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Abstract—Experimentally-driven research is crucial to the
evaluation of any networking technology. In this paper, we
focus on research experiments with Mini-CCNx, a convenient
yet high-fidelity prototyping tool to evaluate Information-Centric
Networking (ICN) proposals that bring named pieces of content
as the main element of networks. More specifically, Mini-CCNx is
tailored for the Named Data Networking (NDN) model and fills an
existing gap in generally available experimental platforms. Using
container-based emulation and resource isolation techniques,
Mini-CCNx appears as a flexible, scalable, high-fidelity, and low-
cost tool in support of NDN research. To evaluate Mini-CCNx as a
valid research platform, we first reproduce a series of experiments
from the NDN literature. We then run routing experiments on an
emulated version of the real NDN testbed and provide insights
into open research topics such as behavior of the OSPFN routing
protocol, forwarding strategies, and network resiliency.

I. INTRODUCTION

With the motivation of shifting the networking paradigm
to a model that fits better the current content-oriented usage
of the Internet, a number of Information-Centric Networking
(ICN) proposals have appeared characterized by putting named
content as the main element of networks [1]. ICN introduces
several new concepts and approaches towards realizing the
paradigm shift from a host-centric communication model to
a design centered around information access, irrespective of
its physical location. Like in every new networking proposal,
experimentally-driven research is crucial to evaluation of new
ideas. Especially in the field of networking, requirements such
as scalability and experimental fidelity are highly desirable
when attempting to move ideas to real field trials.

Despite their similarities and differences, one common
issue of ICN proposals is the amount of unresolved research
challenges in this area of networking research [15]. During
our own research journey on the applicability of new for-
warding strategies and probabilistic state reduction techniques
for scalable multicast [13] to the Content-Centric Network-
ing (CCN) [6] model, we faced a gap in feature-rich, generally
available experimental tools. The lack of a low-cost, scalable,
high-fidelity, and sufficiently flexible experimental platform to
evaluate diverse and customizable CCN scenarios motivated
the development of Mini-CCNx [2].

Inspired by well-succeeded practices in fast prototyping for
Software-Defined Networks (SDN) with Mininet [8], Mini-
CCNx basically introduces a number of extensions to the
Mininet network emulator to seamlessly support CCNx, the
official code base of the Named Data Networking (NDN)

project [10] –an outgrowth from the CCN proposal. The exten-
sions are transparent to both CCNx and Mininet, and include
software additions to allow and ease NDN experiments while
achieving scalability, coherence, fidelity, and isolation [3].
With the same goals of Mininet but applied to NDN (instead of
OpenFlow networks), Mini-CCNx aims at supporting research,
development, learning, prototyping, testing, debugging, and
any other tasks that could benefit from having a complete NDN
experimental network on a commodity PC.

In this paper, we describe Mini-CCNx from an archi-
tectural and experimenter’s point of view and then carry
a series of experiments, firstly to validate the Mini-CCNx
by reproducing results from the NDN literature [6], [11],
and secondly to provide insights into content-centric routing
protocols [7]. We observe that the obtained results match
those from previously published work on content distribution
efficiency, strategy/forwarding layer, and performance of the
NDNVideo streaming application. The routing experiments on
an emulated version of the real NDN testbed shed light on the
operations and convergence time of the OSPFN protocol [7].

The remainder of the paper is organized as follows. Section
2 presents the architectural details of Mini-CCNx in additional
to a typical experiment workflow. Section 3 describes the
experimental evaluation of using Mini-CCNx to run routing
experiments and reproduce NDN literature results. Finally,
Section 4 concludes the paper with final remarks and an
outlook on the future work to improve Mini-CCNx and attend
our research agenda on ICN.

II. MINI-CCNX EMULATION TOOL

In a nutshell, Mini-CCNx is a fork1 of Mininet-HiFi [4]
–originally proposed to emulate OpenFlow networks– aug-
mented with several classes and mechanisms to build NDN
environments using the project’s official code base [9].

A. Architectural Overview

At the heart of Mini-CCNx is container-based emulation
(CBE),2 a lightweight OS-level virtualization technique. Each
container allows groups of processes to have independent
views of system resources, such as process IDs, file systems
and network interfaces while still using the same kernel. Each
container is a NDN node, with its own network namespace,

1Available at https://github.com/carlosmscabral/mn-ccnx
2http://lxc.sourceforge.net/
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Fig. 1. Three NDN nodes connected linearly using Mini-CCNx containers.

virtual network interface(s), NDN-specific data structures im-
plemented by the ccnd daemon (PIT, FIB, and CS) and
repositories, as implemented by he ccnr daemon. These
nodes are connected to each other using virtual Ethernet links
in the kernel space. At this point, Mini-CCNx introduces a
core difference to the OpenFlow-centric Mininet networking
environment. Instead of connecting virtual hosts with soft-
ware switches, in adherence to the NDN model, Mini-CCNx
connects NDN nodes (containers) in a point-to-point fashion.
Figure 1 illustrates the CBE and the isolation features used
within Mini-CCNx to be explained in Sec. II-D.

Every software component of Mini-CCNx is built as a
standalone script or as an extension (Python class) of Mininet,
using standard APIs to interact with all entities, including
the ccnx modules which do not require any modification
at all. Therefore, Mini-CCNx transparently uses the newest
ccnx version installed in the system, without requiring further
updates or recompilation.

B. Fast Experimentation

The main goal Mini-CCNx is to be an convenient tool
that allows experimenters to create and collect results from
different NDN topologies and scenarios. To this end, all the
initial configuration is done either by editing a simple text file
or using a provided GUI –no extra coding is required. The
typical Mini-CCNx workflow is as follows (see Fig. 2).

1. First, the user specifies the desired topology by editing the
configuration text file to define the NDN nodes and their link
connectivity (step 1a in Fig. 2). Optionally, a companion GUI
(miniccnxedit) can be used to generate a configuration file
template (step 1b).3

2. Next, still in the configuration file, the user specifies the
CPU and memory limits for each node.

3. The user can also add default name-based FIB entries (name
prefix and next hop tuples) for each node, effectively acting
as a static omniscient routing protocol.

3As usual, the GUI is recommended for smaller topologies, when one wants
a visual concept of the scenario. For scenarios with hundreds of nodes, the
configuration file can be edited directly or via scripts (e.g., Bash, Python).
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Fig. 2. Typical workflow using Mini-CCNx.

4. The user can specify link parameters such as bandwidth
(1-1000Mbps), packet loss (in percentage), and delay (in
milliseconds) for each link in the topology. At the end of this
step, the configuration file is complete.

5. The user runs the miniccnx tool, using the created
configuration file as a parameter.

6. The tool parses the configuration file, instantiates the nodes,
automatically inserts FIB entries using the ccndc application,
and applies the specified link parameters.

7. Finally, the environment is up and running and users can
now dynamically interact with the nodes, start applications,
activate dynamic routing, etc. They can also collect any needed
metrics or inspect the log files.

Currently, ccnx connections run over a TCP or UDP.
Mini-CCNx automatically and transparently adds such con-
nectivity so the researcher only needs to be concerned about
the name-based FIB entries, which can be defined statically
in the configuration file (step 3) and changed dynamically at
experiment run time.

C. Complete Prototyping Environment

Being an emulated environment that runs real code,
Mini-CCNx can benefit from using the same software
tools used in real deployments. For instance, Mini-CCNx
users can readily use custom Interest and Data pack-
ets generators (ccnpeek, ccnpoke), binary packet en-
coding/decoding (xmltoccnb, ccntoxml), fetching file
tools (ccnputfile, ccngefile), traffic generators (ccn-
delphi, ccntraffic), specific ping tool (ccnping), rout-
ing daemons (OSPFN), packet dumping (ndndump), among
other publicly available NDN code [9].

Furthermore, Mini-CCNx also includes our own developed
tools to generate NDN experiments, namely miniccnxedit
(a GUI for generating NDN topologies), generate-linear
(a tool for automatic creation of linear topologies) and
generate-mesh (automatic full mesh topology creation). In
addition, a link-annotated replica of the 17-node NDN testbed
topology is readily available. Altogether, Mini-CCNx offers a
complete, fast and high productivity prototyping environment
that facilitates all sorts of NDN experiments.
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Fig. 3. Results of replicated NDN experiments with Mini-CCNx

D. Performance and Fidelity

CBE yields higher scalability when compared to full-
virtualization by trading the ability to run multiple OS kernels
for lower overall overhead using a single kernel [14]. The
higher scalability comes however at a price: isolation may be
compromised. The kernel resources are shared by all the NDN
nodes which may interfere with each other. For example, if
a misbehaving content-oriented application in a node begins
to indefinitely allocate memory, the overall experiment results
will be compromised due to lack of memory available for
other nodes. Therefore, Mini-CCNx uses isolation techniques
in order to limit the resources available for each node and link.

Inherited from Mininet-HiFi, Mini-CCNx uses Linux
cgroups to limit CPU bandwidth for each node. Mini-CCNx
also extends this concept adding limits to memory utilization,
an important subject for NDN when it comes to caching and
content storage. Finally, using Linux traffic control (tc), it is
possible to configure several link properties such as bandwidth,
delay, and packet loss.

For a performance evaluation, we refer to the technical
report [3] where we discuss plentiful experiments to analyze
Mini-CCNx performance dimensions such as: (i) scalabil-
ity (number, (ii) coherence (sensitivity analysis to parameter
changes), (iii) fidelity (comparison to non-emulated experi-
ments), and (iv) isolation (controlled interference of the differ-
ent system components under stress loads).

III. EXPERIMENTAL EVALUATION

We now evaluate Mini-CCNx by carrying two types of ex-
periments. First, we reproduce using Mini-CCNx experiments
published in a number of papers and technical reports. We aim
at showing that the experiments using Mini-CCNx exhibit great
fidelity when compared to the original publications, including
recent NDN project reports [11] featuring experiments with
NDN applications under real testbed conditions. Second, we
carry a number of routing experiments to showcase how Mini-
CCNx eases the task of analyzing the content-oriented routing
behavior on top of a non-trivial topology. Hopefully these
examples might give researchers ideas of how Mini-CCNx can
be used in order to deploy and evaluate new routing protocols
or forwarding strategies for the CCN model.

A. Reproducing experiments from published work

Content Distribution Efficiency. The original paper by Van
Jacobson et al. [6] shows how CCN shines when it comes to
content distribution. The data sharing performance between

TCP and CCN was compared by measuring the total time
taken to simultaneously retrieve a 6MB data file over a network
bottleneck. The experiment uses a source node over a 10 Mbps
shared (bottleneck) link connected to a cluster of consumers
with 1Gbps links simultaneously pulling the data file. We
used Mini-CCNx to reproduce such behavior. For TCP, the
file was retrieved with wget from a HTTP server in the
source. For CCN, the file was retrieved with the ccnx’s built-
in ccngetfile. Figure 3(a) shows the results expected from
the original paper: CCN outperforms TCP with two consumers
or more due to caching alleviating the bottleneck link.

Strategy/Forwarding Layer. The original paper shows how a
CCN node behaves when multiple FIB entries are available for
the same prefix. The strategy layer chooses the best face at the
time, and if the current link fails, the CCN stack automatically
sends packets over the second face. We set up Mini-CCNx
with two directly connected hosts and equal link configuration
(100Mbps, 1ms delay), for link 1 and link 2. The first host
constantly sends Interest packets while the second replies with
Data packets. Figure 3(b) shows the bandwidth in each of
these links according to time. We can observe how the strategy
layer chooses mostly link 1 but constantly sends probe packets
through link 2. Approximately at 40s, when the strategy seems
to choose mostly link 2, we disconnect it at 45s until about
70s. We can verify later how the strategy layer automatically
chooses the best link again and hence successfully reproduce
with Mini-CCNx the automatic failover capabilities.

NDNVideo. The video streaming application (TR-NDN-
0007 [11]) allows to play live and pre-recorded videos with
random access and no session negotiation. During the tests, the
developers detected an interesting behavior in a deployment
with multiple consumers, a central content router (borges)
and a video producer (hydra): each consumer got slightly
more data than the hydra provides. Using Mini-CCNx with
the same topology and 5 consumers, we can reproduce this
behavior (Fig. 3(c)). In addition, the authors detected large
spikes in RTT measurements and concluded this was caused
by an Interest reordering done by CCNx. Authors made several
client-side improvements (e.g., timeout estimation, Interest re-
issue, usage of interval-based pipeline) to address this issue.
Figure 3(d) shows the observed RTT behavior of the latter
approach using Mini-CCNx. The results are really close to the
published ones (cf. Fig. 14 in TR-NDN-0007 [11]).

B. Routing Experiments

To further illustrate the types of routing experiments that
can be done with Mini-CCNx, we now will bring some
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routing scenarios and their respective analysis. All scenarios
use the NDN Testbed topology shown in Fig. III-B. A Mini-
CCNx user can simply run the command sudo miniccnx
-testbed to automatically load 17 nodes representing the
NDN testbed deployment including link delay estimates.4

Each NDN node runs its own instance of the ospfn [11]
daemon in addition to the the required ospfd and zebra dae-
mons from the Quagga routing suite. The nodes are configured
to announce exactly the same name prefixes outlined in the
NDN testbed website [12]. For instance, as shown in Fig. 5(b),
the CAIDA/UCSD router announces the /ndn/caida.org/
prefix, and the PARC router announces the /ndn/parc.com
and /ndn/opschat prefixes.

We will show through a series of experiments how Mini-
CCNx allows users to easily bring any link up or down and
observe the dynamic behavior of OSPFN, including conver-
gence times and multipath support. This brings greater agility
and flexibility compared to trying these operations on the
real testbed, allowing to study new software versions and
experiments before going live.

4As seen on August 8th 2013 [12]. The propagation delays were estimated
using straight geographical node distances.

Understanding the OSPFN Protocol

OSPFN [7] is an extension to OSPF (Open Shortest Path
First) for routing in NDN based on a new type of opaque link
state announcement (LSA) to carry name prefixes in routing
messages. Best next-hops are installed to each name prefix in
the FIB and operators are allowed to manually configure a list
of alternative next-hops in addition to the best one. Each node
in the topology announces the prefixes they are responsible
for. Figure 5(b) shows some prefixes and the respective OLSA
format (Fig. 5(c)) of the OSPFN prefix announcement.

The OSPFN protocol processes all the received messages
(updates, insertions or deletions) and dynamically updates an
internal table that maps prefixes into their respective origin
routers. To illustrate the basic operation, Figure 6 shows a
piece of the UCLA node’s FIB, as given by the output of the
ccndstatus command.

The /ndn/colostate.edu/netsec/ and
/ndn/pku.edu.cn/ prefixes are announced by
unique origin routers (CSU and PKU, respectively)
that are directly connected to UCLA (1 hop cost). The
/ndn/neu.edu/northpole/ prefix is also announced



Fig. 6. UCLA’s FIB (partial)

 0

 1

 2

 0  10  20  30  40  50

c
c
n

p
in

g
s
 s

e
n

t 
in

 1
 s

e
c

Time (sec)

Via UA
Via SPP-SALT

Fig. 7. ccnpings leaving CSU towards SPP-HOUS via UA and via SPP-SALT

by only one router (NEU) but there are 3 entries for such
prefix in UCLA’s FIB. This occurs because there are 3
equal-cost paths (3 hops) between UCLA and NEU, as shown
in Fig. III-B. The order of such insertions, in this case, is
arbitrary. Finally, the /ndn/opschat is announced by two
routers. Therefore, the respective entries to the origin routers
are created: to CSU (route (UCLA)-(CSU) with only one hop)
and to NEU (routes (UCLA)-(PARC)-(UIUC)-(NEU) and
(UCLA)-(UA)-(UM)-(NEU), both with a 3-hop cost). In this
last case, the insertion order is important: the route to CSU
(smaller cost) must be the last one to be inserted to give this
route a higher priority (ccnd implementation convention).

Relationship between Routing and Forwarding

The next experiment shows how the NDN model exhibits a
closer relationship between the routing and forwarding planes
when compared to the traditional TCP/IP model. Suppose that
the CSU node wants to communicate with the SPP-HOUS
node, which announces /ndn/spphous1. There are two
2-hop cost routes between these nodes: (CSU)-(UA)-(SPP-
HOUS) and (CSU)-(SPP-SALT)-(SPP-HOUS). This can be
verified by the presence of the 2 FIB entries at CSU (see
Fig. 8).

Fig. 8. CSU’s FIB (partial)

Despite the paths’ equal costs (2 hops), the propagation
delay of the first path (12 ms) is slightly smaller than the
second path delay (13 ms). We then activate the ccnping
in CSU towards SPP-HOUS. Using the ndndump sniffer, we
can see that the first sent Interest uses the second path (via

SPP-SALT). Note however that the node also sends another
Interest (which is exactly the same as the first one) through
the first path (via UA). This prospective behavior continues for
about 10 seconds, as can be seen in Fig. 7.

For the first 10 seconds, the average RTT for such packets
was measured in both paths. Via UA (first path), a 29,5 ms
average RTT (with 0,41 ms deviation) was measured. In the
second path (via SPP-SALT), the average RTT was 30ms with
0,46ms deviation. Therefore the forwarding plane chose the
first path as it detected a better network condition in such
route. We can see that later the forwarding plane tries to send
some packets through the second path again, but this did not
change the prior option of using the first path most of the time.

Topology Changes and Routing Convergence

The next experiment focuses on analyzing the OSPFN
behavior with regards to topology changes and the proto-
col convergence time. Starting with the same routing topol-
ogy of Fig. III-B, we can observe in Figure 5(b), we
can observe that the UCLA node has an entry for the
/ndn/colostate.edu/netsec/ prefix pointing directly
to the CSU node, which is the origin router for such prefix and
which is directly connected to the UCLA node. With the com-
mand link ucla csu down, Mini-CCNx removes this
link between the nodes at 13:23:20. Figure 9 shows the ospfd
daemon log and UCLA’s FIB just after this link removal.

(a) ospfd log of the UCLA node.

(b) UCLA’s FIB

Fig. 9. ospfd behavior and UCLA’s FIB after link down event.

The first observed message in the log shows the link
removal detection and the respective update LSA is sent. Next,
the ucla-eth6 interface is removed from shortest-path multicast
group in order to trigger a new route calculation. Finally, all
the affected entries are updated in the OSPF routing table.
Note that all this operation was done during the same second
(13:23:20). Also, we can note that all the other updates on the
other node’s FIB also occur during this same second and thus
we can conclude that the answer was very efficient. OSPFN
also detects such connectivity updates and reinserts new FIB
entries to the affected prefixes using the supplied information
from the ospfd daemon. Figure 9(b) shows a section of the
FIB which now has 3 new 2-hop paths between UCLA and
CSU - namely (UCLA)-(PARC)-(CSU), (UCLA-SPP-SALT)-
(CSU) and (UCLA)-(UA)-(CSU).
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To restore the link we run the link ucla csu up
command and observe the routing behavior after the link
is reestablished.We can observe from the logs (not shown)
that ospfd notices the re-connection at 13:24:00. Next, the
daemon operation continues until 13:24:45, when the update
LSA is finally sent and the node’s table is updated. At the same
time, we see that UCLA’s FIB is immediately updated and
the /ndn/colostate.edu/netsec/ FIB entry is back.
Therefore, the total routing reestablishment took 45 seconds,
taken mostly by the OSPF routing process to re-converge.5

During all this experiment, the traffic generator
ccntraffic in UCLA generated a constant and low
traffic towards CSU which replied with random 1024-byte
Content Objects. The bandwidth was measured in 4 points
directly attached to CSU: (i) PARC-CSU, (ii) UCLA-CSU,
(iii) SPP-SALT-CSU and (iv) UA-CSU. Figure 10 shows the
bandwidth behavior. Furthermore, the markings on the x axis
point to the events cited earlier in this experiment.

Note that at 13:22:56 the traffic generator was turned on
and averaged about 80 Kbps using the direct link between
CSU and UCLA. At 13:23:20, when the link is removed, we
observe the fast response from the forwarding plane, which
chooses the new best path through PARC but also results in
lower average bandwidth (about 60 Kbps). During this time,
we can note some ccnd daemon attempts to find new best
links (smaller 5Kbps peaks) but the forwarding plane keeps
choosing the PARC path. At 13:24:00, the link between CSU
and UCLA is reconnected but now this link is not immediately
used. This confirms the detected behavior shown on the logs.
At 13:24:45 we note that the UCLA-CSU link is reestablished.

IV. CONCLUSION AND FUTURE WORK

Inspired by the well-succeeded experience in fast prototyp-
ing for SDN, Mini-CCNx appears as a useful tool for NDN
experimentation platforms. Mini-CCNx is realistic, low-cost
and scalable: a whole content-centric network, with hundreds
of nodes, can be run in commodity hardware, with easy
configuration and high-fidelity results. The latter has been
verified by a series of experiments where we were able to
replicate results from published work. In addition, routing
experiments on an emulated version of the real NDN testbed

5The Quagga daemon used the default configuration and was not optimized
for the experiment, which explains the high convergence time.

has shed light on the a first attempt towards a content-centric
routing protocol. Altogether, we conclude that the Mini-CCNx
emulator is a helpful tool for NDN researchers, a fact that we
are verifying by the increasing user activity in the public open-
source repository.

Our future work can be divided into two main threads.
Firstly, we are working on enhancements to the Mini-CCNx
tool, including (i) user-defined CCN-specific metrics (e.g.,
cache efficiency, path performance, Interest/Data ratio), (ii)
advanced GUI to allow link annotations, FIB additions, etc.,
and (iii) support of distributed environments to further scale the
experiments. Secondly, we will continue our research efforts
in questions such as performance comparison of recent routing
protocols (i.e. NLSR [5]), efficiency of strategy layers, caching
techniques, and so on.
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