 4.1), where any element set can be equivalently repre-
sented by d different iBFs, different in their bit distribution
but equivalent with regard to the carried element identi-
ties. We first explore the case where k = 5 and then the im-
pact of using a distribution around 5 for candidate
naming.2

5.1.1. Power of choices (d)
We run the simulations varying d from 2 to 64 and

updating m accordingly to reflect the overhead of including
the value d in the packet header. Fig. 5 compares the ob-
served fpr for different values of d. In accordance with
the theoretical predictions (Section 4.1.3), increasing d
and choosing the candidate iBF just by observing its fill fac-
tor after construction (Fig. 5(a)) leads to better performing
iBFs. In the region where the iBF is more filled (30–40 ele-
ments), the observed fpr drops between 30% and 50% when
16 or more candidate iBFs are available. Another interpre-
tation is that for a maximal target fpr we can now insert
more elements. As expected, the performance gain is more
significant if we consider the best performing iBF after
testing for false positives. Observing Fig. 5(b), the number
of false positives is approximately halved when comparing
the best iBF among 16 or more against a standard 256-bit
iBF.

We also note that the observed fpr is slightly larger than
the commonly assumed theoretical estimate (Eq. (1)), con-
firming thus the findings (Eq. (4)) by [13]. As shown in Ta-
ble 1, this difference is more noticeable for smaller m,
becoming negligible for m larger than 1024.

5.1.2. Distribution of the number of hash functions (k)
Now, we explore allowing a different number of bits k

per candidate. For instance, with d = 8 the distribution of
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Fig. 5. Power of choice gains (m = 256, k = 5).

2 We choose k = 5 to have a probabilistically sufficient footprint space for
the eTags (m!/(m � k)! � 1012 with m = 256) when targeting an m/n of
about 8 bits per element.
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k among the candidates could be {4,4,5,5,6,6,7,7}. Intui-
tively, this naming scheme adapts better to the final num-
ber of elements in the iBF (as kd closer to kopt = m/nln (2)).
The fpa-based selection criterion (Section 4.1) is now choos-
ing the candidate with the lowest estimate minfqk0

0 ; . . . ;

qkd
d g. Fig. 6(a) shows the distribution of the selected 256-

bit iBFs for the case of d = 16 and k evenly distributed be-
tween 4 and 7. The line shows the percentage of times that
the selected iBF actually yielded the best performance
among the candidates. Disregarding the scenarios with
fewer elements, the fpa-based selection strategy succeeded
to choose the optimal candidate in about 30% of the times.

Fig. 6(b) shows the percentile distribution of the best per-
forming iBF after fpr testing. As expected, in more filled
iBFs scenarios, setting less bits per element is beneficial.
However, the differences are relatively small. As shown
in Table 1, the observed fpr in the case of kconst. = 5 is prac-
tically equivalent (if not slightly better) to the case where k
is distributed. We can also observe what the theory in Sec-
tion 2 predicts with regard to smaller iBFs: (i) inferior fpr
performance for the same m/n ratio, and (ii) larger poten-
tial to benefit from the power of choices extension.

5.1.3. Discussion
Based on our experimental evaluation, having more

than 32 candidates per element is not compelling in terms
of additional proportional fpr benefits beyond approxi-
mately a factor 2 depending on the specific parameters.
The results are consistent with the theoretical estimates
in Section 4.1.3. However, if the system design choice is
based on selection criteria optimized for the non occur-
rence of specific false positives (i.e. element-avoidance
Section 4.1), increasing the number of choices d allows
complying to a larger set of false positive avoidance poli-
cies. The practical limitations would be how much space
the application designer is willing to pay to store the can-
didate element representations in the nodes and code the
index d in the packets.

5.2. Deletion

We explore two important aspects of the deletable re-
gions extension. First, from a qualitative point of view we
examine the actual capabilities to successfully delete ele-
ments for different m/n ratios, number of regions r and
choices d. Second, we evaluate the quantitative gains in
terms of false positive reduction after element bits are de-
leted. Obviously, both aspects are related and intertwined
with the ability to choose among candidate iBF representa-
tions to favor the deletion capabilities. Now, the applica-
tion can choose the iBF candidate with the most number
of bits set in collision free-zones, increasing thus the bit
deletability. Alternatively, one may want to favor the ele-
ment deletability, recalling that removing a single element
bit is traduced into a practical deletion of the element.

Using our basic coding scheme (Section 4.2), we
consume one bit per region to code whether collision

Table 1
Observed fpr for iBFs with 16 eTag choices.

m n Std. (%) fpa-opt. (%) fpr-opt. (%)

Th. fpr kcte kdst kcte kdst

128 6 0.04 0.16 0.14 0.19 0.04 0.05
12 0.75 1.12 0.88 0.86 0.37 0.32
18 3.33 4.39 2.80 3.10 2.18 2.37

256 12 0.04 0.09 0.08 0.08 0.01 0.03
24 0.74 0.95 0.74 0.71 0.26 0.30
36 3.31 3.63 2.69 2.75 2.07 2.15

512 24 0.04 0.08 0.07 0.04 0.01 0.01
48 0.74 0.83 0.64 0.64 0.22 0.25
72 3.29 3.46 2.87 3.05 2.09 2.21
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happened and deletion is prohibited or not. Thus, the bits
available for iBF construction are reduced to m0 = m �
log2d � r.

On each experiment round, we randomly select n ele-
ments from a pool of 1 million unique bit strings, and in-
sert them updating the r bitmap accordingly. We then try
to remove every inserted element and measure the quality
and quantity of the deletion capabilities.

5.2.1. Quality: how many elements can be removed in
practice?

Fig. 7(a) plots the average percentage of elements that
could be deleted. As expected, partitioning the iBF into
more regions results in a larger fraction of elements (and
bits) being deletable. For instance, in the example of a
256-bit iBF with 32 regions (Fig. 7), when 24 elements
are inserted, we are able to delete an average of more than
80% of the elements by safely removing around 50% of the
bits (Fig. 7(b)). Playing with the candidate choices, we can
enhance the bit (Fig. 8(a)) and element (Fig. 8(b)) deletabil-
ity considerably. The actual deletability rates are lower
than expected by theory (Fig. 4) but behave as predicted
by the mathematical model of the element deletability
probability (Eq. (7)). This divergence can be explained by
the theoretical assumptions on random bit distributions

and the actual behaviour of hash functions, especially in
small size bit vectors.

5.2.2. Quantity: what are the false positive rate gains due to
bit deletability?

On the one hand, we have the potential gains of remov-
ing bits from collision-free zones. On the other, the cost of
(1) coding the deletable regions (r bits), and (2) having
more filled iBFs due to the rarefication of colliding bits.
While Fig. 9(a) shows the price of having to code more re-
gions (fpr before deleting elements), Fig. 9(b) illustrates the
potential gains of removing every deletable bit. If we aver-
age the fpr before and after elements are deleted, the iBF
performance appears equivalent to the fpr of a standard
non-deletable m-bit iBF. In comparison, a counting BF with
2 bits per cell3 would behave like an iBF of size m/2, which
would have its element capacity prohibitively constrained.

Analyzing the impact of the power of choices, Fig. 10
shows that choosing the best deletable iBF candidate
causes the colliding bits to ‘‘thin out’’ (greater q), yielding
a higher fpr before deletion (Fig. 10(a)) and a smaller fpr
after elements are removed (Fig. 10(b)).
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3 Using the power of choices, we could have with very high probability a
candidate that does not exceed the counter value of 3, avoiding false
negatives as long as no new additions are considered.
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5.2.3. Discussion
There is a tussle between having a smaller fill factor q,

with more collisions at construction time reducing the fpa,
and the deletability extension that benefits from fewer col-
lisions. Deletability may be a key property for some system
designs, for instance, whenever an element in the iBF
should be processed only once and then be removed, or
when space is needed to add new elements on the fly.
One key property is that just by inspecting the bitmap r,
any node can safely (without introducing false negatives)
remove an element from the iBF. A more detailed evalua-
tion should consider the specific application dynamics into
consideration, i.e., the nature and frequency of deletions/
insertions at runtime.

From a fpr performance perspective, the cost of coding
the deletable regions is only a slight increase in the fpr
due to r being only a small fraction of m. However, reduc-
ing m seems to hinder the average fpr gains due to bit dele-
tions upfront. Nonetheless, especially for space-restricted
iBFs, the proposed extension is a far more attractive ap-
proach to enable (probabilistic) deletions than alternative
solutions based on counting BFs. An open question is
whether there is a better coding scheme for the deletable
regions, for instance, using error correcting codes. Finally,
the power of choices again proved to be a very handy tech-
nique to deal with the probabilistic nature of hash-based
data structures, enabling candidate selection for different
criteria like better fpr or certain element/bit deletability.

5.3. Security

Besides fast computation, the main requirements for
the security extension are that (i) the random distribution
of the iBF bits is conserved, and (ii) given a collection of
packets I and the securely constructed iBFs, one cannot
easily reveal information about the inserted elements (K).
More generally, given a set of (I, iBF) pairs, it must be at
best very expensive to retrieve information about the iden-
tities of K.

We first measured the randomness of the secure iBF
construction outputs from Algorithm 1 by fixing a set of
20 elements and changing the per-packet 256-bit ran-
domly generated I value on each experiment run. Table 2
gathers the average results of 100 experiments with 1000
runs per experiment. The observed distribution of outputs
within an experiment, measured as the Hamming distance
between output bit vectors (BV), was very close to the
mean value of m/2 bits (128) with a small standard devia-
tion.4 The observed average number of bits set and their dis-
tribution were comparable to standard iBF constructs.
Additionally, we analyzed whether the 20 most frequent
bit positions set in secure iBFs corresponded to bits set in
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4 In future work we will extend these results and the hashing techniques
evaluation of Section 5.4 with standard randomness tests such as those
included in the Diehard suite (http://www.stat.fsu.edu/pub/diehard).
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plain iBFs. We defined the correlation factor as the fraction of
matches and obtained a value of 0,371, which is close to the
probability of randomly guessing bits in a 256-bit iBF with
k = 4 and n = 20 elements (Pr � 96/256 � 0,37).

The results indicate that, assuming a random packet
identifier I, first, no actual patterns can be inferred from
the securely inserted elements, and second, the random
bit distribution of an iBF is conserved when using the pro-
posed algorithm. However, we recognize the limitations of
Algorithm 1. For instance, if provable protection against
more elaborated attacks is required, then, a more secure
and computationally expensive bit mixing procedure (Step
1 in Algorithm 1) should be considered, in addition to a
time-based shared secret as suggested in Section 4.3.

5.4. Hashing technique

Finally, we investigate the impacts of the hash function
implementation choice and the nature of the input ele-
ments in small size iBFs. There are two factors that deter-
mine the ‘‘quality’’ of the bit distribution and consequently
may impact the observed fpr: (1) the input bit string, and
(2) the implementation of the hash function.

5.4.1. Input data sets
Instead of considering elements as simple random bit

strings, we now explore three types of elements that cover
typical inputs of iBF applications:

� 32-bit IP addresses: Nearly 9M IP addresses were gen-
erated by expanding the subnet values of IP prefixes
advertised in the CAIDA database.5 In addition, private
IP addresses (10.0.0.0/16,192.168.0.0/16) were also used
in the experiments.
� 256-bit random labels: A set of 3M random labels was

generated constructing each 256-bit label by picking
randomly 64 hex characters and checking for
uniqueness.
� Variable-bit dictionary words: A set formed by 98.568

entries of the American dictionary.6

5.4.2. Hash function choice
We chose 3 commonly used cryptographic hash func-

tions (MD5, SHA1 and SHA256) and 2 general purpose
hash functions (CRC32 and BOB).7

The observed fpr (Table 3) imply that, on average, the
input type does not affect the iBF performance. Fig. 11
plots the observed normalized sample variance for different
bit vector sizes (m). For lower m values the variances show
a larger difference and start converging for m > 512. CRC
presents the best output distribution when dealing with
IP addresses as inputs. This may be explained by the 32-
bit match of inputs and outputs. In general, the functions
exhibit similar behavior, leading to the conclusion that
all 5 hash functions can be used independently from the
nature of the elements. This result experimentally con-
firms, also in the case of small m values, the observation
by Mitzenmacher and Vadhan [23] that given a certain de-
gree of randomness in the input, simple hash functions
work well in practice.

Table 2
Evaluation of the secure iBF algorithm (m = 256, k = 4, n = 20). Avg. (Stdev)
after 1000 runs.

Sec. iBF Plain iBF Random BV

Hamming dist. 127.94 (8.06) 0 127.95 (8.03)
# Bits set 96.27 (3.20) 96.29 (–) 127.97 (7.97)
Correlation 0.371 –

Table 3
Observed fpr in 256-bit iBF using double hashing with SHA1 & MD5 and
with 8-bit segments of CRC32. Avg. (StdDev); 1000 tests.

n DoubleHash IP Random Dict.

16 SHA1& MD5 0.340 (0.035) 0.338 (0.032) 0.328 (0.034)
CRC32 segm. 0.345 (0.037) 0.349 (0.034) 0.338 (0.034)

32 SHA1& MD5 2.568 (0.436) 2.576 (0.449) 2.519 (0.385)
CRC32 segm. 2.541 (0.418) 2.532 (0.403) 2.570 (0.444)
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Fig. 11. Normalized bit distribution variance of hash outputs.

5 ftp.ripe.net/ripe/stats/delegated-ripencc-20090308.
6 /usr/share/dict/american-english.
7 Related work has investigated the properties of 25 popular hash

functions, pointing to BOB as a fast alternative that yields excellent
randomized outputs for network applications [22]. Although MD5 and
SHA1 are considered broken due to the recent discovery of collisions, they
are perfectly valid for our randomness purposes.
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5.4.3. Hash segmentation technique
For the purposes of iBF construction, there is a waste of

hash output bits due to the mod m residual restrictions.
Hence, we want to know whether we can divide the output
of a hash function into log2m segments and use each seg-
ment as an independent hash value. We compare the bit
distribution and fpr performance of iBFs constructed using
the double hashing technique with MD5 and SHA1 against
iBFs generated with CRC32 segments as hi(x). The differ-
ences of the observed fpr (Table 3) are negligible, which
suggests that this hashing technique may be practical.
Hence, we can reduce the two independent hash function
requirement of the double hashing technique to a single
hash computation based on e.g., CRC32 or BOB. This result
can be applied to iBF networking applications with on-line
element hashing instead of pre-computed element names.
Moreover, this efficient hash segmentation technique may
be useful in other multiple-hashing-based data structures
(e.g., d-left hash tables) that require hashing on a packet
basis.

6. Related work

Although multiple variants of Bloom filter designs and
applications have been proposed in the last years (e.g.,
Bloomier, dynamic, spectral, adaptive, retouched, etc.), to
the best of our knowledge, none of the previous work fo-
cuses on the particular requirements of distributed net-
working applications using small Bloom filters in packet
headers.

Prior work on improved Bloom filters include the Power
of Two Choices filter [14] and the Partitioned Hashing [24],
which rely on the power of choices at hashing time to im-
prove the performance of BFs. False positives are reduced
in [24] by a careful choice of the group of hash functions
that are well-matched to the input elements. However, this
scheme is not practical in distributed, highly dynamic
environments. The main idea of [14] is to reduce the num-
ber of 1s by choosing the ‘‘best’’ set of hash functions. Be-
sides our in-packet-header scope, our approach differs in
that we include the information of which group of hash
functions was used (d value) in the packet itself, avoiding
thereby the caveat of checking multiple sets. On the other
hand, we need to stick to one set of hash functions for all
elements in the BF, whereas in [14] the optimal group of
hash functions can be chosen on an element basis. To our
benefit, due to the reduced bit vector scenario, we are able
to select an optimal BF after evaluating all d candidates,
which leads to improved performance even in very dense
BF settings (small m/n ratios).

Regarding the extension to choose the best candidate fil-
ter, the Best-of-N method [15] only considers a standalone
application where the best BF selection is based on the least
dense filter constructed using the optimal number of hash
functions. In contrast, our distributed iBF applications
include candidates with different amount of bits set, as the
maximum set cardinality may be unknown a priori. An
optimized candidate iBF selection is possible whenever
the iBF application is able to test for presence of elements
that are known to be queried upfront. Moreover, selection

criteria may be beyond reducing fpr, for instance benefit-
ing the deletion of elements or avoiding specific false
positives.

The closest BF design innovations to support deletions,
other than counting BFs or d-left fingerprint hash tables
[17], are the Variable-length Signatures (VBF) [25]. Simi-
larly based on resetting at least one bit from element sig-
natures, the main caveat is being prone to false
negatives. In contrast, our deletable regions do not intro-
duce false negatives at the cost of providing only probabi-
listic element deletions.

Security and privacy preserving extensions for stand-
alone BFs have been previously proposed in different con-
texts (e.g., [18,26]). The novelty of our application resides
in taking distributed systems and data packets specifics
into consideration (e.g., flow-identifier, time-based loose
synchronization of distributed secrets).

7. Relevance and extensions in practice

Our work on iBFs is mostly an outcome from our re-
search on compact packet forwarding mechanisms. The
idea of element Tags has its roots in the work on a link
identifier based forwarding fabric [8], rendering the system
more useful (network policy compliance, loop avoidance,
security) and efficient (fpr control, larger multicast groups).
Recently, we applied the notion of power of choices in the
design of scalable data center forwarding services [27,28]
based on 96-bit iBF encoding of valiant load balanced fat
tree network paths between virtual machines hosted in
rack servers.

In general, the element tag extensions can be applied to
similar use cases of compact source routing. For instance,
in the IP multicast proposal [7], having multiple choices
would reduce false positives and enable compliance to in-
ter-domain AS policies in the case of false positives. When
applied to the credentials-based architecture proposed in
[5], multiple candidates may allow iBFs to transverse lar-
ger paths before reaching the maximum density. Addition-
ally, the security extension may provide extra protection
from an en-route attacker spoofing the source IP address
and re-using the flow credentials for unauthorized traffic.

In the field of secure packet forwarding mechanisms,
we contributed to the development of self-routing capabil-
ities for DDoS protection in Bloom filter based forwarding
services [20]. In addition, recent work has validated the
effectiveness of loop prevention with a new extension
based on performing per-hop bit permutations [29]. A joint
application of these iBF algorithmic techniques aims at
solving forwarding anomalies of naive approaches to iBF
based networking. Related work has explored the applica-
tion of secure iBF forwarding methods to provide fast host
mobility [30], scalable multicast VPN services in GMPLS-
enabled networks [31], and an edge-controlled approach
to stateless inter-domain ‘bloomcasting’ [21].

Last but not least, we are looking for new use cases for our
deletable Bloom filter design [32]. Due to its space efficiency
and the tunable probability of safe bit removals, the delet-
able regions extension may have interesting applications
beyond the scope of iBFs. Similarly, the hash segmentation
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technique appears useful to lower the burden on any system
requiring multiple expensive hash computations.

8. Conclusions

This paper explores an exciting front in the Bloom filter
research space, namely the special category of small Bloom
filters carried in packet headers. Using iBFs is an appealing
approach for networking application designers choosing to
move application state to the packets themselves. At the
expense of some false positives, fixed-size iBFs are amena-
ble to hardware and present a way for new networking
applications.

We studied the design space of iBFs in depth and eval-
uated new ways to enrich iBF-based networking applica-
tions without sacrificing the Bloom filter simplicity. First,
the power of choices extension shows to be a very power-
ful and handy technique to deal with the probabilistic nat-
ure of hash-based data structures, providing finer control
over false positives and enabling compliance to system
policies and design optimization goals. Second, the space-
efficient element deletion technique provides an important
(probabilistic) capability without the overhead of existing
solutions like counting Bloom filters and avoiding the lim-
itations of false-negative-prone alternatives. Third, secu-
rity extensions were considered to couple iBFs to time
and packet contents, providing a method to secure iBFs
against tampering and replay attacks. Finally, we validated
the extensions in a rich simulation set-up, including useful
recommendations for efficient hashing implementations.
We hope that this paper motivates the design of more
iBF extensions and new networking applications.
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Appendix A. Mathematical model for d-candidate fpa
optimization (adapted from [15])

Given the iBF parameters m, n, k, and letting d be the
number of different iBF candidates for the same element
set, the probability of setting arbitrary but fix s bits in
an iBF candidate can be formulated as an independent
random variable experiment:
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Defining l = E[s] and r = r[s], the minimum continuous
probability density function is:
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Consequently, the expectation of the least number bits
(smin) set by any of d candidates:

EðSminÞ ¼
Z 1

�1
sfminðsÞds: ðA:4Þ

Finally, the probability of a false positive once the
smallest fill ratio has been estimated:

pr½false positive� ¼ E½smin�
m

k
 !

: ðA:5Þ

Appendix B. Element deletability probability

Consider a bit array of size m0 = m � r with dm0/re bit
cells per region. The probability that a given cell has at
least one collision is pc = 1 � p0 � p1, where p0 denotes
the probability that a given cell is set to 0 and p1 is the
probability that a given cell is set to 1 only once after
inserting n elements:

p0 ¼ ð1� 1=m0Þkn ðB:1Þ

and

p1 ¼ ðknÞð1=m0Þð1� 1=m0Þkn�1
: ðB:2Þ

Then, the probability that a m0/r bit region is collision-free
is given by ð1� pcÞ

m0=r . Finally, for r P k and m� k, the
probability of an element being deletable (i.e., with one
of its k bits in a collision-free region) can be approximated
to:

pd ¼ ð1� ð1� pcÞ
m0=rÞk:
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Abstract. Traditional multicasting techniques give senders and receivers
little control for who can receive or send to the group and enable end
hosts to attack the multicast infrastructure by creating large amounts of
group specific state. Bloom filter based multicast has been proposed as
a solution to scaling multicast to large number of groups.
In this paper, we study the security of multicast built on Bloom fil-
ter based forwarding and propose technique called BloomCasting, which
enables controlled multicast packet forwarding. In Bloomcasting group
management is handled at the source, which gives control over the re-
ceivers to the source. Cryptographically computed edge-pair labels give
receivers control over from whom to receive. We evaluate a series of data
plane attack vectors based on exploiting the false positives in Bloom fil-
ters and show that the security issues can be averted by locally varying
the Bloom filter parameters, the use of cryptographic hash functions,
and per hop bit permutations on the Bloom filter carried in the packet
header.

1 Introduction

Recently, a number of routing and forwarding proposals [25, 16, 32] are re-thinking
one of the most studied problems in computer networking – scalable multi-
cast [12, 23]. The unifying theme of these proposals is to use Bloom filters in
packet headers for compact multicast source routing. This makes it possible for
the multicast architecture to scale to the billions, or even trillions, of groups
required, should the system need to support all one-to-many and many-to-many
communications, such as tele and video conferencing, chats, multiplayer online
games, and content distribution, etc.

While the Bloom filter is a space efficient data structure and amenable to
hardware implementations, it is also prone to false positives. With in-packet
Bloom filter based packet forwarding, a false positive results in a packet be-
ing erroneously multicasted to neighbors not part of the original delivery tree.
Consequently, false positives lead to reduced transport network efficiency due
to unnecessary packet duplications – a fair tradeoff given the potential benefits.
However, false positives have also security implications, especially for network
availability.
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Earlier work [26] has identified three forwarding anomalies (packet storms,
forwarding loops, and flow duplication) and two solutions that provide fault
tolerance for such anomalies, namely, varying the Bloom filter parameters and
performing hop-specific bit permutations. Our contribution is to analyze the
anomaly related problems and solutions from security perspective. It has also
been shown [13] that Bloom filters can act simultaneously as capabilities, if the
hash values used for the Bloom filter matching are cryptographically secure and
depend on the packet flow.

In this paper, we concentrate on the security issues of Bloom filter based
multicast forwarding plane. We analyze service and network infrastructure avail-
ability. The contributions of this paper are a characterization and evaluation of
the security problems and solutions related to Bloom filter based forwarding.
Other security issues for multicast, such as key management, policy, long term
secrecy, ephemeral secrecy, forward secrecy, and non-repudiation are out of scope
for this paper.

Additionally, we propose BloomCasting, a source specific multicasting tech-
nique that integrates the provided security solutions together. In BloomCasting,
group membership protocol is carried from the receiver to the source. This pushes
both the costs and the control of the multicast group management to the source.
The Bloom filter used to forward the traffic is gathered hop-by-hop along the
unicast path to the group source.

The rest of the paper is organized as follows. In Section 2, we review the
principal aspects of Bloom filter based forwarding and scope the problem of se-
cure multicast for the purposes of this paper. We present BloomCasting, a secure
source-specific multicasting technique in Section 3 and in Section 4, we describe
the security solutions in more detail. We evaluate our approach In Section 5,
review the related work in Section 6, and conclude the paper in Section 7.

2 Security issues in Bloom filter based multicast

As with unicast, securing multicast communications requires considerations in
two orthogonal planes: the data plane (protecting multicast data forwarding)
and the control plane (securing multicast routing protocol messages), although
the problems are more difficult because of the large number of entities involved.
While secure multicast data handling involves the security-related packet treat-
ments (e.g., encryption, group/source authentication and data integrity) along
the network paths between the sender and the receivers, control plane security
aspects involve multicast security policies and group key management i.e., secure
distribution and refreshment of keying material (see e.g. [22, 11, 23, 18, 24]). Ul-
timately, control plane security must be handled individually by each multicast
routing protocol to provide authentication mechanisms that allow only trusted
routers and users to join multicast trees (e.g., PIM-SM [3]).

Our focus in this paper, however, is elsewhere – on the availability of the mul-
ticast infrastructure in an open and general source specific multicast model [9]. A
source specific multicast group is defined by the source and group address taken
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together. We assume that multicast groups can contain receivers anywhere in
the network. This means that hierarchical addressing [19] cannot be used to
scale up the system with sub-linear growth in routing table size in relation to
the number of groups. The number of potential source specific groups grows ex-
ponentially with the number of nodes in the network – compared to quadratic
growth in the number of potential unicast connections and logarithmic growth
in the size of routing table based on hierarchical addressing. State requirements
create a potential for denial-of-service (DoS) attacks as described in ‘stateless
connections’ [4].

Bloom filter based source routing has been proposed as a solution to scal-
ing multicast into large networks and number of groups [25, 16, 32, 13]. Such
an approach places the state requirement at the source, instead of the routers
alleviating the potential for DoS attacks against the network infrastructure.

2.1 Forwarding with in-packet Bloom filters

The Bloom filter [10] is a hash-based probabilistic data structure capable of
representing a set of elements S and answering set-membership questions of the
type “is x ∈ S?”. The insert operations consist of, given a bit array of size m,
for each element x in a set S of size n, k ≪ m independent hash values are
computed H1(x), ..., Hk(x), where 1 ≤ Hi(x) ≤ m, ∀x and the corresponding bit
array locations are set to 1. Conversely, asking for the presence of an element
y in the approximate set represented by the Bloom filter involves applying the
same k hash functions and checking whether all bit positions are set to 1. In that
case, the Bloom filter returns a ‘true’, claiming that y is an element of S. The
Bloom filter always returns the right answer for each inserted elements, i.e., there
are no false negatives. However, due to hash collisions, there is some probability
p(m, n, k) for the Bloom filter returning a false positive response, claiming an
element being part of S even when it was not actually inserted.

In-packet Bloom filter based multicast [25, 16, 32, 13] is based on the idea of
turning the forwarding operations into a set-membership problem. The basic idea
consists of encoding a multicast tree by inserting the appropriate link identifiers
into a Bloom filter carried in the packet header. Forwarding nodes along the path
process the packet and check whether neighboring link identifiers are present in
the Bloom filter. Then, a copy of the packet is forwarded along the matching
interface(s).

Inherited from Bloom filters, false positives cause packets to be unnecessar-
ily duplicated over some extra links. When a router receives a falsely forwarded
packet for which it does not find a matching forwarding directive, the packet
is simply discarded. Hence, Bloom filter forwarding guarantees packet delivery
to all intended destinations but introduces a degree of wasted resources due to
unnecessary packet duplications – a tradeoff worth to consider given the bene-
fits in terms of space efficiency (i.e., reduced state) and performance (i.e., fast
forwarding decisions).
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2.2 Threat model and existing attacks

We restrict the scope of this paper to security issues of the Bloom filter based
forwarding plane of one-to-many multicast, also referred to as source-specific
multicast (SSM) architectures. We assume an attacker who may control large
number of hosts (e.g. botnet) that wishes either to disrupt the network infrastruc-
ture, or deny service to target host or network links. We also evaluate available
possibilities for controlled multicast, i.e. ensuring that only authorized senders
and receivers are capable of sending to and receiving from a particular multicast
group.

Our adversary model assumes malicious end hosts and benign routers. Conse-
quently, packet drop attack or blackhole attack fall out of the scope. This assump-
tion is coherent with the wired networking scenario under consideration where
trust among routers and the management plane is provided by e.g. pair-wise
shared secret techniques. Moreover, we assume an end-to-end security mech-
anism to provide payload confidentiality, authentication, and integrity (e.g., as
discussed in [15]). Attacks related to these security mechanisms are not discussed
further in this paper.

While false positives represent a well-known limitation of Bloom filters, the
security implications of (random) false positives in packet forwarding are far
reaching and less understood. Our main security goal is to guarantee forward-
ing service availability of Bloom filter based data planes under malicious at-
tacks. Hence, we seek for data plane mechanisms that ensure that only packets
from authorized users are forwarded, i.e., providing resistance to (potentially
distributed) DoS attacks .

DoS can be divided into attacks on infrastructure availability and (end) ser-
vice availability. These can be disrupted by bandwidth, state, or computation
consumption attacks (cf.[7]). Any unauthorized sending of multicast data can be
construed as a DoS attack. For instance, flooding attacks would cause an escalat-
ing of packets filling the network links to an extend that legitimate packets end
up discarded due to massive link congestion. Such denial of service may affect a
greater proportion of the network due to the “multiplier effect” of false-positive-
prone multicast packet distribution.

Chain reaction attacks False positives can cause forwarding anomalies that
greatly increase the amount of network traffic. These include packet storms,
forwarding loops, and flow duplication [26]. We review these anomalies that an
attacker could do here. We highlight the fact that if Bloom filters are assigned
per multicast tree or per flow, the anomalies will affect every packet in a given
multicast tree or flow.

Packets storms are caused when, for sizable part of the network, the average
number of false positives per router exceeds one. Should this be the case, then
on average each false positive causes more than one additional false positive,
creating an explosive chain reaction. The average number of false positives is
ρk · (d− b − 1), where ρ is the fill factor of the Bloom filter, k is the number of
hash functions used, d is the number of neighbors, and b is the number of actual
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Fig. 1. (a) Forwarding loop and (b) flow duplication
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Fig. 2. (a) Flow duplication with Fibonacci number growth in the number of packet
copies and (b) exponential growth in the number of packet copies

branches in the multicast tree at that node. After the first false positive b = 0.
As an example, considering k = 5 and ρ = 0.5, a nodes with degree d > 32 would
produce more than one false positive per node.

Forwarding loop happens, if a set of false positives cause the packet to return
to a router it has already visited. The router will then forward the packet again
to all the nodes downstream of it, including the false positive links that caused
the packet to loop. As a result, not only will the packet loop, but every loop
causes a copy of the packet to be sent to the full sub-tree below the router. A
forwarding loop is shown in Figure 1.

Flow duplication is another possible anomaly as shown in Figure 2. Fig-
ures 2(b)-(c) show that even flow duplication can cause the number of packet to
grow – according to Fibonacci sequence and as the powers of two.

The above attacks can also be combined. If link identifiers are common knowl-
edge, the attacker can form a Bloom filter that corresponds to the Figure 2(c)
which also includes one or more links back to the first router, causing the packet
load to explode both in network and in all receiver hosts.

Target path attack An attacker controlling a large number of hosts can try
to coordinate as many packet flows as possible to a single link or a particular
path. If link identifiers are common knowledge (1), then this is simple. Each host
just computes a forwarding tree that goes through chosen link. If however, the
link identifiers are secret and static (2), then the attacker has a few potential
attacks available: injection attack – where she tries Bloom filters that get traffic
forwarded along a certain delivery tree, correlation attack – where she attempts
to infer workable link identifiers from a collection of legitimate Bloom filters,
and replay attack – where a valid Bloom filter is misused to send unauthorized
traffic (i.e., with different content or flow identifiers). [13]
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Fig. 3. The left side shows multicast Join message using iBFs. The right side shows a
simplified Membership Table MT(S) that contains the Bloom filters for A, B, C, and
D. The separated bottom row shows how to combine the Bloom filters in to an iBF.

3 BloomCasting

BloomCasting is a secure source specific multicast technique, which transfers the
membership control and per group forwarding state from the multicast routers to
the source. Similar to [25, 16, 32], it uses in-packet Bloom filter (iBF) to encode
the forwarding tree. BloomCasting separates multicast group management and
multicast forwarding.

To join, a host sends a join request (BC JOIN) towards the source S. Inter-
mediate routers record forwarding information into the packet, thus when the
packet reaches S, it will contain a collecting iBF for the source-receiver path.
By combining together the iBFs for all the receivers, the source will have an
iBF encoding for the whole multicast tree. When a host does not wish to re-
ceive packets for the group anymore, it sends an authenticated leave message to
S. Upon processing this packet, the source will reconstruct the Bloom filter for
the group leaving out the recently pruned path. The operation is illustrated on
Figure 3.

Data packets are routed using the forwarding iBF placed in the BC FW header.
Each intermediate router takes its forwarding decision by querying it with the
question: which of my outgoing links are present in the iBF? It then forwards
the packet to the corresponding peers. Eventually, the packet reaches all the
receivers, following the sequence of routers the BC JOIN packets traversed, in
reverse order.

3.1 Group Membership Management

Group membership management includes the joining, leaving, and maintenance
of multicast groups, and this is the main task of the control plane. Along this
discussion, we show how multicast trees are encoded into an in-packet Bloom
filter (iBF).

Joining a group: When a host joins a multicast group, it sends a (BC JOIN)
message towards the source. The packet contains the following information: (S,G)
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Algorithm 1: Adding edge-pair labels (E) and permuting collect and for-
ward iBFs at transit routers.
Collect iBF (C):

E ← ZK(S,G,Rp, Rc, Rn);
C ← C ∨ E;
C ← Permutec(C);

Forward iBF (F):

foreach outgoing link i do
F ← Permute−1

c (F);
E ← ZK(S,G,Rn, Rc, Rp);
if E ∧ F = E then

Send F → i;
end

end

specifying the multicast group and a collecting iBF. The latter is used for col-
lecting the forwarding information between the source and the receiver. Finally,
it also contains a hash chain anchor for future signaling security.

In each router, the next hop for the BC JOIN message towards S is found
from routing information base.1 As the message travels upstream towards the
source, each router records forwarding information into the packet by inserting
the edge pair label E into the collector iBF. After this, for loop prevention and
increased security, it performs a bit permutation on the collector iBF. Finally, it
selects the next hop usptream towards S. The operation is shown on Algorithm 1.
Unlike traditional IP multicast approaches, where the forwarding information is
installed in routers on the delivery tree, transit routers do not keep any group-
specific state.

Once the BC JOIN message reaches the source, it contains sufficient infor-
mation so that the source can send source-routing style packets to the recently
joined host. The source stores this information in the Membership Table (MT),
as shown in Figure 3. The source can now send packets to the multicast tree by
combining iBFs for the group, by bitwise ORing them together.

Leaving a group: When a receiver wishes to leave the group, it sends a
BC LEAVE towards S, including the next element from the hash chain it used
when joining the group. On-path routers forward the packet to S. As no fur-
ther processing is needed in intermediate routers, unlike pruning packets in IP
multicast, BC LEAVE packets always routed to the source.

S verifies the hash and removes (or de-activates) the entry in the Membership
Table. Single message hash authentication, vulnerable to man-in-the-middle at-
tacks, is sufficient, since the hash is only used to verify that the host wishes to

1 Just like in standardized IP multicast protocols, this forwarding decision can be
taken according to the RIB created by BGP or according to the Multicast RIB
created by MBGP [8].
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leave the group. As a final step, it recomputes the forwarding iBF of the deliv-
ery tree. An example of a forwarding iBF is shown in Figure 3 at the separated
bottom row of the table.

Refreshing membership state: The iBFs in the MT may become stale,
either because of changing the key to compute the edge-pair labels or due to
route failures. Keys are expected to change periodically (e.g., every few hours)
to increase security by excluding brute force attacks [13]. This means that the
iBF needs to be recomputed with a new BC JOIN packet. When making the
forwarding decision, during a transition period routers need to compute edge-
pair labels for both the old and the new key. If they find that an edge-pair label
computed with the old key is present in the iBF, they set a flag in the BC FW
header indicating that the receiver should send a BC JOIN again, as the iBF will
soon become invalid. When a packet is to be forwarded on a failed link, the
router sends an error message back to the source.

3.2 Multicast Forwarding

So far, we have discussed how hosts join and leave multicast groups. We now
show how data packets are forwarded between the source and the receiver.

As we saw previously, iBFs for each receiver border router are stored sepa-
rately in the Membership Table. We also saw the basic concept of deriving the
forwarding iBF from the MT information; now we extend that with new details.

For each group, the source stores one or more iBF for each next hop router
in its BloomCasting Forwarding Table (BFT).2 In practice, the capacity of a
packet-size iBF is limited in order to guarantee a certain false positive perfor-
mance (practical values suggest around 25 destinations in 800-bit iBFs [25]).
In case of large multicast groups, several iBFs are created, one for each partial
multicast tree, and duplicate packets are sent to each next hop.

The source creates one copy of the packet for each next hop for (S,G) in the
BFT. It creates a BC FW header, fills it with the corresponding iBF, and sends it
to the next hop router.

Each router makes a forwarding decision based on the iBF, as shown in Algo-
rithm 1. First, it applies the reverse permutation function to the iBF, replacing
the iBF with the result. Then, it checks for the presence of peer routers by com-
puting one edge-pair label for each potential next hop router Rn, based on the
previous and the current router on path Rp and Rc respectively,3 and on group
identity (S,G) found in the IP header as shown in Algorithm 1. In the final step,
the router checks whether the iBF contains the edge-pair label, by simple bitwise
AND and comparison operations.

The remaining problem is how to compute the dynamic edge-pair labels at
core routers at line speed. This can be done by taking the values (S, G, K, Rp, Rc, Rn)

2 This improves forwarding performance, as the false positive probability increases
with the number of iBF inserted elements.

3 The router uses the same inputs as in the BC JOIN. hence the Rp and Rn switch
places due to direction change



BloomCasting: Security in Bloom filter based multicast 9

Fig. 4. Protocol messages when joining group (S,G): 1 - IGMP Membership Report or
MLD Multicast Listener Report; 2,10 - PIM-SSM JOIN(S,G); 3-9 - BC JOIN(S,G)

and running them through a fast, spreading hash function (cf. e.g. [20, 31]). The
spreading hash function yields the bit locations for the edge-pair labels. The
method can be applied locally at each router, having no impact on the protocol.

3.3 Connecting intra-domain multicast with BloomCasting

BloomCasting can be used to specify the operations between source and receiver
ASes.4 This section discusses how multicast forwarding state is set up inside the
domains containing the sender and/or receivers using IP multicast (PIM-SSM
deployments) Figure 4 illustrates the protocol messages when a multicast receiver
joins a multicast group (S,G).

When a receiver joins (S,G), it signals (1) its interest in its LAN with IGMPv3
or MLDv2 protocols. The Designated Router then sends a PIM-SSM JOIN(S,G)
message upstream (2), by looking up the reverse path to S. The message is
propagated upstream until a router is found that holds forwarding state for the
group or until a border router of the domain is reached (standard PIM-SSM
operations). The border routers implement both PIM-SSM and BloomCasting.
PIM signaling now terminates. If the border router was not yet a receiver for
the group, it creates a BC JOIN packet and sends it towards S (3-9).

The iBF collection process is otherwise as described in Section 3.1 except
each AS is considered to be a singe logical router.

At the other end, the source AS border router receives a BC JOIN for a group
that resides in the local domain and processes it as specified in Section 3.1. If it
is not yet a receiver for the group locally, it sends a join packet using PIM-SSM
standardized operations (10). The JOIN(S,G) is propagated further upstream
towards the source, with standard PIM operations. Eventually, as far as PIM
concerned, a domain-local multicast tree will be built with routers representing
local receivers and border routers representing subscribers in remote domains.

The data packets are forwarded using the domain-local multicast protocol to
the border routers in the source AS. The border router creates a single copy for
each entry in the BFT, adds the BloomCasting header, and forwards the packets.
When an ingress border router receives packet with the BC FW header, it checks
whether it has domain-local receivers and forwards a decapsulated copy using
4 An AS is an autonomous system, a network participating in the inter-domain routing

protocol (BGP). The source and receiver could also be an area consisting multiple
ASes that deploys a shared multicast architecture.
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the domain-local multicast protocol. The router also checks whether neighboring
domains are included in the iBF and forwards the packet to those domains (using
e.g. IP-in-IP, GRE encapsulation, or MPLS paths or trees).

4 Security techniques in Bloom Filter based forwarding

In Section 2, we introduced a threat model for in-packet Bloom filter based for-
warding by showing several attacks taking advantage of some forwarding anoma-
lies inherent to Bloom filter based forwarding. Now, we present techniques for
solving these forwarding anomalies; then, in Section 5, we evaluate them from
security perspective.

Basically, the solutions presented here include pre-processing verification of
Bloom filters, and some rules to be followed in the packet forwarding process
and during the Bloom filter creation phase.

Limiting the fill factor (ρmax) ensures that the attacker cannot set, e.g., all
bits in the Bloom filter to 1, which would equal to every link in the network
being included. Before any packet handling operation, routers need to verify the
Bloom filter [30], i.e. they need to check for ρmax compliance before attempting
to forward the packet. Typically, ρmax is set to ≈ 0.5, which corresponds to the
most efficient usage in terms of bits per element per false positive rate.

Cryptographic Bloom filters: Bloom filters for forwarding can be differenti-
ated based on the nature of the link identifiers: (1) link identifiers are common
knowledge [25], (2) link identifiers are secret, but static [16], and (3) link iden-
tifiers are secret per flow and change periodically with key are computed per
incoming/outgoing edge pair instead of per link [13].

Bloom filters gain capabilities [2], when the edge pair label is computed using
cryptographically secure hash functions, secret key, and flow information from
the packet (e.g., IP 5-tuple, (S, G)). Each link identifier of size m and with
k bits set to one (i.e., a one element Bloom filter) can be computed as the
output of a function zF (In, Out, K(ti), I, p). The resulting identifiers become
dynamic and bound to the In and Out interfaces of each hop i, the time period
of a secret key K(ti), and additionally dependent of packet information like the
Flow ID I (e.g., source and group addresses) and an optimization parameter p
(cf.Z-formation [13]).

Varying the number of hash bits (kvar): This technique deals with the number
of ones (k) in the link identifiers set by different routers, and aims to decrease the
false positive rate. Assuming that there is a fixed maximum fill factor ρ for iBF,
e.g. ρ = 0.5+ǫ, the average number of false positive in a given router depends on
its degree d, the number of hash functions k it uses, and the number of outgoing
branches b such that the average number of false positives is ρk ·(d−b−1). Hence,
we proposed [26] that each router sets k locally such that ρk ·d < α, where α < 1
sets the routers preference for the average false positive rate. As routers compute
the hash functions for the collecting iBF themselves, the number k is purely a
local matter. In other words, the number of bits k set to 1 in the link identifiers
is not a global parameter, but can be defined per node.
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Permutations Pi(iBF ): We use per hop bit permutations to prevent loops
and flow duplications. A bit permutation is a (pseudo) random rearrangement of
the bit array. Each router can use the same bit permutation for all iBFs passing
through it making it easy to implement with programmable logic.

First, after passing through the intended path to a router R, the f orwarding
iBF has to match the k hash values that the router added when the collecting
iBF was forwarded through it. When the iBF is collected, the routers between
R and source S change some bits from 0 to 1 and permute the packet. S then
combines a set of collecting iBFs in to a forwarding iBF and the routers between
S and R (including R) perform reverse permutations on the iBF. Hence, once the
packet arrives in R, the bits that R set to 1 will be in exactly the same positions
as they were when the iBF was collected. Since no operation changes a value of
a bit from 1 to 0, the matching process works correctly.

Second, if the path taken is different from the one intended for the packet,
the iBF should not match the k hash values. Per hop bit permutations enable
the iBF itself to carry a “memory” of the path it has traversed [26]. As each
router modifies the iBF when forwarding the packet, after passing through two
different edges and entering back the initial node, i.e. after a loop, the iBF is
changed with a random bit permutation. Hence, it will likely not match the same
edge-pair labels again. Each router permutes Pi(iBF ) when the iBF is initially
collected and then reverse permutes Pi(iBF )−1 the iBF when a packet is sent
using the iBF.

5 Security evaluation

We now analyze how BloomCasting mitigates the security threats (described
in Section 2) against Bloom filter based multicast forwarding. As mentioned in
Section 2.2, we focus on malicious host-initiated attacks. Further architectural
considerations w.r.t scalability, bandwidth efficiency, state requirements, control
overhead, etc. are out of scope of this evaluation and left for future work.

Table 1 presents an overview of the mapping between the available techniques
(Section 4) and the attacks addressed. As can be seen, BloomCasting combines
four techniques to prevent the six security threats described in Section 2.2.

Packet storms are prevented with the combination of limiting the maximum
fill factor ρmax and the varying kvar technique. Globally enforced ρmax values
enable each router to compute kvar locally so that every Bloom filter with a
valid fill factor produces, on average, less than 1 false positives. Since the Bloom
filters are collected on path with the BC JOIN packet, it is easy to set kvar locally.
Additionally, this optimization of k reduces the actual false positive rate [26].

Loops are a serious threat to any network infrastructure. The combination
of maximum fill factor ρ and z-Formation makes it difficult for an attacker to
construct looping Bloom filters. The first removes the easy attack of just adding
bits into the Bloom until every link matches and the z-Formation ensures that
guessing the right Bloom filter is difficult (see [13] for details).
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Table 1. Mapping of solutions to attacks

Attack - Technique ρmax kvar z-F P (iBF )

Packet storms + +

Loops + + +

Flow duplication + + +

Injection + +

Correlation + +

Replay +

To prevent accidental loops, each router performs a bit permutation on the
Bloom filter before performing the outport matching – when using the Bloom
filter for forwarding (and after matching – when collecting a Bloom filter). If a
packet does go through a loop, either because of a false positive or a malicious
source, the Bloom filter has been modified with a random permutation (a product
of the permutations performed by the set of routers participating in the loop).

Using permutations ensures a high probability that the packet will not con-
tinue looping and that it will not be forwarded to the downstream tree for a
second, or nth time. As an example, the chances of an infinite loop in a three
node loop configuration with ρ = 0.5, k = 6, and m = 256 are in the order of
O(10−12). The chances that a packet will be forwarded through the subtree once
are ρκ, where κ =

∑
ki is the sum of all hash functions used in the subtree.

Finally, while the security is not dependent on the secrecy of the permutations
performed in each router, it is dependent on the secrecy of the edge-pair labels.
Consider a known permutation attack, in which an attacker knows the network
topology and the permutations used by a set of routers. It can now compute
the cycle sets of the combined permutation and choose a combination that has
approximately the size of the maximum fill factor. However, it does not know
a combination of a Bloom filter and source and group address that will ensure
that the routers on path and in the loop will have edge-pair labels that match
the Bloom filter. The best it can do is vary the group address. In this case, the
probability of success is ρκ, where κ is the total number of bits that need to be
set on path to the point of loop and in the loop.

Flow duplication: Similarly to loops, flow duplication can be effectively pre-
vented with the combination of restricting fill factor ρ, edge-pair labels, and per
hop bit permutations. The result gives an attacker ρκ probability of creating a
specific subtree by accident.

Packet injection attacks, correlation attacks, and replay attacks can be effi-
ciently prevented using the z-Formation technique [13]. It uses cryptographically
secure edge-pair labels that are computed based on the flow, and time, and path.
This makes it impossible to share iBFs from different points of network, at dif-
ferent time instants, or to different destinations.

Consequently, the best strategy for a successful packet injection attack is
reduced to a brute force attack consisting of generating random labels and hoping
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that at least one of them reaches the target(s). An attacker needs malformed
iBFs to cause h consecutive false positives to get packets forwarded through
a valid iBF path of length h. The chances of success in one attempt can be
approximated to p = ρmax

h·k, which is very low for typical configurations (e.g.,
p = 2−36 for h = 4, k = 8, ρ = 0.5, i.e., over 1010 attempts are required for a 1/2
probability successful attack). Such brute force attacks can be easily detected,
rate limited and pushed back, for instance after the false positive rate from a
given source exceeds some threshold. Additionally, a forged iBF would work
through the target path attack as long as the distributed secret K(t) is not
renewed.

Source and receiver control: As the group management in BloomCasting is
end-to-end, it gives source control over the receivers it accepts. If it wishes to,
it can require receiver authentication before adding a receiver into the group.
Similarly, multicasting to a receiver requires knowing the iBF that forms the
path between source and destination. Since the iBF is cryptographically bound
to (S,G), each router’s secret key, and the path (via permutations and edge-pair
labels), guessing an iBF for a path is difficult, as shown above.

Resource consumption attacks against the memory and processing capacity
of routers do not become easier than they are in unicast forwarding. The routers
do not need to maintain multicast state and the iBF collection and forwarding
processing can be done in line speed in hardware and in parallel for each peer.
The multicast source needs to maintain state for receivers. This is a needed fea-
ture, since this makes it possible source control over who can and who cannot
join the multicast group. Simultaneously, it leaves the source vulnerable to at-
tacker who creates a storm of multicast join packets. A source can use a receiver
authentication protocol, which pushes the authentication protocol state to the
initiator (e.g., the base exchange of Host Identity Protocol [21] could be used for
that purpose) to limit the state requirements to authenticated receivers.

False positive forwarded packets may compromise the ephemeral secrecy of
the multicast data to non group-members, i.e., some packets may reach unin-
tended destinations. The time- and bit-varying iBFs contribute to spreading false
multicasted packets across different links over time, preventing thus a complete
reception of a multicast packet flow.5

Anonymity of source is not an option in source specific, since the group is
identified with combination (S,G) where S is the sender address and G the group
address. However, even though the protocol uses source routing, the actual paths,
or nodes on path are not revealed to the source and the source can only use the
related iBFs in combination with traffic destined to (S,G).

Receivers do not need to reveal their identifies or addresses to the network,
or the source – the receiver (IP) address is not necessary in the protocol. The
authentication, should the source require it, can be done end-to-end without
revealing the identities to the intermediate routers. As the keys used to compute

5 As assumed in Section 2, data authenticity is kept out of scope of the iBF forwarding
service and can be provided by orthogonal security policies and group key manage-
ment techniques (e.g., following the guidelines of [15]).
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iBFs are changed periodically, correlation attacks between two or more Bloom
filters used at different times become impossible. Similarly, since the edge-pair
labels are tied to group identifier (S,G), an attacker cannot use a set of iBFs
with different group addresses to determine whether the set contains one or
more common receivers. These techniques effectively prevent traffic analysis and
related vulnerabilities such as clogging attacks (cf. [5]).

6 Related work

Compared with unicast, multicast communication is at a substantially increased
risk from specific security threats due to the lack of effective group access control
and larger opportunities for link attacks. Over the last decade, much effort has
been put in the field of multicast security, see e.g. [6, 18, 11, 15, 27].

At the IETF, earlier work has provided a taxonomy of multicast security
issues [11] and a framework for secure IP multicast solutions [14] to address the
three broad core problem areas identified: (i) fast and efficient source authenti-
cation (e.g. [6, 17]), (ii) secure and scalable group key management techniques,
and (iii) methods to express and implement multicast-specific security policies.
Our focus, however, has been on DoS attacks against the network infrastructure.

Service availability attacks due to routing loops and blackholes were discussed
in [28]. The proposed solution was the keyed HIP (KHIP) protocol to allow
only trusted routers joining the multicast tree. Our aim is a general and open
SSM architecture that does not require group access restrictions provided by the
infrastructure.

Free Riding Multicast [25] proposes an open any source multicast service in
which each link is encoded as a set of hashes from the AS number pair. This leaves
the forwarding plane open to a variety of attacks. Odar [29] showed that Bloom
filters can be used for anonymous routing in adhoc networks. Limiting fill factor
as a security feature in Bloom filter based (unicast) capabilities was first proposed
in [30]. LIPSIN [16] uses Bloom filter forwarding plane for publish/subscribe
architecture with a separate topology management system that helps to keep
the link identifiers secret. However, an attacker can still use target path attacks.
Z-formation [13] prevents target path attacks by using edge-pair labels that
depend on flow identifier, but is still open to e.g. chain reaction attacks.

Si3 [1] proposed a secure overlay to solve problems related to secure multicast.
While distributed hash tables spread load efficiently across the system, they lack
e.g. policy compliant paths and control over who is responsible for particular
connection.

7 Conclusions

In this paper, we evaluated the security of Bloom filter based forwarding. False
positives inherent to Bloom filters enable a host of attacks on target service and
network infrastructure availability. These attacks include chain reaction attacks,
which use the Bloom filter properties (e.g. false positives) to ensure that the
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network forwarding infrastructure multiplies every packet sent using the Bloom
filter and targeted attacks in which the attacker enables many nodes to target
the same path in the network.

We show that these problems can be solved by the combination of limiting
Bloom filter fill factor, both minimum and maximum, using cryptographically
computed edge-pair labels in the Bloom filters, varying the number of hash
functions locally based on the router degree, and using per hop bit permutations
on the Bloom filter.

We also proposed BloomCasting, a secure source-specific multicasting tech-
nique based on in-packet Bloom filters. The technique is based on end-to-end
signaling of group membership and hop-by-hop collection of the needed Bloom
filters. As future work, we intend to study the possibility of collecting multiple
paths in advance as a technique for increasing fault tolerance to route failures.
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