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Abstract—Content-Centric Networking (CCN) is a promising
architectural approach that focuses on the efficient distribution
of uniquely named data objects. A piece of content is represented
by a single object in the network and is divided into multiple
chunks which can be uniquely named and cached by network
nodes. However, in its current form, the potential of CCN is
not fully exploited due to the lack of common means to express
and take advantage from possible relations that may exist among
different objects. Our work explores the simple yet effective idea
of supporting and exploiting such relations in CCN. In this paper,
we present CCNrel as a backward-compatible mechanism for
CCN that enables publishers to distribute contents as related
objects. Differently from existing relation mechanisms, which
focus on one type of content and are application-specific, CCNrel
is generic and enables the use of relations in both current and
novel application domains. First, we discuss CCNrel fundamental
concepts and main design aspects. Next, we use CCNrel as
foundation for a case study of data redundancy elimination in
multimedia content distribution. Through extensive simulation
work we evaluate the potential benefits of leveraging relations
measured by the clients experience and overall network efficiency.
Results of the presented use case show that, on average and when
compared to default CCN operations, content download times
are improved in 34%, publishers load in 56%, and the network
bandwidth usage in 43%.

I. INTRODUCTION

The Content-Centric Networking (CCN) model [1], [2] is
based on a network architecture where a data object is a self-
contained entity that uniquely binds a name to a set of bits.
Each object in the network represents a complete content (e.g.
a document or multimedia file). This simple representation
allows chunks of content to be individually named and cached
by the network nodes. However, as we argue in our paper,
because the current CCN lacks means to relate content objects
at arbitrary granularities, it misses opportunities for further
improvement gains in terms of efficiency and performance,
from client, server and network perspectives.

Content can be modeled as a set of multiple objects provided
relations are employed to define links among the different
objects. Many types of content can employ relations. Some of
them are more obvious, such as multimedia, while others are
less intuitive but can follow the same principle, such as log
files. Taking as an example a multimedia content comprising
two objects: a video (common to every version), and an
audio, selected between multiple options varying according to
a property (e.g. language). With relations, each audio channel
can be published as an independent object, separately from the

video channel. Relations can then be used to link the audio
channels to the video, enabling applications to identify the
available audio options. A log file, on its turn, is a sequentially
versioned content and may also benefit from relations. Updates
in the log may be stored in differential objects related to each
other according to their version. A client can obtain a given
log versions by following the objects relations.

In this paper, we propose CCNrel, a backward-compatible
extension to the CCN architecture that enables publishers to
distribute contents as related objects. Our goal is to explore
the concept of relations among objects and how it can be used
to model contents in CCN. The concept of relations behind
CCNrel is flexible because it does not impose any restriction
on the way publishers can model contents (Sec. II). To demon-
strate the potential of CCNrel, we evaluate it in a case study
(Sec. III) around multimedia content distribution. As expected,
the evaluation results (Sec. IV) show that the achieved data
redundancy elimination lead to promising increases in user and
network performance. While some state of the art solutions
employ a similar concept at the application level, their main
drawback is the binding to specific types of contents and
applications, whereas CCNrel enables relations to be used in
arbitrary novel ways beyond those already explored. When
compared to related work in Information-Centric Networking
(ICN) research (Sec. V), CCNrel stands out as the first pro-
posal tailored to CCN and presenting a backward-compatible
approach that does not require modification of CCN routers.

CCN is a novel proposal for computer networks that
brings an myriad of new issues related to the operation and
management of networks. Such issues should be thoroughly
investigated in the development stage of CCN, allowing the
incorporation of required methods and mechanisms for proper
management. In the above context, this paper presents two
important contributions. First, we propose and explore the
design aspects of a mechanism to enable the use of object
relations to model contents in CCN. Second, we present
quantitative results from a case study that employs CCNrel
for redundancy elimination, a technique that can potentially
improve the network network performance and the quality
experienced by the end clients.

II. CCNREL: RELATIONS MECHANISM FOR CCN

In this section, we first discuss the fundamental concept
of relations employed in CCNrel, our backward-compatible



relations mechanism proposal for CCN. Next, we exemplify
the use of relations to model contents. Finally, we explore
the main aspects considered in the design of the relation
mechanism for CCN.

A. Fundamental Concepts

In our proposal, an object represents an individual piece
of information on the network. A relation from an object
a to another, b, is a link indicating that the data of a can
be complemented by the data of b. Each relation has one
or more attributes, which are key-value pairs with additional
information that describe the relation.

The semantic of a relation is opaque to the network and
is known by the applications that employ the mechanism. We
make this design decision to keep the network core simple.
Semantic inferences over relations and similar tasks are left
to the application level, allowing the network to focus on the
storage and transmission.

B. Modeling Contents with Relations

The concept of relations enables new ways to model a
content into objects published in the network. We focus on
three particular modeling examples: (i) decomposition: publish
a content as multiple, unique objects; (ii) composition: share
previously published objects to create a new content; and
(iii) versioning: modify an object data without creating an
entirely new object copy. To demonstrate these models we
present examples that demonstrate the advantages of relations,
namely: a multimedia content, user generated playlists, and a
cumulative log.

Multimedia content. This example demonstrates how a
content can be decomposed with the use of relations. Decom-
position allows redundant parts from a content to be published
as a single object, eliminating data redundancy in the network.
Figure 1 depicts a multimedia content with multiple audio,
subtitle and video quality options. Relations allow each option
to be published as an individual object, which is related to the
main content. The attributes of each relation can be used to
indicate the type and other characteristics of options. A client
can access the relations of the “Movie” object to identify the
available audio, video and subtitle options and then download
only the objects of interest.

Playlist. This example shows how a client can create a new
content based on already published objects with the use of
relations. The goal in this case is to avoid the republication
of data already existing in the network, therefore reducing
redundancy. Figure 2 depicts an example in which clients
create and publish playlists with their favorite songs. This is
done with relations by linking the already published objects
containing the audio data with another that represents the
playlist. The attributes, in this case, can be used to indicate
the track ordering. Clients interested in the playlist just have
to access the related objects to obtain the actual songs. In the
example, the “Song D” is added to all three playlists, but only
one copy of the object is necessary because relations are used
to build the playlists.

Log file. The third example shows how a versioned content
can be modeled with the use of relations. The goal is to
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Figure 1. Multimedia modeling example

Playlist 1

Playlist 2

Playlist 3

Song A

Song B

Song C

Song D

Song E

Song F

Track: 3

Track: 1
Track: 2

Track: 2
Track: 1

Track: 1
Track: 2

Track: 3

Figure 2. Playlist modeling example
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Figure 3. Log file modeling example

enable a content to be updated without the need to republish a
new complete object version. Figure 3 depicts a sequentially
versioned log, updated with new entries according to a division
criteria (e.g. all entries from a specific hour). Each version has
two relations: one to the previous version and the other, to the
object containing the new entries (the delta from the previous
version). This division successively applies to prior versions
of the log and allows the user to obtain the entries up to a
specific version or only a set of entries from a given delta.

To enable the widespread usage of relations to model con-
tents in CCN, the above concepts should be made available as
an API enabling publishing and retrieval of relations. The API,
in turn, access the functionalities of a backward-compatible
mechanism implemented on top of the CCN client library.
Next, we consider the key aspects of a relations mechanism
for CCN.

C. Mechanism Design Aspects

The design of a relations mechanism for CCN must con-
sider four main aspects: (i) where relations should be stored;
(ii) how a client can retrieve relations; (iii) how a publisher can
manage relations; and (iv) what format to use when describing
relations. Each of these aspects is explored next.

Relations storage. We first consider how to make relations
publicly available in the network. A trivial method would be
to include relations in the object data. Such a method, how-
ever, would suffer from the following limitations: (i) clients
would have to get the object data before they could process
relations and request other objects, reducing the effectiveness
of relations; and (ii) it would hinder the possibility of updating



relations because it would require a new object to be published
(as discussed later in this section).

To avoid these drawbacks, relations can be stored in a
manifest, separately from object data. Two different methods
can be used to publish the manifest: (i) in an individual
object; or (ii) as a metadata from the related objects. The
first method has a simple implementation and only requires
the client to know the name of the manifest object. The
second method, in turn, requires a mechanism to publish object
metadata. Such a mechanism is provided by CCN: it allows
publishers to distribute additional information of a given
content (i.e. the thumbnail of a video). Published metadata can
be accessed using the special name component %C1.META
and a metadata identifier. To employ this mechanism, the
manifest can be published as a metadata identified by the
name <object name>/%C1.META/relations. Because the first
method to store the manifest has no additional requirements
from the architecture and CCN implements the mechanism
needed by the second method, both can be used by CCNrel.

Relations retrieval. The relations of a content can be stored
in one or multiple manifests. In the first method, one manifest
stores the complete relation structure of a content (e.g., with
multiple levels and indirect links). In this case, related objects
store a pointer to the manifest, which can be a metadata
or an individual object. The use of one manifest allows a
client to retrieve the complete structure with at most two
requests. In the second method, each object maintains only its
direct relations in a manifest stored as metadata. Since there
are multiple manifests, a client must recursively obtain the
distributed relations from the related objects to recover the
complete content structure.

Ideally, both methods of relation storage should be sup-
ported. The use of one or multiple manifests depends on the
complexity of the content relations structure. Multiple man-
ifests are advantageous when partial retrieval of the content
structure is desirable (e.g. a specific page from a complex
Web site). In this case, the use of a central manifest requires
the client to parse a potentially large structure only to find a
specific group of relations. However, in cases where a complex
relation structure must be recovered multiple manifests intro-
duce a higher overhead for content retrieval because relations
have to be obtained with recursive requests. In these cases, the
use of one manifest introduces smaller network overhead.

Management operations. The mechanism must allow re-
lations to be created, edited, and removed. Creating relations
requires only the publication of one or more manifests for
objects –depending on the storage method employed to main-
tain relations structure. Edition and removal, in turn, require
manifests to be updated after publication. These operations,
thus, require the use of a versioning mechanism for their
implementation. To circumvent this issue, we use the default
versioning mechanism of the CCN architecture. Albeit simple
compared to the issue of object versioning in CCN [3], this
mechanism suits our requirements for maintaining manifests.

With respect to the scope of the operations, it depends
on the method used to publish relations. When relations
are published as an object metadata, the mechanism limits
the use of the above operations to the original publisher of

the object. This behavior is compatible to the one imposed
by the CCN metadata mechanism: only the creator of the
original object can publish a metadata about it. If relations
are published as an individual object, any user can create and
maintain a manifest, possibly referencing objects from various
publishers. The use of individual objects, thus, increases the
mechanism flexibility. We do not consider the case of one
manifest maintained by multiple publishers, because such
would require the implementation of concurrent operations.
This would increase the complexity of the mechanism but
nonetheless will be investigated in future work.

Common description format. To support the desired con-
cept of relations, the employed manifest should enable: (i) the
representation of a hierarchical structure for the description of
complex contents with multiple levels of relations; and (ii) al-
low attributes to be included in the description of relations.
Any description format that satisfies these requirements can
be used to store relations. More specifically, we propose the
use of a well known generic format, such as XML or JSON.

As mentioned in Section II-A, applications are free do
define a structure for relations and respective attributes within
a content. However, if different applications access a com-
mon type of content they would benefit from a standardized
relations structure. This can be achieved with the use of
schema languages to define the relation structure of specific
contents. The above mentioned formats also present languages
for schema definition, namely XSD [4] and JSON-Schema
[5], respectively. Content schemas themselves can also be
published as objects in the network (the specifics of their
distribution lies beyond the scope of this paper).

In the next section, we explore a scenario in which contents
with redundant components are decomposed and distributed
as related objects. Our goal is to demonstrate the potential of
content modeling enabled by object relations.

III. EVALUATION METHODOLOGY

This section describes the case study used in our evalua-
tions. Distribution of multimedia content over CCN is used as
basic scenario because it is a relevant application that presents
a high network resource requirement. We employ relations
as foundation for content decomposition, with the goal of
eliminating the data redundancy in published objects. To guide
our analysis we defined two main research questions to be
answered by a rich series of experiments:
Q1: How much network users performance is improved

with relation-based decomposition? The goal is to
evaluate the improvement in clients experienced quality
and publishers request load.

Q2: How much more efficiently network resources are
used when relation-based decomposition is employed?
The goal is to understand the benefits on the network,
specially in the overall traffic and cache utilization.

We implemented a relations mechanism based on the design
decision described in Section II-C over the latest version of
CCNx (currently 0.8.2). However, to achieve a higher scale in
our experiments, we decided to use a simulation environment
to conduct our analysis. In the remainder of this section, we
describe the characteristics of the scenario employed in our



experiments. The observed metrics and result analysis will be
discussed in Section IV.

Simulation environment. We extended the well-known
ndnSIM simulator [6] to include support for CCNrel and
decomposition. We use the simulator to evaluate scenarios
where a multimedia content is modeled as a set of decom-
posed objects, which represent a video and different audio
channels for it. We name this simulation scenario CCNrel.
We also employ an unmodified version of the simulator as
a baseline scenario, in which each content variation (choice
of audio and video channel) is published as a unique object.
This baseline scenario is named default CCN. The results
presented in Section IV focus on the performance difference
between CCNrel and default CCN. Additionally, we explore
the impact of different content popularity distributions by
using two different parameter values, which will be discussed
later. So, there are four different scenarios to be evaluated in
the experiments.

Content and workload. The requested multimedia content
follows the characteristics from common VoD systems. We
model each content as an HD video file with a content length
of 25 min. The content stream rate is 5 Mbps, out of which
192 Kbps are related to audio. The content catalog is composed
by a set of 10.000 movies published by a single producer. Each
movie, in turn, has a fixed number of versions, equivalent to
the available options of audio channel, which is set to the
number of nodes present in the topology. Without loss of
generality, objects distributed to clients are divided in 50 KB
chunks.

Requests for contents are generated continually at each
network node with intervals defined by a Poisson process.
Content selection is made according to a Zipf popularity
distribution with its α parameter set to 0.7 and 1.2, which
encompass the popularity curve known to model contents
in a VoD system (α = 1.0) [7]. The chosen values reflect
oscillations that occur on the popularity of VoD content due
to factors such as viewing hours. Also, the chosen values are
similar to those employed in current literature [8]. The content
version, in turn, is selected by users according to their location
in the network, which is the same of the network node they
are connected to. Each node, in turn, is assumed to have a
locality distinct to each other in the network. We employ
such a behavior to simulate the effects of locality in object
requests (for example, audio files tend to be chosen according
to country).

Network infrastructure. We use topologies based on real
traces obtained from the Internet Topology Zoo [9]. We exper-
imented with multiple topologies and found that different con-
figurations yielded results with congruous behavior. Thereby,
the results presented later are based on one representative
topology, namely the British Telecom Latin America. This
topology presents a total of 45 nodes and 50 links among them.
In the simulation, CCN packets are routed according to the
shortest path to the publisher, creating a spanning tree rooted
in the content provider. Consequently, from the 50 topology
links, 44 are actually used for content distribution.

Regarding routers cache, previous studies argue that the
available space will be small with respect to content catalog

Table I
SIMULATION PARAMETERS

Parameter Value
Content catalog size 10,000
Content popularity Zipf with α = {0.7, 1.2}
Content length 25 min
Content versions 44
Chunk size 50 KB
Total content bitrate 5 Mbps
Audio content bitrate 192 Kbps
Video content bitrate 4,808 Kbps
Topology 45 nodes, 44 active links
Cache size 1% of catalog (default CCN)
Simulation time 60 min

in order to maintain line rate lookup speeds [10]. Thus, our
evaluation uses cache with space equivalent to 1% of the
content catalog size of the default CCN case. Finally, regarding
the content publisher, we position it on a randomly selected
node, which varies in each experiment runs.

Execution. The execution starts with all contents published
and empty caches. A warm up time is employed to stabilize
network conditions prior to observation. It is comprised by
the period since the beginning of execution until the moment
caches are completely filled, as in [11]. After the warm up
period, we let the network execute for 60 minutes. The results
presented in Section IV consider values after warm up.

Our simulation campaigns are comprised of multiple exe-
cutions of both simulators (CCNrel and default CCN). The
results presented in the next section are based on central
tendencies from multiple executions. We summarize the pa-
rameters of our simulation in Table I.

IV. EVALUATION RESULTS

We now focus on a thorough evaluation of the proposed case
study. Prior to each result, we describe the computed metrics
and any particular simulation configuration where appropri-
ate. As expected, the obtained results will provide detailed
evidence on how relation-based decomposition (i) improves
the performance of network clients, and (ii) contributes to the
better utilization of network resources.

A. User Performance
Our analysis begins with a comparison of user performance

between CCNrel and default CCN. In the evaluation, besides
the client requesting contents, we also consider the publisher
as a network user. Thus, we focus firstly in two metrics: the
client download time and data volume served by the publisher
(or publisher load). The first metric reflects the QoE perceived
by clients. The second metric, in turn, is an indicative of the
resources required by a publisher to distribute content. With
the proposed mechanism we expect both clients download
time and publisher load to be reduced. Finally, to complement
the results from the aforementioned metrics, we focus on
the request hop distance. This last metric indicates how far
requests are forwarded before fulfilled and, consequently, the
efficiency of in-network caching.

Client download time. Download times observed in our
experiments are presented in a CDF, depicted in Figure 4.
The figure has two pairs of curves, presenting the results for
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scenarios with either α = 0.7 or α = 1.2. Each pair, in turn,
compares the performance of CCNrel and default CCN.

Figure 4 shows an improvement of average client download
times when CCNrel is used in both content popularity scenar-
ios. When popularity is configured to α = 0.7, CCNrel reduces
download times 29.2% on average. This occurs because the
proposed mechanism eliminates redundancy of objects through
decomposition. As result, requests previously scattered among
duplicated objects become concentrated in less chunks, in-
creasing their distribution performance. With α = 1.2 the
achieved reduction of download times reaches 34.3%. This is
explained by the increased concentration of requests to already
popular objects, which amplifies the benefits of the mechanism
(as demonstrated later in our analysis). In the curves from
scenarios with α = 1.2 the first 20% of requests present very
similar download times, indicating a negligible impact. We
verified that these requests are directed to objects with high
popularity, which were stored in caches at 1-hop distance from
clients. Consequently, these requests are fulfilled with very
small latency, independent of CCNrel usage.

Publisher load. The publisher load, in turn, is depicted in
Figure 5. Its horizontal axis presents the objects ordered by
their popularity while the vertical axis (which is in logarithmic
scale), the volume of data transferred by the publisher for
each object (the lower, the better). Similarly to the previous
graph, Figure 5 depicts two pairs of curves to compare the
performance of CCNrel and default CCN under different
popularity configurations.

Results show that, for both values of alpha, there is a group
of objects (10% of the catalog) that generate a higher data
volume with CCNrel. This occurs because requests previously
scattered among different copies of duplicated data are now
concentrated in one object due to redundancy elimination.
Because of the higher request ratio, objects with higher
popularity generate more traffic volume in the entire net-
work, including the publisher. However, the remaining objects
present a reduction on the data volume served by the publisher.
This happens because these objects become smaller with
redundancy elimination (as explained later in our analysis).
Looking at the overall data volume served by the publisher,
we observe a difference of 45.7% when α = 0.7 and 55.7%
when α = 1.2.

Request hop distance. The gains perceived by users are
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a consequence of the positive effects of CCNrel over the
network infrastructure. This is evidenced by the hop distance
of requests, which we explore next. We consider as request
hop distance the number of hops traversed by a request
prior to reaching a content copy. Its value depends on the
topology properties and the shortest path between clients and
the publisher. In simulations, the distance between clients and
the publisher had a minimum of 2 hops, a maximum of 10,
and an average of 5.3. Shorter hop distances indicate that
requests are fulfilled by copies from caches closer to clients
(the lower the curve, the better). We expect the use of CCNrel
to result in a reduction on the overall hop distance. Figure 6
depicts the values of this metric observed in the experiments.
Its horizontal axis presents the normalized number of requests
ordered by their respective hop distance.

The request hop distance corroborates the results observed
in user performance. That is, we observe a general reduction
on the hop distance when CCNrel is used. This result demon-
strates that in-network caching is fulfilling more client requests
in cache units closer to requesters. Consequently, the server
load and the download time of clients are reduced, improving
overall distribution performance. Moreover, the value of α also
affects the hop distance of requests. In average, when α = 0.7,
the hop distance reduction offered by CCNrel is of 26.3% and,
when α = 1.2, the hop distance reduction is of 34.3%. This
indicates that the gain provided by CCNrel depends on the
value of α. In the curves from scenarios with α = 1.2 the
first 20% of requests are fulfilled within 1 hop. As previously
explained, these requests belong to very popular objects that
tend to constantly remain in cache.



So far, we found out that relation-based decomposition
improves user performance because it reduces both client
download times and requests served by the publisher. This
is a consequence of smaller request hop distance, which is a
result of better of network resource utilization due to less data
redundancy. Next, we explore how CCNrel influences network
resources, such as bandwidth and cache space.

B. Network Resources Utilization

Next we explore the impact of CCNrel on the behavior of
network resources efficiency. Thus, we first explore the metrics
of network traffic and cache hit ratio, which indicate if the
available network bandwidth and cache space, respectively,
are efficiently used. To further explain the behavior of net-
work resources efficiency, we explore the number of caching
operations, which indicates how frequent content is substituted
in caches. Finally, we focus on the object request distribution,
which indicates how the object catalog popularity is influenced
by CCNrel and the consequent impact on the behavior of in-
network caching.

Network traffic. A consequence of the smaller request path
size is the reduction of the network traffic generated by content
distribution. Requests are satisfied by caches closer to the
clients, thereby reducing the number of links through which
data is transmitted and, consequently, the overall network
traffic. We illustrate in Figure 7 the traffic observed in our
experiments. The horizontal axis presents topology links used
for content transmission, while the vertical axis, the network
traffic in logarithmic scale.

Considering the overall network traffic, CCNrel offers a
reduction of 33.6% on transmitted data when α = 0.7, while
with α = 1.2 the reduction is of 42.4%. There are two distinct
behaviors depending on the distance of the link to the content
publisher. Links closer to the publisher transmit requests (and
data) for multiple content versions because they are hubs from
multiple network regions. Since CCNrel enables objects to be
shared among different versions, cache is used more efficiently
than in CCN, resulting in objects stored closer to the edge of
the network. Therefore, the traffic reduction on these links is
higher. The other behavior concerns links connected to leaf
routers. They only transmit data from a single version to
clients, causing most (or all) of the popular contents to be in
cache, in both CCNrel and default CCN. Consequently, these
links present small traffic difference when CCNrel is used.

Cache hit ratio. The reduction of the network traffic and
requests path occurs because in-network caches present a
higher hit ratio. Figure 8 depicts the hit ratios observed in
our experiments. Its horizontal axis presents the caches from
each router ordered by observed hit ratios.

Results show that CCNrel offers an average improvement
of 33.6% in the cache hit ratio when α = 0.7 and 9.8%
when α = 1.2. CCNrel presents a smaller hit ratio gain
with α = 1.2 because caches in the default CCN have a
considerable efficiency gain with such a content distribution.
As result, the average CCNrel gain is reduced in comparison
to α = 0.7. Regarding the behavior of CCNrel, similar
to network traffic, routers have their performance based on
topological position. Routers closer to the publisher (or core

 1

 10

 100

 5  10  15  20  25  30  35  40

N
et

w
o
rk

 t
ra

ff
ic

 (
T

B
, 
lo

g
-s

ca
le

)

Network links (ordered by total traffic)

α=0.7 gain

α=1.2 gain

CCNrel, α=0.7
default CCN, α=0.7

CCNrel, α=1.2
default CCN, α=1.2

Figure 7. Total network traffic: (average gain of 34% and 42%, shown in
log scale)

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30  35  40  45

H
it

 r
at

io
 (

%
 o

f 
re

q
u
es

ts
)

In-network caches (ordered by hit ratio)

α=0.7 gain

α=1.2 gain

CCNrel, α=0.7
CCNrel, α=1.2

default CCN, α=0.7
default CCN, α=1.2

Figure 8. Cache hit ratio

routers) may serve several different versions of the content.
With CCNrel, a smaller number of chunks must be cached
to distribute all content versions, allowing more objects to be
stored in each router. By covering a higher percentage of the
content catalog than CCN, core routers in the CCNrel scenario
have higher cache hit ratio. Edge routers (leafs of the spanning
tree) need to serve only one version. Consequently, CCNrel
will have negligible impact to the cache hit ratio in these
routers.

Caching operations. Caches are more efficient with
CCNrel because their content changes less frequently. This
effect can be evaluated by the number of operations performed
by caches, as measured in [12]. This metric presents the
number of storage and eviction operations performed in each
network cache. When less content substitution occur there is
a higher chance that a content will remain available to fulfill
new requests. We compute the number of cache operations
from our experiments and depict it in Figure 9. The horizontal
axis presents the topology routers in order of cache operations.

Results show that CCNrel reduces cache operations in
32.1% when α = 0.7 and 43.9% when α = 1.2. This
phenomenon is an effect of the reduction in the object cat-
alog data redundancy. As result, the cache space available
for other contents to be stored is increased and the the
substitution of contents due to cache eviction policies is
reduced. Consequently, when a content is stored it will remain
longer in caches because there is a smaller chance that it
will be substituted. Values of cache operations follow the
same behavior from results of traffic and cache hit ratio:



 1

 10

 100

 1000

 5  10  15  20  25  30  35  40  45

C
ac

h
e 

o
p
er

at
io

n
s

(m
il

li
o
n
s,

 l
o
g
-s

ca
le

)

Routers (ordered by cache operations)

α=0.7 gain

α=1.2 gain

CCNrel, α=0.7
default CCN, α=0.7

CCNrel, α=1.2
default CCN, α=1.2
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the gain in the number of operations is higher in routers
closer to the publisher. The higher performance difference
with α = 1.2 occurs because requests become even more
concentrated, further reducing the cache operations due to less
distinct objects forwarded by routers.

Distribution of requests. CCNrel reduces cache operations
because it alters the distribution of requests for different
objects. Recall from the previous section that clients select
(i) a content to request based on a Zipf distribution and (ii) an
audio version based on the locality of the network node they
are connected to. These two factors and the use of CCNrel will
directly influence the distribution of requests to the available
object catalog. We expect CCNrel to concentrate requests
even more into a smaller group of objects in comparison
to default CCN. The request distributions observed in our
experiments are depicted in Figure 10. All graphs present
on the horizontal axis the objects ordered by their popularity.
Also, the vertical axis of all graphs are in logarithmic scale to
ease the visualization of low popularity contents. We present
results in two graph versions for the sake of clarity (horizontal
axis are either in linear or logarithmic scale).

Results show that CCNrel reduces the request rate of the
least popular objects in approximately 96% for both values of
α. Also, the data request volume of the most popular object
with CCNrel is 13.6 times higher than CCN with α = 0.7 and
14.6 times higher with α = 1.2. This occurs because the long
tail of the distribution is mostly composed of objects carrying
audio information. These objects are requested by clients
interested in a specific content version and are composed by
a smaller number of chunks. Video objects, in turn, will have
their popularity increased, being concentrated on the beginning
of the curve. This occurs because the requests from redundant
data will be concentrated on a common (smaller) set of chunks
that are the result from content CCNrel.

The behaviors observed in the request distribution and cache
efficiency occur due to the number of published objects and
their sizes. Recall that in our evaluation scenario 10,000
contents are available. In the default CCN each content version
results in a complete object with audio and video. Therefore,
considering 44 content versions, there are 440,000 objects
available to clients. Taking into account content length and
chunk size, the above object catalog results in approximately
412 billion chunks. In the CCNrel case, however, contents
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generate a total of 450,000 objects, a 2.3% increase compared
to default. However, the number of chunks is decreased
to 16.5 billion, a 96% decrease in the catalog space. This
reduction occurs because, with CCNrel, only 10,000 objects
represent the video channel. The remaining 440,000 are only
audio data, which is 96% smaller than video.

Summarizing, we observed that relation-based decomposi-
tion improves the utilization of network resources, reducing
network traffic and increasing the hit ratio of caches. This oc-
curs because relation-based decomposition reduces the catalog
storage size and modifies the distribution of requests among
objects in a way that improves cache usage and stability.

V. RELATED WORK

In this section, we first discuss related work that employs
the concept of content and semantic relations at the application
layer. Next, we focus on relation mechanisms proposed in the
context for CCN and other ICN architectures.

The concept of relations is explored in different systems
for content distribution. The most popular example are Web
pages, which employ relations as a fundamental concept for
the creation of complex documents with the use of multiple
objects. In the context of multimedia, relations are employed
to enable the creation of complex contents based on multiple
audio and video channels. The DASH standard [13] employs
a manifest file to specify a multimedia content with various
components available in different HTTP URLs. The client can
select a subset of these components for playback depending
on its quality requirements. Also related to multimedia, SMIL
[14] is a markup language used for the composition of rich
multimedia presentations based on audiovisual elements stored
in different objects. The above examples employ a specific



format to describe how contents are formed with data acquired
from different source objects. However, it is important to note
that these formats are created targeting specific application
domains and they are not applicable to other types of contents.

The literature of ICN includes three pieces of work (ICN-
RE [15], NetInf [16], PSIRP/Pursuit Blackadder [17]) related
to our CCNrel proposal.

ICN-RE [15] employs a concept similar to relations for
implicit redundancy elimination of object data. In a nutshell,
ICN-RE identifies, isolates and publishes byte-identical por-
tions of different contents as a single object. The remaining
parts are published individually. The mechanism uses a meta-
object that lists the names of all objects that should be
downloaded to rebuild the original content. ICN-RE uses the
concept of relations in the meta-object to enable redundancy
elimination of objects data. However, the format of this meta-
object is strictly designed for the mechanism of implicit re-
dundancy elimination. Further, ICN-RE requires modifications
in ICN routers.

NetInf [16] introduces the concept of information objects
(IOs), which are collections of metadata and pointers to actual
data objects. The metadata contained in IOs allows clients
to perform semantic queries about published contents. The
PURSUIT project proposes a publish/subscribe architecture
including an information-centric middleware [17] for the
Blackadder prototype based on semantic technologies and
metadata. The proposed middleware enables, among other
things, establishing relations through common semantic at-
tributes. The fundamental difference of these works on ICN
is the focus on ICN architectures other than CCN. Thus,
their findings cannot be directly extended to CCN due to
specificities in naming (e.g., flat IDs under nested scopes)
and routing mechanisms (e.g. separated control and data
planes [18]). Further, those studies do not provide a detailed
evaluation on the potential network performance gains when
leveraging content and semantic relations among data objects.

In summary, our work is novel in exploring the design
aspects of introducing backwards-compatible relations mecha-
nisms for CCN to allow publishers modeling their contents in
innovative ways. We argue that allowing publishers to use their
knowledge about contents to define relations among objects
can bring benefits beyond those achieved by mechanisms
such as implicit decomposition. While current proposals for
relations in content distribution are specific to their application
domains (e.g. multimedia, P2P), CCNrel is designed to be
generic and allow current and future ICN applications to
natively benefit from their intrinsic semantic relations.

VI. FINAL REMARKS

While CCN is a promising architectural proposal that en-
ables efficient distribution of uniquely named data objects, its
full network performance gains are currently hindered by a
lack of means to model related contents in CCN. This paper
aims to close this gap by means of CCNrel, a backward-
compatible mechanism for CCN that enables publishers to
distribute contents as related objects. The proposed mechanism
enables features such as content decomposition, object re-use,
and efficient content updates.

To demonstrate the potential of CCNrel we employ ex-
tensive simulations on a case study of relation-based content
decomposition in multimedia content distribution. Results have
shown that CCNrel improves user performance, reducing client
download times in an average of 34% and publisher request
load in 56%. CCNrel reduces the request hop distance and,
consequently, improves the network traffic in an average of
43%. The improvements are a direct result of an improved
utilization of caches, which have their hit ratio increased 34%
on average. All these improvements can be rooted back to the
change in object request distribution, since duplicated objects
(e.g., as presented in the video content use case) can be
concentrated in a single, non-redundant copy.

We plan to further study the impact of relations with the
analysis of additional case studies where both obvious and hid-
den relations can be leveraged. In addition, we plan to conduct
experiments for different realistic network topologies using
the Mini-CCNx emulator first, and then running the CCNrel
prototype in a global-scale testbed. Finally, we envision the
use of relations to be applied in network-level components
such as caching and routing.
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