NOn: Network Function Virtualization Ontology
towards Semantic Service Implementation

Luis Cuellar Hoyos and Christian Esteve Rothenberg
School of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP), Campinas SP, Brazil
Email: {lcuellar, chesteve} @dca.fee.unicamp.br

Abstract—A hazard of ongoing Network Function Virtualiza-
tion (NFV) realizations is the lack of a common understanding
in support of development, deployment and operation tasks
related to Virtual Function Networks (VNFs), NFV components
and interfaces. In the current state of affairs, NFV stake-
holders commonly create their own terminology to define and
describe NFV components, following going the specifications led
by European Telecommunications Standard Institute but also
adopting telecommunication- and software-centric definitions. As
a consequence, portability and interoperability goals of NFV
get compromised since NFV technology providers have hard
times in understanding and using definitions and descriptions
across different domains. Furthermore, VNF data models of
operational systems and deployment configuration software need
to be re-defined, re-coded, and re-compiled to make them work
over different NFV platforms. In this work, we present the
design and implementation of our proposed NFV Ontology
(NOn) enabling Semantic nFV Services (SnS) to reduce manual
intervention during the integration process of heterogeneous NFV
domains and effectively overcome the costly re-work hazards of
current NFV implementation approaches. We present the proof of
concept implementation of a Generic Client leveraging SnS/NOn
to create and consume dynamic workflows in an open source
testbed based on OpenStack and OpenBaton.

Keywords: Network Function Virtualization, NFV, Semantic

Services, Ontology.

I. INTRODUCTION

NFV [1] arises as a networking technology trend aim-
ing at changing the current physical appliance model to a
software-based approach using standard hardware technologies
to deliver networking services. As today, a number set of
specifications and guidelines [2] are available defining NFV
architectural views and the functional description of the main
components and their interaction (e.g., reference points, inter-
faces). As usual in standard developments, the specifications
are meant to be read, interpreted, and implemented by human
developers, and hence allow a high degree of freedom on the
semantics used to develop NFV elements. As consequence, we
encounter heterogeneous manners to express the same compo-
nents and lack of common understanding across NFV domains.
Moreover, interoperability among NFV components is still an
open challenge generally approached by using Web Service
(WS) [3] relying on implicit service descriptions with diverse
semantics. Furthermore, service integration requires costly and
error-prone manual intervention throughout the processes of

978-1-5090-4758-1/16//$31.00 (©2016 IEEE

reading, interpreting and using service capabilities, resulting
in a inefficient way of achieving interoperability.

With the aim of addressing these practical challenges to-
wards the realization of NFV, this paper proposes the use
of a common domain language to describe NFV compo-
nents and to avoid manual intervention process through an
automatic service integration by means of two cornerstones:
NFV Ontology (NOn) and Semantic nFV Services (SnS).
NOn allows describing NFV as a high level framework with
reusable element descriptors following a standardized manner.
SnS is the application of the Semantic Services [4] approach
in the NFV domain. SnS uses NOn to create explicit service
descriptors, allowing smart agents from different domains
with heterogeneous implementations to read, interpret, and
consume NFV service capabilities.

As a proof of concept for both proposals, a Generic Client
was developed as a software entity capable of reasoning
by means of an inference engine that allows to create and
consume dynamic WS workflows. Dynamic workflows are
achieved by reading the semantic services descriptions (with-
out the need of a predefined context) and creating a plan
for services’ consumption. As a result, the interoperability
process becomes more efficient and less costly due to the
automatic service integration. Finally a proof of concept was
implemented in order to validate the potential of the proposed
NOn and SnS approaches to realize NFV.

II. PROBLEM REVIEW

An important requirement of DevOps is the possibility of
interactions between autonomous machine and human users
to verify and validate services integration and troubleshooting
via common Application Programming Interfaces (APIs) [5].
Generally, APIs have implicit service description in a syn-
tax manner. For example, Web Semantic relies on the use
of Resource Description Framework (RDF) and ontological
representations of real world to change the manner of how the
web works today. Some semantics (e.g., WSMO or OWL-S)
create services based on representations and explicit descrip-
tions but fall short of native service description, automatic
discovery and interoperability [6]. Recently, RESTdesc [7] has
been proposed to describe service functionality allowing the
creation of automated services based on ontologies replacing
variable declaration to describe functionality. As a result,

TABLE I
VNF DESCRIPTOR (VNFD) BASE INFORMATION ELEMENTS

Identifer Type Cardinality Description

The vendor generating this
vendor Leaf 1 VNED.

This describes a set of
vdu Element | 1..N elements related to a

particular VDU.

This element describes an
connection external interface exposed by
_point Element | 1..N this VNF enabling connection

with a Virtual Link.

RESTdesc delivers native functional and explicit description
of services and automated discovery.

The Semantic Web principles using ontologies to describe
infrastructure and networking resources has been a recent trend
with remarkable examples such as Network MarkUp Lan-
guage [8] (NML) and Infrastructure and Network Descriptor
Language [9] (INDL). These efforts attempt to standardize
terminologies and concepts around networking, computing and
storage entities. While these languages have been used to
model and store information of the Service Provider (SP)
other key features of Web Semantic approaches such the use
of semantic services have not been exploited yet. Another
current weakness is the need of resource discovery methods
and external components to synchronize, translate and abstract
SP current data information model into the semantic approach.

Focusing now on NFV, at least three problems can be
identified as technology integration hazards: (i) absence of
a common understanding (i.e. shared vision) around NFV),
(ii) lack of well defined semantics (i.e. domain specific lan-
guage), and (iii) need of manual intervention to interpret, use,
and integrate components. As today, software components,
interfaces and services require manual intervention (e.g.,to
adapt interfaces, translate the semantics of variable names,
parameters, tool chains, etc) when attempting to inter-work
and integrate different pieces of the NFV puzzle. While the
NFV methodology to describe interface and abstractions [10]
provides a guideline for developers, the document is subject to
interpretation and by any means interpretable by software ser-
vices and components. As a consequence, problems inherent to
interface integration negatively affects NFV implementations
by increasing development time and costs when attempting
NFV service discovery and interoperability.

III. NFV ONTOLOGY (NON)

We propose NOn to provide a common knowledge and
language across NFV domains useful for all stakeholders
such as SP, Network Operator (NO), and developers. The
main goal of NOn is to reduce integration costs caused by
the current semantic diversity of NFV descriptors and WS
implementations.

A. Designing NOn

The design of NOn is based on European Telecommunica-
tions Standard Institute (ETSI) specifications [2] [11] [12] [13]

TABLE II
VNFD:VDU BASE ELEMENTS

Identifer Description

Type Cardinality

A unique identifier of this
VDU within the scope of

the VNFD, including version
functional description and
other identification information.
This will be used to refer to
VDU when defining
relationships between them.

id Leaf 1

This provides a reference to a
VM image

vm

. Leaf 0...1
_image

Defines minimum and maximum
number of instances which can

Element | 1..N be created to support scale

vnfc

out/in.

string 1vendc'r has_connection, Dolnt‘ . Connection_Point

string id VDU

anyURI

Fig. 1. Extending NOn

and follows the principles of Ontology Development 101: A
Guide to Creating Your First Ontology [14]. Some steps were
followed in a more rigorously way than others. Considering
ontology design an iterative process, our design work went
back and forward through the steps to improve the model.

Table I shows three base information elements of a VNF
descriptor according to [2]. The first column is used to abstract
and name components on the ontology. The Type column
defines components as a resource or a data type variable (Ele-
ment and Leaf respectively). The cardinality column stores the
number for components (slot facet), and finally, the description
field describes properties and relationships among elements.

After modeling the VNFD, we moved our attention to
components defined as resources. Table II shows the element
definitions given for Virtual Device Unit (VDU) components.
The process was repeated until all components and relation-
ships were defined resulting in the NOn ontology.

Figure 1 presents the resulting graph as an example of
modeling elements and relationships corresponding to the
abstractions of Table II (top) and I (bottom).

B. NOn Example: Semantic VNFD

Aiming to exemplify NOn with real NFV implementations,
two VNFD descriptors from different NFV implementations
were parsed into NOn VNFD instances. We used the Proteg
modeling tool! to develop the classes and sub-classes of the
ontology ind addition to Data and Object properties (slots).
Instances of the VNFD element were created using different
descriptor models from a NFV implementation, resulting in

Uhttp://protege.stanford.edu/

O 00 NNk =

a semantic VNFD template following ETSI specification and
ready for a descriptor instance creation.

We used descriptors from two NFV open source imple-
mentations (OpenMano[15] and OpenBaton[16]) and tried to
match their components into the ontology. Interestingly, during
the parsing process, we observed common elements included
in both descriptors (e.g., lifecycle events or name) but not
defined in the ETSI specifications. Likewise, we discovered
some elements not present in the first version of the ontology
but defined in ETSI documents, an opportunity we used to
enhance the NOn model in spirit of our iterative approach.
Listing 1 shows some features modeled in the OpenBaton
VNFD descriptor file matching elements defined in Fig. 1.

| ### non:#ob—-iperf-client
|non:ob-iperf-client rdf:type owl:

\ NamedIndividual,

|non:vnfd;

|non:has_vdu non:ob_iperf_ client_vdu;

| ### non:f#ob_iperf_client_vdu
|non:ob_iperf_client_vdu rdf:type owl:
\ NamedIndividual,

|non:vdu;
|non:vm_image
| anyURI;
‘non:hasivnfc non:ob_iperf_client_vnfc.

"iperf_client_image"” "xsd:

As a result of parsing both descriptors we found the current
OpenBaton descriptor model a better option to validate our
NOn model, which can be explained by OpenBaton defining
its components (such descriptors) closely following ETSI
specifications whereas OpenMano provides a solution that
makes more use of proprietary syntax.

IV. SEMANTIC NFV SERVICES

SnS is our proposed concept to add semantic service de-
scriptions to NFV Web Service interfaces and APIs in order
to reduce the need of manual intervention when integrating
services and to improve overall interoperability.

A. Creating Semantic Services

In spirit of software and knowledge reuse, SnS leverages
recent software technologies (Representational State Transfer
(REST) and Notation 3 (N3) language. More specifically, We
opted for RESTdesc [17] as the key enabling technology to
create the semantic services. Fundamentally, RESTdesc blends
together existent ontologies (e.g. NOn) and already deployed
REST services. Furthermore, its implementation does not
require modifications in the service capabilities and methods,
instead RESTdesc provides a mechanism to describe them.

To introduce semantic technology smart agents and infer-
ence engines (reasoner) are necessary to consume service
descriptions. We argue that the extra components needed
during the service deployment process and development efforts
of the semantic descriptions are compensated by the cost
reduction due to manual intervention, training and hazards of
services integration.

The implementation of SnS was done in two stages: (i)
adding semantic descriptions to (current and new) REST

WS, and (ii) creating a generic REST client to consume the
services.

1) Adding Descriptions to Services: in order to add se-
mantic descriptions for NFV services, a REST Web Service
was developed with the ability to generate VNF deployment
files (e.g VNFD) for OpenMano and OpenBaton. Initially, two
different services were created:

o A service using the Hypertext Transfer Protocol (HTTP)
GET Method (Listing 2) to retrieve a JavaScript Ob-
ject Notation (JSON) file with the corresponding VNFD
OpenBaton format.

o A service with HTTP GET Method to retrieve a YAML
Ain’t Another Markup Language (YAML) file with the
associated metadata for the OpenBaton VNFD.

Both services receive VNF deployment parameters as inputs

(e.g. vin_image) contained in the retrieved file.

Listi '

T

|GET /nfv/parser/openbaton/vnf/vnfd?vendor
\ ="value"& name="value"& type="value"&

\ endpoint="value"&vim_instance="value"

\ vim_image="value"&minCPU="value" &minBW=
\ "value"&minRAM="value"&dev_flavour="
\
\
l

Host: localhost:8080

Content-Type:

\
\
\
\
\
value" \
\
application/json |

Listing 2 shows the resulting call to the first service using
HTTP. Line 1 represents the service method, the service
Universal Resource Identifier (URI) and the query parameters
to construct the file. Lines 2 and 3 are Host IP and the type of
the retrieving file, respectively. While a human with adequate
software development and NFV background could reasoning
and interpret some parameters (e.g., vendor or minCPU),
other developers could easily misunderstand the parameters
and not be able to consume the service as expected.

To circumvent manual intervention, the semantic service
implementation describes the service method, content type and
URI based on the HTTP ontology while services parameters
using NOn ontology.

| {#Pre—conditions

| ?7vnfd a non:vnfd;
non:has_vdu ?vdu.

?vdu a non:vdu;
non:vm_image ?vm_image.

?vl a non:vld;
non:connectivity_type ?vl_type.

\

\
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
| => \
| {#Process |
| _:request http:methodName "GET";
\ http:MessageHeader "Content-Type:
| application/Jjson";
| http:requestURI ("http://localhost |
\ :8080/nfv/parser/openbaton/vnf/vnfd?
\ vm_image="?vm_image"&virtuallink="?
\ vl type""); \
| http:resp [http:body json:
\ openbaton_vnfd].
| #Post—-conditions |
| ?vnf non:has_vnfd ?non_vnfd.
l |

}.

—\O0J NN —

16
17
19

Listing 3 presents the resulting service description? of
OpenBaton VNFD WS. The RESTdesc description uses N3
and can be divided in three parts:

Precondition: Lines 1 to 10 represent a precondition that must
be accomplish to consume the service. The NOn ontology is
used to do variable declaration. In N3 language, it is necessary
to pass ontology elements to defined variables in the descriptor
in order to be used at execution time. For example non:vnfd
passes all elements contained in the VNFD semantic file 1 to
the ?vnfd variable. Question mark (?) represents the variable
declaration in N3.

Process: the actions that must be executed if preconditions are
accomplished. For example a HTTP request.

Postcondition: final state reached once the process is exe-
cuted, e.g. VNFD created.

The process of generating service descriptions is not an easy
task and attention needs to be paid to write properties explicit
to an object. The description above can be read as: if there
exist an object that is an non: vnfd an has all the parameters
below (non:vdu, non:vld, etc.), then execute the HTTP
call and set the variable VNF with the associated VNFD.

2) Consuming Semantic Services: to consume SnS a ser-
vice client is needed capable of adapting as required to
consume different types of REST requests. We developed a
JAVA based client named as Generic Client without predefined
parameters to consume services (e.g headers, methods).

Generic Client uses an external inference engine to do
reasoning (Euler Yet another proof Engine (EYE) [18]) as
follows: (i) receives rules (service descriptor) and a context
(Semantic VNFD) from the Generic Client, and (ii) derives a
workflow with the inferred REST request. It is important to
denote that NFV service descriptions would not be possible
without NOn.

Listing 4. Inference Engine Response

:sk0 http:methodName "GET".

:sk0 http:MessageHeader "Content-Type:
application/json".

:sk0 http:requestURI ("http://localhost
:8080/nfv/parser/openbaton/vnf/vnfd?

vendor=" "fokus" "&version=" "0.1" "&
name=" "iperf-client" "&vm_image=" "
iperf_client_image"”"xsd:anyURI "&
virtuallink=" "private" "&lifecycle="
"CONFIGURE" "&dev_flavour=" "ml.small"
"&¢scaleinout=" "2"""xsd:int "").
:sk0 http:resp _:skl.

—:skl http:body Json:openbaton_wvnfd.

|
\
\
\
\
\
\
\
\
\
\
!
|

The code in listing 4 shows the inference engine response,
which can be read as: HTTP GET request (called _: sk0) to
/nfv/parser/openbaton/vnf/vnfd URI exists; has
header type application/json, and response is _:skl
with a representation of a json:openbaton_vnfd file.
Using the resulting workflow at run-time, the Generic Client
builds the request using the ht tp:methodName and
http:requestURI (lines 1 and 3 respectively) as fixed
parameters. Other parameters are filled as if-then variables.

2Due to space constraints, some of the implemented are not presented in
the listing, e.g., ontology parameter @prefix.

Header Response Params

URI Method Param

/> l;l Rest Request
/
——> .[‘ g — Method: GET
= URI:
Gvnf/vnfd?vendor=fokus..
Request eneric —
Workflow Client Content-Type: application/json

Fig. 2. Creating a Dynamic WS request.

For example, if there exists a http:MessageHeader then
put the header in the request.

Figure 2 illustrates the request creation process. After the
Generic Client reads the workflow file, the client puts URI and
method parameters in the JAVA request. Then, the client makes
a match between parameters in the file and the parameters
belonging to the HTTP request according to the method at
hand (e.g., POST method may have a body file and GET
methods not). IF a parameter is in the file, THEN it is
added to the JAVA request. This way, the client adapts itself
according to the parameters included in the descriptions and
the subsequent inference workflow gets predefined.

To wrap up, we present the Generic Client as a flexible
REST client that is created once but capable of consuming
multiple, dynamically defined REST services.

B. SnS Workflow Inference

We now focus on the wider inference workflow as the over-
arching process of making a plan with an ordered sequence
of HTTP requests in order to accomplish a specific goal.

1) Creating Dynamic Workflow: inference engines have the
ability of inferring context and deducing facts from a given
knowledge base. Thus, these kind of engines can be used to
create a plan (workflow) with a sequence of HTTP requests
from the inferred context to get a conclusion. In our case, we
are interested in the engine’s ability to create a plan to reach
a specific goal’.

A goal-based workflow is used to create the necessary
context for a specific task, i.e., the inference engine makes a
plan to achieve the proposed goal. Besides knowledge inputs
(e.g. service descriptions), the inference engine needs to know
the objective to be accomplished. In this project, we opt for
a backwards inference engine in order to create the plan, the
engine starts assuming the fact that the “goal proposed was
accomplished”. It then starts to take proofs to support this
fact based on the possibles services to be consumed to reach
the goal. This is done through the analysis of the postcondition
section of the service descriptions. When a service with the
proper post condition is found, the inference engine starts to
find if the preconditions can be achieved using other services

3An objective/goal is the desired state of a resource or a service to be
accomplish

[Goal]

{ (Servicen)
‘ Precondition: n-1 ‘
| Postcondition: Goal |

) I ;
Service n-1
Precondition: 1
Ontology P ; il)

Service 1
Inference Engine

‘ Goal

Service
Descriptions

Semantic
VNFD

Precondition: VNFD ‘
Postcondition: 1

Logic Workflow

Fig. 3. Creating Goal Based Workflow

descriptions or data inputs (e.g. VNFD file). If preconditions
can be achieved, the service is put into the plan. Some of
the service preconditions may be a postcondition of another
service and the inference engine must go backwards in order
to analyze if preconditions can be achieved. If so, the service
is added to the plan and the same process is done to find the
proof of the goal. Hence, the inference engine goes backwards
creating the plan and chaining services needed to accomplish
the desired goal. The backwards process goes until there are
no more proofs to be done.

Figure 3 illustrates the process in order to accomplish a
goal, the inference engine provides a backwards service plan.
The plans starts with the last service to be consumed and
goes down until the first service is consumed. We can see
how postconditions of some services are others preconditions
hence opening possibility of service planning, it is worth to
note that one of the inputs of the engine must be the predefined
goal.

2) Consuming Dynamic Workflows: while the Generic
Client has the ability of self-adapting to dynamically create
REST requests, service consumption is done one by one,
i.e., only one SnS is received and consumed at a time. The
challenge becomes now allowing the client to read and directly
interpret a workflow process given by the inference engine.
Since a workflow includes REST requests along lemmas to
proof facts, it is necessary for the client to find a manner to
process the workflow and remove unnecessary data without
affecting the inferred REST requests and the sequence to be
consumed (see Fig. 3).

The proposed interaction between the Generic Client and
the inference engine is as follows. Firstly, the client takes
the service descriptions and the semantic VNFD. Secondly,
it parses the goal to be achieved among the inputs which are
passed to the inference engine. Thirdly, the inference engine
responds with a deduced workflow, and, finally, the Generic
Client interprets and executes the plan.

V. PROOF OF CONCEPT EXPERIMENT

Figure 4 illustrates the experimental scenario to validate
our Proof of Concept implementation. The different NFV
components are installed and configured on different servers
at the Information & Networking Technologies Research &
Innovation Group (INTRIG) facilities. The NFV Infrastructure
(NFVI)/Virtualized Infrastructure Manager (VIM) is based on
OpenStack while OpenBaton VNFD and MetaData WS were

l

OpenBaton REST Generic Client
VNFD WS desc
OpenBaton REST
Metadata WS desc

OpenBaton Service
Description
Semantic VNFD !)

- ~\
[[NFVO 1)

Goal: Deploy VNF s
” S
INTRIG
{f# T LAB
? Owology OPEN BATON
Inference Engine __VUNFM /
e ™~
[NFVI)
e
.. VIM
INTRIG
Cloud . — E - \openstack’
\)\ MANO)

Fig. 4. Experimental Scenario of SnS.

installed along the server running the Generic Client which
communicates with the online inference engine [19] using
RESTdesc public service descriptions available in our GitHub
repository. *

Listin, nBaton Depl F Semanti rvi 1

{?vnf ob:state ob:vnf_deployed. }=>
{?vnf ob:state ob:vnf_deployed}.

Functional tests were carried to verify the VNF deployment
process first using a manual process following OpenBaton
tutorial guidelines, and then by means of SnS for the same
deployment process as follows:

1) User creates Semantic VNFD and Goal (Listing 5).

2) Generic Client takes service descriptions, semantic file
and the goal, and pass them to the inference engine.

3) Inference engine creates the workflow and pass it to
Generic Client.

4) Client process the answer and creates a request file.

5) Client consumes the OpenBaton VNFD WS and creates
the JSON file to retrieved.

6) Client consumes the OpenBaton Metadata WS and cre-
ates the YAML file to be retrieved.

7) Client consumes the OpenBaton Deploy VNF WS:

o Creates VNF package using VNFD and Metadata
files.
« Upload VNF package via the OpenBaton WS.

8) OpenBaton Network Function Virtualization Orchestra-
tor (NFVO) deploys the VNF over INTRIG’s cloud
using OpenStack APIs.

9) Finally, OpenBaton returns the id given for the de-

ployed package. VIM.

Each file was successfully deployed in separately manner.
Both VNF were deploy without creating clients for each
service, instead Generic Client and inference engine do all the
process taking as a start point service descriptions, semantic
VNFD and goal defined.

“https://github.com/intrig-unicamp/sns_sermantic_nfv_services

DO

VI. CONCLUSION AND FUTURE WORK

This papers presents an approach to leverage semantic tech-
nologies towards interoperability and model-based software
automation in the context of Network Function Virtualization
technology. We explore the applicability of the the Web
Semantic approach to interfaces of NFV by leveraging a com-
mon representation of the concepts and data models provided
by the proposed NFV Ontology (NOn), which is reusable
across domains and allows to create meaningful descriptors
for semantic service implementation (Semantic nFV Services).
Our work does not remain just at a theoretical level —in which
almost anything is plausible— but presents the proof of concept
implementations combining state of the art technologies of
the Semantic Web (e.g., RESTdesc, N3), cloud infrastructure
(e.g. OpenStack), and NFV management and orchestration
(e.g., OpenMano, OpenBaton) to assess the practicality and
promised benefits of automatic Web Service integration.

Along our journey, we encountered multiple issues related
to interoperability due to diverse usage and interpretation
of NFV concepts and their software implementation. Our
attempt to address the resulting implementation and integration
challenges is based on adopting a common and semantically
meaningful NFV data model (NOn). However, when brought
into open source NFV projects (e.g., OpenMano, OpenBaton),
we realized limitations caused by their actual adherence to
ETSI specifications. Projects closely following the glsetsi in-
formation models defined, which are not (yet) fully consistent
across different documents, results in better possibilities of
realizing multi-domain, distributed NFV scenarios [20] based
on heterogeneous implementations without using falling into
costly human intervention.

Concepts behind NOn and SnS can be regarded as initial
steps towards the vision of automatic service integration in
NFV and a real, fruitful DevOps environment. Related efforts
are going on based on TOSCA> and NETCONF/YANG data
models, neither of which are being extended so far to embrace
semantic principles but are still regarded as relevant technolo-
gies for NFV management and orchestration.

We now move our attention to some gaps and limitations
we intend to address in future work. In its current develop-
ment state, NOn does not fulfill all requirements of being a
(universal) data model capable of describing all the different
VNEFD. Furthermore, there are other types of descriptors and
components on NFV that need to go through the abstraction
and design process to become an ontology and increase the
overall system interoperability. We did not explore the full
potential of a native semantic approach to build components
like the VIM or NFVO. Such implementations can be done
using NOn to define variables and components and avoid
ambiguity across implementations and allow efficient reuse of
code and design principles, altogether yielding higher levels
of interoperability and DevOps productivity, critical success
factors in the trend of network softwarization.

Shttps://docs.oasis-open.org/tosca/tosca-nfv/

ACKNOWLEDGMENT

This work was supported by the Innovation Center, Ericsson
Telecomunicagdes S.A., Brazil. We also thank Drthe Arndt,
Ruben Verborgh, Jos De Roo and fellows at the Data Science
Lab, Ghent University, Belgium, for their technical support on
EYE and RESTdesc. Prof. Dr Luciano de Paula for his review
considerations and suggestions to improve this work.

REFERENCES
[1]1 ETSI, “Network Functions Virtualisation - White
Paper #1,” 10 2012. [Online]. Available:

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paperl.pdf

[2] ETSI GS NFV-MAN, “NFV Management and Orchestration,” 12
2014. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_NFV-MANO001v010101p.pdf

[3] ETSI, “Etsi network function virtualisation enters Phase 2,” 2014. [On-
line]. Available: http://www.etsi.org/index.php/news-events/news/850-
2014-12-news-etsi-network-function-virtualization-enters-phase-2

[4] H. Alesso and C. F. Smith, Developing Semantic Web Services.
Peters/CRC Press, 2004.

[51 J. Kim, C. Meirosu, 1. Papafili, R. Steinert, S. Sharma, F.-J. Westphal,
M. Kind, A. Shukla, F. Nemeth, and A. Manzalini, “Service provider
devops for large scale modern network services,” in IFIP/IEEE IM, May
2015, pp. 1391-1397.

[6] L. A. Kamaruddin, J. Shen, and G. Beydoun, “Evaluating
usage of wsmo and owl-s in semantic web services,” in
Proceedings of APCCM ’12, 2012, pp. 53-58. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2523782.2523790

[71 R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle, and
J. G. Vallés, “Capturing the functionality of web services with functional
descriptions,” Multimedia tools and applications, vol. 64, no. 2, pp. 365—
387, 2013.

[8] J. van der Ham, F. Dijkstra, R. Lapacz, and A. Brown, “The network
markup language (nml) a standardized network topology abstraction for
inter-domain and cross-layer network applications,” in Proceedings of
the 13th Terena Networking Conference, 2013.

[9] M. Ghijsen, J. Van Der Ham, P. Grosso, C. Dumitru, H. Zhu, Z. Zhao,
and C. De Laat, “A semantic-web approach for modeling computing
infrastructures,” Computers & Electrical Engineering, vol. 39, no. 8,
pp. 2553-2565, 2013.

A K

[10] ETSI GS NFV-INF, “Methodology to de-
scribe Interfaces and Abstractions,” 12 2014.
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-

INF/001_099/007/01.01.01_60/gs_NFV-INFO07v010101p.pdf
ETSI GS NFV, “Architectural Framework,” 12 2014. [Online]. Avail-
able: http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01-
_60/gs_NFV002v010201p.pdf

ETSI GS NFV-SWA, “Virtual Network Functions Architecture,”
12 2014. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
SWA/001_099/001/01.01.01_60/gs_NFV-SWA001v010101p.pdf

ETSI, “Network Functions Virtualisation -
Paper #3) 10 2014. [Online].

(11]

[12]

[13] White

Available:

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

[14] N. F. Noy, D. L. McGuinness et al., “Ontology development 101: A

guide to creating your first ontology,” 2001.

[15] OpenMano. (2014) Openmano project. [Online]. Available:
https://github.com/nfvlabs/openmano

[16] OpenBaton. (2014) OpenBaton. [Online]. Available:
http://openbaton.github.io/

[17] RESTdesc. (2011) RESTdesc Semantic descriptions for hypermedia
APIs. [Online]. Available: http://restdesc.org/

[18] Jos De Roo. (2009) Euler Yet another proof Engine - EYE. [Online].
Available: http://eulersharp.sourceforge.net/

[19] R. Verborgh and J. D. Roo. (2012) Eye Public Reasoner. [Online].
Available: http://eulersharp.sourceforge.net/

[20] R. V. Rosa, M. A. S. Santos, and C. E. Rothenberg, “Md2-nfv: The

case for multi-domain distributed network functions virtualization,”
2015 International Conference and Workshops on Networked Systems
(NetSys), vol. 00, no. undefined, pp. 1-5, 2015.

