
An Experimental Evaluation of Lightweight
Virtualization for Software-Defined Routing

Platform
Carlos N. A. Corrêa, Sidney C. de Lucena

and Daniel de A. Leão Marques
Federal University of the State
of Rio de Janeiro (UNIRIO)
Rio de Janeiro - RJ - Brazil

{carlos.correa,sidney,daniel.marques}@uniriotec.br

Christian E. Rothenberg
and Marcos R. Salvador

Telecomm. Research and Development
Center (CPqD)

Campinas - SP - Brazil
{esteve,marcosrs}@cpqd.com.br

Abstract—Network virtualization is one of the foundations for
Future Internet architectures, able to catalyze technologies for
the solution of classical problems in the IP layer. The work here
gives a step forward in that direction, evaluating the performance
of different virtual network tools under the perspective of a
virtualized IP routing control plane. Two lightweight container-
based virtualization systems, OpenVZ and LXC, were selected
based on specific criteria and evaluated in the context of virtual
routers. Obtained results allow for a comparative analysis about
the convergence of the routing protocol and give insights about
the adoption of these tools on a routing as a service platform.

I. INTRODUCTION

Cloud computing and virtualization in general provide a
flexible and rational utilization of networked computer re-
sources. Even more, the fundamental underpinning is the
provision of a software management layer that allows for a
programmatic definition of the entire infrastructure tailored
to the needs of the tenants’ applications. As the virtualization
paradigm permeates from computer to networking technology,
the opportunity to let software flexibility change the ancient
and rigid networking functions is set.

OpenFlow [1] is one enabling technology of the so-called
Software Defined Networking (SDN) approaches, that advo-
cates for new networking abstractions by means that include a
clean separation of the operation of data forwarding equipment
(the data plane) from it’s control logic (the control plane),
which can be hosted in a new network controller element.

The physical separation and logical centralization of the
control functions allow the migration of such components
to service-oriented scenarios. As such, SDN-based virtual
IP routing platforms like DROP [2] and RouteFlow [3] can
be used to materialize concepts like Plataform-as-a-Service
(PaaS) for networking and single router abstraction [4]. This
can result in new perspectives to routing operation, or even
it’s separation from routers [5].

The capabilities of the virtualization plane components are
paramount to the performance and functional flexibility of
these split architectures. So far, previous work on the verge

of virtualized versions of traditional routing has not brought
the control/forwarding plane separation into consideration [6].
This work presents a performance evaluation of different net-
work virtualization tools under the perspective of a virtualized
IP routing control plane. Nevertheless, it aims to provide
guidance for the advance of other solutions of the same
kind that seek to leverage server virtualization technologies
to develop instantiations of the SDN paradigm.

The balance of the paper is as follows. Section 2 details the
general framework for this type of systems operations. The
functional requirements for such components are analyzed in
Section 3 Section 4 describes the adopted methodology for
the evaluation of candidate virtualization tools and Section
5 discusses the results of that experimental work. Finally,
Section 6 presents the conclusions and work ahead.

II. VIRTUALIZATION AND FORWARDING PLANES
SEPARATION

There are mainly two ways in which virtualization can be
done: the full virtualization, where each guest runs its own
operating system (OS), and the lightweight virtualization based
on containers or processes, where the host’s OS shares and
isolates the available resources among the guests’ systems [7].

As much as system virtualization is about computer re-
sources sharing, network virtualization (NV) permits the in-
stantiation of multiple logical networks over the same phys-
ical infrastructure. In [8], four approaches are presented for
the implementation of NV: (i) Virtual Local Area Networks
(VLANs), (ii) Virtual Private Networks (VPNs), (iii) ac-
tive/programmable networks, and (iv) overlay networks.

The definition of a standard API to networking hardware
such as OpenFlow [1] lays ground for a fifth approach.
OpenFlow-enabled switches use this standard protocol to inter-
act with network controller elements. Typically, the controller
includes software logic to analyze packet headers of data flows
and instructs switches on how to handle these flows – either
in a proactively or reactively fashion.978-1-4673-0269-2/12/$31.00 c© 2012 IEEE

Virtual IP routing platforms derive from the feasibility of
incorporating additional logic to devices previously dedicated
to switching. In these architectures, routing, originally handled
by routers in a distributed fashion, are now handed over by
switches to a controller platform. The controller queries a
virtualized (and eventually abstracted) version of the network,
for which virtualizers and virtual connectivity tools are both
employed. Routing information is derived from the virtual
network, and in turn transformed into instruction sets that
determine how traffic packets should be handled by switches.

While the functions performed by virtualization tools in
the context of virtual routing platforms are well known, we
have not found any thorough analysis to justify the choice
for tools to compose a virtualized control plane, both from
functional and performance points of view. This condition
makes comparative studies difficult and limits their use outside
experimental environments.

III. REQUISITES OF AN IP ROUTING SERVICES PLATFORM

After studying several IP routing platforms and the roles
played by virtualizers in each one of them, this work estab-
lishes the following requirements for this kind of component:

• Isolation. The virtualization software should be able to
segregate the basic resources and the network stack of
the systems running under its supervision.

• Efficiency. The tool should be able to cause the lowest
possible overhead in order to keep the maximum of the
host’s resources available to the VMs.

• Scalability. The relationship between the consumption of
system resources and the number of running VMs should
be approximately linear, giving enough elasticity for the
number of nodes that can be created in the virtual plane.

• Flexibility. The virtualization tool must support the at-
tachment of multiple virtual network adapters for each
VM.

Requirements were also identified for the virtual connec-
tivity components. Some of them are similar to the ones
listed for virtualization software such as: Isolation, Efficiency,
Scalability and Flexibility. The others identified are:

• Multiple access. It should be possible to connect multiple
virtual network adapters by means of a single virtual
connectivity device.

• Extensibility. Preferentially, it should be possible to
extend the connectivity provided by mechanism in order
to support a distributed control plane.

After defining requirements for the components of virtual
IP routing platforms, we need to select those with the best fit.

We identified, from the literature, the Xen hypervisor [6]
and the tools for lightweight virtualization based on containers:
Linux-VServer [7] and OpenVZ [9]. Also there is an aditional
candidate, LXC [10], who has not been applied at virtual IP
routing platforms yet.

Xen is a proven technology (cf. [6]) for the deployment of
virtualized version of traditional routers. However, considering
the architectures where the control plane operation is entirely

virtualized, a full-featured hypervisor concurs against the
efficiency requirement.

Linux-VServer does not fully support host’s IP stack vir-
tualization, which affects the isolation requirement and limits
its use in the solution space envisioned.

LXC is a lightweight virtualization module recently in-
tegrated into the Linux kernel that includes network-stack
virtualization feature, which qualifies it for the isolation aspect.

Consequently, from a functional point of view, the candidate
tools that match the proposed requirements are the lightweight
virtualization technologies OpenVZ and LXC.

For the role of virtual connectivity, beyond the TUN/TAP
framework, widely used by the proposals in the literature,
candidate technologies include the Linux bridges and the
software-based switch Open vSwitch, or simply OVS.

The TUN/TAP framework, however, applies only to the
creation of virtual interfaces for point-to-point communica-
tions, which contradicts the requirement for multiple access
and disqualifies it for the purposes of this evaluation. Both
the Linux bridges and OVS comply to the functional aspects
of isolation, flexibility and extensibility established for this
kind of component.

IV. EXPERIMENTAL EVALUATION

For the evaluation, each node of the control plane corre-
sponded to a virtual router running the Quagga routing suite
with only the OSPF daemon activated. In order to provide
data relevant to the most demanding operation mode, OSPF
message interval (Hello Interval) was set to 1 second. The
unavailable link detection interval was consistently adjusted
to 4 seconds.

Two types of topologies were explored, corresponding to
different scalability requirements:

• Grid-based topologies: Two network topologies were
defined, with nodes arranged in a 3x3 and a 4x4 grid.

• Full-mesh topologies: Three fully-meshed network
topologies of 15, 25 and 35 nodes were evaluated to focus
on the actual behaviour of the OSPF protocol.

The connectivity between the virtual routers provided by
Linux bridges and OVS was also tested. The combination of
OpenVZ hypervisor with OVS connectivity was not evaluated
due to tool incompatibility at that time.

The low-scale set of experiments was run on a Intel Core
2 Duo 2.93Ghz platform with 3GB of RAM, and the second
set of experiments was executed on a system with an Intel
Xeon X5660 CPU and 48GB of RAM, both running Debian
GNU/Linux 5.0 and dedicated to the experiment tasks.

Three different stages in the operation of the virtual control
plane were introduced for evaluation: (i) initialization, (ii)
regular operation (ten minutes after the initialization of each
virtual topology), and (iii) topology changes (i.e., link down
and link up events).

After system’s initialization overhead, the measurement of
the regular operation stage helps quantifying the resource
consumption of tools in the absence of connectivity change
events. The topology changes phase allows to characterize the

TABLE I
AVERAGE BOOT-TIME OF NODES ON GRID TOPOLOGIES

Virtualization Connectivity Topology Initialization Time (s)
LXC Bridge 3x3 31

4x4 62
OpenVSwitch 3x3 32

4x4 63
OpenVZ Bridge 3x3 39

4x4 74

TABLE II
AVERAGE MEMORY USAGE ON GRID TOPOLOGIES

Tools Topol. RAM Utilization (MB)
Initialization Regular Op. Disconn.

LXC+Bridges 3x3 169 180 206
4x4 259,50 276 314

LXC+OVS 3x3 175 185 228
4x4 269,75 286 369

OpenVZ+Bridges 3x3 180 226 268
4x4 337,25 350,5 693

efficiency of the components tested relative to the occurrence
of events in the data plane, resulting in the exchange and
processing of LSAs. For stress test purposes, simultaneous
failures of links in the grid topologies were introduced until
reducing the networks’ connectivity graph to a minimum
spanning tree of itself. On full-meshed cases, a failure of
all links to a single node was introduced. In both cases,
the same links were re-established 120 seconds later after
disconnection, so that different categories of events were
observed in experiments.

The following data of interest were collected:
• Boot-time of the nodes. Time interval needed for nodes

to be fully operational.
• CPU and memory usage. Allow to infer the degree of

overhead imposed by each virtualization solution.
• Convergence time. Measures the convergence time of the

OSPF protocol at different stages. During initialization,
the measured time is the interval between topology boot
up and the first convergence of the OSPF protocol.

In order to confer statistical relevance to the obtained
results, each metric had its data collected through 30 distinct
executions of each network topology for each scenario.

V. ANALYSIS OF THE RESULTS

Table I presents the results for the initialization time of the
topologies. LXC with bridges-based connectivity is the fastest,
performing the task with an average time 20% lower than
OpenVZ for 3x3 grids. For 4x4 grids, the difference is 16%.
Both relations keep respectively at 18 and 15% when OpenVZ
is compared to LXC’s VMs connected via OVS.

Figure 1a shows the average CPU usage during VMs’
initialization on grid topologies. It shows that both LXC and
OpenVZ lead to 100% CPU usage during the initialization pro-
cess. However, LXC faster initialization puts it on advantage,
since processor utilization decays more quickly. LXC results
using both OVS and bridges fall in the confidence range of
each other, so the former are not represented.

Table II presents the average memory use of evaluated tools,
for all the grid scenarios. Through the average use of RAM
during VM’s initialization, it is possible to find that both
LXC and OpenVZ show an evolution of consumption with
the increasing scale of topology - with significant advantage
for the LXC demand. OVS represents an additional demand
of 2,8 to 4% of RAM over bridges.

As shown in Figure 2a, the measured time for the initial
convergence on grid topologies presents results very different
from what would be expected by looking just to Table I. This
time OpenVZ has the best performance, with LXC showing
a delay between the instantiation of virtual networks (inde-
pendently of connection type) and the beginning of the OSPF
data exchange. During the tests, even in the fastest-loading
LXC grid topologies, OSPF announces were exchanged only
50s after the start of the experiment. In contrast, OpenVZ
starts the OSPF exchange almost immediate after experiment
initialization.

However, this delay could be explained by differences in
the way OVZ and LXC network interfaces are started. For the
software versions evaluated, on OVZ a VM network device
can be defined as being part of a bridge, while on LXC
one needs to wait for the initialization of a container before
adding one of it’s interfaces to a bridge or OVS instance.
As such, data depicted in Figure 1b shows that convergence
after connectivity modification events is not affected by the
delay in the start of the operation of the virtual networks. The
disconnection times are very close, but, for reconnection times,
the OpenVZ performs worse than the LXC combinations.

The CPU usage does not achieve more than 3% during
the realization of the tests with link events. According to the
results in Table II, the memory usage grew in this period
(disconnection). In the OpenVZ 4x4 topology, the usage of
RAM is emphasized in the occurrence of failures, which might
indicate a scalability issue. In the absence of new events, the
observed RAM usage returned to average in all cases.

Average times for initial convergence on full-meshed net-
works are presented on Figure 2b, showing again best results
for OpenVZ. It is also faster on after-disconnection conver-
gence tests (shown in Figure 3a), being surpassed by the
LXC+OVS combination only in the case of convergence time
after reconnection (Figure 3b).

VI. CONCLUSION

The results show LXC topologies’ initialization is faster
than on OpenVZ. They also suggest that the specifics of
container definition in the software versions tested put in
advantage OpenVZ’s initial OSPF convergence. Nonetheless,
for OSPF convergence after connectivity modification events,
OpenVZ scores more than double the time necessary for
convergence under LXC in grid scenarios. The full-mesh
topologies show mixed results, but LXC+bridges combination
is clearly the least performant. Finally, LXC+OVS combi-
nation has a smaller memory footprint than OpenVZ, while
offering the flexibility of an OpenFlow-enabled and potentially
distributed control plane.

(a) CPU utilization (b) Convergence after connectivity modification events

Fig. 1. Grid topologies’ CPU use and link events convergence details

(a) Initial convergence on grid topologies (b) Initial convergence on full-meshed topologies

Fig. 2. Initial OSPF convergence for both connectivity layouts evaluated

(a) Convergence after disconnection of a node (b) Convergence after reconnection of node

Fig. 3. Convergence on full-meshed networks after connectivity modification events

Overall, we conclude LXC+OVS is the best option for a
virtual control plane topology, but optimizations for LXC’s
startup are being planned for future works.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp.
69–74, March 2008.

[2] R. Bolla, R. Bruschi, G. Lamanna, and A. Ranieri, “Drop: An
open-source project towards distributed sw router architectures,” in
Global Telecommunications Conference, 2009. GLOBECOM 2009.
IEEE, 302009-dec.4 2009, pp. 1 –6.

[3] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A.
Corrêa, S. C. de Lucena, and M. F. Magalhães, “Virtual routers as a
service: the routeflow approach leveraging software-defined networks,”
in Proceedings of the 6th International Conference on Future Internet
Technologies, ser. CFI ’11. New York, NY, USA: ACM, 2011, pp.
34–37.

[4] E. Keller and J. Rexford, “The ”platform as a service” model for
networking,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, ser. INM/WREN’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 4–4.

[5] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker, “Dy-
namic route recomputation considered harmful,” SIGCOMM Comput.
Commun. Rev., vol. 40, pp. 66–71, April 2010.

[6] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and
P. Papadimitriou, “A platform for high performance and flexible virtual
routers on commodity hardware,” SIGCOMM Comput. Commun. Rev.,
vol. 40, pp. 127–128, January 2010.

[7] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford, “Hosting virtual networks
on commodity hardware,” Tech. Rep., 2008.

[8] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Comput. Netw., vol. 54, pp. 862–876, April 2010.

[9] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual routers on the move: live router migration as a network-
management primitive,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 231–242, August 2008.

[10] LXC, “lxc linux containers - container namespace cgroup virtualisation,”
2011, http://lxc.sourceforge.net/.

