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Abstract. Traditional multicasting techniques give senders and
receivers little control for who can receive or send to the group and
enable end hosts to attack the multicast infrastructure by creating large
amounts of group specific state. Bloom filter based multicast has been
proposed as a solution to scaling multicast to large number of groups.

In this paper, we study the security of multicast built on Bloom filter
based forwarding and propose a technique called BloomCasting, which
enables controlled multicast packet forwarding. Bloomcasting group man-
agement is handled at the source, which gives control over the receivers
to the source. Cryptographically computed edge-pair labels give receivers
control over from whom to receive. We evaluate a series of data plane
attack vectors based on exploiting the false positives in Bloom filters and
show that the security issues can be averted by (i) locally varying the
Bloom filter parameters, (ii) the use of keyed hash functions, and (iii) per
hop bit permutations on the Bloom filter carried in the packet header.

1 Introduction

Recently, a number of routing and forwarding proposals [25,16,32] are re-thinking
one of the most studied problems in computer networking – scalable multi-
cast [12,23]. The unifying theme of these proposals is to use Bloom filters in
packet headers for compact multicast source routing. This makes it possible for
the multicast architecture to scale to the billions, or even trillions, of groups
required, should the system need to support all one-to-many and many-to-many
communications, such as tele and video conferencing, chats, multiplayer online
games, and content distribution, etc.

While the Bloom filter is a space efficient data structure and amenable to
hardware implementations, it is also prone to false positives. With in-packet
Bloom filter based packet forwarding, a false positive results in a packet be-
ing erroneously multicasted to neighbors not part of the original delivery tree.
Consequently, false positives lead to reduced transport network efficiency due
to unnecessary packet duplications – a fair tradeoff given the potential benefits.
However, false positives have also security implications, especially for network
availability.
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Earlier work [26] has identified three forwarding anomalies (packet storms,
forwarding loops, and flow duplication) and two solutions that provide fault
tolerance for such anomalies, namely, varying the Bloom filter parameters and
performing hop-specific bit permutations. Our contribution is to analyze the
anomaly related problems and solutions from security perspective. It has also
been shown [13] that Bloom filters can act simultaneously as capabilities, if the
hash values used for the Bloom filter matching are cryptographically secure and
depend on the packet flow.

In this paper, we concentrate on the security issues of Bloom filter based mul-
ticast forwarding plane. We analyze service and network infrastructure availabil-
ity. The contributions of this paper are a characterization and evaluation of the
security problems and solutions related to Bloom filter based forwarding. Other
security issues for multicast, such as key management, policy, long term secrecy,
ephemeral secrecy, forward secrecy, and non-repudiation are out of scope for this
paper.

Additionally, we propose BloomCasting, a source specific multicasting tech-
nique that integrates the provided security solutions together. In BloomCasting,
group membership protocol is carried from the receiver to the source. This pushes
both the costs and the control of the multicast group management to the source.
The Bloom filter used to forward the traffic is gathered hop-by-hop along the
unicast path to the group source.

The rest of the paper is organized as follows. In Section 2, we review the prin-
cipal aspects of Bloom filter based forwarding and scope the problem of secure
multicast for the purposes of this paper. We present BloomCasting, a secure
source-specific multicasting technique in Section 3 and in Section 4, we describe
the security solutions in more detail. We evaluate our approach In Section 5,
review the related work in Section 6, and conclude the paper in Section 7.

2 Security Issues in Bloom Filter Based Multicast

As with unicast, securing multicast communications requires considerations in
two orthogonal planes: the data plane (protecting multicast data forwarding)
and the control plane (securing multicast routing protocol messages), although
the problems are more difficult because of the large number of entities involved.
While secure multicast data handling involves the security-related packet treat-
ments (e.g., encryption, group/source authentication and data integrity) along
the network paths between the sender and the receivers, control plane security
aspects involve multicast security policies and group key management i.e., secure
distribution and refreshment of keying material (see e.g. [22,11,23,18,24]). Ulti-
mately, control plane security must be handled individually by each multicast
routing protocol to provide authentication mechanisms that allow only trusted
routers and users to join multicast trees (e.g., PIM-SM [3]).

Our focus in this paper, however, is elsewhere – on the availability of the mul-
ticast infrastructure in an open and general source specific multicast model [9]. A
source specific multicast group is defined by the source and group address taken
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together. We assume that multicast groups can contain receivers anywhere in
the network. This means that hierarchical addressing [19] cannot be used to
scale up the system with sub-linear growth in routing table size in relation to
the number of groups. The number of potential source specific groups grows ex-
ponentially with the number of nodes in the network – compared to quadratic
growth in the number of potential unicast connections and logarithmic growth
in the size of routing table based on hierarchical addressing. State requirements
create a potential for denial-of-service (DoS) attacks as described in ‘stateless
connections’ [4].

Bloom filter based source routing has been proposed as a solution to scal-
ing multicast into large networks and number of groups [25,16,32,13]. Such an
approach places the state requirement at the source, instead of the routers alle-
viating the potential for DoS attacks against the network infrastructure.

2.1 Forwarding with in-Packet Bloom Filters

The Bloom filter [10] is a hash-based probabilistic data structure capable of
representing a set of elements S and answering set-membership questions of the
type “is x ∈ S?”. The insert operations consist of, given a bit array of size m,
for each element x in a set S of size n, k � m independent hash values are
computed H1(x), ..., Hk(x), where 1 ≤ Hi(x) ≤ m, ∀x and the corresponding bit
array locations are set to 1. Conversely, asking for the presence of an element
y in the approximate set represented by the Bloom filter involves applying the
same k hash functions and checking whether all bit positions are set to 1. In that
case, the Bloom filter returns a ‘true’, claiming that y is an element of S. The
Bloom filter always returns the right answer for each inserted elements, i.e., there
are no false negatives. However, due to hash collisions, there is some probability
p(m, n, k) for the Bloom filter returning a false positive response, claiming an
element being part of S even when it was not actually inserted.

In-packet Bloom filter based multicast [25,16,32,13] is based on the idea of
turning the forwarding operations into a set-membership problem. The basic idea
consists of encoding a multicast tree by inserting the appropriate link identifiers
into a Bloom filter carried in the packet header. Forwarding nodes along the path
process the packet and check whether neighboring link identifiers are present in
the Bloom filter. Then, a copy of the packet is forwarded along the matching
interface(s).

Inherited from Bloom filters, false positives cause packets to be unnecessarily
duplicated over some extra links. When a router receives a falsely forwarded
packet for which it does not find a matching forwarding directive, the packet
is simply discarded. Hence, Bloom filter forwarding guarantees packet delivery
to all intended destinations but introduces a degree of wasted resources due to
unnecessary packet duplications – a tradeoff worth to consider given the bene-
fits in terms of space efficiency (i.e., reduced state) and performance (i.e., fast
forwarding decisions).
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2.2 Threat Model and Existing Attacks

We restrict the scope of this paper to security issues of the Bloom filter based
forwarding plane of one-to-many multicast, also referred to as source-specific
multicast (SSM) architectures. We assume an attacker who may control large
number of hosts (e.g. botnet) that wishes either to disrupt the network infrastruc-
ture, or deny service to target host or network links. We also evaluate available
possibilities for controlled multicast, i.e. ensuring that only authorized senders
and receivers are capable of sending to and receiving from a particular multicast
group.

Our adversary model assumes malicious end hosts and benign routers. Conse-
quently, packet drop attack or blackhole attack fall out of the scope. This assump-
tion is coherent with the wired networking scenario under consideration where
trust among routers and the management plane is provided by e.g. pair-wise
shared secret techniques. Moreover, we assume an end-to-end security mech-
anism to provide payload confidentiality, authentication, and integrity (e.g., as
discussed in [15]). Attacks related to these security mechanisms are not discussed
further in this paper.

While false positives represent a well-known limitation of Bloom filters, the
security implications of (random) false positives in packet forwarding are far
reaching and less understood. Our main security goal is to guarantee forward-
ing service availability of Bloom filter based data planes under malicious at-
tacks. Hence, we seek for data plane mechanisms that ensure that only packets
from authorized users are forwarded, i.e., providing resistance to (potentially
distributed) DoS attacks .

DoS can be divided into attacks on infrastructure availability and (end) ser-
vice availability. These can be disrupted by bandwidth, state, or computation
consumption attacks (cf.[7]). Any unauthorized sending of multicast data can be
construed as a DoS attack. For instance, flooding attacks would cause an escalat-
ing of packets filling the network links to an extend that legitimate packets end
up discarded due to massive link congestion. Such denial of service may affect a
greater proportion of the network due to the “multiplier effect” of false-positive-
prone multicast packet distribution.

Chain Reaction Attacks. False positives can cause forwarding anomalies that
greatly increase the amount of network traffic. These include packet storms,
forwarding loops, and flow duplication [26]. We review these anomalies that an
attacker could do here. We highlight the fact that if Bloom filters are assigned
per multicast tree or per flow, the anomalies will affect every packet in a given
multicast tree or flow.

Packets storms are caused when, for sizable part of the network, the average
number of false positives per router exceeds one. Should this be the case, then
on average each false positive causes more than one additional false positive,
creating an explosive chain reaction. The average number of false positives is
ρk · (d − b − 1), where ρ is the fill factor of the Bloom filter, k is the number of
hash functions used, d is the number of neighbors, and b is the number of actual
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Fig. 1. (a) Forwarding loop and (b) flow duplication
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Fig. 2. (a) Flow duplication with Fibonacci number growth in the number of packet
copies and (b) exponential growth in the number of packet copies

branches in the multicast tree at that node. After the first false positive b = 0.
As an example, considering k = 5 and ρ = 0.5, a nodes with degree d > 32 would
produce more than one false positive per node.

Forwarding loop happens, if a set of false positives cause the packet to return
to a router it has already visited. The router will then forward the packet again
to all the nodes downstream of it, including the false positive links that caused
the packet to loop. As a result, not only will the packet loop, but every loop
causes a copy of the packet to be sent to the full sub-tree below the router. A
forwarding loop is shown in Figure 1.

Flow duplication is another possible anomaly as shown in Figure 2. Fig-
ures 2(b)-(c) show that even flow duplication can cause the number of packet to
grow – according to Fibonacci sequence and as the powers of two.

The above attacks can also be combined. If link identifiers are common knowl-
edge, the attacker can form a Bloom filter that corresponds to the Figure 2(c)
which also includes one or more links back to the first router, causing the packet
load to explode both in network and in all receiver hosts.

Target Path Attack. An attacker controlling a large number of hosts can try
to coordinate as many packet flows as possible to a single link or a particular
path. If link identifiers are common knowledge (1), then this is simple. Each host
just computes a forwarding tree that goes through chosen link. If however, the
link identifiers are secret and static (2), then the attacker has a few potential
attacks available: injection attack – where she tries Bloom filters that get traffic
forwarded along a certain delivery tree, correlation attack – where she attempts
to infer workable link identifiers from a collection of legitimate Bloom filters,
and replay attack – where a valid Bloom filter is misused to send unauthorized
traffic (i.e., with different content or flow identifiers). [13]
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Fig. 3. The left side shows multicast Join message using iBFs. The right side shows a
simplified Membership Table MT(S) that contains the Bloom filters for A, B, C, and
D. The separated bottom row shows how to combine the Bloom filters in to an iBF.

3 BloomCasting

BloomCasting is a secure source specific multicast technique, which transfers the
membership control and per group forwarding state from the multicast routers
to the source. Similar to [25,16,32], it uses in-packet Bloom filter (iBF) to encode
the forwarding tree. BloomCasting separates multicast group management and
multicast forwarding.

To join, a host sends a join request (BC JOIN) towards the source S. Inter-
mediate routers record forwarding information into the packet, thus when the
packet reaches S, it will contain a collecting iBF for the source-receiver path.
By combining together the iBFs for all the receivers, the source will have an
iBF encoding for the whole multicast tree. When a host does not wish to re-
ceive packets for the group anymore, it sends an authenticated leave message to
S. Upon processing this packet, the source will reconstruct the Bloom filter for
the group leaving out the recently pruned path. The operation is illustrated on
Figure 3.

Data packets are routed using the forwarding iBF placed in the BC FW header.
Each intermediate router takes its forwarding decision by querying it with the
question: which of my outgoing links are present in the iBF? It then forwards
the packet to the corresponding peers. Eventually, the packet reaches all the
receivers, following the sequence of routers the BC JOIN packets traversed, in
reverse order.

3.1 Group Membership Management

Group membership management includes the joining, leaving, and maintenance
of multicast groups, and this is the main task of the control plane. Along this
discussion, we show how multicast trees are encoded into iBFs.

Joining a Group: When a host joins a multicast group, it sends a (BC JOIN)
message towards the source. The packet contains the following information:
(S,G) specifying the multicast group and a collecting iBF. The latter is used for
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Algorithm 1. Adding edge-pair labels (E) and permuting collect and forward
iBFs at transit routers.

Collect iBF (C):

E ← ZK(S,G,Rp, Rc, Rn);
C ← C ∨ E;
C ← Permutec(C);

Forward iBF (F):

foreach outgoing link i do
F ← Permute−1

c (F);
E ← ZK(S,G,Rn, Rc, Rp);
if E ∧ F = E then

Send F → i;
end

end

collecting the forwarding information between the source and the receiver.
Finally, it also contains a hash chain anchor for future signaling security.

In each router, the next hop for the BC JOIN message towards S is found from
routing information base.1 As the message travels upstream towards the source,
each router records forwarding information into the packet by inserting the edge
pair label E into the collector iBF. After this, for loop prevention and increased
security, it performs a bit permutation on the collector iBF. Finally, it selects the
next hop usptream towards S. The operation is shown on Algorithm 1. Unlike
traditional IP multicast approaches, where the forwarding information is installed
in routers on the delivery tree, transit routers do not keep any group-specific state.

Once the BC JOIN message reaches the source, it contains sufficient informa-
tion so that the source can send source-routing style packets to the recently
joined host. The source stores this information in the Membership Table (MT),
as shown in Figure 3. The source can now send packets to the multicast tree by
combining iBFs for the group, by bitwise ORing them together.

Leaving a Group: When a receiver wishes to leave the group, it sends a
BC LEAVE towards S, including the next element from the hash chain it used
when joining the group. On-path routers forward the packet to S. As no fur-
ther processing is needed in intermediate routers, unlike pruning packets in IP
multicast, BC LEAVE packets always routed to the source.

S verifies the hash and removes (or de-activates) the entry in the Membership
Table. Single message hash authentication, vulnerable to man-in-the-middle at-
tacks, is sufficient, since the hash is only used to verify that the host wishes
to leave the group. As a final step, it recomputes the forwarding iBF of the
delivery tree. An example of a forwarding iBF is shown in Figure 3 at the
separated bottom row of the table.

1 Just like in standardized IP multicast protocols, this forwarding decision can be taken
according to the RIB created by BGP or according to the Multicast RIB created by
MBGP [8].
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Refreshing Membership State: The iBFs in the MT may become stale,
either because of changing the key to compute the edge-pair labels or due to
route failures. Keys are expected to change periodically (e.g., every few hours)
to increase security by excluding brute force attacks [13]. This means that the
iBF needs to be recomputed with a new BC JOIN packet. When making the
forwarding decision, during a transition period routers need to compute edge-
pair labels for both the old and the new key. If they find that an edge-pair label
computed with the old key is present in the iBF, they set a flag in the BC FW
header indicating that the receiver should send a BC JOIN again, as the iBF will
soon become invalid. When a packet is to be forwarded on a failed link, the
router sends an error message back to the source.

3.2 Multicast Forwarding

So far, we have discussed how hosts join and leave multicast groups. We now
show how data packets are forwarded between the source and the receiver.

As we saw previously, iBFs for each receiver border router are stored sepa-
rately in the Membership Table. We also saw the basic concept of deriving the
forwarding iBF from the MT information; now we extend that with new details.

For each group, the source stores one or more iBF for each next hop router
in its BloomCasting Forwarding Table (BFT).2 In practice, the capacity of a
packet-size iBF is limited in order to guarantee a certain false positive perfor-
mance (practical values suggest around 25 destinations in 800-bit iBFs [25]).
In case of large multicast groups, several iBFs are created, one for each partial
multicast tree, and duplicate packets are sent to each next hop.

The source creates one copy of the packet for each next hop for (S,G) in the
BFT. It creates a BC FW header, fills it with the corresponding iBF, and sends it
to the next hop router.

Each router makes a forwarding decision based on the iBF, as shown in Algo-
rithm 1. First, it applies the reverse permutation function to the iBF, replacing
the iBF with the result. Then, it checks for the presence of peer routers by com-
puting one edge-pair label for each potential next hop router Rn, based on the
previous and the current router on path Rp and Rc respectively,3 and on group
identity (S,G) found in the IP header as shown in Algorithm 1. In the final step,
the router checks whether the iBF contains the edge-pair label, by simple bitwise
AND and comparison operations.

The remaining problem is how to compute the dynamic edge-pair labels at core
routers at line speed. This can be done by taking the values (S, G, K, Rp, Rc, Rn)
and running them through a fast, spreading hash function (cf. e.g. [20,31]). The
spreading hash function yields the bit locations for the edge-pair labels. The
method can be applied locally at each router, having no impact on the protocol.

2 This improves forwarding performance, as the false positive probability increases
with the number of iBF inserted elements.

3 The router uses the same inputs as in the BC JOIN. hence the Rp and Rn switch
places due to direction change.
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Fig. 4. Protocol messages when joining group (S,G): 1 - IGMP Membership Report or
MLD Multicast Listener Report; 2,10 - PIM-SSM JOIN(S,G); 3-9 - BC JOIN(S,G)

3.3 Connecting Intra-domain Multicast with BloomCasting

BloomCasting can be used to specify the operations between source and receiver
ASes.4 This section discusses how multicast forwarding state is set up inside the
domains containing the sender and/or receivers using IP multicast (PIM-SSM
deployments) Figure 4 illustrates the protocol messages when a multicast receiver
joins a multicast group (S,G).

When a receiver joins (S,G), it signals (1) its interest in its LAN with IGMPv3
or MLDv2 protocols. The Designated Router then sends a PIM-SSM JOIN(S,G)
message upstream (2), by looking up the reverse path to S. The message is
propagated upstream until a router is found that holds forwarding state for the
group or until a border router of the domain is reached (standard PIM-SSM
operations). The border routers implement both PIM-SSM and BloomCasting.
PIM signaling now terminates. If the border router was not yet a receiver for
the group, it creates a BC JOIN packet and sends it towards S (3-9).

The iBF collection process is otherwise as described in Section 3.1 except each
AS is considered to be a singe logical router.

At the other end, the source AS border router receives a BC JOIN for a group
that resides in the local domain and processes it as specified in Section 3.1. If it
is not yet a receiver for the group locally, it sends a join packet using PIM-SSM
standardized operations (10). The JOIN(S,G) is propagated further upstream
towards the source, with standard PIM operations. Eventually, as far as PIM
concerned, a domain-local multicast tree will be built with routers representing
local receivers and border routers representing subscribers in remote domains.

The data packets are forwarded using the domain-local multicast protocol to
the border routers in the source AS. The border router creates a single copy for
each entry in the BFT, adds the BloomCasting header, and forwards the packets.
When an ingress border router receives packet with the BC FW header, it checks
whether it has domain-local receivers and forwards a decapsulated copy using
the domain-local multicast protocol. The router also checks whether neighboring
domains are included in the iBF and forwards the packet to those domains (using
e.g. IP-in-IP, GRE encapsulation, or MPLS paths or trees).

4 An AS is an autonomous system, a network participating in the inter-domain routing
protocol (BGP). The source and receiver could also be an area consisting multiple
ASes that deploys a shared multicast architecture.
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4 Security Techniques in Bloom Filter Based Forwarding

In Section 2, we introduced a threat model for in-packet Bloom filter based for-
warding by showing several attacks taking advantage of some forwarding anoma-
lies inherent to Bloom filter based forwarding. Now, we present techniques for
solving these forwarding anomalies; then, in Section 5, we evaluate them from
security perspective.

Basically, the solutions presented here include pre-processing verification of
Bloom filters, and some rules to be followed in the packet forwarding process
and during the Bloom filter creation phase.
Limiting the fill factor (ρmax) ensures that the attacker cannot set, e.g., all
bits in the Bloom filter to 1, which would equal to every link in the network
being included. Before any packet handling operation, routers need to verify the
Bloom filter [30], i.e. they need to check for ρmax compliance before attempting
to forward the packet. Typically, ρmax is set to ≈ 0.5, which corresponds to the
most efficient usage in terms of bits per element per false positive rate.
Cryptographic Bloom filters: Bloom filters for forwarding can be differentiated
based on the nature of the link identifiers: (1) link identifiers are common knowl-
edge [25], (2) link identifiers are secret, but static [16], and (3) link identifiers
are secret per flow and change periodically with key are computed per incom-
ing/outgoing edge pair instead of per link [13].

Bloom filters gain capabilities [2], when the edge pair label is computed using
cryptographically secure hash functions, secret key, and flow information from
the packet (e.g., IP 5-tuple, (S, G)). Each link identifier of size m and with
k bits set to one (i.e., a one element Bloom filter) can be computed as the
output of a function zF (In, Out, K(ti), I, p). The resulting identifiers become
dynamic and bound to the In and Out interfaces of each hop i, the time period
of a secret key K(ti), and additionally dependent of packet information like the
Flow ID I (e.g., source and group addresses) and an optimization parameter p
(cf.Z-formation [13]).
Varying the number of hash bits (kvar): This technique deals with the number of
ones (k) in the link identifiers set by different routers, and aims to decrease the
false positive rate. Assuming that there is a fixed maximum fill factor ρ for iBF,
e.g. ρ = 0.5+ε, the average number of false positive in a given router depends on
its degree d, the number of hash functions k it uses, and the number of outgoing
branches b such that the average number of false positives is ρk ·(d−b−1). Hence,
we proposed [26] that each router sets k locally such that ρk ·d < α, where α < 1
sets the routers preference for the average false positive rate. As routers compute
the hash functions for the collecting iBF themselves, the number k is purely a
local matter. In other words, the number of bits k set to 1 in the link identifiers
is not a global parameter, but can be defined per node.
Permutations Pi(iBF ): We use per hop bit permutations to prevent loops and
flow duplications. A bit permutation is a (pseudo) random rearrangement of the
bit array. Each router can use the same bit permutation for all iBFs passing
through it making it easy to implement with programmable logic.



BloomCasting: Security in Bloom Filter Based Multicast 11

First, after passing through the intended path to a router R, the f orwarding
iBF has to match the k hash values that the router added when the collecting
iBF was forwarded through it. When the iBF is collected, the routers between
R and source S change some bits from 0 to 1 and permute the packet. S then
combines a set of collecting iBFs in to a forwarding iBF and the routers between
S and R (including R) perform reverse permutations on the iBF. Hence, once the
packet arrives in R, the bits that R set to 1 will be in exactly the same positions
as they were when the iBF was collected. Since no operation changes a value of
a bit from 1 to 0, the matching process works correctly.

Second, if the path taken is different from the one intended for the packet,
the iBF should not match the k hash values. Per hop bit permutations enable
the iBF itself to carry a “memory” of the path it has traversed [26]. As each
router modifies the iBF when forwarding the packet, after passing through two
different edges and entering back the initial node, i.e. after a loop, the iBF is
changed with a random bit permutation. Hence, it will likely not match the same
edge-pair labels again. Each router permutes Pi(iBF ) when the iBF is initially
collected and then reverse permutes Pi(iBF )−1 the iBF when a packet is sent
using the iBF.

5 Security Evaluation

We now analyze how BloomCasting mitigates the security threats (described
in Section 2) against Bloom filter based multicast forwarding. As mentioned in
Section 2.2, we focus on malicious host-initiated attacks. Further architectural
considerations w.r.t scalability, bandwidth efficiency, state requirements, control
overhead, etc. are out of scope of this evaluation and left for future work.

Table 1 presents an overview of the mapping between the available techniques
(Section 4) and the attacks addressed. As can be seen, BloomCasting combines
four techniques to prevent the six security threats described in Section 2.2.

Packet storms are prevented with the combination of limiting the maximum
fill factor ρmax and the varying kvar technique. Globally enforced ρmax values
enable each router to compute kvar locally so that every Bloom filter with a
valid fill factor produces, on average, less than 1 false positives. Since the Bloom
filters are collected on path with the BC JOIN packet, it is easy to set kvar locally.
Additionally, this optimization of k reduces the actual false positive rate [26].

Loops are a serious threat to any network infrastructure. The combination
of maximum fill factor ρ and z-Formation makes it difficult for an attacker to
construct looping Bloom filters. The first removes the easy attack of just adding
bits into the Bloom until every link matches and the z-Formation ensures that
guessing the right Bloom filter is difficult (see [13] for details).

To prevent accidental loops, each router performs a bit permutation on the
Bloom filter before performing the outport matching – when using the Bloom
filter for forwarding (and after matching – when collecting a Bloom filter). If a
packet does go through a loop, either because of a false positive or a malicious
source, the Bloom filter has been modified with a random permutation (a product
of the permutations performed by the set of routers participating in the loop).
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Table 1. Mapping of solutions to attacks

Attack - Technique ρmax kvar z-F P (iBF )

Packet storms + +

Loops + + +

Flow duplication + + +

Injection + +

Correlation + +

Replay +

Using permutations ensures a high probability that the packet will not con-
tinue looping and that it will not be forwarded to the downstream tree for a
second, or nth time. As an example, the chances of an infinite loop in a three
node loop configuration with ρ = 0.5, k = 6, and m = 256 are in the order of
O(10−12). The chances that a packet will be forwarded through the subtree once
are ρκ, where κ =

∑
ki is the sum of all hash functions used in the subtree.

Finally, while the security is not dependent on the secrecy of the permutations
performed in each router, it is dependent on the secrecy of the edge-pair labels.
Consider a known permutation attack, in which an attacker knows the network
topology and the permutations used by a set of routers. It can now compute
the cycle sets of the combined permutation and choose a combination that has
approximately the size of the maximum fill factor. However, it does not know
a combination of a Bloom filter and source and group address that will ensure
that the routers on path and in the loop will have edge-pair labels that match
the Bloom filter. The best it can do is vary the group address. In this case, the
probability of success is ρκ, where κ is the total number of bits that need to be
set on path to the point of loop and in the loop.

Flow duplication: Similarly to loops, flow duplication can be effectively pre-
vented with the combination of restricting fill factor ρ, edge-pair labels, and per
hop bit permutations. The result gives an attacker ρκ probability of creating a
specific subtree by accident.

Packet injection attacks, correlation attacks, and replay attacks can be effi-
ciently prevented using the z-Formation technique [13]. It uses cryptographically
secure edge-pair labels that are computed based on the flow, and time, and path.
This makes it impossible to share iBFs from different points of network, at dif-
ferent time instants, or to different destinations.

Consequently, the best strategy for a successful packet injection attack is re-
duced to a brute force attack consisting of generating random labels and hoping
that at least one of them reaches the target(s). An attacker needs malformed
iBFs to cause h consecutive false positives to get packets forwarded through a
valid iBF path of length h. The chances of success in one attempt can be ap-
proximated to p = ρmax

h·k, which is very low for typical configurations (e.g.,
p = 2−36 for h = 4, k = 8, ρ = 0.5, i.e., over 1010 attempts are required for
a 1/2 probability successful attack). Such brute force attacks can be easily de-
tected, rate limited and pushed back, for instance after the false positive rate
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from a given source exceeds some threshold. Additionally, a forged iBF would
work through the target path attack as long as the distributed secret K(t) is not
renewed.
Source and receiver control: As the group management in BloomCasting is end-
to-end, it gives source control over the receivers it accepts. If it wishes to, it
can require receiver authentication before adding a receiver into the group. Sim-
ilarly, multicasting to a receiver requires knowing the iBF that forms the path
between source and destination. Since the iBF is cryptographically bound to
(S,G), each router’s secret key, and the path (via permutations and edge-pair
labels), guessing an iBF for a path is difficult, as shown above.

Resource consumption attacks against the memory and processing capacity of
routers do not become easier than they are in unicast forwarding. The routers
do not need to maintain multicast state and the iBF collection and forwarding
processing can be done in line speed in hardware and in parallel for each peer.
The multicast source needs to maintain state for receivers. This is a needed fea-
ture, since this makes it possible source control over who can and who cannot
join the multicast group. Simultaneously, it leaves the source vulnerable to at-
tacker who creates a storm of multicast join packets. A source can use a receiver
authentication protocol, which pushes the authentication protocol state to the
initiator (e.g., the base exchange of Host Identity Protocol [21] could be used for
that purpose) to limit the state requirements to authenticated receivers.

False positive forwarded packets may compromise the ephemeral secrecy of
the multicast data to non group-members, i.e., some packets may reach unin-
tended destinations. The time- and bit-varying iBFs contribute to spreading false
multicasted packets across different links over time, preventing thus a complete
reception of a multicast packet flow.5

Anonymity of source is not an option in source specific, since the group is
identified with combination (S,G) where S is the sender address and G the group
address. However, even though the protocol uses source routing, the actual paths,
or nodes on path are not revealed to the source and the source can only use the
related iBFs in combination with traffic destined to (S,G).

Receivers do not need to reveal their identifies or addresses to the network,
or the source – the receiver (IP) address is not necessary in the protocol. The
authentication, should the source require it, can be done end-to-end without
revealing the identities to the intermediate routers. As the keys used to compute
iBFs are changed periodically, correlation attacks between two or more Bloom
filters used at different times become impossible. Similarly, since the edge-pair
labels are tied to group identifier (S,G), an attacker cannot use a set of iBFs
with different group addresses to determine whether the set contains one or
more common receivers. These techniques effectively prevent traffic analysis and
related vulnerabilities such as clogging attacks (cf. [5]).

5 As assumed in Section 2, data authenticity is kept out of scope of the iBF forwarding
service and can be provided by orthogonal security policies and group key manage-
ment techniques (e.g., following the guidelines of [15]).
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6 Related Work

Compared with unicast, multicast communication is at a substantially increased
risk from specific security threats due to the lack of effective group access control
and larger opportunities for link attacks. Over the last decade, much effort has
been put in the field of multicast security, see e.g. [6,18,11,15,27].

At the IETF, earlier work has provided a taxonomy of multicast security issues
[11] and a framework for secure IP multicast solutions [14] to address the three
broad core problem areas identified: (i) fast and efficient source authentication
(e.g. [6,17]), (ii) secure and scalable group key management techniques, and (iii)
methods to express and implement multicast-specific security policies. Our focus,
however, has been on DoS attacks against the network infrastructure.

Service availability attacks due to routing loops and blackholes were discussed
in [28]. The proposed solution was the keyed HIP (KHIP) protocol to allow
only trusted routers joining the multicast tree. Our aim is a general and open
SSM architecture that does not require group access restrictions provided by the
infrastructure.

Free Riding Multicast [25] proposes an open any source multicast service in
which each link is encoded as a set of hashes from the AS number pair. This leaves
the forwarding plane open to a variety of attacks. Odar [29] showed that Bloom
filters can be used for anonymous routing in adhoc networks. Limiting fill factor
as a security feature in Bloom filter based (unicast) capabilities was first proposed
in [30]. LIPSIN [16] uses Bloom filter forwarding plane for publish/subscribe
architecture with a separate topology management system that helps to keep
the link identifiers secret. However, an attacker can still use target path attacks.
Z-formation [13] prevents target path attacks by using edge-pair labels that
depend on flow identifier, but is still open to e.g. chain reaction attacks.

Si3 [1] proposed a secure overlay to solve problems related to secure multicast.
While distributed hash tables spread load efficiently across the system, they lack
e.g. policy compliant paths and control over who is responsible for particular
connection.

7 Conclusions

In this paper, we evaluated the security of Bloom filter based forwarding. False
positives inherent to Bloom filters enable a host of attacks on target service and
network infrastructure availability. These attacks include chain reaction attacks,
which use the Bloom filter properties (e.g. false positives) to ensure that the
network forwarding infrastructure multiplies every packet sent using the Bloom
filter and targeted attacks in which the attacker enables many nodes to target
the same path in the network.

We show that these problems can be solved by the combination of limiting
Bloom filter fill factor, both minimum and maximum, using cryptographically
computed edge-pair labels in the Bloom filters, varying the number of hash
functions locally based on the router degree, and using per hop bit permutations
on the Bloom filter.
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We also proposed BloomCasting, a secure source-specific multicasting tech-
nique based on in-packet Bloom filters. The technique is based on end-to-end
signaling of group membership and hop-by-hop collection of the needed Bloom
filters. As future work, we intend to study the possibility of collecting multiple
paths in advance as a technique for increasing fault tolerance to route failures.
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