
Mininet-WiFi: Emulating
Software-Defined Wireless Networks

Ramon R. Fontes, Samira Afzal, Samuel H. B. Brito, Mateus A. S. Santos, Christian Esteve Rothenberg
School of Electrical and Computer Engineering (FEEC)

University of Campinas (UNICAMP)
Campinas, Sao Paulo, Brazil

Email:{ramonrf,samira,shbbrito,msantos,chesteve}@dca.fee.unicamp.br

Abstract—As the density of wireless networks continues to
grow with more clients, more base stations, and more traffic,
designing cost-effective wireless solutions with efficient resource
usage and ease to manage is an increasing challenging task
due to the overall system complexity. A number of vendors
offer scalable and high-performance wireless networks but at
a high cost and commonly as a single-vendor solution, limiting
the ability to innovate after roll-out. Recent Software-Defined
Networking (SDN) approaches propose new means for network
virtualization and programmability advancing the way networks
can be designed and operated, including user-defined features
and customized behaviour even at run-time. However, means
for rapid prototyping and experimental evaluation of SDN for
wireless environments are not yet available. This paper introduces
Mininet-WiFi as a tool to emulate wireless OpenFlow/SDN sce-
narios allowing high-fidelity experiments that replicate real net-
working environments. Mininet-WiFi augments the well-known
Mininet emulator with virtual wireless stations and access points
while keeping the original SDN capabilities and the lightweight
virtualization software architecture. We elaborate on the potential
applications of Mininet-Wifi and discuss the benefits and current
limitations. Two use cases based on IEEE 802.11 demonstrate
available functionality in our open source developments.

Keywords—Wireless networks, Emulation, SDN, OpenFlow.

I. INTRODUCTION

Network emulation [1] is a widely used technique to eval-
uate performance, test and debug protocols as well as support
multiple network-related research issues. At a fraction of the
cost of real testbeds and different than simulations, emulation
allows running real code in realistic networking and comput-
ing conditions. In support of research on Software-Defined
Networking (SDN) [2] architectures, the Mininet emulator [3]
allows rich experiments and fast prototyping cycles, which are
especially interesting for teaching, research and reproducibility
purposes in academia as well as pre-deployment evaluation of
“exactly” the same SDN control software to be later used in
production (e.g., BSN Labs,1 Google B4 [4]).

When it comes to the experimentation of SDN and the
OpenFlow protocol [5] in wireless networks, only a few alter-
natives are available based on popular simulators (e.g., NS-32

and OMNet++ [6] engines). In order to validate the concepts
and experimentally evaluate the benefits of Software-Defined
Wireless Networks (SDWN) [7], a suitable emulation tool is

1http://www.bigswitch.com/press-releases/2015/02/19/big-switchs-bsn-labs-
now-available-for-free-hands-on-experience-with-sdn

2https://www.nsnam.org/docs/models/html/wifi.html

needed. Likewise to the wired SDN experiences, a wireless
SDN emulator tool becomes fundamental to prototype, test and
benchmark new protocols, end-to-end network architectures
and applications.

In order to fill this gap, this paper presents Mininet-
WiFi, a fork of Mininet extended to support WiFi by adding
virtualized WiFi Stations (STAs) and Access Points (APs)
based on the most common Linux wireless device driver,
namely mac80211/SoftMac3. The majority of Linux wireless
drivers today use mac80211/SoftMac, which supports most of
the features provided by wireless NICs and allows Mininet-
WiFi to exercise fine-grained control over wireless network
packets at a low layer. Mininet-Wifi is being developed as a
clean extension of the high-fidelity Mininet emulator by adding
the new abstractions and classes to support wireless NICs and
emulated links while conserving all native lightweight virtual-
ization and OpenFlow/SDN features. As a proof of concept of
our initial round of SDWN experiments with Mininet-Wifi, this
paper describes (1) a use case on OpenFlow-based bicasting
over two 802.11 APs, (2) a use case featuring the integration
with physical wireless NICs, and (3) Mobility.

The remainder of this paper is organized as follows.
Section 2 provides background on SDWN and introduces
relevant concepts to understand the applicability and relevance
of our work. Section 3 describes the system architecture of
Mininet-WiFi. Section 4 describes some case studies. Section 5
discusses current limitations and the ongoing/future work. Sec-
tion 6 describes related work, and, finally, Section 7 concludes
the paper with some final thoughts and motivates the reader to
follow the developments in the open source code repository.

II. SOFTWARE-DEFINED WIRELESS NETWORKING

Software-Defined Networking (SDN) [2] is a recent net-
working paradigm based on a programmatic separation of
the control plane (aka. Network OS) from the data plane
(aka. forwarding plane). SDN allows network administrators to
specify the behavior of the network in a logically centralized
manner via the controller platform that leverages southbound
interfaces to the forwarding devices –the OpenFlow protocol
being the most popular one. In the same spirit, Software-
Defined Wireless Networks (SDWN) [7] aims at providing
programmatic centralized control of the network outside the
wireless boxes (APs) which enforce the received instructions

3http://linuxwireless.org/en/developers/Documentation/mac80211

978-3-901882-77-7 c© 2015 IFIP

(policy decisions) and remain responsible for the transmission
and reception of the traffic over the wireless link.

Separation of both control and data plane has existed
in the wireless domain prior to SDN and OpenFlow. IETF
standardized the Control and Provisioning of Wireless Access
Points (CAPWAP) protocol [8] several years ago, which cen-
tralizes the control in wireless networks, allowing ACs (access
controllers) to manage WTPs (wireless termination points)
over a wireless network. Besides, there are multiple proprietary
solutions (e.g., Aerohive, Aruba, Cisco HDX, Meraki, Ruckus)
based on external controllers responsible for the management
of the APs. These commercial solutions introduce a number of
extensions to standardized protocols or define their own APIs
between the controller and APs, and present differences in the
refactoring of control and data plane functions in addition to
a series of proprietary radio resource enhancements. While all
these solutions have proven to work well at scale, their cost is
often prohibitive for many deployments and raise concerns due
to their closely integrated nature and the consequent vendor
lock-in and inability for in-house or third-party innovations.

SDWN has become an emerging and significant research
branch of SDN [9]–[11], including increased attention of mo-
bile network operators [12], [13] and the identified synergies
to Network Function Virtualisation (NFV) [14].

In its current form, OpenFlow does not address specific
needs of WiFi protocols and networks, which include interfer-
ence mitigation, mobility management, and channel selection
techniques [15]. Ongoing work at the Open Networking Foun-
dation (ONF) Wireless & Mobile Working Group (WMWG)4

may change the picture in the near future.

As today, the only realistic way to try out WiFi and Open-
Flow together is using open source firmware and OS solutions
like OpenWRT that allow turning commodity wireless routers
into OpenFlow-enabled switches. However, even OpenWRT is
constrained to a limited set of resources, and, like any real
testbed, this approach is subject to challenges on the scale of
the experiments, the control and reproducibility options as well
as the high setup times.

Wireless SDN emulators, on the other hand, would be an
interesting option to work with multiple devices (both APs and
STAs) at reasonable scale on experimenter-defined environ-
ments, allowing research on new SDWN features in addition
to the fast prototyping and rich experimentation benefits known
by the large Mininet user community.

We envision that the Mininet-WiFi emulator has the po-
tential to become an important tool for wireless SDN research
by enabling real-world wireless network systems and (Linux-
based) end-user device software in a fully controlled envi-
ronment yielding high fidelity results in support of SDWN
research.

III. MININET-WIFI DESIGN AND WORKFLOW

Delivering software-based wireless network emulation usu-
ally means to completely abandon wireless network hardware
and performing the emulation on a per-packet level. The

4https://www.opennetworking.org/images/stories/downloads/working-
groups/charter-wireless-mobile.pdf

Fig. 1. Components and connections in a two-host network created with
Mininet-WiFi.

common ground across wireless network emulation approaches
is that the wireless channel is replaced by an artificial model
providing a convenient way to evaluate the wireless channel
effects.

Currently Mininet-WiFi emulator uses basic Linux TC
tools to emulate the wireless channel by setting link parameters
such as packet loss, delay, and channel bandwidth. A more
elaborated wireless model support is under ongoing work and
left out of scope of this paper, which focuses on the underpin-
ning software design and a set of strawman applications.

A. Software Architecture and Implementation

Figure 1 depicts the components and connections in a
simple topology with two hosts created with Mininet-WiFi,
where the newly implemented components (highlighted in
gray) are presented along the original Mininet building blocks.

More specifically, we added WiFi interfaces on STAs that
now are able to connect to an AP through its (wlanX) interface
that is bridged to an OpenFlow switch with AP capabilities
represented by (ap1). Similar to Mininet, the virtual network
is created by placing host processes in Linux OS network
namespaces interconnected through virtual Ethernet (veth)
pairs. The wireless interfaces to virtualize WiFi devices work
on master mode for APs and managed mode for STA.

Stations: Are devices that connect to an AP through authenti-
cation and association. In our implementation, each station has
one wireless card (staX-wlan0 - where X shall be replaced
by the number of each STA). Since the traditional Mininet
hosts are connected to an AP, STAs are able to communicate
with those hosts.

Access Points: Are devices that manage associated stations.
Virtualized through hostapd5 daemon and use virtual wire-
less interfaces for access point and authentication servers.
While virtualized APs do not have (yet) APIs allowing users to
configure several parameters in the same fashion of a real one,
the current implementation covers the most important features,
for example ssid, channel, mode, password, cryptography, etc.

5Hostapd (Host Access Point Daemon) user space software capable of
turning normal wireless network interface cards into access points and
authentication servers

Both STAs and APs use cfg80211 to communicate with
the wireless device driver, a Linux 802.11 configuration API
that provides communication between STAs and mac80211.
This framework in turn communicates directly with the WiFi
device driver through a netlink socket (or more specifically
nl80211) that is used to configure the cfg80211 device and
for kernel-user-space communication as well.

B. Creating a Network.

To start Mininet-WiFi a simple command suffices (sudo mn
--wifi) to bring up two Stations (sta1 and sta2) connected
to an Access Point (ap1) configured with ”my-ssid” as the
default SSID of the wireless network. Additional parameters
can be provided, including --ssid, --channel and --mode for
customized setups. In addition to the CLI options, it is possible
to build topologies based on some sample files that are in
the examples directory, such as: (i) adhoc for experiments
with adhoc mode, (ii) simplewifitopology to create
exactly the same topology mentioned above with 2 STAs
and 1 AP; (iii) wifiStationsAndHosts creates a topol-
ogy with stations and hosts enabling communication between
them; and (iv) 2AccessPoints to create a topology with
STAs associated to different APs and allowing communica-
tion among all STAs. In addition, (v) wifiMobility and
(vi) wifiMobilityModel provide sample mobility scenar-
ios based on different well-known models (e.g., GaussMarkov,
RandomDirection, RandomWalk, RandomWaypoint and Trun-
catedLevyWalk). The aforementioned examples (and further
provided by the community) are important facilitators to test
and share new topologies, that can be reused between different
experiments and among research groups.

GUI. In addition to the CLI (Fig. 2(a)), another option to
work with Mininet-WiFi is using the complementary GUI tool
(Fig. 2(b)) called Visual Network Description [16].

C. Customizing the network & User interaction.

Besides all OpenvSwitch (OVS) related commands,
Mininet-WiFi supports commands related to iw6: sta1 iw dev
sta1-wlan0 scan to scan for available access points, and sta1
iw dev sta1-wlan0 connect my-ssid to connect to the access
point which has the same SSID. Being a runtime emulator
Mininet-WiFi allows the user to add new Stations to the
topology on demand, however, there is one important factor
to be considered: the command --radios needs to be used
besides the --wifi command (e.g., mn --wifi --radios=5), since
the system needs to know how many radios (stations and access
points) should be handled before starting the topology. These
commands are relevant in case of experiments with dynamic
topologies that add/remove stations to the network topology.

To verify the connectivity between stations and access
points on Mininet-WiFi the user can type the following CLI
command: sta1 ping sta2. Common Linux commands can be
executed by the user at runtime, for instance to verify the
available bandwidth between two stations between stations
sta1 and sta2: sta1 iperf -s & sta2 iperf -c 10.0.0.1.

In addition to the default Mininet addHost and
addSwitch classes, Mininet-Wifi provides addStation

6A tool for managing and configuring wireless devices and an alternative
for iwconfig

(a) Mininet-WiFi CLI.

(b) Topology on Visual Network Description.

Fig. 2. Alternatives to work with Mininet-WiFi.

and addBaseStation classes, and a modified addLink
class to define the wireless environment:

addStation(”sta1”)
addBaseStation(”ap1”, ssid=”new ssid”, channel=”10”,

mode=”g”)
addLink(ap1,sta1)

The addStation class allows the user to add a new
station to the topology and the addBaseStation class
allows to customize the device with SSID, channel and
mode configuration. The class name addBaseStation
has chosen on purpose due to the intention of extending
Mininet-WiFi to further mobile wireless technologies in the
future. Finally, the addLink class instantiates the association
between STAs and APs, which in the current implementation
is based on user-defined static configuration of Linux TC to
control the wireless channel properties (e.g., bw=’54Mbps’,
loss=’0.1%’, delay=’15ms’).

D. System Profiling

An important aspect of any emulation tool is its perfor-
mance and ability to scale. In general, Mininet-WiFi inherits
the same performance and scalability properties of Mininet, but
it also adds new features and there are other metrics that need
to be considered for system profiling purposes. We measured
the time required for some management operations of virtual
WiFi interfaces in the Linux kernel (3.19.10-18), iw utility,
and hostapd startup/shutdown operations. Table 1 shows
the time consumed by individual operations when building a
simple topology with two STAs and one AP.

TABLE I. TIME FOR BASIC MININET-WIFI OPERATIONS IN A
BUILDING A SIMPLE TOPOLOGY WITH TWO STAS AND ONE AP.

Operation Time(ms)

Create an AP 17
Create a STA 63

Association between two nodes 10
Starting mac80211 module 5

Stopping STAs and APs 350

IV. CASE STUDIES

This section illustrates functionalities of Mininet-WiFi by
means of three use cases, firstly on bicasting over wireless
networks, secondly on integrating physical wireless interfaces,
and the last one on mobility. In the context of SDWN, we
expect Mininet-WiFi delivering significant and complementary
advantages compared to simulation or testbed-based experi-
mental approaches. The project repository includes links to
a VM Disk and a Docker Image along user instructions to
reproduce the use cases.

A. Use Case 1: Wireless Bicasting

In order to illustrate the potential of Mininet-WiFi to carry
and reproduce experiments from the literature, this use cases
demonstrates a bicasting over wireless scenario inspired by
the work in [17]. The real experiment consisted of a video
streaming application running in a mobile station and receiving
the packet flow over multiple radios simultaneously (n-casting)
– the mobile station, equipped with two WiFi and one WiMax
interface, was attached to multiple APs using the same SSID.
OpenFlow was used to duplicate packets in the wired network
and re-write the L2/L3 headers at the radio access points. As a
result, the quality of experience was improved, since the packet
loss over a radio link was compensated by the duplicated
stream received over the alternative radio(s).

In the scenario shown in Fig 3(a), we use Iperf to measure
the bandwidth between STA1 and H1 during 60s. STA1 has
two wireless interfaces and both interfaces are connected to
different APs (AP1 and AP2), which are connected to an
OpenFlow controller as well as the switch S1. OpenFlow rules
ensure that packets are copied and sent through the different
paths to the stations.

During the first 20s the measured bandwidth is about
90Mbps, which seems coherent with the 54Mbps limit of
each interface in mode g. When the time reaches 20s one
wireless interface is disconnected (from AP2) causing a traffic
decrease, but increase again when the same wireless interface
is connected to AP2 at 40s (Fig. 3(b)).

While the experiment is a strawman effort that oversimpli-
fies properties from the wireless channels, it serves as a proof
of concept of the feasibility and flexibility of Mininet-WiFi in
enabling multiple simultaneous WiFi connections and traffic
control through OpenFlow.

B. Use Case 2: Integration with Physical Wireless Interface

In this use case, we leverage a USB wireless card connected
to a PC running Mininet-WiFi (Fig. 4) to illustrate how

(a) Sample Topology.

0 10 20 30 40 50 60
Seconds

0

20

40

60

80

100

M
bi
ts
/s
ec

with bicasting

no bicasting

with bicasting

(b) Bandwidth Measurement between STA1 and H1.

Fig. 3. Bicasting over WiFi.

Fig. 4. Physical wireless NIC integrated into Mininet-WiFi.

physical wireless interfaces can be integrated into Mininet-
WiFi.

The process of turning a physical wireless interface to
behave like an AP can be done by different means and this
experiment uses hostapd. The following lines are used to
change the wireless interface to behave like an AP:

interface=wlan1

ssid=Mininet-WiFi-AP
hw mode=g
channel=7

This code snippet is stored in a simple txt file and executed
in a terminal. After running the code, a mobile device can be
connected to this AP and a single Mininet-Wifi topology is
instantiated with the command mn –wifi. Then, a bridge is
created (ovs-vsctl add-port ap1 wlan1) to allow the interface
wlan1 (usb wireless physical interface) communicate with the
virtualized Mininet-WiFi environment. Finally, virtual STAs
(running inside Mininet-WiFi environment) and the physical
mobile device can communicate with each other, as can be
seen in the companion video material.7

C. Use Case 3: Mobility

Basic mobility support allows users to configure parameters
such as time and also initial and final positions to provide
mobility. Figure 5(a) illustrates an AP1 and two moving STAs.
The signal range of AP1 depends of the mode (e.g., b, g, n),
and when STA1 exceeds this limit the association from AP1
is broken. Figure 5(b) shows the increase in response time
response as the distance between the STAs and AP1 increases.
Please refer to wifiMobility.py in order to reproduce this
sample use case.

(a) Mininet-WiFi Graph (optional).

(b) Connectivity test.

Fig. 5. Mobility within Mininet-WiFi.

V. LIMITATIONS AND FUTURE WORK

Mininet-WiFi inherits any limitations of the lightweight
virtualization Mininet architecture and certainly adds a cou-
ple of more related to our current approach to emulate the
wireless medium with high-fidelity. We are on the process of
collecting information to find and evaluate all limitations to be
documented in the github repository.

7https://www.youtube.com/watch?v=WH6bSOKC7Lk

Our ongoing efforts are devoted to relevant missing features
pointed by early users of Mininet-WiFi. Probably the most
challenging research and development effort upfront is an
abstraction for the wireless broadcast links with good enough
fidelity, supporting dynamic reconfiguration of link parameters
to consider the effects of interference, signal strength depend-
ing on node distances, among others. Also on our roadmap is
advancing the mobility support and validate the implemented
models. On all these fronts, we intend to leverage as much
as possible from related open source work (e.g. NS-3 models)
and lessons from the vast literature on wireless research.

A future experimenter-friendly feature we foresee is al-
lowing emulated experiments be based on trace-based ap-
proaches [18] towards reproducing the behavior of a real
network inside of Mininet-WiFi according to previously cap-
tured traces. Challenges upfront include the ability to capture,
interpret, and process traces to produce reliable (high-fidelity)
results.

On the software-defined front, we intend to move beyond
traditional (packets- and flow-based) traffic manipulation and
allow the SDWN controller (via OpenFlow extensions or
alternative southbound interfaces) to dynamically re-configure
Access Points (e.g., Ethanol [19]), exploring alternative offer-
ings to the closed solutions commercialized by the industry.

VI. RELATED WORK

Experimental tools to evaluate new designs are key to
support academic and industrial research one new networking
technologies, troubleshooting, change planning of deployed
networks, and so on. Hence, wireless simulators, emulators,
and new testbeds have received a lot of attention. Related
work on wireless experimentation environments is presented
in Fig. 6 which tries to illustrate the fundamental differences
between each type of platform, pointing to emulators as a
sweet spot when compared to hardware-based testbeds (fast,
accurate, shared, expensive) and simulators (cheap, detailed,
often slow and requiring code changes) [20].

When looking into existing emulators such as Estinet [21],
Emane8 and Core [22], the first one is capable to simulate and

8http://www.nrl.navy.mil/itd/ncs/products/emane

Live
Networks

Formal Math.
Models

Test and Evaluation Options
Simulators Emulators TestBeds

log(realism)

log(cost), where cost = f(complexity, resources, environment conditions)

Loss of real experimental
conditions

Loss of experimental conditions
reproducibility,repeatability, etc.

NS-3
OpenNet

OMNeT++

Mininet-WiFi
EMANE
EstiNet
CORE

Assert
BOWL
iMinds
Nitos
Orbit

R2Lab

Increasing Realism

Increasing Complexity

Fig. 6. Overview of related work and trade-offs of different wireless
experimental platforms.

emulate wireless networks, the last two focus only on MANET
networks, and the first one is a commercial solution and thus
does not provide the flexibility of source-code level modifi-
cation and extensibility. Mininet-WiFi, in turn, is open source
code and aims at supporting any type of WiFi networking.

In the popular NS-3 simulator, support of 802.11 in-
cludes both MAC and PHY layers simulation models for
802.11a, 802.11b, 802.11g and 802.11n (both 2.4 and 5
GHz bands) networks as well as infrastructure and adhoc
scenarios. Closest to our emulation efforts are the NS-3 real-
world integration features like real-time/emulation mode and
DCE [23]. However, seamless support of unmodified POSIX
code is not broadly possible and very specific to the target
application and libraries, in addition to real-time constraints
along performance and scalability concerns. A related Mininet
effort9 adds wireless link modeling by gluing together NS-3
processes and Linux tap devices. Unfortunately, as far as we
can infer from the public repositories, the project seems to be
inactive since 2013. OpenNet [24] is another recent attempt
to partner Mininet with NS-3 by implementing WiFi scan
mechanisms that enable experiments with layer-2 handover of
mobile nodes between two OpenFlow-enabled APs operating
on two different channels.

VII. CONCLUSION

The widespread and popularity of wireless networks calls
for novel control and management approaches that need to
be prototyped and evaluated under realistic topology and net-
working conditions. Ideally, these controlled and experimenter-
friendly environments should be affordable and yield high fi-
delity results. We believe that Mininet-WiFi is a promising step
towards adding wireless research capabilities to the SDWN
research toolbox. The results of our first release of Mininet-
WiFi are quite encouraging. We believe that the current limi-
tations are solvable in the near future and we will overcome
the challenges towards a scalable and high-fidelity wireless
emulator. Mininet-WiFi is ready to be tested and allows for
OpenFlow and WiFi experiments. There is a growing user
community that will hopefully contribute to the developments
efforts through the publicly available Mininet-WiFi code repos-
itory at: https://github.com/intrig-unicamp/mininet-wifi.

ACKNOWLEDGEMENTS

This project was partially supported by FAPESP grant
14/18482-4. Mateus A. S. Santos is currently with Ericsson
Research.

REFERENCES

[1] Fall, K. R. Network emulation in the Vint/NS simulator. In 4th IEEE
Symposium on Computers and Communication (1999).

[2] D. Kreutz, F. M. V. Ramos, P. E. P. Verissimo, C. E. Rothenberg, S.
Azodolmolky and S. Uhlig ”Software-defined networking: A compre-
hensive survey”, Proc. IEEE, vol. 103, no. 1, 2015.

[3] B. Lantz, B. Heller, and N. McKeown, ”A network in a laptop:
rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, ser.
HotnetsIX. New York, NY, USA: ACM, p 19:1-19:6, 2010.

9https://github.com/mininet/mininet/wiki/Link-modeling-using-ns-3

[4] Sushant Jain et al. ”B4: experience with a globally-deployed software
defined wan”. Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM, August 12-16, 2013, Hong Kong, China.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation
in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):6974, April 2008.

[6] Varga, A. The OMNeT++ Discrete Event Simulation System. In the
Proceedings of the European Simulation Multiconference (ESM2001.
June 6-9, 2001. Prague, Czech Republic).

[7] S.Costanzo, L.Galluccio, G.Morabito, and S.Palazzo. Software Defined
Wireless Networks: Unbridling SDNs. Proc. of EWSDN 2012. Darm-
stadt, Germany, October 2012.

[8] P. Calhoun, M. Montemurro, D. Stanley ”Control And Provisioning of
Wireless Access Points (CAPWAP) Protocol Specification”, RFC 5415,
March 2009.

[9] Nachikethas A. Jagadeesan, Bhaskar Krishnamachari, Software-Defined
Networking Paradigms in Wireless Networks: A Survey, ACM Com-
puting Surveys (CSUR), v.47 n.2, p.1-11, January 2015.

[10] M. Yang, Y. Li, D. Jin, L. Zeng, X. Wu, and A. V. Vasilakos. Software-
defined and virtualized future mobile and wireless networks: A survey.
CoRR, abs/1409.0079, 2014.

[11] S. Shahila, S. Fizza, M. Tahira. ”A Survey on Wireless Software Defined
Networks”, International Journal of Computer and Communication
System Engineering (IJCCSE), Vol. 2 (1), 155-159, 2015.

[12] C. Bernardos ”An architecture for software defined wireless network-
ing”, IEEE Wireless Commun. Mag., vol. 21, no. 3, p 52-61, 2014.

[13] Sama, M.R., Contreras, L.M., Kaippallimalil, J., Akiyoshi, I. et al.
”Software-defined control of the virtualized mobile packet core”, Com-
munications Magazine, IEEE. vol. 53, no. 2, p 107-115, 2015

[14] Bo Han, Gopalakrishnan, V., Lusheng Ji, Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations.,
Communications Magazine, IEEE. vol. 53, no. 2, p 90-97, 2015.

[15] Schulz-Zander, J. Suresh, L. Sarrar, N. Feldmann, A. Hhn, T. &
Merz, R. Programmatic Orchestration of WiFi Networks, in ’2014
USENIX Annual Technical Conference (USENIX ATC 14)’ , USENIX
Association, Philadelphia, PA, pp. 347-358, 2014.

[16] Fontes, R. R. and Sampaio, P. N. M. Visual Network Description:
A Customizable GUI for the Creation of Software Defined Network
Simulations. In: EUROSIS - The European Multidisciplinary Society
for Modelling and Simulation Technology. Lancaster, UK, pp 149-153,
2013.

[17] K.-K. Yap, T.-Y. Huang, M. Kobayashi, M. Chan, R. Sherwood, G.
Parulkar, and N. McKeown. Lossless Handover with n-casting between
WiFiWiMAX on OpenRoads. In ACM Mobicom (Demo), 2009.

[18] Brian D. Noble and M. Satyanarayanan and Giao T. Nguyen and Randy
H. Katz. ”Trace-Based Mobile Network Emulation.” In Proceedings of
ACM SIGCOMM 97, pp 51-61, September 1997.

[19] M. Henrique, B. Gabriel, V. Marcos, M. Daniel. ”Ethanol: Software
defined networking for 802.11 Wireless Networks.” Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on. Ot-
tawa, ON, Canada, pp 388-396, 2015.

[20] M. Imran, A. Said, and H. Hasbullah, ”A survey of simulators,
emulators and testbeds for wireless sensor networks”, in Information
Technology (ITSim), International Symposium in, vol. 2, pp 897-902,
June 2010.

[21] W. Shie-Yuan, C. Chih-Liang, and Y. Chun-Ming. EstiNet OpenFlow
network simulator and emulator. IEEE Communication Magazine, Vol.
51, Issue 9, 2013.

[22] J. Ahrenholz, Comparison of CORE Network Emulation Platforms,
Proceedings of IEEE Military Communications Conference Conference
2010 (MILCOM), pp 864-869, November 2010.

[23] Q. Alina, S. Damien, T. Thierry, D. Walid. ”Automating ns-3 Experi-
mentation in Multi-Host Scenarios.” Wireless and Mobile Computing,
Proceedings of the 2015 Workshop on ns-3, New York, NY, USA, 2015.

[24] C., Min-Cheng, C. Chien, H. Jun-Xian, T. Kuo, Y. Li-Hsing and T.
Chien-Chao. OpenNet: A simulator for software-defined wireless local
area network. In the Proceedings of Wireless Communications and
Networking Conference (WCNC), pp 3332-3336, Istanbul, 2014.

