Delivering Application-Layer Traffic Optimization Services based on Public Routing Data at IXPs

Danny Alex Lachos Perez

Orientador: Prof. Dr. Christian Rodolfo Esteve Rothenberg

INTRIG

INFORMATION & NETWORKING Technologies Research & Innovation group

- **1. Introduction**
- 2. Background
- 3. Design of ALTO-as-a-Service (AaaS)
- 4. AaaS Prototype
- **5. Experimental Evaluation**
- 6. Conclusions / Future Work

Distributed Applications

File sharing applications, Content Delivery Networks (CDNs), real-time communication, among others, use a significant amount of network resource to connect nodes across the Internet and transfer a large amount of data.

Distributed Applications

- ✓ Topological information used only has a localized view provided by the ISPs.
- Without knowledge of the underlying network topology.
- Selection of resources are provided randomly.
- Impacting both applications and networking infrastructure.

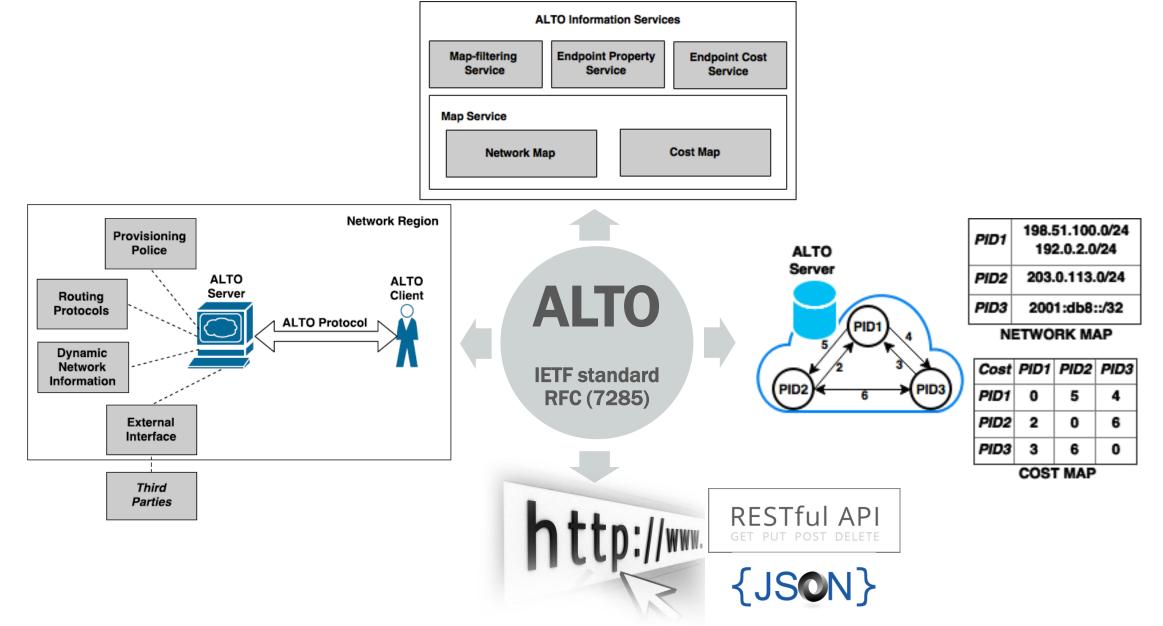
MOTIVATION

Application-Layer Traffic Optimization (ALTO)

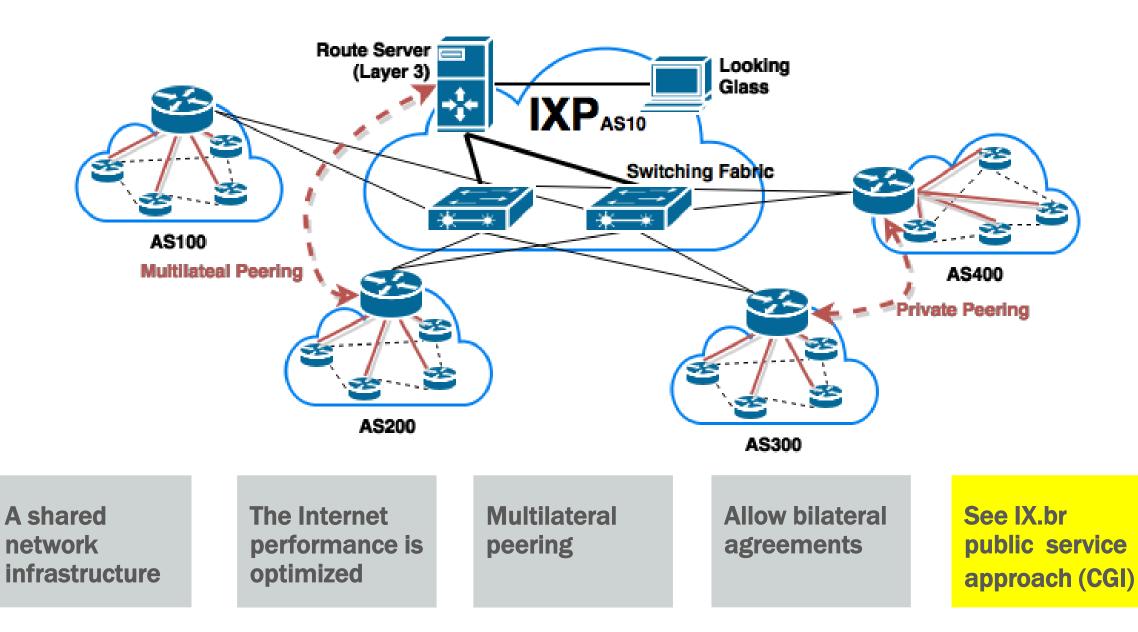
ISP => Focus of ALTO implementations

Internet eXchange Point (IXP)

Third-parties => ALTO Information <= ALTO Protocol


1. Introduction

2. Background

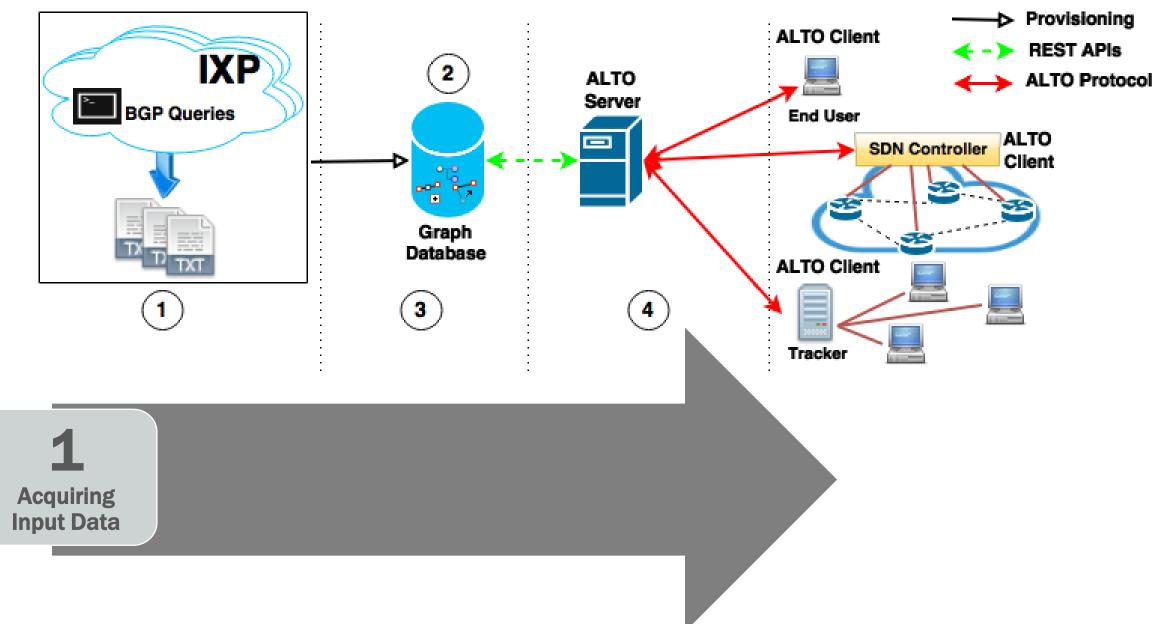

3. Design of ALTO-as-a-Service (AaaS)

- 4. AaaS Prototype
- **5. Experimental Evaluation**
- 6. Conclusions / Future Work

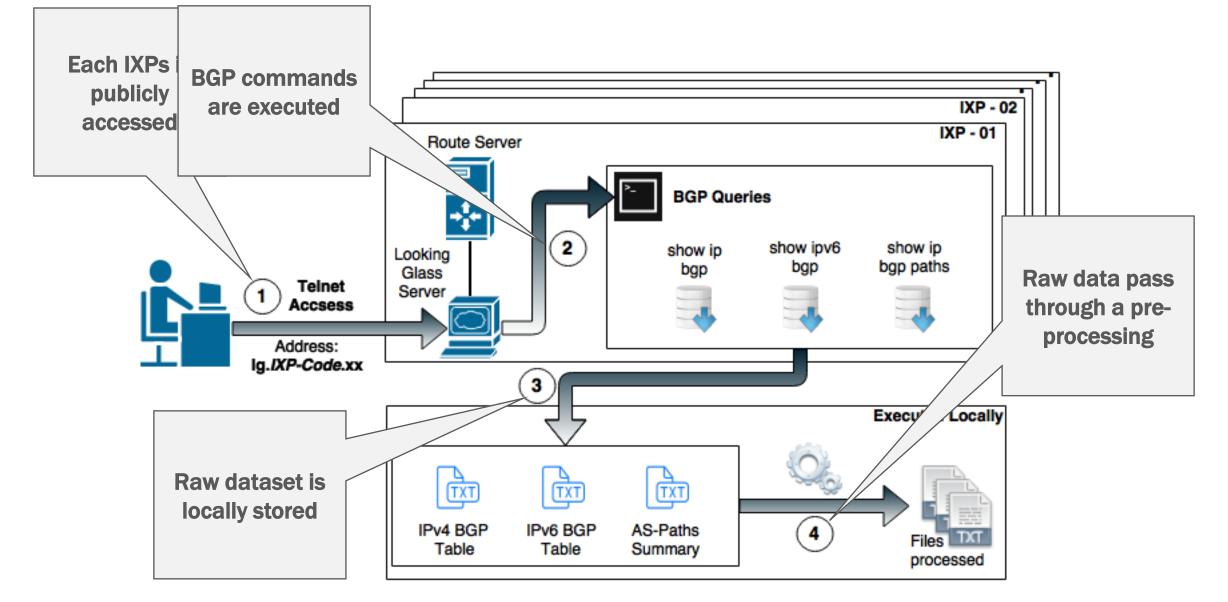
Application - Layer Traffic Optimization (ALTO)

Introduction : Internet eXchange Point (IXP)

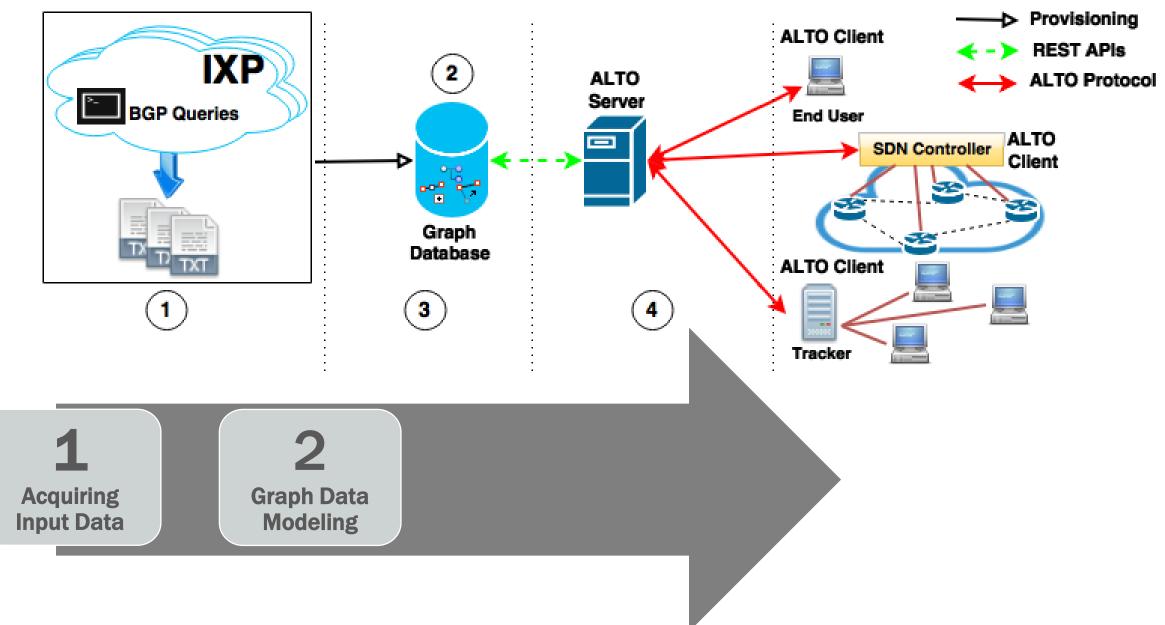
1. Introduction


2. Background

3. Design of ALTO-as-a-Service (AaaS)

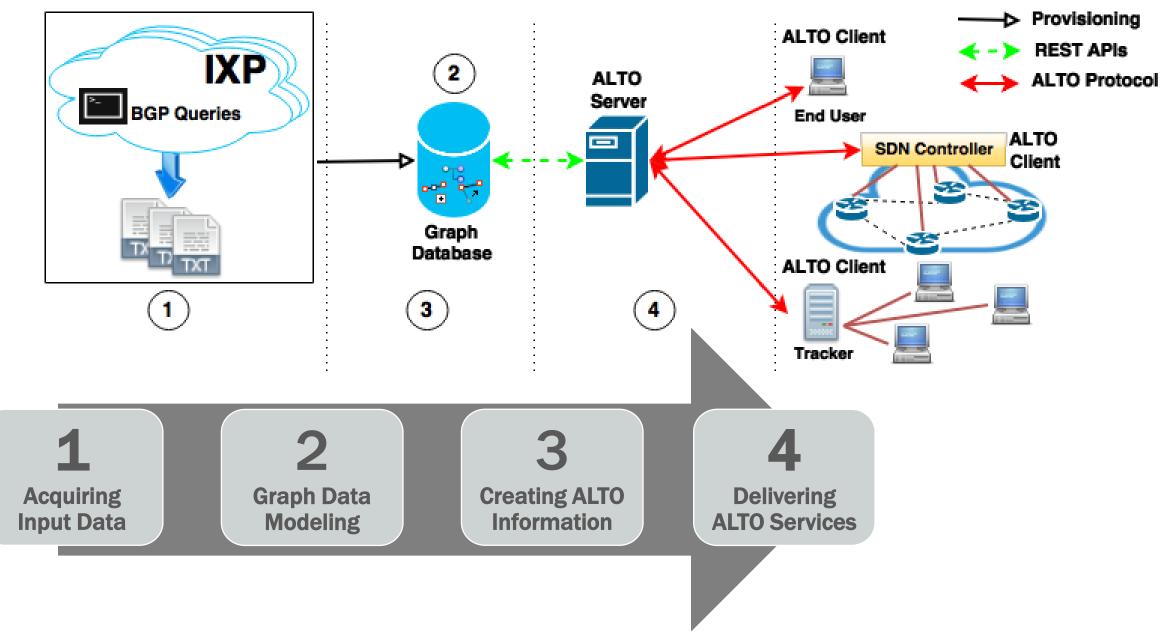

4. AaaS Prototype

- **5. Experimental Evaluation**
- 6. Conclusions / Future Work



Design of ALTO-as-a-Service (AaaS) : Acquiring Input Data

2.

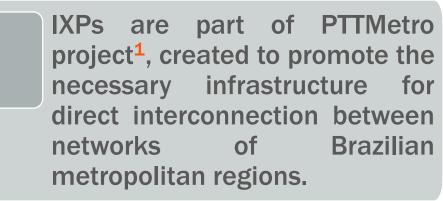

3.

4.

2.

3.

1. Introduction


- 2. Background
- 3. Design of ALTO-as-a-Service (AaaS)

4. AaaS Prototype

- **5. Experimental Evaluation**
- 6. Conclusions / Future Work

AaaS Prototype : Input: IX.br BGP Data Set

Table 4.1: Public IXPs Operating in Brazil

1

25

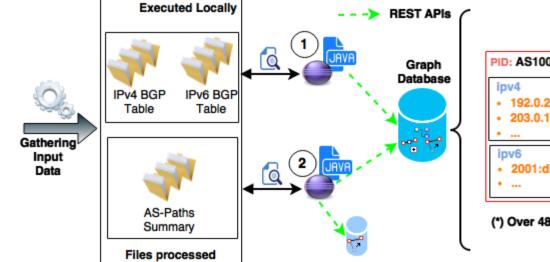
The largest IXP ecosystem in Latin America and one of the world's top ten.

1374 Members². 1184 ASes registered.

+**1.0**

Tbps average throughput ³

¹http://ix.br


²http://ix.br/particip, Accessed: September, 2015 ³http://ix.br/trafego, Accessed: May, 2015

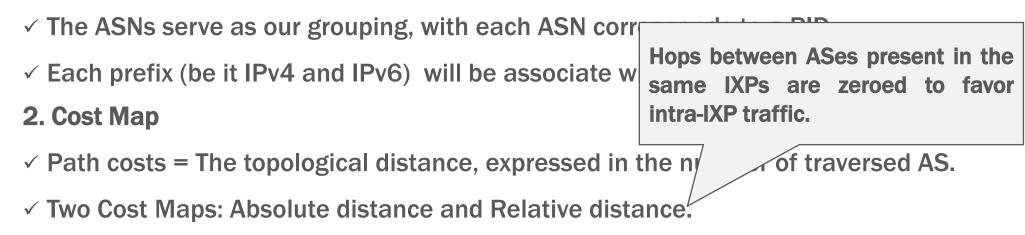
#	City	State	Looking Glass	Gbps	Members	
01	Belem	PA	lg.bel.ptt.br	0.44	14	
02	Belo Horizonte	MG	lg.mg.ptt.br	2.07	33	
03	Brasilia	DF	lg.df.ptt.br	2.98	30	
04	Campina Grande	PB	lg.cpv.ptt.br	0.69	10	
05	Campinas	SP	lg.cas.ptt.br	3.57	35	(*)
06	Cuiaba	MT	lg.cgb.ptt.br	0.00	9	(*)
07	Caxias do Sul	RS	lg.cxj.ptt.br	0.08	5	(*)
08	Curitiba	\mathbf{PR}	lg.pr.ptt.br	16.10	68	(1)
19	Florianopolis	SC	lg.sc.ptt.br	1.28	34	(*)
10	Fortaleza	CE	lg.ce.ptt.br	2.72	29	
11	Goiania	GO	lg.gyn.ptt.br	1.06	24	
12	Lajeado	RS	lg.laj.ptt.br	0.01	8	(*)
13	Londrina	\mathbf{PR}	lg.lda.ptt.br	1.62	32	
14	Manaus	AM	lg.mao.ptt.br	0.02	8	(*)
15	Maringa	\mathbf{PR}	lg.mgf.ptt.br	0.28	21	(*)
16	Natal	RN	lg.nat.ptt.br	0.26	13	(*)
17	Porto Alegre	RS	lg.rs.ptt.br	20.85	117	
18	Recife	PE	lg.pe.ptt.br	0.69	16	
19	Rio de Janeiro	RJ	lg.rj.ptt.br	39.22	68	
20	Salvador	BA	lg.ba.ptt.br	1.47	47	(*)
21	Sao Carlos	SP	lg.sca.ptt.br	0.00	3	(*)
22	Sao Jose dos Campos	SP	lg.sjc.ptt.br	0.47	13	
23	Sao Jose do Rio Preto	SP	lg.sjp.ptt.br	0.62	11	(*)
24	Sao Paulo	SP	lg.sp.ptt.br	429.45	667	(1)
25	Vitoria	ES	lg.vix.ptt.br	0.80	22	
(1)	There are filters in I.C. o		ain a the DCD tabl	-		

(1) There are filters in LG compromising the BGP table.

(*) Data provided by NIC.br, since publicly access was denied.

100	÷
0.2.0/24	PID: AS400
0.113.0/24	PID: AS300 PID: AS200
1:db8::/32	ipv4 • 198.51.100.0/24
	•

NETWORK MAP (*)


(*) Over 48K ASes and over 500K of IPv4 and IPv6 prefixes

AS hops	AS100	AS200	AS300	
AS100	0	5	4	
AS200	2	0	6	
AS300	3	3	0	

COST MAP (+)

(+) Over 2.3 billions of pah costs

1. Network Map

AaaS Prototype : AAaaS Prototype : ALTO Server Front-End: OpenDaylight

- ✓ ALTO in ODL is focused on implementing basic ALTO as services RESTful web services (Northbound APIs) for ALTO client/server communications.
- ALTO Northbound APIs generate ALTO services from data stored in the MD-SAL data store (an ODL core component)
 - It was necessary to modify the Northbound APIs to generate ALTO services from the data stored in the Neo4j GDB (instead of the MD-SAL topology).

1. Introduction

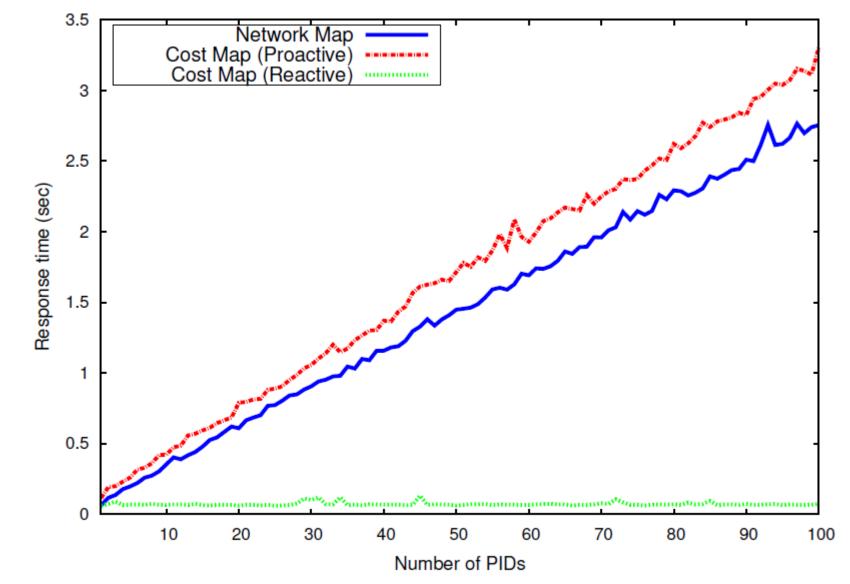
- 2. Background
- 3. Design of ALTO-as-a-Service (AaaS)
- 4. AaaS Prototype

5. Experimental Evaluation

6. Conclusions / Future Work

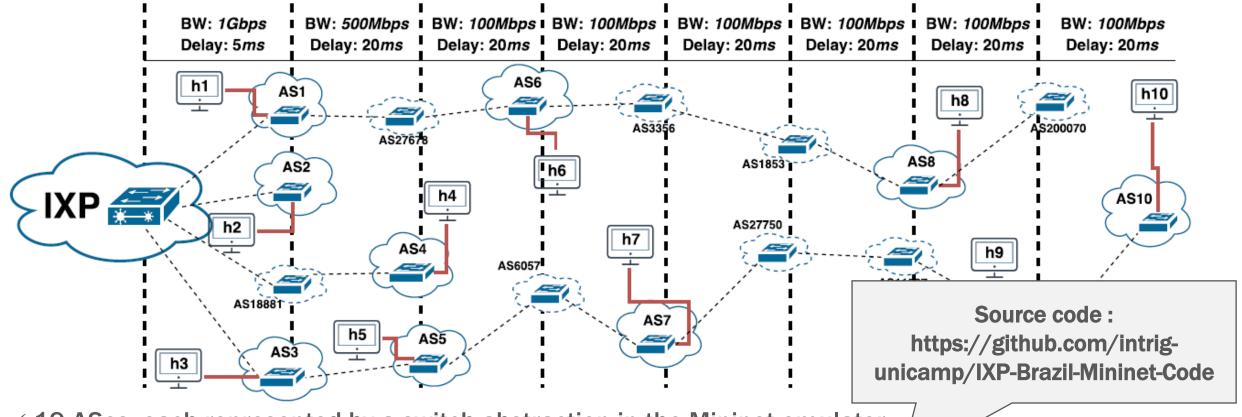
RFC 7285 | E T F

Postman - REST Client


URI : "http://intrig.dca.fee.unicamp.br/controller/nb/v2/alto/ filtered/networkmap/my-default-network-map" HTTP Method : "POST" Content-Type : "application/alto-networkmapfilter+json" Input Parameters : "pids" : ["AS100","AS200"] **HTTP Response :** "meta": { "vtag": { "resource-id": "my-default-network-map", "tag": "da65eca2eb7a10ce" } "network-map": { "AS100": { "ipv4": ["192.0.2.0/24", "203.0.113.0/24"], "ipv6": ["2001:db8::/32"], "AS200": { "ipv4": ["198.51.100.0/24"] }

URI : "http://intrig.dca.fee.unicamp.br/controller/nb/v2/alto/ filtered/costmap/my-default-network-map" HTTP Method : "POST" Content-Type : "application/alto-costmapfilter+ison" Input Parameters : "cost-type" :{"cost-mode": "Numerical", "cost-metric": "HopsNumber" }, "pids" : { "srcs" : ["AS100"], "dsts" : ["AS100","AS200","AS300"] } **HTTP Response :** "meta": { "dependent-vtags": [{ "resource-id": "my-default-network-map", "tag": "da65eca2eb7a10ce" }]. "cost-type": { "cost-mode": "Numerical", "cost-metric": "HopsNumber" }}, "cost-map": { "AS100": { "AS100": 0, "AS300": 4, "AS200": 5 } }

(a) Filtered Network Map


(b) Filtered Cost Map (abs. distance)

Experimental Evaluation : System Performance Profiling

Response processing time for the Network and Cost Map (Absolute Distance) services

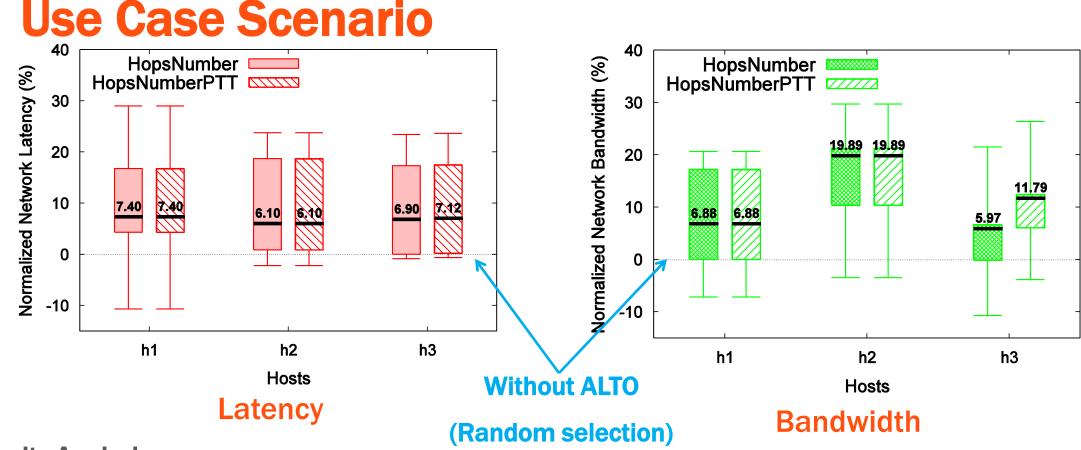
Experimental Evaluation : Use Case Scenario (strawman)

✓ 19 ASes, each represented by a switch abstraction in the Mininet emulator.

- ✓ A sample AS-Path summary file was used to create the AS-level connectivity.
- \checkmark The large AS switch represents the IXP.
- ✓ 10 communicating peers are represented as Mininet hosts attached to the switches.
- ✓ Links between ASes were set with larger bandwidth and lower delay when closer to the IXP.

ALTO information

Two Cost Maps: based on the topological distance (absolute and relative) expressed as the number of hops between ASes.


COST MAP RANKING 1: Absolute distance (HopsNumber)	COST MAP RANKING 2: Relative distance (HopsNumberPTT)
"cost-map": {	"cost-map": {
AS1 {AS2: 2, AS3: 2, AS6: 2, AS4: 3, AS5: 3, AS7: 5, AS8: 5, AS9: 8, AS10: 9 },	AS1 {AS2: 0, AS3: 0, AS4: 1, AS5: 1, AS6: 2, AS7: 3, AS8: 5, AS9: 6, AS10: 7 },
AS2 {AS1: 2, AS3: 2, AS4: 3, AS5: 3, AS6: 4, AS7: 5, AS8: 7, AS9: 8, AS10: 9 },	AS2 {AS1: 0, AS3: 0, AS4: 1, AS5: 1, AS6: 2, AS7: 3, AS8: 5, AS9: 6, AS10: 7 },
AS3 {AS5: 1, AS1: 2, AS2: 2, AS4: 3, AS7: 3, AS6: 4, AS9: 6, AS10: 7, AS8: 7 }}	AS3 {AS1: 0, AS2: 0, AS4: 1, AS5: 1, AS6: 2, AS7: 3, AS8: 5, AS9: 6, AS10: 7 }}

ALTO Clients

 \checkmark Hosts that belong to ASes present at the IXP (ie., h1, h2, h3).

Workload and Metrics

- ✓ For each ALTO client (h1, h2, h3), we run end-to-end round-trip time measurements and available bandwidth with the remaining nine hosts using ping and iperf tools, respectively.
- ✓ Two scenarios:
 - 1. Without traffic
 - 2. With a background traffic using the D-ITG traffic sending TCP traffic (512 byte packet size, 1,000 pps rate).

Results Analysis

Experimental Evaluation :

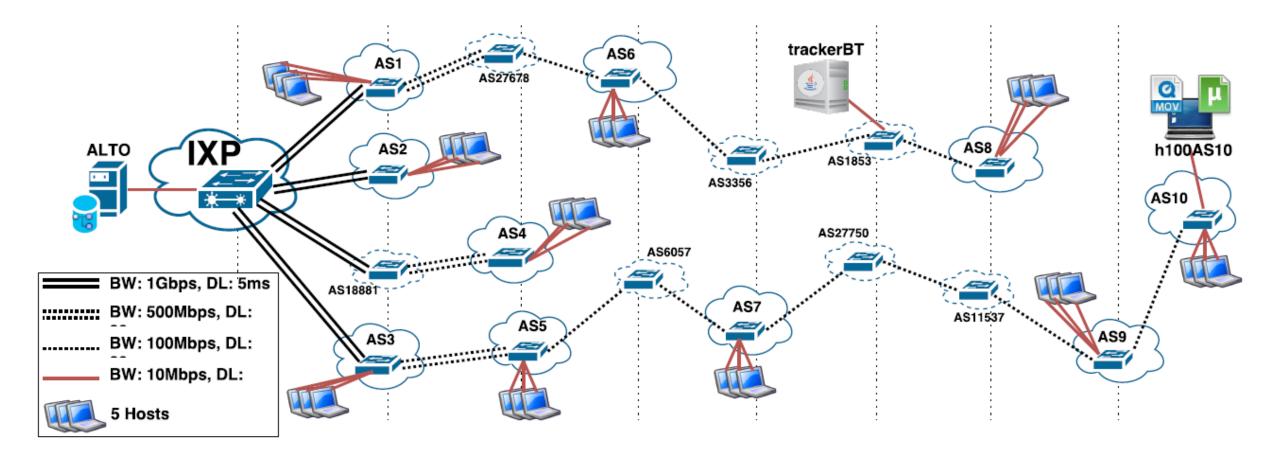
✓ improvements in latency and throughput of up to 29%

- ✓ In a few cases, peers selected through AaaS ended with less bandwidth or higher latency (between 1% and 11%): Shortest paths not necessary the best performing ones.
- ✓ When h3 uses the IXP infrastructure to select a peer (h1), as HopsNumberPTT suggests, further throughput improvements (up to 26%) and lower latency (up to 24%) can be obtained.

1. Introduction

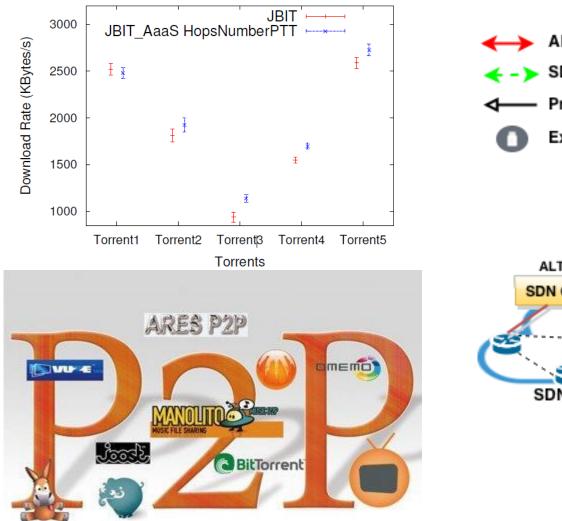
- 2. Background
- 3. Design of ALTO-as-a-Service (AaaS)
- 4. AaaS Prototype
- **5. Experimental Evaluation**

6. Conclusions / Future Work

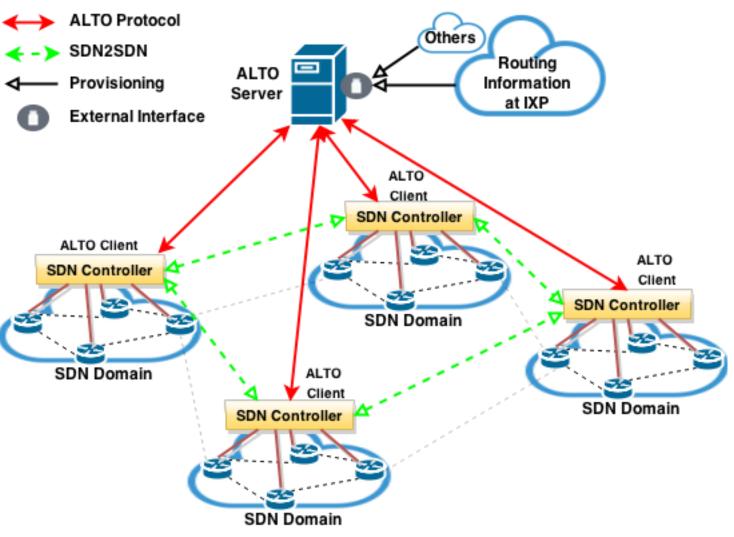


- ✓ The Cost Map rankings are based on relatively static AS-Path distance and do not consider more dynamic information such as actual bandwidth, latency, packet loss rate, etc.
 - Thus, dynamic updates of cost maps based on public Internet quality measurements (e.g., SIMET, RIPE TTM) are in our research agenda.
- ✓ Implement the remaining ALTO services (e.g., full Map-Service, EPS and ECS).

Prototype performance optimization (e.g., Neo4j query tuning techniques, Linux fs configuration).



✓ Further experimentation on more complex scenarios.



The IXP-based testing network model (EXTENDED VERSION)

ALTO – SDN Use Cases

- ✓ This is the first work that explores the use of inter-domain routing data publicly available at IXPs to create abstract topology and cost maps following the recently standardized IETF ALTO protocol.
- ✓ Our proposed architecture encompasses the whole process of ALTO service delivery.
- ✓ Our proof-of-concept implementation is based on the popular Neo4j graph database and the OpenDaylight controller and validated the potential of applications to leverage the network awareness provided by ALTO servers.
- ✓ At the same time, ISPs and ALTO service providers (in our case IX.br operators) can benefit from increased and localized IXP traffic exchange.

dlachosp@dca.fee.unicamp.br

http://lattes.cnpq.br/5466177320244302

BACKUP

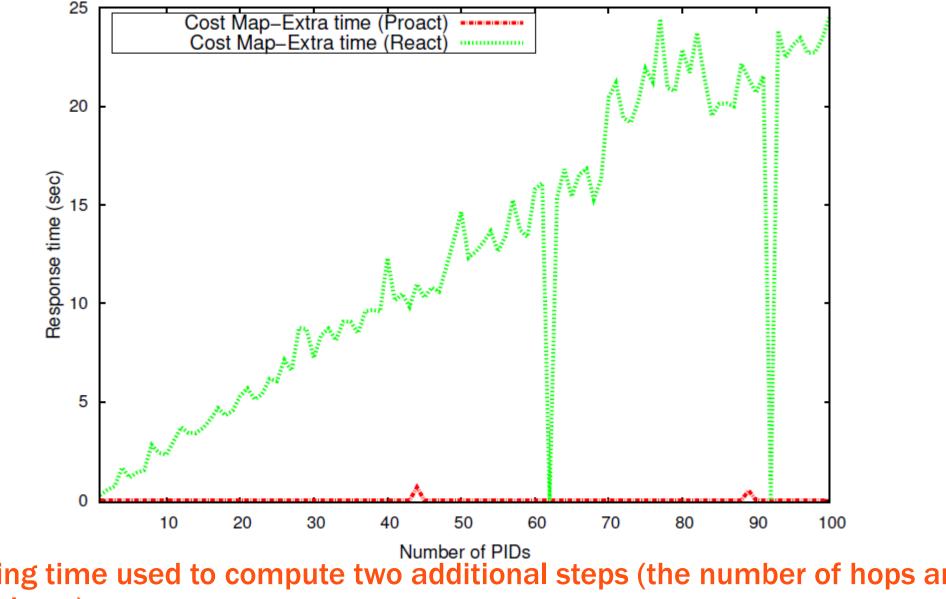
MAIN OBJECTIVE: Create and provide Application-Layer Traffic Optimization (ALTO) services based on public information, more specifically BGP routing information publicly available at Internet eXchange Points (IXPs).

Issue: Random selection of available peers	Providing a mechanism for giving peers information which enables choosing closest neighbors rather randomly.
--	--

		Applications could have a large impact on the overall traffic
	traditional traffic	generated using services with knowledge of network topology.
optimization techniques		general de la

Issue: Limited knowledge	Working at a layer above, with a better understanding of the
of the underlying network topology	underlying network would give applications a detailed guide to achieve the desired resources.

Design of ALTO-as-a-Service (AaaS): Creating and Delivering ALTO Information


Create the ALTO information and populate the graph DB

- 1. Grouping of prefixes into PID (Network Map) by ASes, IXPs, BGP communities, points of presence, just to cite a few examples.
- 2. Defining the preferences / costs between the groups PID (Cost Map) expressed on a path cost such as physical distance between IXPs, topological distances between ASes, etc.

Delivering ALTO Services

The last step is deploying an ALTO web server implementing the client-server protocol delivering the REST/JSON APIs to ALTO clients as defined by RFC7285.

Experimental Evaluation : System Performance Profiling

Processing time used to compute two additional steps (the number of hops and insert it into database).

	h1	h2	h3	h4	h5	h6	h7	h8	h9	h10
h1		120.5	120.6	160.6	160.6	180.5	240.8	300.7	360.9	401.0
111		(±0.4)	(±0.3)	(±0.5)	(±0.5)	(±0.7)	(±0.5)	(±0.8)	(±0.8)	(±1.0)
h2	120.5		120.4	160.6	160.6	200.7	240.9	320.9	360.9	401.1
112	(±0.3)		(±0.2)	(±0.4)	(±0.4)	(±0.3)	(±0.6)	(±0.7)	(±0.8)	(±0.6)
h3	120.5	120.5		160.5	140.5	200.6	220.6	320.8	340.8	380.8
115	(±0.4)	(±0.5)		(±0.6)	(±0.4)	(±0.5)	(±0.4)	(±0.5)	(±0.4)	(±0.8)

Processing Network Latency (ms) in a scenario with no traffic expressed as RTT AVG and RTT MDEV.