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Abstract—Deep programmability of dataplane pipelines is one
of the tenets of the evolving Software Defined Networking
(SDN) paradigm. Despite recent efforts on high performance
programmable devices, achieving fully programmability (protocol
independent) of heterogeneous dataplane implementations still
pose numerous challenges. The P4 language is emerging as
a strong candidate top-down approach to describe a protocol
independent datapath pipeline, agnostic to network platforms.
Meanwhile, the OpenDataPlane (ODP) project follows an open-
source, bottom-up approach seeking multi-architecture APIs to
write platform independent dataplane applications. In this paper,
we present Multi-Architecture Compiler System for Abstract
Dataplanes (MACSAD) as an approach to converge P4 and ODP
through a common compilation process delivering portability
of dataplane applications without compromising target perfor-
mance improvements. We validate our prototype implementation
through experimental evaluation of L2 and L3 dataplane applica-
tions on different target platforms (x86, x86+DPDK, ARM-SoC).

I. INTRODUCTION

Traditional networking dataplanes are built around fixed
packet processing pipelines yielding efficient designs in lieu
of reconfigurability and flexibility. Support for new protocols
commonly materializes through multi-year development cy-
cles, often requiring new chip designs. This approach has at
least two major drawbacks. Firstly, it is difficult for hardware
manufacturer to fall back in case when a new protocol is
not adopted. Secondly, researchers lack a common platform
to design, develop, and test new algorithms and protocols to
realistically evaluate innovative networking ideas.

Software Defined Networking (SDN) [1] changes the rigid
layered dataplane pipeline design approach in support of
flexible (match + action) abstractions for packet forwarding en-
gines. This datapath generalization pushes the industry towards
modern programmable chips based on relaxed table definition
where size, number and functionality of tables become pro-
grammable. Early SDN protocols like OpenFlow were front-
runners in capitulating the match plus action abstraction for
device programmability but suffer from practical limitations
due to the programmable knobs being largely dictated by the
fixed functionality of the device pipelines (e.g. ASICs). As
usual in embedded system designs, an increase in programma-
bility through higher level of abstraction (i.e. generality) for
chip (re)configuration adds complexity and overheads to the
system design resulting in performance trade-offs.

In theory, any programmable datapath can be defined by
configuring the underlying tables in a specific way. Protocol
Independent Switch Architecture (PISA) [2] is one such chip
design approach that allows custom definition of the supported
network protocols through programmable parsing and pipeline
control. Approaching the challenge top-down through a Do-
main Specific Language (DSL) like Programming Protocol-
Independent Packet Processors (P4) [3] based on high-level
abstractions allow target-agnostic dataplane programmability.
However, the backend compilation process is still less under-
stood, and, as currently pursued, pushes the complexity down
the stack to be solved on a per-target basis.

OpenDataPlane (ODP) [4] is a recent industry effort to pro-
vide an abstract API specification for dataplane applications.
The APIs are vendor and platform neutral and span common
features across different targets, enabling developers to write
portable dataplane code.

By bringing P4 and ODP together, we can define and
program dataplanes across multiple targets through a common
compiler system that brings uniform development efforts for
every platform. To this end, we propose MACSAD1 [5] and
allow developers to program P4-defined dataplanes seamlessly
across multiple targets (i.e., dataplane applications “on the
move”). In MACSAD, P4 is translated into high-level ODP
APIs to deliver platform abstraction without compromising
performance and hardware-acceleration options. The main
contributions from this paper are the following:

• We present the MACSAD multi-architecture compiler
system as a highly modular design capable of supporting
new DSL and network platforms, among other features.

• We design a source to source compiler module to generate
an Intermediate Representation (IR) for P4 applications.

• We implement a prototype and validate the portability of
two P4 use case applications by automatically generating
the datapath code i.e. “Datapath Logic” for heterogeneous
targets (x86, x86+DPDK, ARM-SoC).

• We evaluate the performance of the different dataplane
instances and applications in a 10G setup.

This paper introduces background technologies and related
work in Section II followed by a detailed explanation of
MACSAD architecture in Section III. Section IV presents the

1It is pronounced as ‘Maksad’ which means purpose or motive in Hindi. It
is also simply referred as “MAC”.978-1-5090-2839-9/17/$31.00 c© 2017 IEEE



experimental use cases and evaluates the obtained results in
terms of portability and performance. Limitations and future
work are discussed in Section V prior to the conclusions and
final remarks in Section VI.

II. BACKGROUND AND RELATED WORK

A. Protocol Independent Switch Architecture

Bottom-up from the datapath perspective, PISA [2] chips
are becoming a prominent programmable hardware approach.
PISA architecture for chip design advocates that a pro-
grammable datapath can be defined by configuring the under-
lying tables, and, in turn, supporting (re)configuration of data-
path/chip at a far later stage unlike during the fabrication phase
as is the case of traditional networking ASICs while keeping
the datapath simple and not compromising performance.

Fig. 1. PISA Architecture. Source: [2]

B. Programming Protocol-Independent Packet Processors

P4 is a declarative language which makes use of high-
level network abstractions to allow dataplane programmability
agnostic to the hardware target. By defining abstractions
such as header, table, action, etc., P4 reduces the complexity
of Dataplane Application (DAPP) programming turning the
code base easier to write, understand, maintain, and debug.
The abstract forwarding model shown in Fig. 2 illustrate
how P4 allows to express a packet processing pipeline by
programming the parser, match+action tables, and deparser
functional blocks. When a packet arrives, the headers are
parsed and then passed through the multi-table match and
action pipeline before the deparser writes the headers back and
sends the packet out. All these activities are defined inside the
ingress and egress control flows defined by P4. Being protocol
independent, it allows to define custom headers expressing
arbitrary network protocol headers and fields. Table lookup
methods over arbitrary fields can be defined along the actions
to be applied upon a match.

C. Open Data Plane

The ODP [4] project aims at providing an abstract API
specification to support Linux based network applications.
ODP defines a set of high-level, common APIs spanning
common features across multiple targets (see Table I) making
dataplane applications portable. ODP can be compared to
OpenGL as being the common standard for programming
networking devices instead of video graphics. It can be consid-
ered as a higher abstraction than Data Plane Development Kit
(DPDK) [7] and Netmap [8] extending to highly-optimized
vendor-specific Software Development Kits (SDKs) while
abstracting the hardware acceleration features (e.g., Crypto)

Fig. 2. P4 Abstract Forwarding Model. Source: Adapted from [6]

Fig. 3. ODP software stack in a Linux-based target. Source: [4]

of the underlying hardware. ODP can still use user-space
fast packet processing I/O frameworks provided by DPDK
and Netmap for improved performance. ODP thrives on the
balance of SDKs to be open sourced vs left up to the
semiconductor vendor. Figure 3 shows the scope of ODP in
a switch platform complementing the vendor specific SDKs
by providing common Application Programming Interfaces
(APIs) turning ODP portable across platforms.

D. Related Work

Table II summarizes the main related projects around pro-
grammable switches. RouteBricks [9], GSwitch and Cuck-
ooSwitch [10] are some of the switches designed uniquely
to provide higher performance using GPUs or different hash-
ing methods (e.g. Cuckoo Hash) but lack a DSL approach.
Microsoft’s SONiC2 is an open switch OS which supports
various switch platforms by means of Switch Abstraction
Interface (SAI) APIs but without a proper DSL. In contrast,
OpenSwitch (OPENSWITCH)3 and Netronome Network Flow
Processor (NFP)4 already offer platform-limited P4 support.

The PISCES [6] software switch is based on OpenvSwitch
(OVS) [11] and allows the packet processing pipeline to be
defined in P4. However, due to OVS pipeline constructs, there
are restrictions around P4 and the dataplane reconfigurability.

Laki et al. [12] present a P4-based solution based on
a Hardware Abstraction Layer (HAL) incorporating P4 to
DPDK mapping. MACSAD follows a similar approach and

2https://azure.github.io/SONiC/
3http://www.openswitch.net
4http://open-nfp.org

TABLE I
ODP SUPPORTED PLATFORMS

Company Supported Platforms

Cavium ThunderX 24-48 core ARMv8
OCTEON TX 1-24 core ARMv8

Kalray MPPA
Freescale QorIQ ARM & PowerPC

Texas Instruments Keystone2 Cortex A15
Linaro PCIe NIC (odp-dpdk)



TABLE II
SCOPE, APPROACH, AND FEATURE COMPARISON LIST OF DIFFERENT PROGRAMMABLE SWITCH PROJECTS

Project Protocol
Independent

Development
Effort

DSL
Support Target Remarks

Click Yes Medium No General-Purpose Processor/ Server Mostly used for research.
OVS Limited High No Software Switch Can run as a part of Linux kernel.
Switchblade No High No FPGA Verilog frontend
Cuckoo switch Low High No General-Purpose Processor/ Server Cuckoo hashing used for FIB lookup
Routeshader No High No General-Purpose Processor/ Server GPU-assisted packet processing. Good for IPSEC.
Routebricks No High No General-Purpose Processor/ Server Use multiple CPU for packet processing.
Pisces Yes Low Limited Software Switch OVS Based
P4 Switch* Yes Low Yes Limited by DPDK** *http://p4.elte.hu **Optimized for Intel.
MacS Yes Low Yes Multi-Target Currently X86 & ARMv8 support available.

uses the IR auto-generation methods as the starting point for
“Transpiler”. Our efforts fundamentally differ on the strong
dependency on DPDK and the limited portability of DAPPS
beyond general purpose processors, a strong feature of our
ODP approach towards seamless portability.

III. MACSAD
The Multi-Architecture Compiler System for Abstract Data-

planes (MACSAD) is envisioned to achieve seamless portable
DAPPS written in DSL (P4 being our starting focus) across
network platforms while transparently leveraging hardware ac-
celeration capabilities. While P4 gives means to the dataplane
functionality, it is not responsible for the compiler system
underneath. Manufacturers are compelled to add P4 support
over their target-specific compilers. To achieve our primary
goal of DAPP portability, there is a need for a common com-
piler system which understands different network platforms
and allows to generate optimal code across targets. To this
end, we propose to blend P4 and ODP by complementing
their capabilities for a cross-platform compiler system.

The following design objectives are guiding our efforts on
MACSAD development.

1) Fast and easy development environment of dataplane
applications.

2) Dynamic & flexible pipeline by compiling a protocol
independent DSL onto a hardware.

3) Bringing DAPP to different network platforms by adopt-
ing a common hardware abstraction layer without com-
promising with performance.

A. High-level Architecture
By mapping P4 network abstracts onto ODP APIs, which

are high-level enough to allow platform abstraction without
imposing strict models and overheads, we overcome the
hazards of developing and maintaining target-specific com-
piler systems while maintaining performance and hardware-
acceleration opportunities. To support different targets op-
timally, MACSAD(4a) architecture is designed around the
following three modules:
Auxiliary Frontend: A plug-in framework to support different
frontend DSLS, P4 being the initial choice focus.
Auxiliary Backend: Binds target-specific SDKs in order to
support different platforms with ODP being the premier choice
because of its openness and cross-platform nature.

TABLE III
PACKET PROCESSING FUNCTIONS

Target Independent Target Dependent
Primitive
Actions(P4)

Add header, copy header,
generate digest, modify field Push, pop, count, meter

Pipeline
Actions

Table Configuration, Protocol
Independent Header Parsing

Pkt Rx/Tx, Header Parsing
Modify Header Field,

Table Creation, Table Lookup

Core Compiler: Composed of a Transpiler and a Compiler
submodule, transforms the IR generated by the frontend into
the target imaged in association with the auxiliary backend.

B. Separation of Concerns

P4 provides a list of primitive actions for handling network
packets which are necessary to be mapped to ODP APIs in
an effort for blending P4 with ODP. Apart from P4 actions,
several other functions are necessary to manage packets in
the data pipeline of a forwarding plane which need to be
implemented in accordance with ODP APIs in MACSAD. To
achieve portability and near optimal performance, we divide
these functions into Target Dependent & Target Independent
categories. Target Dependent functions can provide better
performance when implemented optimally for a specific target,
e.g., on a Linux system socket-mmap, dpdk & netmap are
different options for packet I/O with varying performance.
Table III shows a list of specific functions divided into these
two groups. This division is not straight forward and requires
careful considerations regarding different targets and use cases.

C. Auxiliary Frontend

The Auxiliary Frontend is designed as a plug-in framework
allowing to add support for various DSL, with P4 leading
the main developments. Accepting P4 program as an input,
the Auxiliary Frontend creates an IR suitable for the ’Core
Compiler’ module complementing the official P4 frontend,
i.e. p4-hlir project by P4 organization5 which translates
P4 programs into High-Level Intermediate Representation
(HLIR). The top rectangle in Fig. 4b shows the generation
of IR from DSL.

5www.p4.org



(a) Architecture & Use Case Workflow (b) 3-Tier Compilation Process

Fig. 4. MACSAD Architecture

D. Core Compiler
The Core Compiler is the heart of MACSAD and comprises

the Transpiler and Compiler sub-modules. It takes the IR
generated by Auxiliary Frontend as an input and compiles
it to MACSAD Switch (MACS)6 for the target in association
with the Auxiliary Backend.

1) Transpiler: Is a source-to-source compiler that takes
input from the Auxilary Frontend and auto-generates the
Datapath Logic codes in the final step of compilation process.
The Datapath Logic is defined in ’C’ language which is
the 2nd level of IR of MACSAD. Datapath Logic is the
formal definition of the pipeline in ’C’ needed by ’Compiler’
submodule. The middle rectangle in Fig. 4b demonstrates the
auto-generation of 2nd level IR from HLIR using a template.
The features of the Transpiler can be summarized as follows:

1) Responsible for transforming the loosely-typed DSL to
a strongly-typed declaration while intelligently deciding
on the data types depending on the underlying platform.

2) Creates a dependency graph of parser logic, tables and
control flow enabling some code optimization like ’Dead
Code Elimination’ by identifying reachability in graph.

3) Decides the type of look-up mechanism to be used, and
size & type of tables to be created by considering the
resources available on the target platform.

2) Compiler: Generates the MACS for the target platform
with ODP APIs and Datapath Logic IR code as input. It
brings the regular array of optimization tools supported by the
underlying compiler benefiting the consumer. We provide the
support of GNU Compiler Collection (GCC) and Low Level
Virtual Machine (LLVM) based compiler bringing a huge list
of target support and optimization tools. Compiler sub-module
also plays a big role in providing portability and improving
performance as explained in Section IV.

E. Auxiliary Backend
Emerging programmable network platforms are breaking the

fixed path ASIC paradigm, but are restricted by the lack of a

6The MACSAD compiled image is referred to as MACS.

unified compiler system. MACSAD fills this gap with the
Auxiliary Backend module providing a common SDK for the
Compiler incorporating the ODP APIs [4]. Newer platforms
can be supported by implementing the ODP APIs over the
new platform as ODP provides only the API specifications.
Necessary libraries are developed as part of Auxiliary Backend
to bridge the differences between P4 and ODP abstractions,
and to support packet processing in dataplane pipeline. Target
Dependent APIs can be implemented using the Target SDKs
internally to leverage the hardware acceleration and other opti-
mization features. This allows a developer to write applications
using hardware acceleration features (such as Crypto) while
being unaware of the nuances of the platform and its SDKs.
The libraries of Auxiliary Backend span across packet I/O,
resource handling, external controller support etc. This module
also provides a placeholder for API auto-generation supporting
various control protocols like SAI7, OpenFlow (OF) [13], etc.

F. Portability

Portability of DAPP is a desired requirement being dis-
cussed for long time but so far unrealistically achievable in the
wild. Attaining Portability is limited at least by two factors:

1) Lack of consent over a common programming language
and SDK to configure different network platforms.

2) Absence of a common multi-architecture compiler sys-
tem supporting different platforms.

P4 being an open adopter of PISA (but not limited to)
advocates defining new protocols and datapath with higher
network programming abstractions and achieves language and
architecture separation. Hence the choice of P4 as the main
programming language for our use cases. MACSAD is our
answer to the second issue of absence of a common com-
piler system supporting a wide range of switching platforms.
DAPPS written on P4 will be portable across platforms while
exploiting hardware acceleration features.

Portability of DAPP can be achieved for almost every DAPP
with different levels of effort needed to port at a certain

7https://github.com/opencomputeproject/SAI
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Fig. 5. MACS measures throughput for different packet sizes and datapath use case applications.

amount of cost in terms of performance due to the port. With
MACSAD, DAPPS should be portable seamlessly or with
minimal effort and minimal impact over performance. This
source portability is achieved by leveraging ODP APIs in the
Transpiler and Auxiliary Backend modules.

IV. EXPERIMENTAL EVALUATION

In order to validate our MACSAD prototype implementation
and the portability and performance claims, we carry two
use cases experiments over different target platforms (x86,
x86+DPDK, ARM-SoC) with just a recompile of source.

A. Testbed

The two use cases are evaluated using a two-device topology
[14] where MACSAD compiled datapath DUT is connected
to the Network Function Performance Analyzer (NFPA) [15]
(aka. Tester) via two 10G links, from the sending port of the
Tester to the receiving port of the DUT, and from the DUT
sending port back to the Tester.

The DUT and Tester have a similar configuration (Intel(R)
Xeon(R) CPU E5-2620 v2, 6 Cores, Hyper Threading Dis-
abled, running at 2.1GHz, 8*8GB DDR3). Both the devices
have a 1 Gbps management interface and a dual 10Gbps
NIC (Ethernet Controller 10-Gigabit X540-AT2). To generate
test traffic, the NFPA test system internally uses PktGen [16]
tool with DPDK whereas MACS is tested with socket-mmap,
Netmap and DPDK packet I/O to illustrate the ability to
accommodate various different platform features.

B. Use Case Applications

1) L2-FWD: A Layer-2 forwarding switch program in P4
where an external controller performs MAC learning and
populates the L2 tables. MACSAD creates the MACS which
learns new MAC address and corresponding port bindings by
generating and sending a digest to the controller which in
turn updates the corresponding source and destination MAC
address lookup tables. The P4 “Exact Lookup” method is
implemented with a Cuckoo Hash algorithm.

2) L3-FWD: Layer-3 routing with Longest Prefix Match
(LPM) based on IP address lookup mechanism. MACS does
a destination IP address lookup for the incoming traffic and
forwards them to the proper destination, updating the TTL and
the source and destination MAC addresses.

C. Performance Analysis

Figures 5a and 5b present the measured throughput (Mbps)
for different packet sizes. We can observe that Linux Socket-
mmap performed 4 to 5 times slower compared to Netmap
and DPDK, which reached 10G line speed with packet sizes
of 512 Bytes and above. We can observe that the performance
behavior for both use cases are similar and can be explained
by the effectiveness of the system memory caches under a
simple workload (single host destination).

Modern NICs support multiple hardware queues to avoid
resource contention. Multi-core programming benefits this by
defining affinity among CPU cores to queues to improve
performance by reducing average CPU stall time. In our
configuration of n NICs, each core is mapped to 1 Rx and
(n − 1) Tx queues. Hence a core can receive from only one
NIC it is mapped to and it can transmit to every other NIC.

In order to understand the current system limits around
smaller packets where line rate is not achieved, we measure
the forwarding rate of 256-Byte packets with an increasing
number of cores (see Fig. 6). In our setup, we observe a
performance peak (≈ 30%) when the number of physical cores
are around the number of NICs. Increasing the number of cores
leads to higher cache invalidation and forced main memory
accesses. Higher Rx queue counts often result in empty queue
or fewer packets than burst size while polling which makes
thread context switching costlier than amortization of packet
processing cost. Also with an increase in Tx, queue counts NIC
controller requires better packet scheduling to transmit. These
factors contribute to explanation of the performance decrease
with more cores, a design objective we will further work on.
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D. Discussion and lessons learned

The first noteworthy remark on the obtained results is that
ODP does not provide any inherent table management/lookup
mechanism, contrary to DPDK which has various fully opti-
mized table management libraries. Hence the experiments are
carried with arguably suboptimal user-space table implementa-
tion, which may have an impact on the observed performance.
Furthermore, the current DPDK packet I/O implementation
in ODP does a packet copy between ODP buffer and DPDK
hitting the attainable throughput.8

We now discuss a number of methods contributing to
performance. To begin with, the adoption of inline functions
in the auto-generated datapath logic code has a positive impact
on the datapath speed. As forwarding datapath consists of a set
of functions invoked for every packet, inlining these functions
brings notable performance gains. Secondly, we opt to transmit
packets in batches at outgoing interfaces. Initially, each packet
was handled to completion before processing the next packet
incurring into expensive memory-mapped I/O (MMIO). By
batching packets and sending them out periodically (or when
a vector threshold is reached, e.g., batch size equals 32)
introduces further performance improvement by amortizing the
cost of transmitting a single packet.

V. LIMITATIONS AND FUTURE WORK

As today, MACSAD supports DAPPS written in the current
stable P4 version –a partial set of P4 abstractions are supported
and more are being added continuously, mainly driven by
selected use cases. The next P4 version (P416) is around the
corner with a publicly released draft. P416 brings language-
architecture separation and should be able to program not
only switches but also firewalls, NIC, VNFs and so on. P416
removes the architecture related P4-programmable blocks (e.g.
ingress/egress pipeline, deparser, state full memories etc.)
from the core language and provide them as an architecture
library part of an architecture model defined on a per network

8We are currently working on an upgrade to integrate the PCIe NIC
optimized implementation odp-dpdk (https://git.linaro.org/lng/odp-dpdk.git)
which will help to remove the packet copy cost

platform. It also supports extern types, libraries (code reuse)
and strong data types.

Towards further DAPPS portability, efforts are being de-
voted to the Cavium ThunderX platform and its various
hardware acceleration features. Furthermore, we want to im-
prove the auto-code generation features and integrate auto-
optimization techniques for the generated code. Adding binary
portability support is also in our agenda, along new and real-
world use cases with realistic (and worst-case) workloads to
assess the maturity and applicability of MACSAD.

VI. CONCLUSIONS

MACSAD explores a novel approach towards dataplane
programmability by striking a niche balance between porta-
bility and performance. The proposed Transpiler module is
capable of auto-generating Datapath Logic from P4-defined
programs following a language-architecture split approach
conserving platform-specific optimizations through Auxiliary
Backends. The separation of target-dependent from indepen-
dent dataplane functions allows, when available, to leverage
hardware acceleration features of the target platforms. The
L2-Fwd and L3-Routing use cases presented in this paper
serve as promising evidences towards dataplane portability,
i.e., the same DAPPS seamlessly running over various network
platforms at current edge technology performance.
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