

TURNING INTO REALITY

## When SDN meets legacy IP control planes

Dagstuhl Seminar on Software Defined Networking Wadern, Germany, 7 Sep 2012



(Pわ)

SCHLOSS DAGSTUHL Leibniz-Zentrum für Informatik

# Agenda

- Intro and overview of the RouteFlow project
- Ideas of the HotSDN paper
- Raise the debate on:
- +++ Transitioning existing networks to Openflow/SDN
- +++ Hybrid Openflow/SDN approaches (integration with legacy control planes)
- +++ How OpenFlow direct FIB manipulation can help IP routing control applications and enable cost-effective architectures?

### - Shape the research agenda of RouteFlow!

[Happy to talk about the low-level details:

e.g., how to do IP forwarding (match+actions) with OF1.0 and 1.X]

# **Software Defined IP Routing**



High cost Specialized config. Closed source Slow innovation



Source: McKeown

**OSPF BGP** ISIS LDP **Route**Flow Open interface Controller Controller Controller Open interface . **OpenFlow Switches** Low cost (commodity) Multi-vendor modularity Open source

Rapid innovation



## **RouteFlow Project History**

Aug 12010

 Start Msc. Thesis work by Marcelo N.

Jan 12010

- First Prototype
  - First Short-Paper
     @ WPEIF
    - QuagFlow Poster
       @ SIGCOMM

Evalaluation on

NetFPGA testbed

 Open-Source Release

Der 2010 2011 0ct 2011

Demos @ ONS11

HOV 12011

- Tutorial & Demo @
   OFELIA/CHANGE SS
- Indiana University

   Pronto OF
   switches + BGP
   peering with
   Juniper MX
  - Demo @ SuperComputing 11
    - Demos @ ONS12
      - HotSDN Paper

APr 12012 12012

- Running on FIBRE / OFELIA testbed
- Collaboraion with NTT

## ... building a community

#### Visits: 18,000+ (8,000+ Unique) From over 1,600 cities of 100+ countries all over the globe!





http://go.cpqd.com.br/routeflow/



days since Project Launch

493



FUNTTEL



1000s downloads!





## **Collaborations and community developments**

- Web-based UI & Internet 2 HW pilot [C. Small, Indiana]
- Aggregated BGP Routing Service [C. Corrêa, Unirio]
- SNMP plugin [J. Stringer, Google]
- Optimal BGP best path reflection [R. Raszuk, NTT-MCL]
- Open Label Switched Router [OSRF; Google]
- OpenFlow v1.2 and v1.3 [w/ Ericsson]
- OpenFlow-enabled ROAD [EU/Brazil FIBRE Project]





## **Controller-Centric Hybrid Networking**

- A migration path to roll out OpenFlow technology
- Not a revolution, but an evolution of current iBGP RRs to essentially eBGP Route Controllers
  - "BGP-free edge": A cost-effective simplified edge for SW-driven innovations







### **Key Features**

#### Modular architecture

- RF-Proxy
- RF-Server
- RF-Client
- Database layer
  - JSON-based IPC
  - Resillient core state
  - Programmer-friendly

### Multi-Controller support

- NOX, POX, (Ryu)
- Floodlight, Trema (planned)

## Modes of operation

٠

- From logical routers (akin VRFs) to single node abstractions over flexible virtual networks.
- New design choices on the distribution of the control nodes.





## **Research in scope and contribution**

- Early work on Routing Control Platforms (RCP) [Ramjee 2006, Feamster 2004, Van der Merwe 2006, Wang 2009]
  - In operation at AT&T, considered a differentiator for "dynamic connectivity management".
- Research Question:

٠

٠

- Re-examine the concept of RCP with the visibility

   (i.e., network-wide, multi-layer, flow and topology maps, full RIB: and direct control capabilities
   (i.e., actual FIB installation, rich matching and instruction set)
   of the SDN abstraction set and the specifics of the OpenFlow choice
- RouteFlow glues virtualized IP routing stacks with OpenFlow
- RouteFlow acts as a new indirection layer for
  - routing protocol messages (e.g. BGP session terminates in servers)
  - RIB-(to-FIB)-to-OpenFlow transformations







# **SinCNTRE** Deployment

- 4 Virtual routers
- 10 Gig and 1 Gig connections
- 2 BGP connections to external networks
- Remote Controller
- New User Interface





## **Compare interfaces over the last 30 years**

#### "PC" user interfaces

| Enter sei | ate:    | Tu: 1-0.   | 1-1980  |           |      |          |       |            |      |
|-----------|---------|------------|---------|-----------|------|----------|-------|------------|------|
| Current ! | tine is | 7:48:27    | .19     |           |      |          |       |            |      |
| inter se  | a time: |            |         |           |      |          |       |            |      |
| Der 184 1 | Persona | 1 Computer | - 10S   |           |      |          |       |            |      |
| ersion :  | 1.10 10 | Onggright  | E IBM C | arp 1981, | 1982 |          |       |            |      |
| Odirva    |         |            |         |           |      |          |       |            |      |
| UNREAD    | C1181   | FURNIET    | C119    | CHICLER   | 0.18 | 57755    | C1191 | DISKULFY   | 018  |
| 13ROUMP   | COM     | CURP       | CUM     | EXECUTE   | DOD  | NULE     | 008   | EDILTH     | 018  |
| CHIG      | COM     | LINK       | DOD     | DASTC     | COM  | DRIST CR | 0.011 | <b>RNT</b> | 1995 |
| HIPLES    | 365     | NURTHAGE   | BRS     | CULORBAN  | 865  | CALENDAR | BRS   | HUSTC      | BAS  |
| 01027     | 865     | CENCLE     | BHS     | PERCHART  | 865  | SPACE    | 065   | DALL       | 365  |
| 0111      | 065     |            |         |           |      |          |       |            |      |
| 21        | 5 Filet |            |         |           |      |          |       |            |      |
| Odir cos  | mand.c  | 2049       |         |           |      |          |       |            |      |
| UHRAHD.   | COM     | 4350       | 5-07-02 | 12:00p    |      |          |       |            |      |
|           | L Filet |            |         |           |      |          |       |            |      |
|           |         |            |         |           |      |          |       |            |      |



Source: Chris Small (Indiana)

#### Network user interfaces

| _ |                                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Routervenn<br>Routervervice-module g1/0 session<br>Trying 172.25.25.25, 2006 Open                                                                                 |
|   | Switcheen<br>Switchwoonfit<br>Enter configuration commands, one per line. End with CNTL/Z.<br>Switch(config)eint fas<br>Switch(config)eint fastEtherper 1/0/1     |
|   | Switch(comfig-1f)#ip address 10.10.10.2 255.255.255.0<br>Switch(comfig-1f)#nD shut<br>Switch(comfig-1f)#nD shut<br>Switch(comfig-if)#end<br>Switch(comfig-if)#end |
|   | Sullding configuration<br>[OK]<br>01:09:35: WSVS-5-CONFIG_I: Configured from console by console<br>Switchw                                                        |



Demystifying Configuation Challenges and Tradoffs in Network Based ISP Services (Benson, Akella, Shaikh SIGCOMM 2011)

# **R**P

## **RouteFlow User Interface**

#### How to make network administration:

- Simpler to implement
- More robust and consistent
- Easier to manage

٠

٠

- Automation and Config Abstractions
- Can you build very different interfaces with SDN backends?

E.g., type: http://netkarma.testlab.grnoc.iu.edu/rf/ or... http://goo.gl/T3Tqe

Source: Chris Small (Indiana)



## **Prototyped: Aggregated BGP routing service**

- Single node abstraction of a domain-wide eBGP router
  - Think modern multi-chasis routing architectures with external route processors and OpenFlow switches acting as line cards
- Aggregation logic defined in the RF-Server

٠

٠





## **Routing-centric use cases under research**

- Engineered path selection
  - Think Google WAN, performance-based routing, etc.
- Optimal best path reflection
  - Per ingress/customer [draft-ietf-idr-bgp-optimal-route-reflection-01]
  - Path protection with prefix independent convergence
    - Hierarchical FIBs w/ OF 1.X Tables + LFA route-precomputation
- Security

- Data plane blackholes and middlebox injections,
- Secure Inter-domain routing ideas (crypto intense S\*-BGP, etc..)
- Simplifying customer multi-homing
  - Easy to set and control cost/performance/policy-based routing
- IPv6 migration
  - Flow matching for service termination in v4-v6 migration solutions



**Google Software Defined WAN Architecture** 



Source: vahdat-wed-sdnstack.pdf @ONS12

## Fast convergence

Exploit OF 1.X group tables to store backup NHs per-prefix Offline pre-computation of loop-free/converged alternate routes - Use a "shadow" network to learn about future states

For every possible link failure:

- Force control plane failure events in the shadow network
- Let control plane converge
- Observe final state and store deltas
- (Rank failures according to "costs")

When actual failure (state change happens)

--- Directly apply the pre-computed state changes (flow-mod deltas)

----- If combined with switch OAM: pre-install restoration state in group actions, triggered by the switch OAM (e.g BFD)



## **Control Plane Distribution Options**

|                                      | Vertically<br>integrated<br>(classic Router/<br>Switch Model) | Decoupled<br>(original<br>OpenFlow model | Hybrid<br>(evolving model<br>in ONF) |
|--------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------------------|
| Logically Centralized<br>("servers") |                                                               |                                          |                                      |
| Fully distributed<br>("on box")      |                                                               |                                          |                                      |

Data Path jointly controlled by standard on-box control plane and centralized off-box controller

Slide courtesy Frank Brockners

Legend: Data plane

Control plane function

## Challenges

٠

•

٠

- Centralized BGP
  - Shown to scale well in modern CPU architectures
  - Centralized does not mean not disitrbuted (but removal from edge)
- Small OpenFlow table sizes
  - Transient limitation?
  - Expose existing FIB data structures as an IP lookup OF table?
  - Smart RIB&FIB reduction (e.g., simple [draft-ietf-grow-simple-va-04]
  - HW/SW flow offloading (e.g. Fibium)
- Limited OpenFlow processing in datapath
  - Transient / Un-optimized implementations
- High availability
  - Previous ideas from disitributed RCPs
  - Database-centric designs
  - Development in-progress of "BGP SHIM" for transparent eBGP redundancy

## Conclusions

- RouteFlow is
  - a simple yet powerful (adaptable, inexpensive) routing architecture
  - a platform for real IP routing protocol experimentation
  - a tool for OpenFlow adoption via controller-centric hybrid networking
- Many open research questions and future work
  - OF 1.X, MPLS, OAM, GUI, policy languages, configuration mgm, etc.
- Opportunity for a community-driven development of competitive, deployable, open routing control solutions



Christian Esteve Rothenberg, PhD Diretoria de Redes Convergentes (DRC) esteve@cpqd.com.br

Thank you!

**Questions?** 



www.cpqd.com



Access:

٠

•

- http://go.cpqd.com.br/7API-demo

Indiana University GUI demo:

- http://goo.gl/T3Tqe



## **RouteFlow Platform research topics**

High availability

٠

- Integration of OF v1.1, v1.2 and v1.3
- LDP / MPLS support towards open-source LSR
  - Realizing the northbound SDN abstractions
    - Specification / Configuration
    - Network Information Base
    - Knowledge Information Base
  - Troubleshooting, testing, debugging, ...



