OrbixWeb
Programmer’s Guide

IONA Technologies PLC
September 1998

IONA Technologies PLC
The IONA Building
Shelbourne Road

Dublin 4

Ireland

Phone: +353-1-662 5255
Fax: L +353-1-662 5244

IONA Technologies Inc.
60 Aberdeen Ave.
Cambridge, MA 02138

USA
Phone: +1-617-949-9000
Faxx: +1-617-949-9001

IONA Technologies Pty. Ltd.
Ashton Chambers, Floor 3
189 St. George’s Terrace
Perth WA 6000

Australia

Phone: ... +61 9 288 4000
Fax: L +61 9 268 4001
Support: ... support @ iona.com
Training: training @ iona.com
Orbix Sales: sales @ iona.com
IONA’s FTP site ftp.iona.com
World Wide Web:. http:/fwww.iona.com/

OrbixWeb is a Registered Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Java is a trademark of Sun Microsystems, Inc.

Copyright © 1991-1998 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M2147

Contents

OrbixWeb Programmer’s Guide

Preface

Audience

Overview of OrbixWeb 3.1
New Features

Organisation of the OrbixWeb Documentation
The OrbixWeb Programmer’s Reference
A Message from the OrbixWeb Team

Document Conventions

Online Support for OrbixWeb

Part | Getting Started

Chapter | Introduction to CORBA and OrbixWeb
CORBA and Distributed Object Programming
The Role of an Object Request Broker
The Structure of a CORBA Application
The Structure of a Dynamic CORBA Application
Interoperability between Object Request Brokers
The Object Management Architecture
The CORBAservices
The CORBAfacilities
How OrbixWeb Implements CORBA

Chapter 2 Getting Started with Java Applications
OrbixWeb Programming Steps
Defining the IDL Interface
Compiling the IDL Interface
Implementing the IDL Interface

XV
XV
XV
XVi
xviii
Xix
Xix
XX

xXXiii

13
14
14
I5
16

Contents

Writing the Server Application
Writing the Client Application
Compiling the Client and Server
Registering the Server
Running the Client Application
Summary of Programming Steps
OrbixWeb IDL Compilation
Examining the Roles of the Generated Interfaces and Classes

Chapter 3 Getting Started with Java Applets
Review of OrbixWeb Programming Steps
Providing a Server
Writing a Client Applet

Creating the User Interface

Adding OrbixWeb Client Functionality
Creating the Applet

Adding the Applet to a HTML File
Compiling the Client Applet

Running the Client Applet

Security Issues for Java Applets

Chapter 4 Getting Started with OrbixWeb Configuration
OrbixWeb Configuration Files
OrbixWeb.properties
Orbix.cfg
Configuration Tool Requirements
Starting the OrbixWeb Configuration Tool
The Configuration Tool Main Panel
The General Page
The Initialization Page
The Server-Side Support Page
The Wonderwall Support Page
The Advanced Page
Learning more about OrbixWeb

iv

18
21
24
26
27
28
29
32

35
35
36
36
37
40
48
49
50
51
52

53
54
54
54
55
55
56
56
58
60
6l
63
64

Contents

Part | CORBA Programming with OrbixWeb

Chapter 5 Introduction to CORBA IDL

IDL Modules and Scoping
Defining IDL Interfaces

IDL Attributes

IDL Operations

Inheritance of IDL Interfaces

Forward Declaration of IDL Interfaces
Overview of the IDL Data Types

IDL Basic Types

IDL Constructed Types

IDL Template Types

Arrays

IDL Pseudo-Object Types

Defining Aliases and Constants

Chapter 6 IDL to Java Mapping
Overview of IDL to Java Mapping
Mapping for Basic Data Types
Mapping for Modules

Scoped Names
The CORBA Module
Mapping for Interfaces
Client Mapping
Helper Classes for Type Manipulation
Holder Classes and Parameter Passing
Server Implementation Mapping
Object References
Mapping for Derived Interfaces
Mapping for Constructed Types
Enums
Structs
Unions
Mapping for Strings
Mapping for Sequences
Mapping for Arrays

69
70
70
71
71
75
78
79
79
80
82
84
85
86

89
90
92
94
94
94
95
96
97

100

105

110

112

17

117

118

120

123
125
126

Contents

Mapping for Constants 127
Mapping for Typedefs 129
Mapping for Exception Types 129
System Exceptions 129
User-Defined Exceptions 130
Naming Conventions 132
Parameter Passing Modes and Return Types 133
Chapter 7 Using and Implementing IDL Interfaces 135
Overview of an Example Application 135
Overview of the Programming Steps 136
Defining IDL Interfaces to Application Objects 136
Compiling IDL Interfaces 137
Implementing the Interfaces 138
The TIE Approach 138

The ImplBase Approach 140
Developing the Server Application 141
Account Class Implementation 142

Bank Class Implementation 144

main() Method and Object Creation 146
Object Initialization and Connection 147
Construction and Markers I51
Developing the Client Application 152
Object Location 154
Binding 156
Remote Invocations 156
Registration and Activation 158
Execution Trace 159
Comparison of the ImplBase and TIE Approaches 165
Providing Different Implementations of the Same Interface 166
Providing Different Interfaces to the Same Implementation 166

An Example of Using Holder Classes 166

Vi

Contents

Chapter 8 Making Objects Available in OrbixWeb
OrbixWeb Object References
Assigning Markers to OrbixVVWeb Objects
Interoperable Object References
Making Objects Available to Clients
The OrbixWeb Naming Service
Terminology and the CosNaming Module
Format of Names within the Naming Service
The NamingContext Interface
Exceptions Raised by Operations in NamingContext
The Bindinglterator Interface
Using OrbixWeb Naming Service
String Format of Names
OrbixWeb Naming Service Example
Compiling and Running a Naming Service Application
Federation of Name Spaces
Binding to Objects in OrbixWeb Servers
The bind() Method
Binding and Exceptions
Using Object Reference Strings to Create Proxy Objects

Chapter 9 ORB Interoperability

Overview of GIOP
Coding
Message Formats

Internet Inter-ORB Protocol (I1OP)
IIOP in OrbixWeb
Example using IIOP in a Platform-Independent Application
Using IIOP and Binding from an OrbixWeb Client
Configuring an IIOP Port Number for an OrbixWeb Server

Viewing Information about Object References
Importing an Object Reference into the IOR Explorer
Importing an Object Reference from a File
Parsing an Object Reference

Interoperability between Orbix and OrbixWeb

vii

171
172
173
176
177
178
178
180
181
187
188
189
190
190
200
203
204
204
210
211

213
214
214
214
216
217
218
224
226
228
229
229
230
231

Contents

Part Il Running OrbixVWeb Programs

Chapter 10 Running OrbixWeb Clients 235
Running Client Applications 235
Running OrbixWeb Client Applets 236

Loading a Client Applet from a File 237
Loading a Client Applet from a Web Server 237
Security Issues for Client Applets 238
Debugging OrbixWeb Clients 239
Possible Platform Dependencies in OrbixWeb Clients 239
Using the Wrapper Utilities 240
Using owjava as a Front End to the Java Interpreter 240
Using owjavac as a Front End to the Java Compiler 241
Using the Interpreter and Compiler without the Wrapper Utilities 241

Chapter |1 Using OrbixWeb on the Internet 243
About Wonderwall 243
Using the Wonderwall with OrbixWeb as a Firewall Proxy 244

OrbixWeb Configuration Parameters Used to Support the Wonderwall =~ 245
Using the Wonderwall as an Intranet Request-Router 248
Applet Signing Technology 249
Overview 249

Chapter 12 Registration and Activation of Servers 251
The Implementation Repository 252
Activation Modes 253

Primary Activation Modes 253
Secondary Activation Modes 254
Persistent Server Mode 255
Implementation Repository Entries 256
The OrbixWeb putit Utility for Server Registration 257
Examples of Using putit 258
Additional Registration Commands 259
Further Mode Options: Activation and Pattern Matching 260
Persistent Servers 261
Unregistered Servers 262

Activation Issues Specific to IIOP Servers 263

viii

Contents

Security Issues for OrbixWeb Servers 263
Identity of the Caller of an Operation 263

Server Security 264
Activation and Concurrency 266
Activation Information for Servers 266
IDL Interface to the Implementation Repository 268
Using the Server Manager 268
About the Java Daemon(orbixdj) 268
Chapter 13 The OrbixWeb Java Daemon 271
Overview of the Java Daemon 272
Features of the Java Daemon 272

Using the Java Daemon 273
Starting orbixdj from Windows 273
Starting orbixdj from the Command Line 273
Configuring the Java Daemon 274
Viewing Output Text using the Graphical Console 277
In-Process Activation of Servers 279
Guidelines for Developing in-process Servers 279
Scope of the Java Daemon 281
Activation 281

Java Version 281
IT_daemon Interface 282
Utilities 282
Markers and the Implementation Repository 283
Security 283

Server Names 283
In-process Servers 283
Chapter 14 Diagnostics and Instrumentation Support 285
Setting Diagnostics 286
Diagnostics Levels 286
Alternative Approaches to Setting Diagnostics 288

Basic Instrumentation Support 290
InstrumentBase 290
Logging Instrumentation Data 291
Additional Functionality 291

Contents

Part IV Topics in OrbixWeb Programming

Chapter |15 Exception Handling 295
User-Defined Exceptions 296

The IDL Definitions 296

The Generated Code 297

System Exceptions 299

The Client: Handling Exceptions 300
Handling Specific System Exceptions 301

The Server: Throwing an Exception 302
Operation Completion Status in System Exceptions 304

Chapter 16 Using Inheritance of IDL Interfaces 305
Single Inheritance of IDL Interfaces 306

The Client: IDL-Generated Types 307

Using Inheritance in a Client 310

The Server: IDL-Generated Types 312

The TIE Approach 312

Muiltiple Inheritance of IDL Interfaces 315
Implementing Multiple Inheritance 316

Chapter 17 Callbacks from Servers to Clients 319
Implementing Callbacks in OrbixWeb 319
Defining the IDL Interfaces 320

Writing a Client 320

Writing a Server 323

Callbacks and Bidirectional Connections 325
Avoiding Deadlock in a Callback Model 325

Using Non-Blocking Operation Invocations 326

Using Multiple Threads of Execution 328

An Example Callback Application 329

The IDL Specification 332

The Client Application 333

The Central Server Application 339

Contents

Part V Advanced CORBA Programming

Chapter 18 Type any 347
Constructing an Any Object 348
Inserting Values into an Any Object 348
Extracting Values from an Any Object 350
Any as a Parameter or Return Value 353
Additional Methods 353

Chapter 19 Dynamic Invocation Interface 355
Using the DII 356

Programming Steps for Using the DII 357
The CORBA Approach to Using the DII 359
Creating a Request 360
Setting up a Request Using _request() 361
Alternative approach 362
Setting up a Request Using _create_request() 365
Invoking a Request 367
Using the DIl with the Interface Repository 367
Setting up a Request to Read or Write an IDL Attribute 368
Operation Results 368
Interrogating a Request 369
Resetting a Request Object for Reuse 369
Deferred Synchronous Invocations 370
Using Filters with the DIl 372

Chapter 20 Dynamic Skeleton Interface 373
Uses of the DSI 374
Using the DSI 375

Creating Dynamiclmplementation Objects 375
Example of Using the DSI 377

i

Contents

Chapter 21 The Interface Repository
Configuring the Interface Repository
Runtime Information about IDL Definitions
Using the Interface Repository
Installing the Interface Repository
Utilities for Accessing the Interface Repository
Structure of the Interface Repository Data
Simple Types
Abstract Interfaces in the Interface Repository
Class Hierarchy and Abstract Base Interfaces
Interface IRObject
Containment in the Interface Repository
The Contained Interface
The Container Interface
Containment Descriptions
Type Interfaces in the Interface Repository
Named Types
Unnamed Types
Retrieving Information from the Interface Repository
Example of Using the Interface Repository
Repository IDs
OMG IDL Format
Pragma Directives

xii

381
382
382
383
383
384
387
390
391
391
392
394
395
397
398
402
402
404
405
409
410
410
412

Contents

Part VI Advanced OrbixWeb Programming

Chapter 22 Filters 415
Introduction to Per-Process Filters 417
Introduction to Per-Object Filters 421
Using Per-Process Filters 422
An Example Per-Process Filter 424
Installing a Per-Process Filter 427
How to Create a System Exception 427
Piggybacking Extra Data to the Request Buffer 429
Retrieving the Size of a Request Buffer 431
Defining an Authentication Filter 432
Using Per-Object Filters 433
IDL Compiler Switch to Enable Object Filtering 435
Thread Filters 436
Multi-Threaded Clients and Servers 436
Thread Programming in OrbixVWeb 438
Chapter 23 Smart Proxies 44|
Proxy Classes and Smart Proxy Classes 442
Benefits of Using Smart Proxies 445
Example: A Simple Smart Proxy 445
Creating a Smart Proxy 446

Chapter 24 Loaders 453
Overview of Creating a Loader 454
Specifying a Loader for an Object 455
Connection between Loaders and Object Naming 456

Loading Objects 458
Saving Objects 459
Writing a Loader 459
Example Loader 460
Polymorphism 468
Approaches to Providing Persistent Objects 469
Disabling the Loaders 471

xiii

Chapter 25 Locating Servers at Runtime
The Default Locator
Writing a New Locator

Chapter 26 Opaque Types
Using Opaque Types

IDL Definition
Compiling the IDL Definition
Mapping of Opaque Types to Java
Implementing the Opaque Type
The Helper Class
The Holder Class

Chapter 27 Transforming Requests
Transforming Request Data
The IE.lona.OrbixWeb.Features.IT_reqTransformer Class
Registering a Transformer
An Example Transformer

Chapter 28 Service Contexts

The OrbixWeb Service Context API
ServiceContextHandler Class
ORB Interfaces
ServiceContextList

Using Service Contexts in OrbixWeb Applications
ServiceContext Per Request Model
ServiceContext Per-Object Model
Main Components

Service Context Handlers and Filter points

Appendix A
IDL Compiler Switches

Index

Xiv

473
473
477

479
481
481
481
482
482
483
484

485
486
486
487
489

493
494
494
495
496
496
496
500
500
502

505

509

Preface

OrbixVVeb 3.1 is an implementation of the Common Object Request Broker Architecture
(CORBA) from the Object Management Group (OMG) that maps CORBA functionality
to the Java programming language. OrbixVVeb combines a powerful standards-based
approach to distributed application development with the flexibility and ease of use of the
Java environment.

OrbixWeb 3.1 is available in two editions:

* OrbixWeb 3. Standard Edition.

* OrbixWeb 3.1 Professional Edition.
The Professional Edition of OrbixVWeb 3.1 augments the Standard
development kit with full Naming Service, Interface Repository and
Server Manager utilities.
OrbixWeb 3.1 Professional Edition also ships with Wonderwall, IONA’s
firewall for Internet Inter-ORB Protocol (IOP) communication.

Audience

The OrbixWeb Programmer’s Guide and the OrbixWeb Programmer’s
Reference are intended for use by application programmers and designers wishing to
familiarise themselves with CORBA distributed programming and its application in the Java
environment. These guides assume as a prerequisite that you are familiar with the Java
programming language.

Overview of OrbixWeb 3.1

The Internet ORB

OrbixVVeb 3.1 features tight integration with VWonderwall ensuring that OrbixVVeb
applications are fully Internet-enabled. This includes automatic runtime support for IOR
firewall profiles and IOP options to allow for Internet callback behaviour. The OrbixVVeb

XV

Preface

runtime has also been upgraded allowing OrbixVVeb applications to be the fully SSL V3
enabled.

The Java Server

OrbixWVeb 3.1 includes a Java version of the server activation component (or bi xd) and
associated utilities. The pure Java Daemon (or bi xdj) allows you to launch Java CORBA
server components either as new threads within the VM running or bi xdj or
alternatively, in separately launched Java VMs. Using server threads within a single VM
presents a natural and scalable approach for Java server deployment. You can also avail of
the full OrbixVVeb server bind and auto-activation capability on any Java-enabled platform
with file-system support.

Several features of or bi xd that were not supported by or bi xdj in OrbixVVeb 3.0 have
now been added to OrbixWeb 3.1. These include invoke and launch rights and locator
functionality.

Ease of Use

In OrbixWWeb 3.1 all configuration information is stored in a central (downloadable)
properties file and all configuration is performed using Java-based GUI components. No
command-line editing of configuration data is required. Graphical user interfaces are also
provided for Server Manager, IFR and Naming Service utilities; while demo-suite and
documentation are extended to make OrbixVVeb as simple as possible to use ‘out-of-the-
box'. OrbixWeb 3.1 ships with a new Server Manager GUI.

IDL/Java Mapping

OrbixVWVeb provides full and complete support for the standard OMG IDL to Java Mapping
(version 1.1) including the Java ORB portability interfaces.

New Features

Multiple ORB Support

OrbixWeb 3.1 provides support for multiple ORBs. This gives applications enhanced
flexibility as each newly-created ORB is completely independent from any other ORB; for
example, in its configuration settings, connections, and listener ports. This facilitates
complete applet separation in browsers.

Xvi

Preface

Enhanced Diagnostics and Instrumentation Support

The OrbixVWeb runtime now produces full diagnostics output to aid you with debugging.
Diagnostics are broken down by component, each associated with a particular diagnostics
level. The basic instrumentation support offered by OrbixVVeb enables you to log
instrumentation data for specified events.

IHOP |.l1 Fragmentation

OrbixWeb 3.1 complies with version |.I of the Internet Inter-ORB Interoperability
Protocol (IIOP). OrbixVVeb now allows you to send IOP messages as fragments. This
increases parallelism and improves the overall dispatch speed for very large messages. It also
brings the additional benefit of lower memory consumption.

Service Contexts

OrbixWVeb 3.1 includes support for service contexts. The OrbixVVeb service context API
allows you to pass service specific information in lOP message headers. You can use service
contexts on a per-object or per-request basis.

Java Daemon Graphical Console

The Java Daemon graphical console has also been extended to produce full diagnostics
output. In addition, you can now use the Java Daemon console to output threading
information and to run garbage collection.

XVii

Preface

Organisation of the OrbixWeb Documentation

This section gives a summary of the structure of the OrbixWeb Programmer’s
Guide, and a brief outline of the OrbixWeb Programmer’s Reference.

The OrbixWeb Programmer’s Guide

The OrbixWeb Programmer’s Guide is divided into six parts. Parts |, Il and lll provide
the basis for understanding the remainder of the material covered in these guides.

Part | Getting Started

This part of the guide introduces basic CORBA concepts, and introduces OrbixVVeb by
describing a simple programming example. It works through the steps required to write
client and server Java applications. This also provides an example of integrating client
functionality with Java applets.

Many of the concepts that form the basis of Part Il are introduced in this part.

Part Il CORBA Programming with Orbix Web

Part Il provides a more complete description of developing CORBA programs in Java using
OrbixVWeb.

This part of the guide provides an outline of the CORBA Interface Definition language (IDL)
and the standard OMG mapping from IDL to Java. It shows how to program a simple
application and provides information on various aspects of programming a distributed
application, including the use of the Naming Service to identify objects in the system.

Part lll Running OrbixWeb Programs

This part describes the issues involved in running OrbixVVeb programs. An important
aspect of this description is a complete introduction to the OrbixVWeb Implementation
Repository. The Java Daemon, or bi xdj , is also introduced.

Part IV Topics in OrbixWeb Programming

This part describes a small set of miscellaneous features, most of which are commonly used
in OrbixVWeb applications. These features include the use of exception handling in a
distributed system.

Xviii

Preface

Part V Advanced CORBA Programming

This part of the guide explains more advanced features of OrbixVVeb as specified by the
CORBA standard. In particular, it provides the information needed to use the Dynamic
Invocation Interface that allows a client to issue requests on objects whose interfaces
may not have been defined at the time the application was compiled.

Part VI Advanced OrbixWeb Programming

OrbixVVeb provides a number of interfaces to allow you to influence runtime behaviour for
particular deployment scenarios. Part VI explains how you can replace different
components of OrbixVVeb, and the circumstances where the use of these OrbixVWeb
specific features is advantageous.

The OrbixWeb Programmer’s Reference

The OrbixWeb Programmer’s Reference expands on some information presented
in the OrbixWeb Programmer’s Guide, and provides details of the public Application
Programming Interfaces (API) in the standard or g. ong. CORBA package, as well as the
details of the OrbixVWeb API. The OrbixWeb Programmer’s Reference also
describes the new GUI tools available in OrbixVWVeb 3.

A Message from the OrbixWeb Team

In developing Version 3.1, our focus was to provide Java ORB technology which is closest
to the spirit of Java and which is completely at home on the Internet. As Java extends from
the browser to the middle-tiers and back-end, a Java ORB capable of scaling from the thin
client to the enterprise server is required. Ve have built OrbixVVeb 3.1 to be that ORB
while keeping in mind that CORBA is a development tool and ease of development,
integration and deployment remain paramount.

Xix

Preface

Document Conventions

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the OCRBA: : (bj ect class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#i ncl ude <stdio. h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd / user s/ your_name

Note: some command examples may use angle brackets
to represent variable values you must supply.

This guide may use the following keying conventions:

No prompt

%

XX

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

Preface

[]
{}

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

XXI1

Preface

Online Support for OrbixWeb

The following resources are available to users seeking further information on OrbixVVeb
topics:

Documentation Updates

Online documentation for the OrbixWeb Programmer’s Guide and the OrbixWeb

Programmer’s Reference is updated on a regular basis. You can access this information
from the OrbixWeb Product Pages on the IONA Web site at:

http://waww i ona. com

Additional Online Technical Information

The IONA Knowledge Base provides detailed and frequently updated technical
information on a wide range of OrbixWVeb topics.

Access the Knowledge Base through the OrbixWeb Product Pages on IONA’s web site.

Contacting Technical Support at IONA

If you have a support contract with IONA, you can send an e-mail to
support @ona. com

Note: You must quote your customer registration details in order to have your
request processed.

You will receive by return, an automatic e-mail assigning you a Problem Report number.
Please quote this PR number in subsequent communications with the IONA Support team.

xxiii

Online Support for OrbixWeb

When submitting requests to IONA Support, please include the following information:

® Your full name and e-mail address (and customer registration details).
® Which platforms and compilers you are using (including version details).

® A detailed description of the problem.

If you do not have a support contract with IONA, and wish to receive information about
purchasing support, mail i nf 0@ ona. comto request further details.

xXXiv

Part |

Getting Started

Introduction to CORBA and
OrbixWeb

OrbixWeb is a software environment that allows you to build and

integrate distributed applications. OrbixWeb is a fullimplementation
of the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) specification. This chapter introduces
CORBA and describes how OrbixWeb implements this specification.

CORBA and Distributed Object Programming

The diversity of modern networks makes the task of network programming very difficult.
Distributed applications often consist of several communicating programs written in
different programming languages and running on different operating systems. Network
programmers must consider all of these factors when developing applications.

The Common Object Request Broker Architecture (CORBA) defines a framework for
developing object-oriented, distributed applications. This architecture makes network
programming much easier by allowing you to create distributed applications that interact as
though they were implemented in a single programming language on one computer.

CORBA also brings the advantages of object-oriented techniques to a distributed
environment. It allows you to design a distributed application as a set of cooperating objects
and to reuse existing objects in new applications.

Introduction to CORBA and OrbixWeb

The Role of an Object Request Broker

CORBA defines a standard architecture for Object Request Brokers (ORBs). An ORB is a
software component that mediates the transfer of messages from a program to an object
located on a remote network host. The role of the ORB is to hide the underlying
complexity of network communications from the programmer.

An ORB allows you to create standard software objects whose methods can be invoked by
client programs located anywhere in your network. A program that contains instances of
CORBA objects is often known as a server.

When a client invokes a member method on a CORBA object, the ORB intercepts the
method call. As shown in Figure |, the ORB redirects the method call across the network
to the target object. The ORB then collects results from the method call and returns these
to the client.

Client Host Server Host

@
Client ’

Object Request Broker

Method
Call ‘ ‘

Figure 1: The Object Request Broker

The Nature of Objects in CORBA

CORBA objects are standard software objects implemented in any supported
programming language. CORBA supports several languages, including Java, C++ and
Smalltalk.

CORBA and Distributed Object
Programming

With a few calls to an ORB's application programming interface (API), you can make
CORBA objects available to client programs in your network. Clients can be written in any
supported programming language and can invoke the member methods of a CORBA
object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming languages, each
CORBA object has a clearly-defined interface, specified in the CORBA Interface Definition
Language (IDL). The interface definition specifies what member methods are available to a
client, without making any assumptions about the implementation of the object.

To invoke member methods on a CORBA object, a client needs only the object’s IDL
definition. The client does not need to know details such as the programming language used
to implement the object, the location of the object in the network, or the operating system
on which the object runs.

The separation between an object’s interface and its implementation has several advantages.
For example, it allows you to change the programming language in which an object is
implemented without changing clients that access the object. It also allows you to make
existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is to define the interfaces to objects in
your system, using CORBA IDL. You then compile these interfaces using an IDL compiler.

An IDL compiler generates Java from IDL definitions. This Java includes client stub code,
which allows you to develop client programs, and server skeleton code, which allows
you to implement CORBA objects.

As shown in Figure 2 on page 6, when a client calls a member method on a CORBA object,
the call is transferred through the client stub code to the ORB. If the client has not accessed
the object before, the ORB refers to a database, known as the Implementation
Repository, to determine exactly which object should receive the method call. The ORB
then passes the method call through the server skeleton code to the target object.

Introduction to CORBA and OrbixWeb

Client Host Server Host
Object
Client Q

Client Object
Stub Skeleton
Code Code

Method Object Request Broker

Call ‘ ‘

Figure 2: Invoking on a CORBA Object

The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the IDL
associated with your objects and use the generated Java code in your applications. This
means that your client programs can only invoke member methods on objects whose
interfaces are known at compile-time. If a client wishes to obtain information about an
object’s IDL interface at runtime, it needs an alternative, dynamic approach to CORBA
programming.

The CORBA Interface Repository is a database that stores information about the IDL
interfaces implemented by objects in your network. A client program can query this
database at runtime to get information about those interfaces. The client can then call
member methods on objects using a component of the ORB called the Dynamic call
Interface (DII), as shown in Figure 3 on page 7.

CORBA and Distributed Object
Programming

Client Host Server Host
Object
Client ‘
Object
DIlI Skeleton

Code

Method Object Request Broker

Call ‘ ‘

Figure 3: Client Invoking a Method Using the DIl

CORBA also supports dynamic server programming. A CORBA program can receive
method calls through IDL interfaces for which no CORBA object exists. Using an ORB
component called the Dynamic Skeleton Interface (DSI), the server can then
examine the structure of these method calls and implement them at runtime. Figure 4 on
page 8 shows a dynamic client program communicating with a dynamic server
implementation.

Note: The implementation of Java interfaces in client-side generated code
supplies proxy functionality to client applications. This must not be
confused with the implementation of IDL interfaces in OrbixWeb servers.

Introduction to CORBA and OrbixWeb

Client Host Server Host
Object
Client ‘
DII DSI
Method Object Request Broker
Call ‘ ‘

Figure 4: Method Call Using the DIl and DSI

Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to network
programmers. To achieve this, the ORB components must communicate with each other
across the network.

In many networks, several ORB implementations coexist and programs developed with
one ORB implementation must communicate with those developed with another. To
ensure that this happens, CORBA specifies that ORB components must communicate
using a standard network protocol called the Internet Inter-ORB Protocol (IIOP).

The Object Management Architecture

The Object Management Architecture

An ORB is one component of the OMG’s Object Management Architecture (OMA). This
architecture defines a framework for communications between distributed objects. As
shown in Figure 5, the OMA includes four elements:

* Application objects.

* The ORB.

* The CORBAsetrvices.
* The CORBATfacilities.

Application objects are objects that implement programmer-defined IDL interfaces. These
objects communicate with each other, and with the CORBAservices and CORBAfacilities,
through the ORB. The CORBAservices and CORBAfacilities are sets of objects that
implement IDL interfaces defined by CORBA and provide useful services for some
distributed applications.

Application Objects

@) A
A A

V.V V.V VYV \ 4

Object Request Broker

A A A A A A A

vV Vv YyVvYy
5O 0O Y
CORBAservices CORBAfacilities

Figure 5: The Object Management Architecture

Introduction to CORBA and OrbixWeb

When writing OrbixVVeb applications, you may require one or more CORBAservices or
CORBA(facilities. This section provides a brief overview of these components of the OMA.

The CORBAservices

The CORBAservices define a set of low-level services that allow application objects to
communicate in a standard way. These services include the following:

The Naming Service. Before using a CORBA object, a client program
must get an identifier for the object, known as an object reference. This
service allows a client to locate object references based on abstract,
programmer-defined object names.

The Trading Service. This service allows a client to locate object
references based on the desired properties of an object.

The Object Transaction Service. This service allows CORBA programs
to interact using transactional processing models.

The Security Service. This service allows CORBA programs to interact
using secure communications.

The Event Service. This service allows objects to communicate using
decoupled, event-based semantics, instead of the basic CORBA function-
call semantics.

IONA Technologies implements several CORBAservices including all the services listed

above.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications frequently require
when manipulating distributed objects. The CORBAfacilities are divided into two
categories:

The horizontal CORBAfacilities.
The vertical CORBAfacilities.

The horizontal CORBAfacilities consist of user interface, information management, systems
management, and task management facilities. The vertical CORBAfacilities standardize IDL
specifications for market sectors such as healthcare and telecommunications.

How OrbixWeb Implements CORBA

How OrbixWeb Implements CORBA

OrbixWVeb is an ORB that fully implements the CORBA 2.0 specification. By default, all
OrbixV¥Veb components and applications communicate using the CORBA standard [IOP
protocol.

The components of OrbixVVeb are as follows:

The IDL compiler parses IDL definitions and produces Java code that
allows you to develop client and server programs.

The OrbixWeb runtime is called by every OrbixWeb program and
implements several components of the ORB, including the DII, the DSI,
and the core ORB functionality.

The OrbixWeb daemon is a process that runs on each server host and
implements several ORB components, including the Implementation
Repository. An all-Java counterpart to the daemon process is also
included. This daemon process is known as the Java Daemon, also
referred to as or bi xdj .

The OrbixWeb Interface Repository server is a process that
implements the Interface Repository.

OrbixWVeb also includes several programming features that extend the capabilities of the
ORB. These features are described in the Advanced OrbixVVeb Programming section of
this guide.

The OrbixWeb GUI Tools and the OrbixWeb command-line utilities allow you
to manage and configure the components of OrbixVVeb.

Introduction to CORBA and OrbixWeb

Getting Started with Java
Applications

This chapter introduces OrbixWeb with a step by step description
of how to create a simple grid application. These steps include
defining an Interface Definition Language (IDL) interface,
implementing this interface in Java, and developing a standalone
client application. The OrbixWeb IDL Compiler and the files it
generates are also introduced in this chapter.

The example application used is a two-dimensional grid, implemented by a Java class in a
server. The grid example illustrates how Java applications can act as clients to servers
containing objects that implement IDL definitions. The server and client can run on different
machines in a distributed system.

The grid example is used because it gives an abstract view of commonly-used components,
such as spreadsheets or relational tables. The sample code described in this chapter is
available in the denos/ gri d directory of your OrbixVVeb installation.

Getting Started with Java Applications

OrbixWeb Programming Steps

The following programming steps are required to create a distributed client/server
application in Java using OrbixVVeb:

Defining the IDL interface.

Compiling the IDL interface.

Implementing the IDL interface.

Writing the server application.

Writing the client application.

Compiling the client and server.

Registering the server.

©® N o U h WD —

Running the client.

This section outlines these programming steps in detail, using the grid demonstration as an
example.

Defining the IDL Interface

The first step in writing an OrbixVVeb program is to define the interfaces to the application
objects, using IDL.

The interface to the grid application can be defined in IDL as follows:

/1 1DL

/1 gridDeno.idl

interface grid {
readonly attribute short height;
readonly attribute short width;

void set(in short row, in short col, in long val ue);
long get(in short row, in short col);

}s

This IDL interface has two attributes (hei ght and wi dt h) that define the number of rows
and columns in the grid. The interface has two operations corresponding to methods that
clients can call on the object:

set() This operation sets the grid element
[rol,col] toval ue.

OrbixWeb Programming Steps

get() This operation returns grid element
[row col].

The parameters to these operations are labelled asi n. This means that the parameters are
passed from the client to the server. In other interfaces, parameters may be labelled as out
(from the server to the client) ori nout (in both directions).

Compiling the IDL Interface

The next programming step is to compile the IDL interface using the IDL compiler. This
checks the validity of the IDL specification, and generates Java code.

Setting Up the Configuration File for the IDL Compiler

Before running the IDL compiler you should check that OrbixVVeb can find the
configuration file, O bi x. cf g.

Windows

If OrbixWeb is installed on Windows, the environment variable | T_CONFI G_PATHmust
be set to point to the directory in which O bi x. cf g resides; typically, this is the installation
directory. If | T_CONFI G_PATHis not set, the following registry entry is used:

HKEY_LOCAL_NACH NE\ SOFTWARE\ | ONATechnol ogi es\
O bi x\Vb\ <Version>\ Confi gurati on\| T_OONFI G_PATH

UNIX

Set the environment variable | T_CONFI G_PATH o point to the directory in which
Q bi x. cf g resides, using one of the following scripts:

set envs. sh
set envs. csh

If the environment variable | T_OONFI G_PATHis not set, the compiler looks for
QO bi x. cf g in the directory / et c.

Getting Started with Java Applications

Running the IDL Compiler

To compile the IDL interface, enter the following command at the operating system
prompt:

idl -jP gridDeno gridDeno.idl

This command generates a number of java files which are used to communicate with
OrbixVVeb. The generated files are located in the gri d/ j ava_out put / gri dDeno
directory. Discussion of these files is deferred until the section, “OrbixVVeb IDL
Compilation” on page 29.

The j P switch passed to the IDL compiler specifies the package name into which all
generated Java classes are placed. This helps to avoid potential name clashes. In the grid
example, all application files are placed within a package called gr i dDeno.

Implementing the IDL Interface

The next step involves implementing the IDL interface using the code generated by the IDL
compiler. In the grid example, the ImplBase approach is used to implement the IDL
interface. The TIE approach can also be used. Both of these approaches are discussed in
detail in “Implementing the Interfaces” on page 138. Implementing the gri d IDL interface
using the ImplBase approach involves creating an implementation class which derives from
the IDL generated class _gri dl npl Base.

In this example, the implementation class created is G i dI npl ement at i on. This class
implements the attributes and operations defined in the file gr i dDeno. i dI .

package gri dDenvp;

/1 import O bixWeb related cl asses
i nport | E.1ona. Orbi xWeb. _O bi x\Web;
i nport | E.lona. Orbi xWWeb. _CORBA;

i nport org. ony. CORBA. ORB;

public class Gidlnplenentation
extends _gridl npl Base {

/'l store the height
short m_ hei ght;
/] store the width
short mwi dth;

OrbixWeb Programming Steps

/1l a 2D array to hold the grid data
int marray[][];

public Gidlnplementation(short height,short w dth){
/lallocate 2D array
marray = new int[height][w dth];
//set up height
m_hei ght = hei ght;
//set up width
mwi dth = width;
}

/1 inplementation of the nethod that reads
/1 the height attribute
public short height() {

return m height;

}

/1 inplementation of the nethod that reads
/1 the width attribute
public short width(){

return mwidth;

}

/1 inplementation of the set operation
public void set(short x, short y, int value) {
Systemout. println
(“In grid.set () x = “ + Xx);
System.out.printin
(‘Ingrid.set) y =" +y);
System.out.printin
(“In grid.get () value = “ + value);
m_array[y][x] = value;

/I implementation of the get operation
public int get (short x, short y) {
int value = m_array[x][y];
System.out.printin
(“In grid.get () x = “ + x);
System.out.printin
(Ingrid.get)y =" +y);

Getting Started with Java Applications

Systemout.println
(“In grid.get () value = “ + value);
return value;

Writing the Server Application

The next programming step involves writing a server which creates a CORBA object
and initializing the ORB to receive calls. In the grid example, a server application is
required to service client requests on the grid interface. This server creates an instance of
the Gridimplementation class from “Implementing the IDL Interface” on page 16.

ORSB initialization

Because OrbixVVeb uses the standard OMG IDL to Java mapping, all clients and servers
must call org.omg.CORBA.ORB.init() to initialize the ORB. This returns a reference to
the ORBobject. The ORB methods defined by the standard can then be invoked on this
instance.

You should use the parmeterized version of theinit)) ~ method, defined as follows:

static public org.omg.CORBA.ORB init
(String[] args, ava.util.Properties props)

This method is passed an array of strings, which are command arguments, and a list of Java
properties. Either of these values may be null. This version of the init() method returns
a new fully functional ORB Java object each time it is called.

Note: Calling ORB.init) without parameters returns a singleton ORB with
restricted functionality.

Refer to the OrbixWeb Programmer’s Reference for further details on the
org.omg.CORBA.ORB class.

The following server program creates a Gridimplementation object, and gives it an
initial size. It then indicates to OrbixVVeb that the server initialization is complete by a call to
impl_is_ready() . This call takes as a parameter the name of the server as registered
with the OrbixVVeb daemon.

OrbixWeb Programming Steps

[¢]

package gri dDenv;

i nport
i nport
i nport
i nport

| E 1 ona. O bi xWb. QO bi xVéb;

| E 1 ona. O bi x\Wb. CORBA

or g. ong. CCRBA. CRB,

or g. ong. CCRBA. Syst enExcept i on;

public class javaserverl {
public static void nain (String args[]) {

}
}

/1 constants used to define the size of the grid
final short w dth = 100;

final short height = 100;

grid gridinpl = null;

CRBorb = CRB.init (args,null);

try {
gridinpl = new Gidlnplementation (wi dth, hei ght);

_CORBA O bix.inpl_is_ready ("gridServer");

Systemout.println ("Shutting down gridServer...");
orb. shutdown (gridinpl);
}
catch (Systenkxception se) {
Systemout. println ("Exception during creation of
Qidlnpl enentation" + se.toString());
Systemexit(1);
}
Systemout.printin ("Gid Server exiting....");

This code is described as follows:

Create a proxy grid to hold the G'i dl npl enent at i on object.

2. Initialize the ORB for an OrbixWeb application.

3. Create an implementation of the gri d server object giving it an initial size

of 100 by 100.

The call to i npl _i s_r eady indicates to OrbixVWeb that the server has
been initialized and is ready to receive requests on its objects. In this

Getting Started with Java Applications

case, it receives requests on the gri dl npl object. This is a blocking call
which returns when the server times out.

The i npl _i s_ready() call takes the name of the server as registered
with the OrbixVWeb daemon as a parameter. The _OORBA. O bi x object
which calls i npl _i s_ready() is used to communicate directly with
OrbixWeb.

5. Indicate to OrbixWeb that all calls are finished and finalize the ORB.

6. If theinpl _is_ready() call should fail the exception will be caught by
the cat ch block.

Note: You must enclose all remote operations ina try. . cat ch block,
otherwise the code will not compile.

Refer to “Implementing the Interfaces” on page |38 for more details on using the
i npl _i s_ready() method.

Error Handling for Server Applications

If an error occurs during an OrbixVWeb method call, the method may raise a Java exception
to indicate this. To handle these exceptions, you must enclose Orbixweb callsint ry
statements. Exceptions thrown by OrbixVVeb calls can then be handled by subsequent Java
cat ch clauses. All OrbixVWVeb system exceptions inherit from the class

or g. ong. GORBA. Syst enExcepti on.

In the grid example, the code in the cat ch clause displays details of possible system
exceptions raised by OrbixVVeb. It achieves this by printing the result of the

Syst enException. toString() method to the Java Syst em out print stream.
The constructor for the IDL generated _gr i dI npl Base type may raise a system
exception, so the instantiation of the ImplBase object should be enclosed inatry
statement.

Refer to Chapter |5, “Exception Handling” on page 295 for more details.

20

OrbixWeb Programming Steps

Writing the Client Application

The following steps have been outlined so far:

|. Defining the IDL interface.

2. Compiling the IDL interface.

3. Implementing the IDL interface.
4. Writing the Server application

The next step involves writing Java clients that access implementation objects through IDL
interfaces. The client which follows creates a variable of type gri d and serves as
an illustration. The client calls the static method bi nd() on the IDL-generated
gri dHel per class to create an instance of gri d. The created object acts as a
proxy for an object that implements the gri d IDL interface in the OrbixVWeb
server application. A proxy is a local Java object that acts as a representative for
a remote object. Its purpose is to transparently forward Java method calls to the
remote object.

package gri dDenv;

inport |E |ona. ObixWb. CORBA
i nport org. ong. CORBA Syst enExcept i on;
i nport org. ong. CORBA CRB,

public class javaclientl {
public static void main (String args[]) {
String hostNane = nul | ;
1 grid gridProxy = null;

if (args.length < 1) {
Systemout. printl n("Usage : javaclientl [<hostname>]\n");
Systemexit(1);

}
el se
2 host Nane = new String (args[0]);
3 CRB.init (args,null);
try {
4 gridProxy = gridHel per.bind (":gridServer", hostNane);
}

21

Getting Started with Java Applications

catch (Systenkxception ex) {
Systemout. println ("Exception caught during bind :
+ ex.toString());

Systemexit (1);

short width
short hei ght

0;
0;

try {
wi dt h
hei ght

gridProxy.wi dth();
gri dProxy. hei ght ();

}
catch (Systenkxception ex) {
Systemout.println ("FA L\t Exception getting the wdth
and height of the grid.");
Systemout.println (ex.toString());
Systemexit(1);
}

Systemout.printin ("Gid widthis " + wdth);
Systemout.println ("Qid height is " + height);
short x_coord = O;
short y_coord = 0;

try {
gri dProxy.set (x_coord, y_coord, 0);
x_coord = 2;
y_coord = 4;
gri dProxy. set (x_coord, y_coord, 123);
}
catch (Systenkxception ex) {
Systemout . println ("FA L\t Exception setting val ues
ingrid");
Systemout.println (ex.toString());
Systemexit (1);

}
int val = 0;
try {
x_coord = 2; y_coord = 4;
val = gridProxy.get (x_coord, y_coord);
}

22

OrbixWeb Programming Steps

}
}

catch (Systenkxception ex) {
Systemout . println("FA L\t Exception getting val ue
fromgrid.");
Systemout.println (ex.toString());
Systemexit (1);
}

if (val !'=123) {
Systemout.println ("FAIL \tThe value " + val + " returned
for grid[2,4] is incorrect.");
Systemexit (1);
}
Systemout.println ("Value for grid[2,4] is
Systemout.println ("\n@id deno finished.");

+ val);

This code is described as follows:

l.
2.
3.
4.

Create a variable to hold a reference to the proxy grid.
Extract the host name of the server machine from the command line.
Initialize OrbixVWeb for an application.

Establish a CORBA connection with the grid server and return a proxy
for the server grid object. The bi nd() call causes the OrbixWeb daemon
to launch the grid server, and enables it to accept remote requests. The
first parameter to bi nd() is a string of the following form:

<obj ect nane>: <server name>

This names the object and the server in which the object is running. In
this example the object is not named so OrbixWeb can choose any gri d
object in the specified server. The server name, gri dServer, is the name
of the server as registered in the Implementation Repository on the
server host. Refer to “Registering the Server” on page 26 for more
details.

The second parameter to bi nd() specifies the host name for the target
server.

Get the width and height by calling the remote wi dt h() and hei ght ()
operations on the grid server.

Set values in the remote grid.

. Retrieve a value from the grid.

23

Getting Started with Java Applications

Compiling the Client and Server

Details of the next step, compiling the client and server, are specific to the Java development
environment used. It is possible, however, to describe general requirements. These are
illustrated here using the Sun Java Developer's Kit (JDK)I. This is the development
environment used by the OrbixVVeb demonstration makefiles.

To compile an OrbixVWeb application, you must ensure that the Java compiler can access
the following:

® The Java API classes, located in the cl asses. zi p file in the | i b directory
of your |DK installation.

® The org. onyg. CORBA package, located in the cl asses directory of your
OrbixWeb installation.

* Thel E I ona. O bi x\%b package, also located in the cl asses directory of
your OrbixWeb installation.

® Any other pre-existing classes required by the application.

Compiling the Server Application

To compile the server application, you must invoke the Java compiler on the user generated
source files, and on the files generated by the IDL compiler. In the grid server example, the
user generated source files are as follows:

® javaserverl.java

® @Qidinplenentation.java
The IDL generated files are as follows:

® gridSkel eton.java

e gridlnpl Base. java

® grid.java

All of these files are located in the gr i d/ Java_out put / gr i dDeno directory. Discussion
of the files generated by the IDL compiler is deferred until “OrbixWeb IDL Compilation”
on page 29.

I. The JDK version number must be 1.0.2 or higher.

24

OrbixWeb Programming Steps

Compiling the Client Application

To compile the client application, invoke the Java compiler on the client source file and on
the files generated by the IDL compiler. In the grid client example, the source file is
javacl i ent 1. j ava and the generated files are as follows:

® gridDeno/ _gridStub.java
®* gridDeno/grid.java

You can use the following example command to compile all Java source files from the
command line:

UNIX

% / <JDK Locat i on>/ bi n/javac -cl asspath/ <O bi x\W¢b Locat i on>
/ cl asses/ <JDK Location>/1ib/cl asses.zip -d /<O bi x\eb
Locati on>/cl asses *.java java_output/gridDeno/ *. java

Windows

> c¢:\<JIK Location>\bi n\javac -cl asspath c:\<QO bi xW¢b Locati on>
\cl asses; c:\<JDK Location>\Ilib\classes.zip -d c:\<QO bi x\¢b
Locati on>\cl asses *.java java_out put\gridDeno*.java

You may use the standard Java command line to compile all the required Java source files, as
shown in the preceding command. Alternatively, OrbixVVeb provides a convenience tool
called owj avac that acts as a front end to your chosen Java compiler. This tool passes the
default cl asspat h and cl asses directory to the compiler, avoiding the need to set
environment variables.

The OrbixVWeb denos/ gr i d directory provides a script which calls owj avac as required.
To compile the java source files, enter the appropriate command from the gr i d directory:

UNIX % grrake
Windows > conpil e

You can use these commands for all of the OrbixVWeb demonstrations from the
appropriate denos directory. These commands run the IDL compiler, compile the Java
source files and run the client and server.

For details on the use of the owj ava and owj avac wrapper utilities, see “Using the
Wrapper Utilities” on page 240.

25

Getting Started with Java Applications

Registering the Server

The next step involves registering the server in the Implementation Repository. This allows
the server to be launched automatically. The Implementation Repository is a server
database that maintains a mapping from the server name to the name of the Java class that
implements the server. If the server is registered, it is automatically run through the Java
interpreter when a client binds to the gri d object.

Running the OrbixWeb Daemon

Before registering the server you should ensure that an OrbixWWeb daemon process
(or bi xd or or bi xdj) is running on the server machine.

To run the OrbixVWVeb Java Daemon type the or bi xdj command from the bi n directory
of your OrbixWeb installation.

To run the OrbixVWeb Daemon, type the or bi xd command from the bi n directory of
your OrbixVVeb installation.

In Windows, you can also start a daemon process by clicking on the appropriate menu item
from the OrbixVVeb folder.

putit

Once an OrbixVVeb daemon process is running, you can register the server. To register
the gri dServer, use the puti t command as follows:

putit -j gridServer gridDeno.javaserverl

The-j switch indicates that the specified server should be launched via the Java Interpreter.
Refer to “The OrbixVWeb putit Utility for Server Registration” on page 257 for more details
ontheputit command.

The second parameter to put i t is the server name, gr i dSer ver in the grid example.
This is also the name of the server passed toi npl _i s_ready() in “Writing the Server
Application” on page 18. The third parameter is the name of the class which contains the
server’'s mai n() method, j avaser ver 1 in the grid example. This is the class which should
be run through the Java interpreter.

The server registration step is automated by a script in the deros\ gr i d directory which
executes the put i t command.

26

OrbixWeb Programming Steps

Running the Client Application

The final programming step involves running the Java interpreter on the bytecode (. cl ass
files) produced by the Java compiler. When running an OrbixWeb dlient application, you
must ensure that the interpreter can load the following:

The Java API classes, stored in the cl asses. zi p file in the | i b directory
of your JDK installation.

The or g. ony. OORBA package, stored in the cl asses directory of your
OrbixWeb installation.

The | E. 1 ona. O bi x\&b package, also stored in the cl asses directory of
your OrbixWeb installation

Any pre-existing classes required by the application.

Any classes compiled during the client compilation stage.

You can use the owj ava tool as an alternative to the standard Java command line. This is a
wrapper utility that acts as a front-end to your chosen Java interpreter. The owj ava tool
passes the default cl asspat h to the interpreter, avoiding the need to set up environment
variables. Refer to “Using the Wrapper Utilities” on page 240 for more details on this
convenience tool.

To execute the gr i dDenv/ j avacl i ent 1. cl ass, use the following command:

ow ava gridDeno.javaclientl <server host>

A script named j avacl i ent 1 in the denos/ gri d directory implements this step. To run
the client application use the following command:

javaclientl <server host>

27

Getting Started with Java Applications

Summary of Programming Steps

This section outlined the steps involved in creating a distributed client / server application
using OrbixVWeb. These steps are as follows:

I. Define the interfaces to objects used by the application, using the
CORBA standard IDL.

2. Compile the IDL to generate the Java code.

3. Implement the IDL interface using the generated code.

4. Write a server, using the generated code, to create CORBA objects, and
initialize the ORB to receive calls.

5. Write a client application to use the CORBA objects located in the
server.

6. Compile the client and server applications.
7. Register the server in the OrbixWeb Implementation Repository.
8. Run the client application.

The next section examines the OrbixVVeb IDL compilation process, focusing on the Java
classes and interfaces generated by the IDL compiler.

28

OrbixWeb IDL Compilation

OrbixWeb IDL Compilation

The OrbixVWeb IDL compiler produces Java code corresponding to the IDL definition. The
mapped Java code consists of code that allows a client to access an object through the gr i d
interface, and code that allows a gr i d object to be implemented in a server.

The IDL compilation produces Java constructs (six classes and two interfaces) from the
definition of interface gr i d. In compliance with Java requirements, each public class or
interface is located in a single source file with a . j ava suffix. Each source file is located in a
directory that follows the Java mapping for package names to directory structures.

By default, the OrbixVVeb IDL compiler creates a local j ava_out put directory into which
the generated Java directory structure is placed. An alternative target directory can be
specified using the compiler switch - a?

Each generated file contains a Java class or interface that serves a specific role in an

application.
Client-Side Mapping Description
grid A Java interface whose methods define the
Java client view of the IDL interface.
_gridstub A Java class that implements the methods
defined in interface gri d. This class
provides functionality which allows client
method calls to be forwarded to a server.
Server-Side Mapping Description
_gridsSkel eton A Java class used internally by OrbixWeb to
forward incoming server requests to
implementation objects. You do not need
to know the details of this class.
_gridl npl Base An abstract Java class that allows server-

side developers to implement the gri d
interface using the ImplBase approach.

2. Refer to Appendix A, “IDL Compiler Switches” on page 505, for details of IDL Compiler switches.

29

Getting Started with Java Applications

tie @id

_gridQperations

Client and Server Side
Mapping
gri dHel per

gri dHol der

gri dPackage

30

A Java class that allows server-side
developers to implement the gri d interface
using delegation. This approach to interface
implementation is called the TIE approach.

The TIE approach is an OrbixVVeb-specific
feature, and is not defined in the CORBA
specification.

A Java interface, used in the TIE approach
only, that maps the attributes and
operations of the IDL definition to Java
methods. These methods must be
implemented by a class in the server,
following the TIE approach.

Description

A Java class that allows you to manipulate
IDL user-defined types in various ways.

A Java class defining a Hol der type for class
gri d. This is required for passing gri d
objects as i nout or out parameters to and
from IDL operations. See “Holder Classes”
on page 95.

A Java package used to contain any IDL
types nested within the gri d interface, for
example, structures or unions.

OrbixWeb IDL Compilation

Grid.idl

IDL Compiler

—
Generated
_GridStub Classes and _GridSkeleton
Interfaces
Java Compiler
—_
Grid Client Grid Object

Application Implementation

Server

Client Bytecode

Bytecode

Figure 6: Overview of the Compilation of the Grid Interface

31

Getting Started with Java Applications

Examining the Roles of the Generated Interfaces and Classes

The relationships between the Java types produced by the IDL compiler can be illustrated
by a brief examination of the generated source code. The IDL to Java compiler maps the
IDL interface gr i d to a Java interface of the same name. A corresponding Java class

(_gri dSt ub) implements this Java interface.

Client-Side Mapping

The Javafiles gri d. j avaand _gri dSt ub. j ava support the client-side mapping. The
gri d. j ava file maps the operations and attributes in gr i dDeno. i dl to Java methods as
follows:

/1 Java generated by the O bi xWeb I DL conpiler

/1

public interface grid

ext ends org. ong. CORBA. Obj ect {

public short height();
public short width();
public void set(short row, short col, int value);
public int get(short row, short col);

}

This Java interface defines an OrbixWVeb client view of the IDL interface defined in
gridDeno. i dl . The Java interface is implemented by the Java class _gri dSt ub in the file
_gridStub. java asfollows:

/1 Java generated by the O bi xWeb I DL conpiler
public class _gridStub
extends org. ong. CORBA. portabl e. Obj ect | npl

i mpl ements grid {
public short height() {

}
public short wdth() {

public void set(short row, short col,int value) {

}

32

OrbixWeb IDL Compilation

public int get(short row short col) {
}

}

The primary role of the _gri dSt ub Java class is to transparently forward client invocations
on gri d operations to the appropriate implementation object in the server. The IDL is
mapped to the Java interface gr i d to allow for multiple inheritance. The implementation is
then supplied by the corresponding _gri dSt ub.

Theset () and get () IDL operations are mapped to corresponding Java methods. The
parameters, which are IDL basic types in the IDL definition, are mapped to equivalent Java
basic types. For example, the IDL type | ong (a 32-bit integer type) maps to the Java type

i nt (also a 32-bit integer type). For IDL types that have no exact Java equivalent, an
approximating class or basic type is used. Refer to “IDL to Java Mapping” on page 91.

The two r eadonl y attributes are mapped with the Java methods (hei ght () and
wi dt h()). These attributes are not mapped to Java public member variables because the
server and client may not be stored in the same address space.

Server-Side Mapping
OrbixWVeb provides support for two approaches to implementing an IDL interface:

* The ImplBase approach, which uses inheritance:

The generated Java class used in the ImplBase approach is
_gridl npl Base.

The ImplBase approach is used in this chapter to implement the gri d IDL
interface.

33

Getting Started with Java Applications

® The TIE approach, which uses delegation.

The generated Java constructs used in the TIE approach are the interface
_gridQperations and theclass _tie Qid.

The grid example illustrated in this chapter uses the ImplBase approach, the standard
CORBA approach. The use of the TIE and ImplBase approaches is discussed in detail in
“Implementing the Interfaces” on page 138. The TIE approach, which uses delegation, is
preferred for many Java applications and applets. This approach is used to implement the
account example in Chapter 7, “Using and Implementing IDL Interfaces” on page 135.

After the IDL interface has been implemented, a server creates an instance of the
implementation class. This server then connects the created object to the ORB runtime
which passes incoming invocations to the implementation object.

34

Getting Started with Java Applets

This chapter extends the grid example from Chapter 2 to

take account of a common form of distributed Java system: a
downloadable client applet which communicates with a back-end
server. You should be familiar with the material covered in Chapter 2,
“Getting Started with Java Applications” before continuing with this
chapter.

Review of OrbixWeb Programming Steps

Recall the programming steps typically required to create a distributed client/server
application with OrbixVVeb:

Define the interfaces to objects used by the application, using the
CORBA standard Interface Definition Language (IDL).

Generate Java code from the IDL using the IDL compiler.

. Implement the IDL interface, using the generated code.

Write a server that creates instances of the generated classes and
informs OrbixWeb when initialization is complete.

Write a client application that connects to the server and uses server
objects.

Compile the client and server applications.

. Register the server in the Implementation Repository.

Run the client application.

35

Getting Started with Java Applets

This chapter uses the example IDL interface for a two-dimensional grid outlined in
“Defining the IDL Interface” on page 4. The sample code described in this chapter is
available in the denos/ gri dAppl et directory of your OrbixVVeb installation.

Providing a Server

This chapter illustrates a distributed architecture in which a downloadable client applet
communicates with an OrbixVVeb server through an IDL interface. This client-server
architecture is a common requirement in the Java environment where small, dynamic client
applets may be downloaded to communicate with large, powerful back-end service
applications. Architectures in which full OrbixVVeb servers are coded as downloadable
applets are less common, and are not described here.

The example server used in this chapter is developed in “VVriting the Server Application”
on page 8. OrbixWeb programming steps | to 4 are essentially identical for Java
applications and for Java applets (see “Review of OrbixVVeb Programming Steps” on
page 35). The main differences between programming for Java applications and for Java
applets occurs with step 5, writing the client.

Writing a Client Applet

This programming step is equivalent to step 5, “Writing the Client Application” on page 21.
In this section, a simple Java applet is developed, providing a graphical user interface to the
IDL interface gr i d. This example builds upon the concepts introduced in the grid client
example.

Writing the client applet can be broken down into the following four sub-steps, each of
which corresponds to a particular demonstration source file:

I. Creating the user interface (@i dPanel . j ava).

2. Adding OrbixWeb client functionality (@i dEvent s. j ava).

3. Creating the applet (@i dAppl et . j ava).

4. Adding the client to a HTML file (@i dAppl et. ht ni).
These files are located in the denos/ gri dAppl et directory of your OrbixVWeb
installation. The package name for the Java classes in this example is gr i dAppl et Deno.

It is assumed that the IDL file gr i dAppl et Denp. i dl was compiled with the following
command:

36

Writing a Client Applet

id -jP gridAppl et Deno gridAppl et Dero. i dl

The development of an OrbixVWeb client can be completely decoupled from the server-
side development process. For this reason, when compiling the IDL file, the package name
chosen for the client may be different from the package name for the server.

Creating the User Interface

The grid applet graphical user interface (Figure 7 on page 39) consists of two sections:

Server Details This section allows users to specify a target
OrbixWeb server.

Object Details This section allows a gri d object to be queried
and updated.

The GUI source code in G i dPanel . j ava uses the Java Abstract Windowing Toolkit
package (j ava. awt) to create and arrange each of the elements within a

j ava. awt . Panel container. You should refer to your Java documentation for details of
the AWT. The code sample which follows gives the names of individual GUI components,
such as buttons and text fields. The details of how the GUI is implemented are not
discussed here:

/1 Java

/1 In file gridAppl et Denb/ Gri dPanel . java.
package gri dAppl et Deno;

import java.awt.*;

public class GidPanel extends Panel {
/1 Button string constants.
final String conBStr "Connect";
final String disBStr "Di sconnect";
final String dimBStr "Get Gid Dinensions";
final String getBStr "Get Cell Val ue";
final String setBStr "Set Cell Value";

/1 Conponents for Server Details section
/1 bind() |abels.

Label naneL;

Label hostlL;

/1 bind() text fields.

37

Getting Started with Java Applets

Text Fi el d naneFi el d;
Text Fi el d host Fi el d;

/1 bind() buttons.
Butt on connect Butt on;
Butt on di sconnect Button;

/1 Components for Cbject Details section
/1 operation |abels.

Label dL;
Label xL;
Label yL;
Label vL;

/1 COperation text fields.
Text Fiel d dFi el d;
Text Fiel d xFiel d;
Text Fi el d yFiel d;
Text Field vFi el d;

/1 COperation buttons.
Butt on get DButt on;
Butt on get VButt on;
Butt on set VButton;

/1 Sub panel s.
Panel bi ndPanel ;
Panel bot Panel ;

/! Constructor.
public GidPanel () {

}..

38

Writing a Client Applet

fos
foefaat "

default

foox 700
o
[0
s

Figure 7: The Grid Applet Graphical User Interface

39

Getting Started with Java Applets

Adding OrbixWeb Client Functionality

In the grid applet example, all OrbixVWVeb client functions are initiated by GUI button clicks.
For the purposes of illustration, the applet maps GUI button clicks directly to individual
operations on a gr i d object. Operation parameter values and results are sent and
returned using text boxes. This allows the client to receive notification of a button click
event, and to determine which button received the event. The client can then react by
calling the appropriate operation on a grid proxy object.

A subclass of @ i dPanel named G i dEvent s serves as the container for the various
buttons and text fields. The following is an outline of the source code for the class

G i dEvent s. The button implementation methods outlined here are expanded on later in
this section:

/1 Java
/1 In file gridAppl et Deno/ Gi dEvents.java.

package gri dAppl et Deno;

i mport java.aw.*;

i mport java.l ang.*;

i mport org.ong. CORBA. Syst enExcepti on;
i nport org. ong. CORBA. CRB;

public class GidEvents extends GidPanel {
/1 grid proxy object
public grid gRef;

public GidEvents() {
super () ;
ORB.init(this,null);
nanmeFi el d. set Text (": gridServer");

}

/1 Notify appropriate nmethod for action event.
public bool ean action (Event event, (bject arg) {
if (conBStr.equals (arg)) {
bi ndOoj ect ();
}
else if (disBStr.equals (arg)) {
gRef = null;
di spl ayMsg ("Di sconnected.");

40

Writing a Client Applet

}
else if (dinBStr.equals (arg)) {
get Hei ght AndW dth ();

else if (getBStr.equals (arg)) {
get Cel | Val ue ();

}

else if (setBStr.equals (arg)) {
set Cel | Val ue ();

}

return true;

}

/1 Connect button inplenmentation.
public void bi ndObject() {

/! Details are described

[/l later in this section.

}

/1 Get Gid Dinmensions button inplenentation.
public void getHei ght AndW dt h() {

/! Details are described

/! later in this section.

}
/1 Get Cell Value button inplenmentation.

public void getCellValue() {
/! Details are described
/! later in this section.

}

/1 Set Cell Value button inplenmentation.
public void setCellValue() {

/] Details will be described

/1 later in this section.

}

The grid applet example provides methods to handle the client functionality required for
the GUI buttons shown in Figure 7 on page 39. The following section explains each button
implementation in detail.

41

Getting Started with Java Applets

Server Details

The Server Details section of the grid applet GUI includes the following buttons:

e Connect

* Disconnect

Connect
The Connect button functionality is implemented by the method bi nd(bj ect () :

public void bindoject() {
String tnp;
String marker Server;
String host Nane;

/1 get server name fromtext field

if ((tnmp = nanmeField.getText()) == null) {
mar ker Server = "";

}

el se
mar ker Server = ":" + tnp;

/1 get host name fromtext field
host Name = host Fi el d. get Text () ;

/1 bind to server object

try {
gRef = gri dHel per. bi nd
(mar ker Server, host Nane) ;

42

Writing a Client Applet

cat ch(Syst enException se) {
di spl ayMsg(" Connect failed.\n" + "Unexpected
exception:\n" + se.toString());
return;

}
di spl ayMsg(" Connect succeeded.");

}

The Connect button forces the client to bind to a gr i d object in the server specified by
the Server Name and Server Host text fields. The bi nd() method creates a proxy
object of type gr i d and binds it to an implementation object in the specified server. No
object marker is specified in the bi nd() call, so OrbixVWVeb is free to choose any gri d
object in that server.

Disconnect

The Disconnect button is implemented by the following line of code in the act i on()
method:

gRef = null;

This button allows the user to destroy a previously created proxy object by assigning it to
the Java value nul | . This does not actually close the connection; to do this, you must call
the following:

_CORBA. Or bi x. cl oseConnecti on(gRef);

Object Details

The Object Details section of the grid applet GUI includes the following buttons:
* Get Grid Dimensions
* Get Cell Value
* Set Cell Value

These buttons allow gr i d operations to be called on a proxy object created by the
Connect button. The methods which implement these buttons call the proxy member
variable gRef .

43

Getting Started with Java Applets

Get Grid Dimensions
The Get Grid Dimensions button is implemented as follows:

public void getHei ght AndWdth() {
short h, w

/'l check that proxy exists
if (gRef == null) {
di spl ayMsg("Cet dimensions failed - not
connected to server.");

return;
}
/] call attribute nethods
try {

h gRef . hei ght ();

w = gRef.wi dth();
catch (SystenkException se) {
di spl ayMsg(" Get di mensions failed.\n" +"Unexpected
exception:\n" + se.toString());
return;
}
dFi el d.set Text (I nteger.toString(w) + " x "
+ Integer.toString(h));
di spl ayMsg(" Get di mensi ons succeeded.");

Get Cell Value
The Get Cell Value button is implemented as follows:

public void getCellValue() {
short x, vy;
int cellVval = 0;

/'l check that proxy exists
if (gRef == null) {
di spl ayMsg("Get cell value failed - not
connected to server.");
return;

44

Writing a Client Applet

/1 get position fromtext fields
try {
x = (short) Integer.parselnt (xField.getText());
y = (short) Integer.parselnt (yField.getText());
}
catch (java.l ang. Nunber For mat Exception nfe) {
di spl ayMsg("Get cell value failed - " +
"invalid co-ordinate values.\n");
return;

}

/1 call get operation

try {
cel | val = gRef.get (x, y);

catch (SystenException se) {
di spl ayMsg("Get cell value failed.\n"+"Unexpected

exception:\n" + se.toString());
return;

}
vFi el d. set Text (I nteger.toString (cellVval));

di spl ayMsg("Get cell value succeeded.");
}

Set Cell Value
The Set Cell Value button has the following implementation:

public void setCellValue() {
short x, vy;
int cellVal;

/1 check that proxy exists
if (gRef == null) {
di spl ayMsg("Set cell value failed - not

connected to server.");
return;

}

45

Getting Started with Java Applets

/1 get position and value fromtext fields

try {
X = (short) Integer.parselnt (xField.getText());
y = (short) Integer.parselnt (yField. getText());
cell Val = Integer.parselnt (vField.getText());
}

catch (java.l ang. Nunber For mat Exception nfe) {
di spl ayMsg("Set cell value failed - " + "invalid
co-ordinate or cell value.");

return;
}
/1 call set operation
try {
gRef .set(x, y, cellVval);
}

catch (SystenkException se) {
di spl ayMsg("Set cell value failed.\n" +"Unexpected
exception:\n" + se.toString());
return;

}

di spl ayMsg("Set cell value succeeded.");

Error Handling: Integration with Java Exceptions

In the example described in “WVriting the Client Application” on page 21, OrbixVVeb
system exceptions are handled in cat ch clauses by displaying the exceptiont oSt r i ng()
output in the Syst em out print stream. This information is helpful when you are
debugging OrbixVWVeb dlients. In a client applet, however, it may not be practical to output
the information to a print stream. In this example, exception strings are displayed in
information dialog boxes. The file MsgDi al 0g. j ava implements a generic dialog class for
this purpose:

/1 In file gridAppl et Deno/ MsgDi al og. j ava.
package gri dAppl et Deno;

i mport java.aw.*;
public class MsgDi al og extends Franme {

protected Button button;
protected Msg | abel;

46

Writing a Client Applet

public MsgDialog(String title,String message) {
/] Details omtted.
}

/1 Oher class details onmitted.

}

The details of this class implementation is not important. OrbixVVeb error-handling can be
added to the G'i dEvent s class by defining a display method as follows:

voi d di splayMsg (String nmsg) {
MsgDi al og nsgDl og
= new gri dAppl et Denp. MsgDi al og
("Gid Operation Result", nsg);
nmsgDl og. resi ze (380, 200);
nmsgDl og. show ();
}

This allows any string, including system exception strings, to be displayed in a dialog box.
Figure 8 shows a dialog box displays a communications failure exception for a host called
“default” on port number 2002.

= Grid Operation Result O] x|

Get dmenzsions failed.
Uhexpected exception;:
org.omg. CORBA.COMM_FAILURE: default/2002

gl | Unsigned Java Applet Window

Figure 8: System Exception Dialog Box

47

Getting Started with Java Applets

Creating the Applet

To create the grid client applet, define a subclass of j ava. appl et . Appl et and adda
Qi dEvent s object to this class:

/1 Java
/1 In file gridAppl etDeno/ Gi dAppl et.java.

package gri dAppl et Deno;

i mport org.ong. CORBA. Syst enException;
i mport org.ong. CORBA. I NI TI ALI ZE;

i mport java. appl et.*;

i nport java.aw.*;

i nport org. ong. CORBA. CRB;

public class GidAppl et extends Applet {
/1 main display panel
GidEvents gridEvents;

public void init() {
/1l initialize the ORB
/1 This call is essential for applets.

try {
ORB.init (this, null);
}

catch (I NITIALI ZE ex) {
Systemerr.printin("failed to initialize:"+ex);

}

gri dEvents = new Gri dEvents();
/1 Add panel to appl et
this.add (gridEvents);

}

ORB initialization

Because OrbixWWeb uses the standard OMG IDL to Java mapping, all client and server
applets must call or g. ong. CORBA. CRB. i ni t () to initialize the ORB. This returns a
reference to the CRB object. You can then invoke the ORB methods defined by the
standard on this instance.

48

Writing a Client Applet

The example applet, Gr i dAppl et . j ava, uses the following version of
org.ong. CORBA CRB.init():

CRB.init(Applet app, java.util.Properties props)

You must use this version of i ni t () for applet initialization. In the example, the client
applet passes a reference to itself using the t hi s parameter. The pr ops parameter, used
to set configuration properties, is set to nul | . This means that the default system
properties are used instead.

This version of thei ni t () method returns a new fully functional ORB Java object each
time it is called. Refer to the OrbixWeb Programmer’s Reference for further information
on class or g. ong. OORBA. CRBand CRB. i nit ().

Adding the Applet to a HTML File

In HTML terms, an OrbixVVeb applet client behaves exactly like a standard Java applet. It
can be included in a HTML file using the standard <APPLET> tag. The source for
Qi dAppl et. ht nl serves as an example:

/1 HTM
/1 infile GidApplet.htm

<HTML>
<HEAD>

<TlI TLE>Or bi xWeb grid appl et deno</ Tl TLE>
</ HEAD>

<BODY>
<H1>Gid dient</Hl>

<APPLET code="gri dAppl et Deno/ Gri dAppl et . cl ass"
1 codebase="../../cl asses/"
wi dt h=390 hei ght =560>
<param name="org.omg.CORBA.ORBClass”
2 value="IE.lona.OrbixWebh.CORBA.ORB>
<param name="org.omg.CORBA.ORBSingletonClass”
value="IE.lona.Orbix\Web.CORBA.ORB>
</APPLET>
</BODY>
</HTML>

49

Getting Started with Java Applets

I. The codebase attribute of the HTML <APPLET> tag indicates the location
of the additional classes required by the applet.

2. Pass the parameter value | E. | ona. O bi xWWeb. CORBA. ORB to enable

use of the OrbixWeb ORB implementation. This means that OrbixVWeb
specific methods such as bi nd() can be used.

Note: If you wish to use callbacks, you should pass the package
| E. 1 ona. O bi xWeb. CORBA. BOA, instead of
I E. 1 ona. O bi x\Web. CORBA. ORB. Refer to Chapter 17, “Callbacks from
Servers to Clients” for more details on using callbacks with OrbixWeb.

Compiling the Client Applet
The instructions for compiling an OrbixVVeb applet are identical to those for a standard
OrbixWVeb application, as described in “Compiling the Client and Server” on page 24.

You must ensure that the Java compiler can access the Java AP| packages (including
java. awt for this sample code), the OrbixVVeb | E. | ona. O bi xwEB. OCRBA package,
and any applet-specific classes. Invoke the compiler on all the Java source files for the
application.

The following files are required for the grid applet example:
® @idStub.java
* @id.java
® Q@QidPanel.java
* @QidEvents.java
®* QidApplet.java
* MgD al og. j ava
® Mg.java

50

Writing a Client Applet

The OrbixVWeb denos/ gri dAppl et directory provides a script which invokes the
owj avac wrapper utility as required. To compile the client applet, type the appropriate
command at the operating system prompt:

UNIX % grrake

Windows > conpil e

Running the Client Applet

When running the client applet, you must use a Web browser or an applet viewer to view
the HTML file. For example, you can use the JDK appl et vi ever as follows:

appl etvi ewer Qi dApplet. htm

Java applets differ slightly from standalone Java applications in their requirements for access
to class directories. Before running the viewer, you can specify the locations of required
classes in the OLASSPATH environment variable. The classes required are identical to those
for an OrbixVVeb client application:

® The Java API classes, stored in the cl asses. zi p file in the | i b directory
of your JDK installation.

® The org. ong. CORBA package, stored in the cl asses directory of your
OrbixWeb installation.

* ThelE I ona. O bi xV¥b package, also stored in the cl asses directory of
your OrbixWeb installation.

* Any pre-existing classes required by the application.

® Any classes compiled during the client compilation stage.

An alternative approach is to provide access to all the classes the applet requires in a single
directory. Instead of setting environment variables, you can use the GODEBASE attribute of
the HTML <APPLET> tag to indicate the location of the required classes. This is approach is
recommended, and is the approach used in “Creating the Applet” on page 48.

The configuration file, O bi x\&b. pr operti es is loaded from the location specified by the
CODEBASE attribute of the <APPLET> tag. If you do not specify the CCDEBASE attribute,
the directory containing HTML file is used as the default location.

Refer to Chapter 4, “Getting Started with OrbixVWeb Configuration” on page 53 for more
details on O bi xV¢b. properti es.

51

Getting Started with Java Applets

Security Issues for Java Applets

Java applets are subject to important security restrictions, imposed by the Java environment
and by Web browsers. The severity of these restrictions is often dependent on browser

technology. See Chapter |3, “Using OrbixWWeb on the Internet” on page 249 for further
information.

52

Getting Started with OrbixWeb
Configuration

The OrbixWeb Configuration Tool (owconf i g) allows you to change
the default configuration settings for OrbixWeb using a graphical
user interface. The Configuration Tool edits O bi x\&b. properti es
and O bi x. cf g. These files store the configuration settings of your
OrbixWeb installation.

You may need to change default configuration settings for a variety of reasons, including the
following;

* Enabling or disabling particular functionality.
* Modifying the location of the Implementation Repository.
® Changing the JDK version used by the OrbixVWeb daemon.

* Changing specific port numbers used.

You can use the OrbixVVeb Configuration Tool to make these configuration changes. Refer
to the chapter, “OrbixVVeb Configuration” in the OrbixWeb Programmer’s Reference for
a full description of OrbixVVeb configuration parameters.

53

Getting Started with OrbixWeb Configuration

OrbixWeb Configuration Files

OrbixWWeb uses the following configuration files:

® O bixWb. properties
® Obix.cfg

OrbixWeb.properties

Every OrbixWVeb client and server applet or application must have access to

QO bi xV¢b. properti es. This file holds the configuration information for the Java
components of OrbixWeb. The Java daemon (or bi xdj) will not start without this file.
The installation process creates a default O bi X\eb. pr operti es file, located in the
cl asses directory of your OrbixVVeb installation.

The OrbixVWeb Configuration Tool reads its settings from O bi x\&b. properti es.

Orbix.cfg

Q bi x. cf g holds configuration information for the natively compiled executable
components of OrbixVVeb, such as the IDL compiler and or bi xd. The installation process
creates a default Or bi x. cf g file, located in your OrbixVVeb installation directory.

The Configuration Tool does not read settings from O bi x. cf g, it uses

O bi x\b. properti es as the master set of configuration settings. The Configuration
Tool does however modify both O bi xVb. pr operti es and O bi x. cf g to reflect
configuration changes made.

Note: The Configuration Tool is the recommended approach to OrbixWeb
configuration. Direct editing of O bi x. cf g or O bi x\&b. properti es is
strongly discouraged, because common text editors corrupt these files.

54

Configuration Tool Requirements

Configuration Tool Requirements

To use the Configuration Tool, you must have correct settings for three basic configuration
items:

® the Java interpreter
* the Java compiler

® the CLASSPATH
See “The General Page” on page 56 for details of how to set these values.

If your O bi xVb. pr operti es file becomes corrupt or is deleted, these fundamental
settings will no longer be available to the Configuration Tool. You will then need to hand-
edit a minimal O bi x\&b. pr operti es file. This file should be placed in the cl asses
directory of your OrbixVVeb installation. The required file format is as follows:

QO bi xWb. | T_JAVA | NTERPRETER=<pat h to Java interpreter>

QO bi xWb. | T_JAVA COMPl LER=<path to Java conpil er>

O bi xWb. | T_DEFAULT_CLASSPATH=<cl ass path i ncl udi ng JDK and
Q bi x\V¢b cl asses>

Starting the OrbixWeb Configuration Tool

To start the OrbixVWeb Configuration Tool from the command line, type the following
command:

UNIX owconfi g
Windows ONDonfi g

Alternatively, select the OrbixVVeb Configuration Tool from the Windows Program Menu.

When you start the Configuration Tool it automatically loads its settings from the default
QO bi xV¢b. properti es filein the cl asses subdirectory. If O bi x\eb. properti es
can not be found, a dialog box is displayed to enable you to find this file.

55

Getting Started with OrbixWeb Configuration

The Configuration Tool Main Panel

The Configuration Tool main panel, as shown in Figure 9 on page 57, consists of three main

sections:
Menu Bar The menu bar at the top of the screen provides access
to the File menu. This enables you to load and save
configurations.

To save changes to Or bi x\b. properti es, select
File | Save or File | Save as from the
Configuration Tool main menu button.

To save changes to O bi x. cf g, select File | Save
Orbix.cfg as from the Configuration Tool main
menu button.

Tabbed Folder The pages of the tabbed folder in the central
section of the screen hold all the OrbixWeb
configuration values which can be changed.

Status Bar The status bar at the bottom of the screen
provides user feedback on the actions
performed by the tool.

The General Page

If you wish to change the Java tool kit you are using, you need to change the first three
settings on the General page of the Configuration Tool, as shown by Figure 9 on page 57.
To change these settings, enter the path in the appropriate text box:

* Java Interpreter
* Java compiler

¢ Default class path

You can set how your OrbixVVeb installation identifies itself on the network by entering the
following values:

* Hostname

* DNS domain name

56

The Configuration Tool Main Panel

Typically, you do not need to set the Hostname parameter, this is automatically
determined at runtime. However, this can be useful if you wish to control which interface
incoming connections will be accepted on. The DNS domain name parameter allows
you to specify your domain name. This should be set if you plan to use OrbixVWeb outside
your own domain.

rhixw'eb Configuration: C:A\lona\0rbixw eb3.1\classes\Orbivweb. properties

File = | Help = ‘

General] Initialization l SemwerSide Support] Wondenwall Support] Adwanced
Files
Java interpreter n:::::'l._IE:Il-i:Z'I 1.5bin EXE Browese..
Java compilar |C:UDK1.1.51bin'Ljavac.exe Browse...
Default class path |C:IIDna‘LOrbi}CWEbBJ‘Lclasses;C:UDK1 J.Aliclasses.zip
Hostharme | Default diaghostic [evel
DMS domain name |dub|in.iuna.ie 1

"CAlonaCrhigeb3 Nclasses\Drhiveh properties” loaded.

Figure 9: OrbixWeb Configuration Tool Main Panel

The Default diagnostic level value controls what diagnostic information OrbixVVeb
logs when calls are made or received. To set the diagnostic level, enter a value in the range
0- 255.

57

Getting Started with OrbixWeb Configuration

The Initialization Page

The bind() Support and Activator Setup section of the initialization page, as
shown in Figure 10 on page 59, controls the following configuration settings:

® The ports used by OrbixWeb during bi nd().

® The port range and Implementation Repository used
by the OrbixWeb daemon.

®* The behaviour of the bind mechanism itself.

The OrbixVVeb daemon waits for incoming connections on the following well-known

internet ports:

OrbixWeb The daemon uses this port to communicate with

daemon Port other processes using either the Orbix protocol or
[IOP (Internet Inter-Operability Protocol).

OrbixWeb This port is provided to support legacy daemons

daemon IIOP Port which require a separate port for each protocol
when listening for incoming connections. To enter
a value in this text box, first check Support
legacy daemons with two ports.

Server processes launched by the daemon are assigned a port number. The daemon uses
the defined Server port range when allocating ports.

Typically, you do not need to change the settings for this section unless there is a conflict
with another installation of Orbix or OrbixVVeb on the same machine.

58

The Configuration Tool Main Panel

Orbivw'eb Configuration: C:Alona\0rbixweb3.1\claszses\Orbivweb. properties

File = | Help = ‘

General Initialization] SenerSide Support] Mondenmall Support] Adwanced

hind({) Support and Activator Setup

Orhixdveb daemon port 1870 [iSupport legacy daemons with two ports!

Orbixveb daeman IO port W Use IOP hind{) by default

Start of server port range 2000 Server port range 2000

Impl Repository path |c:uuna1omimren3.11canﬂg1Repasitaw

iR

CORBA Naming Service

Initial naming service host localhost Initial naming service port 1870

"CAlonaCrhigeb3 Nclasses\Drhiveh properties” loaded.

Figure 10: Configuration Tool Initialization Page

The CORBA Naming Service section allows you to set the host and port that
OrbixVWWeb uses when it tries to contact a Naming Service.

59

Getting Started with OrbixWeb Configuration

The Server-Side Support Page

There are two sections on the Server-Side Support page:

ORB This section allows you configure for client-side
support only. For example, for an applet with no
interfaces defined that only acts as a client.

BOA This section allows you configure for full client-side
and server-side support.

thixweb Configuration: C:\lona\Drbixweb3. 1\classez\Oibixweb_properties

File = | Help ~

General] Initialization ~ SenerSide Support | yondenwall Support] Advanced

ORB (Client-Side Only)

V¥ use Metscape security capabiliies W Retain connection to daemaon after bindi)

BOA (Client-Side, Server-Side, and Callbacks)

[Accept connections from clients V Implementation is ready once connected
[Use P address in object references [Use same connection for callbacks
[Listen on specific port [T SSL-IOF listening port

"ChllonaOrbidWeb3 1classesiOrhidebh properties” loaded.

Figure 11: Configuration Tool Server-Side Support Page

60

The Configuration Tool Main Panel

The BOA section enables you to specify the following:

® The port on which the server listens for calls.
® Whether the server accepts connections from clients.

* Whether a client using callbacks supports the connection it established to
receive callbacks.

* Whether IP addresses should be used in your object references instead of
hostnames. This can be useful if your clients do not have DNS name
resolution capability.

The Wonderwall Support Page

Using this page, you can the specify the location of your Wonderwall. This is the IOP
firewall and intranet request routing proxy server provided by OrbixWWeb. When an applet
using this configuration is downloaded by a client, it can connect to your server via the
Wonderwall.

OrbixWVeb provides support for two connection mechanisms:

IIOP Proxy [IOP Proxy support means that OrbixVVeb
sends an object reference to the VWonderwall.
This enables communication with the target
object through the Wonderwall using IIOP.

HTTP Tunnelling HTTP Tunnelling involves wrapping the IIOP
Proxy inside HTTP. This means that the
object reference can pass through any applet-
side firewall which has a HTTP proxy.

However, HTTP Tunnelling is not as efficient
as pure [IOP, and does not support callbacks
from the server to the applet.

61

Getting Started with OrbixWeb Configuration

rhixw'eb Configuration: C:A\lona\0rbixw'eb3d.1vclazzez\Dbivw eb. properties

File = | Help = ‘

Zeneral] Initialization] SenrerSide Support Wondenuall Support l Advanced
Wonderwall IOP Proxy Support Wonderwall HTTP Tunnelling Support

0P Proxy Host HTTF Tunnel Host

ICP Proxy Port 0 HTTF Tunnel Fart 0

HTTF Tunnel Frotocol

1]

[~ Try lIOP Proxy before trying [Tr¢ HTTP Tunnel before trying
direct connection direct cannection

Support for transparent use of IOHA's Wondenwall IOF firewall and intranet request routing prosxy server is built in to
Orbizfeb's client-side. f a direct connection attempt fails, HTTP tunnelling will be attempted automatizally by applets
rand by applications if the "HTTP Tunnel" boxes are filled ouf), and IOP Proxy functionality will also be used if the
"IOF Prosy® boxes are filled out. OrbixiWeb zan be forced to connect via the Wondepuall if one of the "Try befare
normal eonnection” boxes is ticked.

“CAlonacrhipeb3 NclassesWOrbivteh. properties” loaded.

Figure 12: Configuration Tool Wonderwall Support Page

To receive callbacks on your OrbixVVeb applets from the server, you must set the Use
same connection for callbacks check box on the Server-Side Support page.

Usually, an applet will try to connect via the VWonderwall only if a direct connection fails.
You may wish to specify that an applet using a particular configuration should try to connect
via the VWonderwall before trying to connect directly. You can specify this by setting Try
IHOP Proxy before trying connection and Try Tunnel before trying
direct connection check boxes.

62

The Configuration Tool Main Panel

The Advanced Page

The Advanced page allows you to set the following:

® The size of buffers and tables used by OrbixWeb.

* Connection keepalive.

® Miscellaneous settings.

The Connection keepalive setting controls how long a connection needs to idle
before being closed down automatically by the client-side ORB. If you set this to a value of
- 1 milliseconds, connections will never be closed.

Refer to the chapter “OrbixWeb Configuration” in the OrbixWeb Programmer’s
Reference for a full description of OrbixVVeb configuration parameters.

E Orbivw'eb Configuration: C:Alona\0rbixweb3.1\claszses\Orbivweb. properties

File = | Help = ‘

General] Initialization l SenarSide Support] Mondenmall Support Advanced

Buffers

Miscellaneous Settings

Server ohject tahle size

=
-
o0
(=)

Objecttable load factor 075

Marshal buffer size (hytes) 8192 Crhixweb IT_DI_COPY_ARGS
Orhixveh I T_DIRECT _DISPATCH

"Any" buffer size (tes) 512 Orbniien[TDBLCOPYARGS [
a| | I

Timeouts

Cannection keepalive (ms) 300000 Add f Change | Remuove |

Orhiadeb [T_ALWAYS_CHECK_LOCAL
OrhiWeb [T_CLASSPATH_SWITCH

Orbixdeb IT_COMNMECT_TABLE_SIZE_
Orbixdeb IT_DETECT_APPLET_SANDE

OrbixdVeb IMPL_IS_READY_TIMEOUT j

"CAlonaCrhigeb3 Nclasses\Drhiveh properties” loaded.

Figure 13: Configuration Tool Advanced Page

63

Getting Started with OrbixWeb Configuration

Learning more about OrbixWeb

Parts | | to VI of this guide describe OrbixVVeb features in more detail, expand on the
information presented in Part |, and:

Present an overview of the structure of distributed applications.

Introduce IDL and the corresponding mapping of IDL to the Java
programming language. Both client and server programmers must be
familiar with this mapping.

Present further examples of using OrbixWeb to define an interface to a
system component and write client and server programs.

Explain the use of inheritance when defining IDL interfaces, allowing an
interface to be defined by extending others.

Give more details on compiling IDL definitions, registering servers, and
configuring OrbixWeb to suit a particular environment.

Explain that operation calls can be made in more ways than those shown
in the overview presented here. Some applications, such as browsers,
need to be able to use all of the interfaces defined in a system—even
those interfaces which did not exist when the browser was compiled.
OrbixWeb supports such applications via its Dynamic Invocation
Interface.

Parts V and VI of this guide discuss advanced features which extend the power of
OrbixVWVeb:

64

Filters can be installed in the system to allow programs to monitor or
control incoming or outgoing requests.

A proxy is a local representative or stand-in for a remote object. A smart
proxy is an intelligent stand-in. Smart proxies can be written to optimize
the performance of a component as perceived by a client.

To facilitate applications such as browsers, the interface of an object can
be examined at runtime (using the Interface Repository).

Learning more about OrbixWeb

* |If OrbixWVeb fails to find an object being sought by a client or server, it
will informs loader objects, which are given the opportunity to load the
object from some persistent store. Interfacing OrbixVWeb to a persistent
store therefore involves writing a loader object and installing this within
programs that directly use that persistent store. As a result, OrbixVVeb is
not tied to using any specific persistent store from a particular vendor.

* OrbixWeb has an inbuilt mechanism for searching the distributed system
for a server. If this mechanism is not appropriate or if it needs to be
augmented, you can write a locator object and install this in preference to
the default one.

A full description of the APl to OrbixWeb is supplied in the OrbixWeb Programmer’s
Reference.

65

Getting Started with OrbixWeb Configuration

66

Part |l

CORBA Programming
with OrbixVWVeb

Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to define

interfaces to objects in your network. This chapter introduces the

features of CORBA IDL and illustrates the syntax used to describe
interfaces.

The first step in developinga CORBA application is to define the interfaces to the objects
required in your distributed system. To define these interfaces, you use CORBA IDL.

IDL allows you to define interfaces to objects without specifying the implementation of
those interfaces. To implement an IDL interface you must do the following:

I. Define a Java class which can be accessed through the IDL interface.

2. Create objects of that class within an OrbixVWeb server application.
You can implement IDL interfaces using any programming language for which an IDL
mapping is available. An IDL mapping specifies how an interface defined in IDL corresponds

to an implementation defined in a programming language. CORBA applications written in
different programming languages are fully interoperable.

CORBA defines standard mappings from IDL to several programming languages, including
C++, Java, and Smalltalk. The OrbixVWeb IDL compiler converts IDL definitions to
corresponding Java definitions, in accordance with the standard IDL to Java mapping.

69

Introduction to CORBA IDL

IDL Modules and Scoping

An IDL module defines a naming scope for a set of IDL definitions. Modules allow you to
group interface and other IDL type definitions into logical name spaces. When writing IDL
definitions, always use modules to avoid possible name clashes.

The following example illustrates the use of modules in IDL:

/1 1DL
nodul e finance {
interface account {

3
}s

Theinterface account is scoped within the module f i nance. IDL definitions are available
directly within the scope in which they are defined. In other naming scopes, you must use
the scoping operator : : to access these definitions. For example, the fully scoped name of
interface account isfi nance: : account.

IDL modules can be reopened. For example, a module declaration can appear several
times in a single IDL specification if each declaration contains different data types. In most
IDL specifications, this feature of modules is not required.

Defining IDL Interfaces

An IDL interface describes the functions that an object supports in a distributed application.
Interface definitions provide all of the information that clients need to access the object
across a network.

Consider the example of an interface which describes objects that implement bank
accounts in a distributed application.

70

Defining IDL Interfaces

The IDL interface definition is as follows:

//1DL
nmodul e finance {
interface account {
/1 The account owner and bal ance.
readonly attribute string owner;
readonly attribute float bal ance;

/1 Qperations avail able on the account.
voi d makelLodgenent (in fl oat anmount,
out float newBal ance);
voi d makeWt hdrawal (in fl oat anount,
out float newBal ance);

H
H
The definition of interface account includes both attributes and operations. These are
the main elements of any IDL interface definition.

IDL Attributes

Conceptually, IDL attributes correspond to variables that an object implements. Attributes
indicate that these variables are available in an object and that clients can read or write their
values.

In general, each attribute maps to a pair of functions in the programming language used to
implement the object. These functions allow dlient applications to read or write the
attribute values. However, if an attribute is preceded by the keyword r eadonl y, clients can
only read the attribute value.

For example, the account interface defines the attributes bal ance and owner . These
attributes represent information about the account which the object implementation can
set, but which client applications can only read.

IDL Operations

IDL operations define the format of functions, methods, or operations that clients use to
access the functionality of an object. An IDL operation can take parameters and return a
value, using any of the available IDL data types.

71

Introduction to CORBA IDL

For example, the account interface defines the operations makeLodgenent () and
makeW't hdr awal () as follows:

//1DL
nodul e finance {
interface account {
/'l Operations available on the account.
voi d makeLodgenent (i n fl oat anount,
out float newBal ance);
voi d nakeW t hdrawal (i n fl oat anount,
out float newBal ance);

b
b
Each operation takes two parameters and has a voi d return type. The parameter
definitions must specify the direction in which the parameter value is passed. The possible
parameter passing modes are as follows:

in The parameter is passed from the caller of the
operation to the object.

out The parameter is passed from the object to the caller.

i nout The parameter is passed in both directions.

Parameter passing modes clarify operation definitions and allow an IDL compiler to map
operations accurately to a target programming language.

Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error. CORBA
defines two types of exceptions:

® System exceptions
These are a set of standard exceptions defined by CORBA.

* User-defined exceptions
These are exceptions that you define in your IDL specification.

All DL operations can implicitly raise any of the CORBA system exceptions. No reference
to system exceptions appears in an IDL specification. Refer to the OrbixWeb
Programmer’s Reference for a complete list of the CORBA system exceptions.

72

Defining IDL Interfaces

To specify that an operation can raise a user-defined exception, first define the exception
structure and then add an IDL r ai ses clause to the operation definition. For example, the
operation makeW't hdr awal () in interface account could raise an exception to indicate
that the withdrawal has failed, as follows:

// 1DL
nmodul e finance {
interface account {
exception Wthdrawal Fail ure {
string reason;

s

voi d makeW t hdrawal (i n fl oat anount,
out float newBal ance)
rai ses(Wthdrawal Fai | ure);

b
b
An IDL exception is a data structure that contains member fields. In this example, the
exception Wt hdr awal Fai | ur e includes a single member of type string.

Ther ai ses clause follows the definition of operation nakeW t hdr awal () to indicate
that this operation can raise exception W t hdr awal Fai | ur e. If an operation can raise
more then one type of user-defined exception, include each exception identifier in the
rai ses clause and separate the identifiers using commas.

Invocation Semantics for IDL Operations

By default, IDL operation calls are synchronous. This means that a client calls an operation
and blocks until the object has processed the operation call and returned a value. The IDL
keyword oneway allows you to modify these invocation semantics.

If you precede an operation definition with the keyword oneway, a client that calls the
operation will not block while the object processes the call. For example, you could add a
oneway operation to interface account that sends a notice to an account object, as
follows:

nmodul e finance {
interface account {
oneway void notice(in string text);

I
H

73

Introduction to CORBA IDL

OrbixVWVeb does not guarantee that a oneway operation call will succeed; so if a oneway
operation fails, a client may never know. There is only one circumstance in which
OrbixWVeb indicates failure of a oneway operation. If a oneway operation call fails before
OrbixVWVeb transmits the call from the client address space, then OrbixVVeb raises a system
exception.

Note: A oneway operation cannot have any out or i nout parameters and
cannot return a value. In addition, a oneway operation cannot have an
associated r ai ses clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of string values.
When defining an IDL operation, you can specify that the operation should receive the
client mapping for particular identifiers as an implicit part of the operation call. To do this,
add a cont ext clause to the operation definition.

Consider the example of an account object, where each client maintains a set of
identifiers, such as sys_ti me and sys_| ocat i on that map to information that the
operation makeLodgenent () logs for each lodgement received. To ensure that this
information is passed with every operation call, extend the definition of
makelLodgenent () as follows:

/1 1DL
nodul e finance {
interface account {
voi d nakeLodgenent (i n fl oat anount,
out float newBal ance)
context ("sys_time", "sys_location");

b
b
Acont ext clause includes the identifiers for which the operation expects to receive
mappings. IDL contexts are rarely used in practice.

74

Defining IDL Interfaces

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the elements of one
or more other interfaces.

For example, the following IDL definition illustrates two interfaces, called
checki ngAccount and savi ngsAccount . Both of these inherit from an interface
named account :

// 1DL
nmodul e finance {
interface account {

b

i nterface checki ngAccount : account ({
readonly attribute overdraftLimt;
bool ean order ChequeBook ();

I

i nterface savi ngsAccount : account {
float calculatelnterest ();
b
b
Interfaces checki ngAccount and savi ngsAccount implicitly include all elements of
interface account .

An object thatimplements checki ngAccount can accept calls on any of the attributes and
operations of this interface, and also on any of the elements of interface account .
However, a checki ngAccount object may provide different implementations of the
elements of interface account to an object that implements account only.

75

Introduction to CORBA IDL

The following IDL definition shows how to define an interface that inherits both

checki ngAccount and savi ngsAccount :

/1 1DL
nodul e finance {
interface account {

b

i nterface checki ngAccount : account {

b

interface savi ngsAccount : account {

b

interface prem umAccount
checki ngAccount, savi ngsAccount {
b
b

Interface pr em unAccount is an example of multiple inheritance in IDL Figure 14

illustrates the inheritance hierarchy for this interface.

account

checkingAccount savingsAccount

premiumAccount

Figure 14: Multiple Inheritance of IDL Interfaces

76

Defining IDL Interfaces

If you define an interface that inherits from other interfaces containing a constant, type, or
exception definition of the same name, you must fully scope that name when using the
constant, type, or exception.

Note: An interface cannot inherit from other interfaces which include
operations or attributes that have the same name.

The Object Interface Type

IDL includes the pre-defined interface Chj ect , which all user-defined interfaces inherit
implicitly. The operations defined in this interface are described in the OrbixWeb
Reference Guide. While interface (bj ect is never defined explicitly in your IDL
specification, the operations of this interface are available through all your interface types. In
addition, you can use (bj ect as an attribute or operation parameter type to indicate that
the attribute or operation accepts any interface type, for example:

/1 1DL
interface bjectlLocator {

voi d get AnyQbj ect (out Ohject obj);
b

It is not legal IDL syntax to explicitly inherit interface (bj ect .

77

Introduction to CORBA IDL

Forward Declaration of IDL Interfaces

In IDL, you must declare an IDL interface before you reference it. A forward declaration
declares the name of an interface without defining it. This feature of IDL allows you to
define interfaces that mutually reference each other.

For example, IDL interface account could include an attribute of IDL interface type bank,
to indicate that an account stores a reference to a bank object. If the definition of
interface bank follows the definition of interface account , you would make a forward
declaration for the bank interface as follows:

/1 1DL
nodul e finance {
/1 Forward decl aration of bank.
i nterface bank;
interface account {
readonly attribute bank branch;

b

/1l Full definition of bank.
interface bank {

3
}s

The syntax for a forward declaration is the keyword i nt er f ace followed by the interface
identifier.

Note: It is not possible to inherit from a forwardly declared interface. You can
only inherit from an interface which has been fully specified.

The following IDL definition, for example, is not permitted:

//1DL

nodul e finance{
// Forward decl aration of bank.
i nterface bank;

interface account Bi gbank: bank{

}

78

Overview of the IDL Data Types

Overview of the IDL Data Types

In addition to IDL module, interface, and exception types, there are four main categories of
data type in IDL:

® Basic types

® Constructed types

* Template types

® Pseudo object types

This section examines each IDL data type in turn, and describes how you can define new
data type names, arrays, and constants in IDL.

IDL Basic Types

Table | lists the basic types supported in IDL.

IDL Type Range of Values

short -215 2151 (16-bit)

unsi gned short

0...2%6.1 (16-bit)

| ong

—231 2 311 (32-bit)

unsigned long

12 82.1 (32-hit)

long long

-»

63 2 3.1 (64-bit)

unsigned long long

0.2 3.1 (64-bit)

float IEEE single-precision floating point numbers.
double IEEE double-precision floating point numbers.
char An 8-bit value.

wchar A 16-bit value.

boolean TRUEor FALSE

Table 1: The IDL Basic Types

79

Introduction to CORBA IDL

IDL Type Range of Values

oct et An 8-bit value that is guaranteed not to undergo
any conversion during transmission.

any The any type allows the specification of values
that can express an arbitrary IDL type.

Table 1: The IDL Basic Types

The any data type allows you to specify that an attribute value, an operation parameter, or
an operation return value can contain an arbitrary type of value to be determined at
runtime. Refer to “Type any” on page 347 for more details.

IDL Constructed Types

IDL provides three constructed data types:

®* enum

® struct

® union
Enum

An enumerated type allows you to assign identifiers to the members of a set of values, for
example:

/1 1DL
nodul e finance {
enum currency {pound, dollar, yen, franc};

interface account {
readonly attribute float bal ance;
readonly attribute currency bal anceCurrency;

b
};
In this example, attribute bal anceCQur r ency ininterface account can take any one of the

values pound, dol | ar, yen, or f r anc to indicate the currency associated with the
attribute bal ance.

80

Overview of the IDL Data Types

Struct

A struct data type allows you to package a set of named members of various types, for
example:

// 1DL
nmodul e finance {
struct custonerDetails {
string nane;
short age;

I

i nterface bank {
custonerDetail s getCustonerDetail s(
in string nane);

h
H
In this example, the struct cust orrer Det ai | s has two members: nare and age. The
operation get Qust oner Det ai | s() returns a struct of type cust oner Det ai | s that
includes values for the customer name and age.

Union

A union data type allows you to define a structure that can contain only one of several
alternative members at any given time. A union saves memory space, because the amount
of storage required for a union is the amount necessary to store its largest member-.

All IDL unions are discriminated. This means that they associate a label value with each
member. The value of the label indicates which member of the union currently stores a
value.

8l

Introduction to CORBA IDL

For example, consider the following IDL union definition:

/1 1 DL

struct DateStructure {
short Day;
short Mont h;
short Year;

}s

uni on Date switch (short) {
case 1: string stringFormat;;
case 2: long digital Fornat;
default: DateStructure structFormat;

}s

The union type Dat e is discriminated by a short value. For example, if this short value is 1,
the union member st ri ngFor mat stores a date value as an IDL string. The default label
associated with the member st r uct For mat indicates that if the short value is not 1 or 2,
the st r uct For mat member stores a date value as an IDL struct.

The type specified in parentheses after the swi t ch keyword must bean i nt eger, char,
bool ean or enumtype and the value of each case label must be compatible with this type.

IDL Template Types

IDL provides two template types:

® string

¢ sequence

String

An IDL string represents a character string, where each character can take any value of the
char basic type.

If the maximum length of an IDL string is specified in the string declaration, the string is
bounded. Otherwise the string is unbounded.

82

Overview of the IDL Data Types

The following example shows how to declare bounded and unbounded strings:

// 1DL
nmodul e finance {
interface bank {
/1 A bounded string with maxi mum |l ength 10.
attribute string sortCode<10>;
/1 An unbounded string.
attribute string address;

};.”
I

Sequence

In IDL, you can declare a sequence of any IDL data type or user-defined data type. An IDL
sequence is similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed maximum length,
then the sequence is bounded. Otherwise, the sequence is unbounded.

For example, the following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

/1 1DL
nmodul e finance {
interface account {

b

struct |imtedAccounts {
string bankSort Code<10>;
/1 Maxi mum | ength of sequence is 50.
sequence<account, 50> accounts;

I

struct unlimtedAccounts {
string bankSort Code<10>;
/1 No maxi mum | engt h of sequence.
sequence<account > accounts;

I

83

Introduction to CORBA IDL

A sequence must be named by an IDL t ypedef declaration (described in “Defining Aliases
and Constants” on page 86) before it can be used as the type of an IDL attribute or
operation parameter. This is illustrated by the following code:

/1 1DL
nodul e finance {
t ypedef sequence<string> custoner Seq

interface bank {
voi d get Cust onerLi st (out custonmerSeq nanes);

b
}s

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be multidimensional
and always have a fixed size. For example, you can define an IDL struct with an array
member as follows:

/1 1DL
nodul e finance {
i nterface account {

b

struct custonerAccountlnfo {
string name
account accounts[3];

b

interface bank {
get Cust omer AccountInfo (in string nane
out custoner Accountl nfo accounts);

b
b
In this example, struct cust ormer Account | nf o provides access to an array of account
objects for a bank customer, where each customer can have a maximum of three accounts.

84

Overview of the IDL Data Types

As with sequences, an array must be named by an IDL t ypedef declaration before it can
be used as the type of an IDL attribute or operation parameter. The following code
illustrates this:

// 1DL
nmodul e finance {
interface account {

b
typedef account account Array[100];

i nterface bank {
readonly attribute accountArray accounts;

};
s

Note: Arrays are a less flexible data type than an IDL sequence, because an
array always has a fixed length. An IDL sequence always has a variable
length, although it may have an associated maximum length value.

IDL Pseudo-Object Types

CORBA defines a set of pseudo-object types that ORB implementations use when mapping
IDL to some programming languages. These object types have interfaces defined in IDL, but
do not have to follow the normal IDL mapping for interfaces, and are not generally available
in your IDL specifications.

You can use only the following pseudo-object types as attribute or operation parameter
types in an IDL specification:

* NamedVal ue
® Principal
* TypeCode

85

Introduction to CORBA IDL

To use any of these three types in an IDL specification, include the file or b. i dl in the IDL
file as follows:

/1 1DL
#i ncl ude <orb.idl>

This statement indicates to the IDL compiler that types NaredVal ue, Pri nci pal , and
TypeCode may be used. The file or b. i dI does not actually exist in your system. Do not
name any of your IDL filesor b. i dI .

For more information on these types, refer to “IDL to Java Mapping” on page 91, and to the
OrbixWeb Reference Guide.

Defining Aliases and Constants

IDL allows you to define aliases (new data type names) and constants. This section
describes how to use these IDL features.

Using Typedef to Create Aliases

Thet ypedef keyword allows you define a more meaningful or simple name for an IDL
type. The following IDL provides a simple example of using this keyword:

/1 1DL
nodul e finance {
i nterface account {

b
t ypedef account standardAccount;
b

The identifier st andar dAccount can act as an alias for type account in subsequent IDL
definitions. CORBA does not specify whether the identifiers account and
st andar dAccount represent distinct IDL data types in this example.

Constants

IDL allows you to specify constant data values using one of several basic data types.
Appendix A, IDL Reference in the OrbixWeb Programmer’s Reference indicates which
data types you can use to define constants.

86

Overview of the IDL Data Types

To declare a constant, use the IDL keyword const , for example:

// 1DL
nmodul e finance {
interface bank {
const | ong MaxAccounts = 10000;
const float factor = (10.0 - 6.5) * 3.91;

};
s

The value of an IDL constant cannot change. You can define a constant at any level of scope
in your IDL specification.

87

Introduction to CORBA IDL

88

IDL to Java Mapping

This chapter describes OrbixWeb's mapping of IDL to Java, using
the OrbixWeb IDL to Java compiler. OrbixWeb's implementation of
the IDL to Java mapping conforms with version [.| of the standard
OMG IDL/|ava Language Mapping speciﬁcation.’ The chapter
explains the rules used to convert IDL definitions into Java source
code, as well as how to use the generated Java constructs.

An IDL definition is used to specify the interface for an object: This interface must then be
implemented using an appropriate programming language. To allow implementation of
interfaces in OrbixVWeb, the IDL interfaces specified are mapped to Java, using the
OrbixWeb IDL to Java compiler. This compilation produces a set of classes that allow the
client to invoke operations on a remote object as if it were located on the same machine.

This chapter is designed to illustrate the fundamentals of the IDL to Java mapping, and to
serve as a reference for more detailed technical information required when writing
applications.

I. The IDL/Java Language Mapping specification is available from the OMG web site at
http://ww. ong. or g

89

IDL to Java Mapping

Overview of IDL to Java Mapping

The principal elements of the IDL to Java mapping are outlined as follows:

Basic Types

Basic types in IDL are mapped to the most closely corresponding Java type. All mapped
basic types have holder classes which support parameter passing modes. Refer to “Mapping
for Basic Data Types” on page 92.

Mapping for Modules

An IDL module is mapped to a Java package of the same name. Scoped names are used for
types defined in interfaces within a module. Refer to “Mapping for Modules” on page 94 for
details.

Mapping for Interfaces and Operation Parameters

IDL interfaces are mapped to Java interfaces and classes which provide dlient-side and
server=side support. Provision is made for two approaches to interface implementation: the
TIE and Implbase approaches.

Attributes within IDL interfaces are mapped to a pair of overloaded methods allowing the
attribute value to be set and retrieved.

Operations within IDL interfaces are mapped to Java methods of the same name in the
corresponding Java interface.

Helper classes are generated by the IDL compiler. These contain a number of static
methods for type manipulation. Refer to “Helper Classes for Type Manipulation” on
page 97.

Holder classes are generated by the IDL compiler for all user-defined types to implement
parameter-passing modes in Java. Holder classes are needed because IDLi nout and out
parameters do not map directly into the Java parameter passing mechanism. Holder classes
for the basic types are available in the or g. ong. CORBA package. Refer to “Holder Classes
and Parameter Passing” on page 100.

Mapping for Constructed Types

Constructed typesmap toa Javaf i nal class, containing methods and data members
appropriate to the mapped type. For a full description of mapping for enum st r uct, and
uni on types, refer to “Mapping for Constructed Types” on page | 17.

90

Overview of IDL to Java Mapping

Mapping for Strings

IDL strings, both bounded and unbounded, map to the Java type St ri ng. OrbixVVeb
performs bounds checking for St ri ng parameter values passed as bounded strings to IDL
operations. Refer to “Mapping for Strings” on page 123.

Mapping for Sequences and Arrays

IDL sequences, both bounded and unbounded, map to Java arrays of the same name.
OrbixWVeb performs bounds checking for bounded sequences. Helper and holder classes
are generated for mapped IDL sequences. Refer to “Mapping for Sequences” on page 125.

IDL arrays map directly to Java arrays of the same name. OrbixWWeb performs the bounds
checking, since Java arrays are not bounded. Refer to “Mapping for Arrays” on page 126.

Mapping for Constants

Constantsmap topubl i c static final fieldsina corresponding Java interface. If the
constant is not defined in an interface, the mapping first generates a public interface with the
same name as the constant. Refer to “Mapping for Constants” on page 127.

Mapping for Typedefs

Typedefs are mapped to the corresponding Java mapping for the original IDL type. A
helper class is generated for the declared type. The IDL to Java mapping for constants and
typedefs is described in “Mapping for Typedefs” on page 129.

Mapping for Exceptions

IDL standard system exceptions are mapped to Java f i nal classes which extend

or g. ong. CCRBA. Syst enExcept i on and provide access to IDL exception code. IDL
user-defined exception typesmap toafi nal class which derives from

or g. ong. CCRBA. User Except i on. User-defined exceptions have helper and holder
classes generated. Refer to “Mapping for Exception Types” on page 129.

91

IDL to Java Mapping

Mapping for Basic Data Types

The IDL basic data types are mapped to corresponding Java types as shown in Table .

IDL JAVA Exceptions
short short
| ong int
unsi gned short short
unsi gned | ong i nt
I ong | ong | ong
unsi gned | ong | ong | ong
f1 oat fl oat
doubl e doubl e
char char COCRBA: : DATA_CONVERS| CN
wchar char COCRBA: : DATA_CONVERS| CN
string java.lang. String QOORBA: : MARSHAL
OORBA: : DATA_ CONVERSI QN
wstring java.lang. String QOORBA: : MARSHAL
OORBA: : DATA_ CONVERSI QN
bool ean bool ean
oct et byt e
any or g. ong. CCRBA. Any

Table 1: Mapping for Basic Types

92

Mapping for Basic Data Types

You should note the following features of the IDL to Java mapping for basic types:

Holder Classes for Parameter Passing

All IDL basic types have holder classes available in the or g. ong. CCRBA
package to provide support for the out and i nout parameter passing
modes. For more details on holder classes refer to “Holder Classes and
Parameter Passing” on page 100.

IDL Long Maps to Java Int
The 32-bit IDL | ong is mapped to the 32-bit Java i nt.
IDL Unsigned Types Map to Signed Java Types

Java does not support unsigned data types. All unsi gned IDL types are
mapped to the corresponding signed Java types. You should ensure that
large unsigned IDL type values are handled correctly as negative integers
in Java.

IDL Chars and Java Chars

IDL char s are based on the 8-bit character set for ISO 8859.1. Java char s
come from the |6-bit UNICODE character set. Consequently IDL char s
only represent a small subset of Java char s. On marshalling, if a char has
a value outside the range defined by the character set, a

CORBA: : DATA_ CONVERS!I ON exception is thrown. The 16-bit IDL wchar
represents the full range of Java chars, and maps to the Java primitive
type char.

IDL Strings

IDL string types map to the Java type String. On marshalling, range
checking for characters and bounds checking of the string is performed.
Character range violations raise a CCRBA: : DATA_CONVERSI ON exception;
bounds violations raise a QORBA: : MARSHAL exception. IDL wst ri ng types,
both bounded and unbounded, also map to the Java type Stri ng.

Booleans

The IDL bool ean type constants TRUE and FALSE map to the Java
bool ean type literals t rue and f al se.

Type any
The mapping for type any is described in full in “Type any” on page 347.

93

IDL to Java Mapping

Mapping for Modules

An IDL module is mapped to a Java package of the same name. All IDL type declarations
within the module are mapped to a corresponding Java class or interface declaration within
the generated package. IDL declarations not enclosed in any modules are mapped into the
Java global scope. The use of modules is recommended.

Scoped Names

All types defined inside an IDL module are mapped within a Java package with the same
name as that module. For example, if an interface named bank is defined inside the module
| DLDenv, then the Java interface for bank is scoped as | DLDeno. bank.

Similarly, any type defined inside an interface is scoped first by the module name, if defined,
and then by a package named <t ype>Package, where <t ype> is the interface name.
Therefore, if bank defines a structure called Det ai | s, the corresponding class is scoped as
| DLDero. bankPackage. Det ai | s.

IDL types which are not defined inside either a module or an interface are not included in a
Java package. This creates the potential for naming collisions with other globally defined Java
types. To avoid the generation of such naming collisions, always define your IDL within
modules. Alternatively, use the - j P compiler option, which specifies a package prefix that is
added to generated types. This makes it possible to use globally defined IDL types within a

package scope.

Refer to the OrbixWeb Programmer’s Reference for more details on the use of
compiler options.

The CORBA Module

The objects and data types pre-defined in CORBA are logically defined within an IDL
module called GCRBA. IDL maps the CORBA module to a Java package called

or g. ongy. OCRBA. In line with this mapping, the OMG keyword Cbj ect maps to
or g. ong. CORBA. (yj ect .

In OrbixVVeb, the or g. ony. QORBA set of classes represents the OMG standard abstract
runtime. The actual implementation of the OrbixVVeb ORB resides in the
| E. 1 ona. O bi x\%b package.

94

Mapping for Interfaces

Mapping for Interfaces

An IDL interface maps to a public Java interface of the same name, and a number of other
generated Java constructs. This discussion focuses on the client-side and server-side
mapping, and on helper and holder classes. These classes have roles on both the client-
side and the server-side.

IDL interface definitions are compiled by the IDL to Java compiler. The following Java
constructs are generated, where <t ype> represents a user-defined interface name:

Generated Files Description Side
<type>.j ava Java Reference interface client
_<type>Stub. j ava Java Stub class client
_<type>Skel et on. j ava Java Skeleton class server
_<type>l npl Base. j ava ImplBase class server
tie<type>.java TIE class server
_<type>Q(perations. java Java interface server
(used with TIE class)

<t ype>Hel per.j ava Java Helper class client/server
<t ype>Hol der . j ava Java Holder class client/server
<t ype>Package Java package. client/server

Note: The classes _tie_<type>.javaand _<type>(perations.javaare
specific to OrbixVWeb. To generate files defined by CORBA only, use the
-j OMGIDL Compiler switch.

95

IDL to Java Mapping

This section uses the IDL interface account to show how an IDL interface is mapped to
Java:

/1 1DL
nodul e bank_deno;
interface account {
readonly attribute float bal ance;

voi d makeLodgenent (in float sun);
voi d makeWthdrawal (in float sum);

}

Client Mapping

The OrbixVWeb client provides proxy functionality for the IDL interface. The IDL compiler
generates the following client-side Java constructs for each IDL interface:

® Java Reference interface

® Java Stub class

® Java Helper class

® Java Holder class

Java Reference Interface

A Java Reference Interface type has the naming format <t ype>. j ava. It defines the
client view of the IDL interface, listing the methods that a client can call on objects which
implement the IDL type. The interface extends the base or g. ong. CCRBA. (hj ect
interface.

The following Java Reference interface for the IDL interface account illustrates the Java
mapping for IDL attributes and operations:

/1 Java generated by the QO bixWb | DL conpiler
package bank_deno;

public interface account
ext ends org. ong. GORBA (hj ect {
public float bal ance();
public voi d nakeLodgenent (float sunj;
public void makeWt hdrawal (float sunj;
}

96

Mapping for Interfaces

The read-only attribute bal ance maps to a single Java method, since there is no
requirement for setting its value.

The IDL operations makeLodgenent and makeW t hdr anal map to methods of the
same name in the corresponding Java interface.

Java Stub Class

The Java Stub dass generated by the IDL compiler implements the Java interface and
provides the functionality to allow client invocations to be forwarded to the server.This
class has a naming format of _<t ype>St ub. j ava. This generated class is used internally by
OrbixWVeb and you do not need to understand how it works.

Java Helper classes and Java Holder classes are discussed in the following two sections.

Helper Classes for Type Manipulation

A Java Helper class is also generated by the Java mapping. Helper classes contain methods
that allow IDL types to be manipulated in various ways. The IDL-to-Java compiler generates
helper classes for all IDL user-defined types. The naming format for helper classes is

<t ype>Hel per, where <t ype> is the name of an IDL user-defined type.

Helper classes include methods that support insertion and extraction of the account
object into and from Java Any types. Interface Helper classes also have static class methods
for nar r ow() and bi nd() . The nar r ow() method takes an or g. ong. CCRBA. (hj ect
type as an argument, and returns an object reference of the same type as the class. The

bi nd() 2 method may be used to create a proxy for an object that implements the IDL
interface. A proxy object is a client-side representative for a remote object. Operations
invoked on the proxy result in requests being sent to the target object.

The following code illustrates the Java Helper class generated from the IDL account
interface:

/1 in file account Hel per.java

/1 Java generated by the O bix\eb | DL conpil er
11

i nport org. ong. CORBA. Any;

i nport org. onyg. CORBA (bj ect ;

i nport org. ong. CORBA TypeCode;

2. bind() is a feature specific to OrbixWeb. If you wish to use only those features defined in the
CORBA specification, you should compile your IDL using the - j QMG switch.

97

IDL to Java Mapping

i nport org.ong. CORBA. portabl e. Qut put St ream
i mport org. ong. CORBA port abl e. | nput Stream

public class account Hel per {

public static void insert (Any any, account val ue) {

}

public static account extract (org.ong. CORAny any) {

}

public static TypeCode type () {

}

public static String id () {

}

public static account read (InputStream _strean) ({

}

public static void wite (QutputStream_stream account val ue){
}

public static final account bind() {

}

public static final account bind(String narkerServer) {
}

public static final account bind(org.omy. OCCRBA CRB orb) {

}

public static final account bind
(String nmarkerServer, String host){

}

public static final account bind
(String marker Server, org.ong. OCRBA CRB or b){

98

Mapping for Interfaces

public static final account bind

}

(String markerServer, String host, org.ong. CCRBA. CRB orb){

public static account narrow (Cbject _obj) {

}
}

These methods provided by helper classes are described as follows:

The i nsert () and extract () methods allow for IDL interface types to
be passed as a parameter of IDL type any. Refer to “Type any” on
page 347 for further information on this topic.

The t ype() method returns a TypeCode for a specified interface.

TypeCodes allow runtime querying of type information for an Any type.
They can also be used for interrogating the Interface Repository. Refer to
Chapter 19, “TypeCode” for more details.

The i d() method is used to retrieve the Repository ID for the object.

Theread() and wite() methods allow the type to be written to and
from a stream.

The bi nd() method provides an alternative to using the Naming Service,
and is a feature specific to OrbixWeb.

bi nd() locates a specified object and creates a proxy for it in the client’s
address space. Overloaded methods within bi nd() allow a variety of
parameters to be passed. Refer to “The bind() Method” on page 204 for a
description to the parameters to bi nd().

The Naming Service is the preferred method for locating objects in
servers, but some applications may benefit from using the bi nd()
method.

Using the Bind() Method

A client wishing to use the IDL interface should bind an object of the Java
class type to the target implementation object in the server, assigning the
result to the Java Reference interface type.

99

IDL

to Java Mapping

For example, a client could bind to an account implementation object by
calling the bi nd() static method on the Java account Hel per class as
follows:

/1 Java

account akRef;

aRef = account Hel per. bi nd() ;

This returns a proxy object which can be accessed using the methods
defined in the account interface.

The narrow() method allows an interface to be safely cast to a derived
interface. For example, it allows an or g. ong. CCRBA (bj ect to be narrowed to
the object reference of a more specific type. For IDL-defined objects, you must
use narrow() rather than the normal Java cast operation. Failure of the
method raises a CORBA: : BAD_PARAMexception.

Refer to “Mapping for Derived Interfaces” on page | 12 for further
information on narrowing object references.

Holder Classes and Parameter Passing

IDLi n parameters always map directly to the corresponding Java type. This mapping is
possible because i n parameters are always passed by value, and Java supports by value
passing of all types. Similarly, IDL return values always map directly to the corresponding

Java type.

IDLi nout and out parameters, however, must be passed by reference, because they may
be modified during an operation call, and do not map directly into the Java parameter
passing mechanism. In the IDL to Java mapping, IDL i nout and out parameters are
mapped to Java Holder classes. Holder classes simulate passing by reference. The client
supplies an instance of the appropriate Java holder class passed by value, for each IDL out
orinout parameter. The contents of the holder instance are modified by the call and the
client uses the contents when the call returns.

There are two categories of holder classes:

100

Holders for basic types.

Holders for user-defined types.

Mapping for Interfaces

Holders for Basic Types

Holder dlasses for basic Java types and the Java st ri ng type, are available in the package
or g. ong. OCRBA. The name format used is <t ype>Hol der, where <t ype> is the name
of a basic Java type, with initial capital letter, for example | nt Hol der .

An example of the implementation for | nt Hol der follows:

/1 Java
package org. ong. CORBA;
public class IntHolder {
public int val ue;
public IntHolder () {}
public IntHolder (int value) {
this.value = val ue;

}
}

|I. The holder class stores an i nt value as a member variable.

2. The value can be initialized by the constructor and accessed directly. The
holder class simulates passing by reference to method invocations and so
facilitates the modification of an i nt, which would not be possible if the
i nt were passed directly.

Holders for User-Defined Types

Holder dlasses for user-defined types, including IDL interface types, are generated by the
Java mapping. The name format is <t ype>Hol der . For example, given an IDL interface
account, the following Hol der class is generated:
/1 in file account Hol der.java
/1 Java generated by the O bix\eb | DL conpil er
11
public final class accountHol der {

publ i c account val ue;

publ i ¢ account Hol der () {};

publ i ¢ account Hol der (account val ue) {

t hi s. val ue = val ue;

}

I. The holder class stores an account value as a member variable, which can
be initialized by the constructor and accessed directly.

101

IDL to Java Mapping

Invoking an Operation using Holder Classes
When using holder classes to pass i nout and out parameters, the following rules apply:
® The client programmer must supply an instance of the appropriate holder
Java class that is passed, by value, for each IDL out or i nout parameter.

The contents of the holder instance are modified by the call, and the
client then uses the contents after the call returns.

® For the i nout parameter, the client must initialize the holder with a valid
value. The operation can examine the value supplied by the client and may
change the value if it wishes. The final value at the end of the operation
(changed or not) is returned to the client.

® For the out parameter: the client does not need to initialize the holder
with a value, as any value in the holder is ignored. The operation should
not use the initial value in the holder and must supply a valid value to be
returned to the client.

Toillustrate the use of holder types, consider the following IDL definition:
/1 1D
voi d newAccount
(in string nane, out account acc, out string acclD)
The IDL compiler maps this operation to a method of Java interface bank as follows:
/1 In package bank_deno. bank,
public voi d newAccount (String name, bank_deno. account Hol der acc,
org. ong. CORBA. Stri ngHol der accl D);

This method returns an object reference to the interface account andast ri ng value ofa
variable accl D, which is an account number automatically generated by the server object.
Holder classes are generated for the out return values to allow the server to pass back
new values to the client.

102

Mapping for Interfaces

The holder class account Hol der stores a val ue member variable of type Account,,
which may be modified during the operation call.

/1
/1 Java generated by the QO bixWb | DL conpiler
/1 account Hol der. j ava
package bank_deno
public final class accountHol der {
publ i ¢ bank_deno. account val ue;
publ i ¢ account Hol der () {}
publ i ¢ account Hol der (bank_deno. account val ue) {

I. The val ue variable is of type account .

2. val ue can be initialized by a constructor and accessed directly. The
holder class simulates passing by reference to method calls and so allows
val ue to be changed. This would not be possible if val ue was passed
directly.

A client application can be coded as follows:

/1 Java
/1 In file javaclientl.]java.
i mport org.ong. CORBA. Syst enExcepti on;

public class javaclient1{
public static void main (String args[]) {
bank bRef = null;
account aRef = null;
account Hol der aHol der =
new account Hol der ();
float f = (float) 0.0;

try {
/1 Bind to any bank object

/1 in BankSrv server.
bRef = bankHel per.bind (":BankSrv");

103

IDL to Java Mapping

/1 Obtain a new bank account.
bRef . newAccount ("Joe", aHol der);
}
catch (SystenkException se) {
Systemout.printlin (

"Unexpect ed exception on bind");
Systemout.println (se.toString ());
Systemexit(1);

}

/'l Retrieve value from Hol der object.
aRef = ahHol der. val ue;

try {
/'l 1nvoke operations on account.

aRef . makeLodgenent ((fl oat)56. 90);
f = aRef. bal ance();
Systemout.println ("Current balance is + f);
}
catch (SystenmkException se) {
Systemout.println (
"Unexpect ed exception”
+ " on makeLodgenent or bal ance");
Systemout.println (se.toString ());
Systemexit(1);

}

In the server, the implementation of method newAccount () receives the Hol der object
for type account and may manipulate the value field as required. For example, in this case
the newAccount () method can instantiate a new account implementation object as
follows:

/1 Java
/1 In class bankl npl enentati on.
public voi d newAccount
(String nane, bank_deno. account Hol der acc) {
account | npl ement ati on accl npl =
new account | npl enentati on (0, nane);

acc.value = new _tie_account (acclnpl);

104

Mapping for Interfaces

Note: If the account parameter is labelled i nout in the IDL definition, the

val ue member of the Holder class needs to be instantiated before calling
the newAccount () operation.

Server Implementation Mapping

The Java mapping generates four classes to support server implementation in OrbixVVeb.
The following files are generated:

A Java Skeleton class, with the name format _<t ype>Skel et on. j ava,
used internally by OrbixWeb to dispatch incoming server requests to
implementation objects. You do not need to know the details of this
class.

An abstract Java ImplBase class, with the name format
_<type>l| npl Base. j ava, which allows server-side developers to
implement interfaces using the ImplBase approach.

A Java TIE class, with the name format _ti e_<type>. j ava, that allows
server side developers to implement interfaces using delegation (the TIE
approach3).

A Java Operations interface, with the name format _<t ype>Qper at i ons,
that is used in the TIE approach to map the attributes and operations of

the IDL definition to Java methods. This class is specific to OrbixVWeb,
and is used to support implementation using the TIE approach.

3. The TIE Approach is specific to OrbixWeb. If you wish to use only those features defined in the
CORBA specification, you should compile the IDL using the -] QMG switch.

105

IDL to Java Mapping

Approaches to Interface Implementation

OrbixWVeb supports two approaches to the implementation of IDL interfaces in Java
applications:

¢ The ImplBase approach.
¢ The TIE approach.

This section discusses the Java types generated to enable each implementation method.

Both approaches to interface implementation share the common requirement that you
must create a Java implementation class. This class must fully implement methods
corresponding to the attributes and operations of the IDL interface.

The ImplBase Approach to Implementation

To support the ImplBase approach, the IDL compiler generates an abstract Java class from
each IDL interface definition. This abstract class is named by adding | npl Base to the IDL
interface name, prefixed by an underscore. For example, the compiler generates class
_account | npl Base from the definition of interface account .

To implement an IDL interface using the ImplBase approach, you must create a Java class
which extends the corresponding ImplBase class and implements the abstract methods.

For example, given the IDL definition for interface account , the compiler generates the
abstract class _account | npl Base as follows*:

11

/1 Java generated by the O bi x\eb | DL conpil er
/1 _account | npl Base. j ava

/1

import | E I ona. Obi x\eb. Feat ur es. Loader d ass;

public abstract class _account!| npl Base
extends _account Skel eton i npl enents account {

4. In this code example, imports such as the mar ker and | oader constructors are specific
to OrbixWeb. To generate code which uses only those features defined in the CORBA
specification, compile the IDL using the - | OMGswitch.

106

Mapping for Interfaces

public _account| npl Base() {

}
public _account!npl Base(String marker) {

}

public _account| npl Base (Loaderd ass | oader){

}

public _account! npl Base(String marker,
Loader d ass | oader) {

A sample class, which implements the IDL interface account could contain code similar to
the following;

/1 Java Inpl enentation A ass

cl ass account | npl erent at i on
ext ends _account | npl Base {

publi c account | npl errent ati on(){

public float bal ance() {

}
public String get_nane()

}

public voi d makeLodgenent (fl oat sum){

}

public voi d makeWt hdrawal (float sum

}

107

IDL to Java Mapping

Once the IDL interface has been implemented using the ImplBase approach, the server
application should simply instantiate one or more objects of the implementation class.
These objects can then handle client requests through the IDL interface in question.

The TIE Approach to Implementation

The IDL compiler generates a Java interface which defines the minimum set of methods
which you must supply in order to implement an IDL interface using the TIE approach. The
TIE approach is specific to OrbixVWeb. To use only those features defined in the CORBA
specification, compile your IDL with the - j QMG switch.

The name of this Java interface has the following format:
_<type>Qper ati ons

For example, given the IDL definition of type account , the IDL compiler generates the Java
interface _account Qper at i ons as follows:

/1 Java generated by the O bix\eb | DL conpil er

public interface _account Qperations {
public float bal ance();
public voi d nakeLodgenent (fl oat sum);
public void makeWt hdrawal (float sumn)

}

To support the TIE approach to implementation, the IDL compiler generates a non-
abstract Java class from each IDL interface definition. This class is named by appending the
IDL interface name to the string _t i e_. For example, the compiler generates class
_tie_account from the definition of interface account :

/1 Java generated by the O bixVWb | DL conpil er
// infile _tie_account.java

import | E Iona. Obi x\b. _QO bi x\éb;

import | E Iona. O bi x\b. Feat ur es. Loader d ass;

public class _tie_account extends _account Skel eton
i mpl enents account {

public _tie_account(_account Qperations inpl) {

}

108

Mapping for Interfaces

public _tie_account
(_account Cperations inpl, String marker) {

}

public _tie_account
(_account Qperations inpl, Loaderd ass |oader) {

}

public _tie_account
(_account Cperations inpl, String marker,
Loader d ass | oader) {

}

public float bal ance(){

}
public String get_narme()

public voi d makeLodgenent (float sun) {

public void makeWt hdrawal (float sun) {

}
public java.lang. Chject _deref() {

}

}
}

When implementing an IDL interface using the TIE approach, the Java implementation class
must directly implement the Qper at i ons interface. Unlike the ImplBase approach, the
implementation class is not required to inherit from any other Java class. The TIE approach
is therefore the recommended approach for Java programming, because of Java’s restriction
to single inheritance. Refer to Chapter 7, “Using and Implementing IDL Interfaces” for a
detailed discussion of the TIE and ImplBase approaches.

109

IDL to Java Mapping

The class account | npl enent at i on could be outlined using the TIE approach as follows:

/1 Java generated by the O bixVWb | DL conpil er
/1 in file accountlnpl enentation.java
cl ass account | npl enent ati on i npl enents _account Qperati ons {

public account | npl enentation() {}
public float balance() {

}

public float get_name() {

}

public voi d makeLodgenent (float sum {

public void makeWthdrawal (float sun) {

}
}

When you have created an implementation class which implements the required

Qper at i ons interface, the server application should instantiate one or more objects of this
type. For each implementation object, the server should also instantiate an object of the
corresponding TIE class, passing the implementation object as a parameter to the TIE
constructor, as in the following example:

account I npl = new account | npl enent ati on();
account x = new _tie_account (accountlnpl);

Each TIE object stores a reference to a single implementation object. Client operation
invocations through the IDL interface are routed to the appropriate TIE object which then
delegates the call to the appropriate methed in its implementation object.

Object References

When an interface type is used in IDL, this denotes an object reference. For example,
consider the IDL operation newAccount () defined as follows:

/!l 1D
i nterface account;

110

Mapping for Interfaces

i nterface bank {
account newAccount (i n string nane);

}s

The return type of newAccount () is an object reference. An object reference maps to a
Java interface of the same name. This interface allows IDL operations to be invoked on the
object reference with normal Java method invocation syntax. For example, the
newAccount () operation could be invoked as follows:

/1 Java
bank b;
account a;

b = bankHel per.bind ();
a = b. newAccount ("Chris");
a. makeLodgenent ((float) 10.0);

The server implementation of operation newAccount () creates an account
implementation object, stores a reference to this object, and returns the object reference
to the client. For example, using the ImplBase approach and an implementation class named
account | npl enent at i on, you could do the following:

cl ass bankl npl enent ati on
ext ends _bankl npl Base {

public account m acc;

publi ¢ bankl npl ementation () {
m acc=nul | ;

}

public account newAccount (String nane) {
account a = null;

try {
a = new account | npl errent at i on(0, nane) ;
}
macc = a;
return a;
}

IDL to Java Mapping

Similarly, you could use the TIE approach as follows:

cl ass bankl npl errent at i on
i npl enents _bankQperations {

publ i ¢ account m acc;
publ i ¢ bankl npl enentation () {
m acc=nul | ;

}
publi c account newAccount (String nane) {
account a = nul | ;

try {
a = new _tie_account (
new account | npl enent ati on(0, nare)) ;

}
macc = a;
return a;

}
}

If the operation newAccount () returned the account object reference as an i nout or
out parameter value, you need to pass the generated class account Hol der to the
newAccount () Java method. account Hol der is a class which can contain an account
object reference value.

Mapping for Derived Interfaces

This section describes the mapping for interfaces that inherit from other interfaces.
Additional details of this mapping are provided in “Using Inheritance of IDL Interfaces” on
page 305.

IDL interfaces support both single and multiple inheritance. On the client side, the
OrbixWeb IDL compiler maps IDL interfaces to Java interfaces, which also support single
and multiple inheritance, and generates Java classes which implement proxy functionality for
these interfaces. Inherited interfaces in IDL are mapped to extended interfaces in Java; the
inheritance hierarchy of the Java interfaces matches that of the original IDL interfaces.

112

Mapping for Interfaces

Consider the following example:

// 1D

i nterface account {
readonly attribute float bal ance;
attribute String nane;

voi d makeLodgenent (in float sunm;
voi d makeWthdrawal (in float sun);

}s

i nterface checki ngAccount : account {
void overdraftLimt(in float limt);

b
The corresponding Java interface for type checki ngAccount is:

/1 Java generated by the QO bixWb | DL conpiler

11

public interface checki ngAccount extends account {
public void setOverdraftLimt(float limt) ;

The corresponding Java stub class implements all methods for both account and
checki ngAccount . The generated class looks like this:

/1 Java generated by the O bi x\eb | DL conpil er
i nport org. ong. CCRBA portabl e. (j ect | npl ;

public class _checki ngAccount St ub
extends Cbj ect!npl inplenents checki ngAccount {

publi c _checki ngAccount Stub () {}

public void overdraftLimt(float limt){

public float bal ance() {

}

public float get_name() {

}

113

IDL to Java Mapping

public voi d nakeLodgenent (float sun) {

}
public voi d nakeWthdrawal (float sunm) {

}
public String[] _ids() {

}
}

As expected, Java code you write which uses the checki ngAccount interface can call the
inherited nekeLodgenent () method:

/1 Java
checki ngAccount checki ngAc;

// Code for binding checki ngAc {

checki ngAc. nekeLodgerent ((fl oat) 90. 97) ;

}

Assignments from a derived to a base class object reference are allowed, for example:

[/l Java
account ac = checki ngAc;

Normal or cast assignments in the opposite direction—ifrom a base class object reference
to a derived class object reference—are not generally allowed. Use the nar r ow() method
to bypass this restriction where it is safe to do so, as described in “Narrowing Object
References” on page | 16.

On the server side, the IDL compiler generates a Java Qper at i ons interface for each IDL
interface. The generated Java interface defines the minimum set of implementation methods
required for the IDL interface when using the TIE approach to implementation. The
inheritance hierarchy of generated Qper at i ons interfaces matches that of the original IDL
interfaces.

To implement an IDL interface which derives from another, define an implementation class
which extends the ImplBase class for the required interface and implements all the methods
defined in the ImplBase class.

114

Mapping for Interfaces

For example, given the IDL definition of account and checki ngAccount, a
checki ngAccount implementation class appears as follows:

/1 Java
/1 In file checkingAccount | npl enent ati on.j ava.

i nport org. onyg. CORBA Fl oat Hol der;

publ i c class checki ngAccount | npl ement ati on
ext ends _checki ngAccount | npl Base {
publ i ¢ checki ngAccount | npl ement ati on() {

}

public float bal ance() {
public float get_name() {

public voi d makelLodgenent (fl oat sunm) {

}
public void makeWt hdrawal (fl oat sum {

}

public void overdraftLimt(float limt) {

}
}

Using the TIE approach, the implementation class should implement the generated

Qper at i ons interface for the relevant IDL type. The implementation class must
implement each method defined in the Oper at i ons interface and all interfaces from which
it inherits. However, you can achieve this using an inheritance hierarchy of implementation
classes, because the TIE approach, unlike the ImplBase approach, imposes no implicit
inheritance requirements on such classes.

115

IDL to Java Mapping

For example, if the IDL type account is implemented by class
account | npl errent at i on, using the TIE approach, you might implement IDL interface
checki ngAccount with type checki ngAccount | npl enent at i on as follows:

/1 Java
/1 In file checkingAccount | npl enentation.java

publ i c cl ass checki ngAccount | npl enent ati on
ext ends account | npl errent at i on,
i npl enents _checki ngAccount per ati ons {

publ i ¢ checki ngAccount | npl ement ati on() {}

public void overdraftLimt (float limt) {

}

Narrowing Object References

In the checki ngAccount example above, if you know that a reference of type account
actually references an object which implements interface checki ngAccount , you can
narrow the object reference to a checki ngAccount reference.

To narrow an object reference, use the nar r ow() method, definedasa st ati ¢ method
in each generated Interface helper class.

/1 Java CGenerated by O bi xVéb | DL Conpi | er
i mport org. omy. CORBA (bj ect ;
public class checki ngAccount Hel per {

public static final checki ngAccount narrow (bject src) {

}

116

Mapping for Constructed Types

You can call the narrowed object reference as follows:

/1 Java
account a;

a = get Checki ngAccount (bj ect () ;
checki ngAccount c;

/1 Narrow a to be a checki ngAccount .
¢ = checki ngAccount Hel per. narrow(a) ;

If the parameter passed to THel per . narr ow() is not of class T or one of its derived
classes, T. nar r ow() raises the GCORBA. BAD PARAMexception.

Mapping for Constructed Types

The following sections describe the IDL to Java mapping for the enum st r uct and uni on

constructed types.
Enums
An enumdeclaration creates a correspondence between a set of integer values and a set of
named values.
The following IDL definition illustrates an enumconstruct:
/11D
enum Fruit { apple, orange};
An enumis mapped to Java according to the rules described for the mapping of the enum
Fr ui t in the following example.
/1 Java generated by the O bix\b | DL conpil er
1 public final class Fruit {
2 public static final int _apple = 0;
3 public static final Fruit apple = new Fruit(_apple);

public static final int _orange = 1;
public static final Fruit orange = new Fruit(_orange);

17

IDL to Java Mapping

Structs

public int value () {

,

public static Fruit fromint (int value) {
}

I. The IDL enumcalled Fruit maps to a Java final class of the same name.

2. The enumvalues map to a stati ¢ fi nal member variable, prefixed by an
underscore (), for example, _appl e = 0; these underscored values can
be used in switch statements and also to represent enuns as integers.

3. Each value in the enumobject also maps to a publ i c static final
member variable with the same name as the value.

4. The val ue() method retrieves the integer value associated with each

value of the enum The integer values are assigned sequentially, beginning
with 0.

5. The fromint() method returns the value enum object from a specified
integer value.

A holder class is also generated for enuns, in this case Fr ui t Hol der.

Since only a single instance of an enumvalue object exists, the defaultj ava. | ang. Cbj ect
implementation of equal s() and hash() can be used on objects associated with the
enum

Asstruct type allows you to form an aggregate structure of variables, which may be of the
same or different types.

Consider the st r uct in the following IDL definition:

/!l 1D
interface dock {
struct Tine {
short hour;
short m nute;
short second;

b

voi d updateTime (in Time current);

118

Mapping for Constructed Types

=

void currentTime (out Tine current);
H

The rules by which an IDL st r uct is mapped to Java are illustrated in the Java mapping for
the Ti ne struct.

The IDL to Java compiler maps the Ti e structure as follows:

/1 Java generated by the O bix\b | DL conpil er
/1 Tine.java
package O ockPackage;
public final class Tine {
public short hour;
public short ninute;
public short second,;

public Tine () {}
public Tine (short hour, short mnute,
short second) {

I. The IDL struct called Ti e maps to a final Java class of the same
name.

2. The Ti ne class contains one instance variable for each field
(hour, m nut e, second) in the structure.

3. There are two constructors (in this case, Ti ne) for the structure class:
the first, Ti me(), takes no arguments, and initializes all fields in the
structure to null or zero.

4. The second constructor takes the fields in the structure as arguments
Ti me(short hour, short minute, short second), and initializes the
structure.

The interface O ock maps to the Java Reference interface A ock as follows:

/1 Java generated by the O bix\eb | DL conpil er
/1 Qock.java
i nport org. ong. CORBA. (hj ect ;
i nport A ockPackage. Ti ne;
1 i nport 4 ockPackage. Ti neHol der;

19

IDL to Java Mapping

Unions

public interface dock extends (bject {
2 public voi d updat eTi ne(Time current);
3 public void currentTi ne(Ti neHol der current) ;

}

I. Holder classes are generated for all struct types, with the name format
<t ype>Hol der, where <t ype> is the name of the struct, in this case
Ti ne.

2. The operations map to public Java methods of the same name, the i n
parameter mapping directly to the corresponding Java type, Ti re.

3. The out parameter is mapped to a Ti meHol der type, to allow the values
to be passed correctly.

IDL supports discriminated unions. A discriminated union consists of a discriminator and a
value: the discriminator indicates what type the value holds.

Note: Union types do not exist in Java, and it is recommended that you only use
the union mapping to support legacy IDL that already makes use of
unions.

Consider the following example:

/11DL for account
// exanpl e of a discrimnated Union

i nterface account {};
interface current Account : account {};
i nterface depositAccount : account {};

1 uni on account Type swi tch (short)

{

case 1: current Account curAcc;
case 2: depositAccount depacc;
defaul t: account genAcc;
b
I. Here, in the union account Type, the switch discriminator indicates
which case label value is being held.

120

Mapping for Constructed Types

The IDL discriminated union defined above maps to Java as follows:

/1 Java generated by the O bixWb | DL conpiler

public final class accountType {
publ i c account Type() {}
public short discrimnator() {

} .

public current Account curAcc() {

}...

public void curAcc(current Account val ue) {

} .

public void curAcc (currentAccount val ue,
short discrimnator){

publ i c depositAccount depacc() ({
public voi d depacc(depositAccount val ue) {

public voi d depacc (depositAccount val ue,
short discrimnator) {

}

public account genAcc() {

}

public voi d genAcc(account val ue) {
}

public void genAcc(account val ue, short discrimnator) {

I. The union account Type maps to a public final class of the same name,
with a corresponding default constructor, account Type() .

121

IDL

to Java Mapping

2.

5.

The value returned by the di scri m nat or () method indicates which
variable in the union currently stores a value. You should check the value
returned by this method to determine which accessor method should be
used.

For each variable in the union, there is a corresponding accessor method
of the same name (cur Acc(), depAcc and the default genAcc) which
retrieves the value held in the variable. The accessor method used in the
application code is determined by the value returned by the

di scri mnat or () method.

The modifier methods for each variable in the union are used to
automatically set the value for the di scri m nat or () method.

An additional modifier method is available to set the value of variables for
use in situations where more than one case label is used. Only one case
label is used in this example, so this method is not relevant here.

In rare cases, where a variable has more than one corresponding case label, the simple
modifier method for that variable sets the discriminator to the value of the first case label.
The secondary modifier method allows an explicit discriminator value to be passed, which
may be necessary if a variable has more than one case label. When the value of a variable
corresponds to the def aul t case label, the modifier method sets the discriminant to a
unique value, distinct from other case label values.

Note: If you pass a bad discriminator value, the secondary modifier throws an

exception.

The following code shows how to assign a deposi t Account :

122

[/ Java

deposi t Account dep;
account Type accType = new account Type();

accType. depAcc (dep, (short)?2);

/1 Java

current Account cur;
deposi t Account dep;
account acc;

Mapping for Strings

4 switch (accType.discrimnator ()) {
case 1. cur = accType. curAcc ();
br eak;
case 2. dep = accType. depAcc ();
br eak;

default: acc = accType. genAcc ();
}

Create a new deposi t Account object.
Create an instance of the union type.

Pass the value for deposi t Account using the modifier method.

A w N -

Invoke the di scri m nat or () method to retrieve the active value in the
union.

Mapping for Strings

IDL bounded and unbounded st r i ngs map to the Java typej ava. | ang. String. Asa
Java St ri ng is fundamentally unbounded, OrbixVVeb checks the range of St ri ng
parameter values passed as bounded strings to IDL operations. If the actual string length is
greater than the bound value, the or g. ong. CORBA. MARSHAL exception is thrown.

The IDL type wst r i ng, which can represent the full range of UNICODE characters, also
maps to the Java type St ri ng. Range violations for the IDL st r i ng types raise
CORBA: : DATA_CONVERSI ONand OORBA: : MARSHAL exceptions.

IDL st ri ng parameters defined asi nout or out map to Java method parameters of type
or g. ong. CCRBA. St ri ngHol der . This Hol der class contains a Java St r i ng value,
which you can update during the operation invocation.

Consider the following IDL definition:

/1 1DL

i nterface CQustomer {
voi d set Qust orrer Nane (in string nane);
voi d get Qust omer Nane (out string nane);

}s

123

IDL to Java Mapping

This maps to the following Java Reference interface:

/1 Java generated by the QO bixWb | DL conpiler
i mport org. ony. CORBA. (bj ect ;
i mport org. ong. CORBA. Stri ngHol der;

public interface Qustomer extends (bject {

1 public voi d set Qustoner Name(String nane) ;

2 public voi d get Qust oner Name(St ri ngHol der nane) ;
b

|. IDL operations are mapped to Java methods of the same name.

2. IDL out parameters are mapped to Stri ngHol der types to allow
parameter passing.

The St ri ngHol der class available in the or g. ong. GORBA package is as follows:

/1 Java
package org. ong. CCRBA;

public class StringHol der {
public String val ue;

public StringHol der () {}

public StringHol der (String val ue) {
this.val ue = val ue;
}
}

The following code demonstrates how a client application could invoke the IDL operations
defined in the Cust oner interface:

/1 Java

Qust oner cRef;

String inNane = "Chris";

String out Nane;

StringHol der out NaneHol der = new Stri ngHol der () ;

/!l Here, cRef is set to reference a
/1l Qustorer (code omtted).

cRef . set Qust orer Narre (i nNane) ;
cRef . get Qust oner Nane (out NarreHol der) ;

124

Mapping for Sequences

out Nane = out NaneHol der . val ue;

The server programmer receives the St ri ngHol der variable as a parameter to the
implementation method and simply assigns the required string to the val ue field.

Mapping for Sequences

IDL bounded and unbounded sequences are mapped to Java arrays of the same name. In
the case of bounded sequences OrbixVVeb performs bounds checking on the mapped
array during any operation invocations. This check ensures that the array length is less than
the maximum length specified for the bounded sequence. A CORBA: : MARSHAL exception
is raised when the length of a bounded sequence is greater than the maximum length
specified in the IDL definition.

Both holder and helper classes are generated for each of these sequence types.
The following IDL definition provides an example of declaring IDL sequences:

/1 1DL
nodul e finance {
i nterface account {
attribute string Nare;
attribute float AccNunber;

s

struct |imtedAccounts {
string bankSort Code<10>;
/1 Maxi mum | ength of sequence is 50.
sequence<account, 50> account s;

s

struct unlimtedAccounts {
string bankSort Code<10>;

/1 No maxi numlength of sequence.
sequence<account > accounts;

s

125

IDL to Java Mapping

Given the above example, the IDL compiler produces the following generated classes, one
for the bounded sequence, and another for the unbounded sequence:

/1 Java generated by the O bixVWb | DL conpil er
// Bounded sequence
package Fi nance;

public final class |inmtedAccounts {
public String bankSort Code;
public account[] accounts;
public limtedAccounts() {}
public limtedAccounts (String bankSort Code,
account[] accounts) {

a b~ WODN PR

I. AnIDL struct maps to aJava public final class of the same name, in
this case, | i m t edAccount s.

2. The string type is mapped to a Java member variable of type Stri ng.

3. The bounded sequence account is mapped to a Java array of the same
name.

4. The struct has two constructors; the first of which is a null constructor.

5. The second constructor initializes the public member variables,
bankSor t Code and the account array.

Unbounded sequences are mapped in the same way as bounded sequences. However,
bounds checking is not done on the mapped array during operation invocations.

Mapping for Arrays

IDL arrays map directly to Java arrays. However, Java arrays are not bounded, therefore
OrbixWVeb explicitly checks the bound of an array when an operation is called with the
array as an argument.

Avrrays are fixed length objects so a OCRBA: : MARSHAL exception is thrown if the length of
an array is not equal to the length specified in the IDL file. The length of the array can be
made available in Java by bounding the array with an IDL constant, which is mapped
according to the rules specified for constants.

126

Mapping for Constants

A holder class for the array is also generated, with the format <ar ray name>Hol der .
As a simple example, consider the following IDL definition for an array:

/1 1DL
typedef short BankCode[3];

interface Branch {
attribute string |ocation;
attri bute BankCode code;

b
This maps to:
/1 Java generated by the O bi xWeb I DL conpiler

/1 in file Branch.java
i mport org. ong. CORBA. Obj ect;

public interface Branch extends Ohject {
public String location();
public void location(String val ue);
public short[] code();
public void code(short[] val ue);

Mapping for Constants

The way IDL constants map to Java depends on whether or not they are declared within an
interface.

Constants Defined within an IDL Interface

An IDL constant defined within an interface maps toa publ i ¢ static final member
of the corresponding Java Reference interface generated by the IDL to Java compiler.

For example, consider the following IDL:

/1 1DL
interface ConstDefIntf {
const short MuxLen = 4;

}s

127

IDL to Java Mapping

This maps to the following Java class:

/1 Java generated by the QO bixWb | DL conpiler
// in file ConstDeflnt.java
i mport org. ony. CORBA (bj ect ;

public interface ConstDefIntf extends Chject {
public static final short MaxLen = 4;
}

You can then access the constant by scoping with the Java class name, for example:

[/ Java
short |en = ConstDef | ntf. MaxLen;

Constants Declared outside an IDL Interface

Those constants which are declared outside an IDL interface are mapped to a publ i ¢

i nt er f ace with the same name as the constant and containinga publ i ¢ static
final field, namedval ue. The val ue field holds the value of the constant. Since these
Java classes are only required at compile time, the Java compiler normally inlines the value
when the classes are used in other Java code.

Consider the following IDL:

// 1D

nodul e Exanpl eModul e {
const short MaxLen = 4;

b

This maps to the following Java class:

/1 Java generated by the O bi x\eb | DL conpil er
package Exanpl eModul e;

public interface MaxLen {
public static final short value = 4;
}

You can then access the constant by scoping with the Java interface name, for example:

// Java
short | en = Exanpl eModul e. MaxLen. val ue;

128

Mapping for Typedefs

Mapping for Typedefs

Java has no language construct equivalent to the IDL t ypedef statement. The Java mapping
resolves the t ypedef to the corresponding base IDL type, and maps this base type
according to the IDL Java Mapping. A Hel per class for the declared type is also produced. If
the type is a sequence or array, Hol der classes are also generated for the declared types.

All distinct IDL types, including those declared as t ypedef s, require a unique Repository
ID within the Interface Repository. For this reason, Hel per classes for the types declared
ast ypedef s are automatically generated with the format:

<decl ared Type>Hel per
For example, consider the following t ypedef declaration:

/1 1DL
struct QustonerDetails {
string Nang;
string Address;
h
typedef CQustorerDetail s BankQust oner;

The Qust oner Det ai | s structure maps to a Java class as described in “Mapping for
Constants” on page 127. Thet ypedef statement results in an additional
BankQust oner Hel per class.

Mapping for Exception Types
CORBA defines two categories of exception type:

* |DL standard system exceptions.

* |DL user-defined exceptions.

System Exceptions

IDL standard system exceptions are mapped to f i nal Java classes that extend

or g. ong. QCRBA. Syst enExcept i on. These classes provide access to the IDL major and
minor exception code, as well as a string describing the reason for the exception. IDL
system exceptions are unchecked exceptions. This is because the class

129

IDL to Java Mapping

or g. ong. OCRBA. Syst enExcept i on is derived from
java. |l ang. Runti me. Excepti on.

For further information on the mapping of IDL System Exceptions to Java refer to the
OrbixWeb Programmer’s Reference.

User-Defined Exceptions

An IDL user-defined exception type maps to af i nal Java class that derives from

or g. ong. OCRBA. User Except i on, which in turn derives from

java. |l ang. Excepti on. Hel per and Hol der classes are also generated. IDL user-
defined exceptions are checked exceptions.

If the exception is defined within an IDL interface, its Java class name is defined within the
interface package, called <i nt er f ace name>Package. Where a module has been
defined, the Java class name is defined within the scope of the Java package corresponding to
the IDL module enclosing the exception.

Consider the following IDL user-defined exception:

/11DL
nodul e Exceptions {
interface Illegal {
exception reject {
string reason;
short s;
b
H
¥

Ther ej ect exception maps as follows:

/1 Java generated by the O bixWeb I DL conpil er
/1l infilereject.java
i nport org. ongy. CORBA. User Excepti on;

public final class reject extends User Exception {
public String reason;
public short s;
public reject() {

}

130

Mapping for Exception Types

public reject(String reason, short s) {
}
}

The mapping of the r] ect exception illustrates the rules used by the IDL to Java
compiler when mapping exception types. Ther ej ect exception maps tothefinal class
r ej ect, which extends or g. ong. GORBA. User Except i on. Instance variables for the
fields r eason and s, defined in the exception, are also provided. There are two
constructors in the mapped exception: r e ect () is the default constructor and the
reject(String reason, short s) constructor initializes each exception member to
the given value.

Now consider an interface with an operation that can raise ar ej ect IDL exception:

/1 1DL
i nterface bank {
exception reject {

.

account newAccount () raises (reject);
b
A server can throw a bankPackage. r ej ect exception in exactly the same way as a
standard Java exception.

An OrbixVVeb client can test for such an exception when invoking the newAccount ()
operation as follows:

// Java
bank b;
account a;

try {
a = b. newAccount ();

catch (bankPackage. reject rejectEx) {
systemout.println ("newAccount() failed");
systemout.println ("reason for failure =" +
rej ect Ex. reason);

131

IDL to Java Mapping

}

OrbixWWeb exception handling is described in detail in “Exception Handling” on page 295.

Naming Conventions

IDL identifiers are mapped to an identifier of the same name in Java. There are, however,
certain names which are reserved by the Java mapping. VWWhen these occur within IDL
definitions, the mapping uses a prefixed underscore (‘_’) to distinguish the mapped identifier
from a reserved name.

Reserved names in Java include the following:

132

Java keywords.

If an IDL definition contains an identifier that exactly matches a Java
keyword, the identifier is mapped to the name of the identifier preceded

«

by *_ as follows:
_<keywor d>

Refer the Java Language Specification for more details about Java
keywords.

The Java class <t ype>Hel per, where <type> is the name of an IDL user-
defined type.

The Java class <t ype>Hol der, where <type> is the name of an IDL user-
defined type.

When a t ypedef alias is used, the resulting Java class has the format
<al i as>Hol der.

The Java classes <basi cJavaType>Hol der, where <basi cJavaType>
represents a Java basic type to which an IDL basic type is mapped.

Refer to Table | on page 92 for details of these types.

The Java package name <i nt er f ace>Package, where <i nt er f ace> is the
name of an already-defined IDL interface.

Parameter Passing Modes and Return
Types

Parameter Passing Modes and Return Types

Table 2 shows the mapping for the IDL parameter passing modes and return types. Refer to
“Holder Classes and Parameter Passing” on page 100 for more details. All non-user defined
type Holders are in or g. ong. CCRBA

IDL Type In Inout Out Return
Basic Types

short short Short Hol der Short Hol der short

| ong int I nt Hol der | nt Hol der int
unsi gned short short Shor t Hol der Shor t Hol der short
unsi gned | ong int I nt Hol der I nt Hol der i nt

I ong | ong I ong LongHol der LongHol der I ong
unsi gned | ong | ong LongHol der LongHol der | ong

| ong

fl oat f1 oat Fl oat Hol der Fl oat Hol der f1 oat
doubl e doubl e Doubl eHol der Doubl eHol der doubl e
bool ean bool ean Bool eanHol der Bool eantHol der bool ean
char char Char Hol der Char Hol der char
wchar char VW har Hol der W har Hol der char
oct et byt e Byt eHol der Byt eHol der byt e
any Any AnyHol der AnyHol der Any
IDL User-Defined Types

enum <t ype> <t ype>Hol der <t ype>Hol der <type>
struct <t ype> <t ype>Hol der <t ype>Hol der <type>
uni on <t ype> <t ype>Hol der <t ype>Hol der <type>

Table 2: Mapping for Parameters and Return Values

133

IDL to Java Mapping

IDL Type In Inout Out Return
string String St ri ngHol der StringHol der String

wst ring String Vét ri ngHol der Vgt ri ngHol der String
sequence array <t ype>Hol der <t ype>Hol der array

array array <t ype>Hol der <t ype>Hol der array
Pseudo-IDL Types

NanedVal ue NanedVal ue | NanedVal uetHol der NaredVal ueHol der NarredVal ue
TypeCode TypeCode TypeCodeHol der TypeCodeHol der TypeCode
obj ect reference | <type> <t ype>Hol der <t ype>Hol der <type>

Table 2: Mapping for Parameters and Return Values

134

Using and Implementing IDL
Interfaces

This chapter describes how clients access objects through IDL
interfaces and how servers create objects that implement those
interfaces. A detailed banking example illustrates how to use and
implement CORBA objects.

Overview of an Example Application

The example described in this chapter is a banking application. An OrbixVVeb server
creates a single distributed object which represents a bank. This object manages other
distributed objects which represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. The client then calls
operations on the bank object that instruct the bank to create new accounts for specified
customers. The bank object creates account objects in response to these requests and
returns them to the client. The client can then call operations on these new account
objects.

This application design, in which one type of distributed object acts as a factory for creating
another type of distributed object, is very common in CORBA.

The sample code described in this chapter is available in the denos/ bank_deno directory
of your OrbixWVeb installation.

135

Using and Implementing IDL Interfaces

Overview of the Programming Steps

The programming steps are outlined as follows:

No kWD~

8.

Define the IDL interfaces to objects used by the application.
Compile the IDL using the IDL to Java compiler.

Implement the IDL interfaces bank and account.

Write a server application that creates bank and account objects.
Write a client application that accesses bank and account objects.
Run an OrbixWeb daemon process.

Register the server in the Implementation Repository.

Run the client.

Subsequent chapters add further functionality to the bank and account interfaces defined
in this chapter. At this stage, the basic interfaces are sufficient to illustrate the main points.
Examples shown in later chapters allow operations to raise user-defined exceptions.

Defining IDL Interfaces to Application Objects

The example which follows implements a simple banking application. This example creates a
server which administers and manages bank account objects. The functionality required is
defined by the following IDL interface definitions:

136

/1 1DL
/1 Infile "bank_deno.idl".

/1 A sinple bank account.
interface account {
readonly attribute float bal ance;

voi d makeLodgement (in float f);
void makeWthdrawal (in float f);

}s

Compiling IDL Interfaces

/1 bank nmanufactures bank accounts.

i nterface bank {
/] Create a new account for the given nane.
account newAccount (in string nane);

/1 Delete an account.
voi d del eteAccount (in account a);

b
On the server-side, the example creates a server which implements a single bank object.
This accepts operation invocations such as newAccount () from clients. In this example, all
objects are located in a single server. In an actual system several servers may be used. A
server can manage the objects of different interfaces.

Compiling IDL Interfaces

It is assumed that the bank_den. i dl source file is compiled using the following IDL
compiler command:

idl -jP bank_denp bank_deno. i dl

Refer to Chapter 6, “IDL to Java Mapping” on page 91 for more details on the classes
generated by the IDL to Java compiler.

137

Using and Implementing IDL Interfaces

Implementing the Interfaces

OrbixVWVeb supports two mechanisms for relating an implementation class to its IDL
interface:

® The ImpIBase approach
® The TIE approach

The TIE approach is preferred for the majority of implementations in Java. This is due to the
restriction of single inheritance of classes in Java which limits the ImplBase approach. Refer

to “Comparison of the ImplBase and TIE Approaches” on page 165 for more details. Both
approaches can, however, be used in the same server, if required.

This section briefly describes how an interface may be implemented using both of these
approaches. It then steps through an example implementation using the TIE approach. For
an example of the ImplBase approach refer to “Implementing the IDL Interface” on page 16.

Note: The choice of implementation method in an OrbixWeb server does not
affect the coding of client applications.

The TIE Approach

The TIE approach to defining an implementation class is shown in Figure 15 on page 139.

Using the TIE approach, you can implement the IDL operations and attributes in a class
which does not inherit from the automatically generated ImplBase class. Instead, use the
automatically generated Java TIE class to tie together the implementation class and the IDL
interface.

The IDL compiler generates a Java TIE class for each IDL interface. The name of the Java TIE
class takes the form of _t i e_ appended to the name of the interface. For example, the IDL
compiler generates the TIE class _ti e_account for the IDL interface type account . An
object which implements the IDL interface is passed as a parameter to the constructor for
the TIE class.

To use the TIE approach you should define a new class, account | npl enent at i on,
which implements the operations and attributes defined in the IDL interface. This class need
not inherit from any automatically generated class, however, it must implement the Java
interface _account Qper at i ons.

138

Implementing the Interfaces

account (IDL interface)

'

IDL compiler » _account Oper ati ons

(Javainterface which
definesimplementation
method signatures)

account

implements A implements

Y
_tie_account (Javaclass)

|
: references
I
\ Notation:
account | npl enent ati on
(Java class written by the Java
programmer to implement interface
the interface methods)
Javadasswhich
implementsinterface

Figure 15: The TIE Approach to Defining an Implementation Class

Then instantiate an object of type _t i e_account , passing an object of type
account | npl enent at i on to the constructor. A TIE object is thus created which

delegates incoming operation invocations to the methods of your
account | npl enent at i on object.

139

Using and Implementing IDL Interfaces

Interface _account Qper at i ons is generated by the IDL compiler as follows:

/1 Java generated by the O bixWeb I DL conpiler

package bank_deno;
public interface _accountOperations {
public float bal ance();

public void makeLodgerment (float f) ;
public void makeWthdrawal (float f) ;
}

The ImplBase Approach

For each IDL interface, OrbixVWVeb also generates an abstract Java class, named

_<type>l npl Base, where <t ype> represents the name of a user-defined IDL interface.
For example, the class _account | npl Base is generated for the IDL interface account .
To indicate that a Java class implements a given IDL interface, that class should inherit from
the corresponding ImplBase class. This approach is termed the ImpIBase Approach, and is
the implementation method defined by the CORBA specification.

Because each ImplBase class is the Java equivalent of an IDL interface, a class that inherits
from this implements the operations of the corresponding IDL interface.

To support the use of the ImplBase approach, the OrbixVWeb IDL compiler produces the
Java interface account and the Java class _account | npl Base.

The ImplBase approach is used in Chapter 2 “Getting Started with Java Applications” on
page |3 for the implementation of the @i d interface. In this chapter and in the rest of this
guide, the TIE approach is used to implement IDL interfaces. The TIE approach is the
method of choice for the majority of Java applications.

140

Developing the Server Application

Developing the Server Application

In this section, a simple implementation of the banking application is used to illustrate the
TIE approach. The error-handling necessary for a full banking application has been omitted;
for example, checking if the account is overdrawn. Refer to Chapter 15,“Exception
Handling” on page 295 for more details.

The following implementation classes are coded:

bank! npl enent at i on Implements the bank interface.

account | npl enent at i on Implements the account interface.

With the TIE approach, an implementation class does not have to inherit from any
particular base class. Instead, the implementation class must implement the Java

Qoer at i ons interface generated by the IDL compiler from the IDL interface definition.
You should notify OrbixVVeb that this class implements the IDL interface by creating an
object of the TIE class, which is also generated by the IDL compiler.

Recall the IDL definitions for interfaces account and bank:

/1 1DL
/1 In file "bank_deno.idl".

/1 A sinple bank account.
interface account {
readonly attribute float bal ance;

voi d nakeLodgenent (in float f);
voi d nakeWthdrawal (in float f);

H

/1 Manuf acures bank accounts.

interface bank {
/] Create a new account for the given nane.
account newAccount (in string name);

/'l Delete an account.
voi d del et eAccount (i n account a);

I

141

Using and Implementing IDL Interfaces

Account Class Implementation

The account class implementation implements the Java Qoer at i ons interface generated
by the IDL Compiler. This class is coded as follows:

/1 Java
/1 In file accountlnpl enentation.java.

package bank_deno;

i mport org.ong. CORBA. Syst enException
i nport org. ony. CORBA. ORB;

i mport | E.lona. O bi x\Web. _CORBA;

i nport | E.lona. Orbi xWeb. _O bi x\Web;

/1 The account inplenmentation class.
cl ass account | npl enent ati on
i mpl emrents _account Qperations {

public accountlnplementation () {
m bal ance = 0;

m nanme = "";

}

public account | npl ementation
(float initialBalance, String nanme) {
m bal ance = initial Bal ance;
m nane = nane;

}

public String get_name () {
return m nane;

}

142

Developing the Server Application

public float balance () {
return m_bal ance
}

public void makeLodgenent (float f) {
m bal ance += f;

}

public void makeWthdrawal (float f) {
m bal ance -= f;

}

String m_nane;
fl oat m_bal ance

}

You can then instantiate a _t i e_account object as follows:

/1 Java
package bank_deno

account acclnpl = null

try {
acclnpl = new _tie_account

(new account | npl enentation ());
}
catch (SystenException se) {

}

143

Using and Implementing IDL Interfaces

Bank Class Implementation

Using the TIE approach, you can write the code for the bank implementation class as
follows:

/1l Java

/1 In file banklnplementation.java.

/1 The bank creates accounts and naintains
/1l a Vector of all accounts created.

package bank_deno;

i mport org.ong. CORBA. Syst enExcepti on;
i nport org. ong. CORBA. CRB;

i nport | E.lona. Orbi xWWeb. _CORBA;

i nport | E.lona. Orbi xWeb. _O bi x\Web;

i mport java.util.Vector;

cl ass bankl npl ement ati on
i mpl ements _bankOperations {
| E. 1 ona. Or bi xWeb. CORBA. ORB orb = nul | ;

publ i c bankl npl enentati on (org.ong. CORBA. ORB or b)
throws SystenException {
super ();
this.orb = _O bi x\Web. ORB(orb);

}

/1 Internal record() operation used to add new
/'l accounts to the Vector
void record
(String name, account | npl ementation p) {
AcclLi st . addEl ement (p) ;
naneli st. addEl enent (nane) ;

}
/1 newAccount () creates a new account and adds it
/1 to the account Vector.

public account newAccount (String nane) {

Systemout.println
("Creating Account for " + nane);

144

Developing the Server Application

account | npl enentati on acclnmpl = null;
try {
accl npl = new account | npl enent ati on(0, nane) ;
}
catch (SystenkException se) {
Systemout. println("Exception : " +
se.toString());
}

account acc = new _tie_account (acclnpl);
record(name , acclnpl);
return acc;

public void del et eAccount (account a) {
AcclLi st . renoveEl ement ((account | npl ement ati on)
(a. _deref()));
naneli st. renoveEl enent ((account | npl enent ati on)
(a._deref())).get_nane());
}

/| account object |ist

Vect or AcclList = new Vector();
/I name |ist

Vect or naneLi st = new Vector();

}

The method newAccount () returns an object that implements Java interface account .
This IDL generated type defines the client view of the IDL interface account .

145

Using and Implementing IDL Interfaces

main() Method and Object Creation

This section shows a sample mai n() method of a banking server application, using the TIE
approach.

The code instantiates three bank objects with associated TIE objects. Two of the bank
objects are assigned markers, and client applications may request either of these when
obtaining a reference by specifying the relevant marker in the bi nd() call. Refer to
Chapter 8, “Making Objects Available in OrbixVVeb” on page 171 for more details on
markers.

/1 Java
/1 In file javaserverl.java

package bank_deno;

i mport | E. lona. O bi x\Web. _CORBA;

i nport | E.l1ona. Obi xWeb. _O bi x\Wb;

i mport org.ong. CORBA. Syst enExcepti on;
i nport java.util.Vector;

/'l The bank_deno server.
public class javaserverl {
public static void main (String args[]) {

/1 Initialize the ORB and inplicitly

/1 call ORB.connect ().

org.ong. CORBA.ORB orb = nul |;

orb = org.ong. CORBA. CRB.init (args,null);

bank Al Bbankl npl = nul | ;
bank serverlnpl = null;
bank CGbankl mpl = null;

/1 create 3 bank objects
try {
serverlnpl = new _tie_bank
(new bankl npl enentati on (orb));
Al Bbankl npl = new _tie_bank
(new bankl npl enentati on
(orb),"AlB");

146

Developing the Server Application

}

CGankl npl = new _tie_bank
(new bankl npl enent ati on
(orb),"Col |l ege Green AIB");

/] Pause the server to prevent exiting
/1 and al |l ow i ncom ng invocati ons.

try {
Thr ead. sl eep (50000);
}

catch (InterruptedException ex) {}

/] Stop all event processing.
orb. di sconnect (CGbhankl npl);
orb. di sconnect (Al Bbankl npl);
orb. di sconnect (serverlnpl);

catch (SystenException se) {

}

Systemout. println

("Exception in new banklnpl enentation: ");
Systemout.println (se.toString());
Systemexit (1);

_Orbi xWeb. ORB(or b) . shut down(true);

Object Initialization and Connection

An implementation object must be connected to the OrbixWWeb runtime before it can
handle incoming operation invocations.

There are two means of connecting implementation objects to the OrbixVVeb runtime.
These are as follows:

Using GRB. connect () and CRB. di sconnect ()

These methods are the CORBA-defined way of connecting an
implementation to the runtime.

Using _OCRBA. O bi x. i npl _i s_r eady

This is an OrbixWeb-specific way of connecting implementation objects
to the runtime.

147

Using and Implementing IDL Interfaces

ORB.connect() and ORB.disconnect()

The OMG standard way of connecting an implementation to the runtime is to use

or g. ongy. OCRBA. CRB. connect () . The OrbixVWeb runtime can continue to make
invocations on the implementation until it is disconnected using

or g. ong. QORBA. CRB. di sconnect () . Refer to the APl Reference on interface BQAin
the OrbixWeb Programmer’s Reference for more details.

As an example, consider the following code, which instantiates a bank implementation
object and connects it to the runtime. The implementation object is disconnected at a later

stage.
i nport org. ony. CORBA. ORB;

ORB orb = ORB.init(args, null);

bank mybank =
new _tie_bank(new bankl npl ementation());

or b. connect (bank) ;

or b. di sconnect (bank) ;

Note: CRB. connect () is automatically called when you instantiate an
OrbixWeb object. However, for strict CORBA compliance, you should
explicitly call GRB. connect () in your application code.

_CORBA.Orbix.impl_is_ready

A server is normally coded so that it initializes itself and creates an initial set of objects. It
then calls _OCRBA. Orbi x. i npl _i s_ready() to indicate that it has completed its
initialization and is ready to receive operation requests on its objects. _CCRBA O bi x isa
static object (of interface BOA or class CRB) which is used to communicate directly with
OrbixVVeb to determine or change its settings.

Thei npl _i s_ready() method normally does not return immediately. It blocks the
server until an event occurs, handles the event, and then re-blocks the server to wait for
another event.

148

Developing the Server Application

The methodi npl _i s_ready() consists of four overloaded methods, as follows:

/1 Java
/1 I'n package | E.|ona. Orbi x\\eb. CORBA
/1 in interface BOA

public void inpl_is_ready ();
public void inpl_is_ready (String serverNane);
public void inpl _is_ready (int timeout);

public void inpl_is_ready
(String serverNanme, int tinmeout);

serverName

The ser ver Nare parameter to i npl _i s_r eady() is the name of a server as registered
in the Implementation Repository.

When a server is launched by the OrbixVVeb daemon process, the server name is already
known to OrbixVWVeb and therefore does not need to be passed toi npl _i s_r eady() .
However, when a server is launched manually, the server name must be communicated to
OrbixWeb. The normal way to do this is as the first parameter toi npl _i s_r eady().To
allow a server to be launched either automatically or manually, it is recommended,
therefore, that you specify the ser ver Nane parameter.

By default, servers must be registered in the Implementation Repository, using the put i t
command. Therefore, if an unknown server nameis passed toi npl _i s_r eady(), the call
is rejected. However, the OrbixVWeb daemon can be configured to allow unregistered
servers to be run manually. Refer to Chapter 12, “Registration and Activation of Servers”
on page 25| for more details on the OrbixVVeb daemon and the put i t command.

timeout

Thei npl _i s_ready() method returns only when a timeout occurs or an exception
occurs while processing an event. The t i meout parameter indicates the number of
milliseconds to wait between events. A timeout occurs if OrbixVVeb has to wait longer
than the specified timeout for the next event. A timeout of zero causes

i npl _i s_ready() to process an event, if one is immediately available, and then return.

149

Using and Implementing IDL Interfaces

A server can time out either because it has no dients for the imeout duration, or because
none of its clients uses it for that period. The system can also be instructed to make the
timeout active only when the server has no current clients. The server should remain
running as long as there are current clients. This is supported by the method

set NoHangup(), defined in interface BOA Refer to the OrbixWeb Programmer’s
Reference for more details on interface BOA.

You can explicitly pass the default timeout as _ CCRBA. | T_DEFAULT_TI MEQUT. The
default value of the _OORBA. | T_DEFAULT_TI MEQJT parameter is one minute. You can
specify an infinite timeout by passing_CORBA. | T_I| NFI N TE_TI MEQUT = -1.

Comparison of Methods for Connecting to the ORB

This section outlines some of the merits and drawbacks of thei npl _i s_r eady() and
QRB. connect () / GRB. di sconnect () methods for connecting to the ORB.

The primary advantage of using _ OCRBA. Or bi x. i npl _i s_r eady() is that it allows
server registration and event processing to be decoupled. This gives the programmer who
implements the server more control over event processing. This is the BOA approach
familiar to users of previous versions of OrbixVVeb.

The GRB. connect () / CRB. di sconnect () approach complies with the CORBA
specification defined in the OMG IDL to Java mapping. Using this approach, OrbixVWeb
implicitly connects an implementation object to the runtime when the object is instantiated.
By default, when CRB. connect () is first called in a server, a background thread that
processes events is created, and the server makes itself known to the OrbixVVeb daemon.

Correspondingly, calling ORB. di sconnect () on the last registered object stops all event
processing. You can disable this behaviour by setting the configurable item
| T_| MPL_READY | F_OONNECTEDto f al se.

When this approach is used in servers launched persistently, the server has no means of
specifying a server name. The server name must be specified using

_CORBA. O bi x. set Ser ver Nare() or by passing it on the command line to the Java VM
using - DO bi xVb. ser ver _nane.

By default, even if the target object has been disconnected, the server continues processing
requests until the last object has been disconnected. This can result, for example, in an

I NV_COBJIREF exception to a client in response to an incoming request for a disconnected
object. It is important, therefore, to explicitly disconnect all objects when you want your
server to exit. Itis also important to disconnect all objects so that they can call their loaders,

150

Developing the Server Application

if any exist, in order to save themselves. Refer to Chapter 24, “Loaders” on page 453 for
more details.

In the case of out-of-process servers, where each launched server has its own system
process, you can disconnect all objects using the following call:

_Or bi xWeb. ORB(or b) . shut down(true);

In the case of in-process servers, this method has no effect. Refer to Chapter 7, “The
OrbixWVeb Java Daemon” on page 271 for details on in-process servers. By default, servers
are activated out-of-process.

You can combine the two approaches to connecting to the ORB. In fact, if you call BOA
event processing operations, a combined approach is used. CRB. connect () is implicitly
called on when the implementation object is instantiated. Also, in OrbixVVeb, several
threads can concurrently call pr ocessEvent s() .

Note: Disconnecting the last object by default causes all BOA event processing
calls to exit.

Construction and Markers

The name of an OrbixWeb object includes its server name, interface, and a unique name
within that server and interface.

In the bank application, if a client needs to find an individual bank object of a given name,
you can assign a meaningful marker name to each bank object, and then allow dlients to
specify one of these marker names when calling the bankHel per . bi nd() method.
“Binding to Objects in OrbixVWeb Servers” on page 204 shows how to do this.

The best way for a client to obtain an object reference for a particular account object is
for the bank to provide an IDL operation that takes the account holder name and
returns an account object reference.

151

Using and Implementing IDL Interfaces

Developing the Client Application

From the point of view of the client, the functionality provided by the banking service is
defined by the IDL interface definitions. A typical client program locates a remote object,
obtains a reference to the object, and then invokes operations on the object.

These three concepts (object location, obtaining a reference, and remote invocations) are
important concepts in distributed systems. This section discusses developing the client
application in terms of these concepts.

® Object location involves searching for an object among the available servers
on available nodes. The CORBA defined way to do this is to use the
Naming Service.

® Obtaining a reference involves establishing the facilities required to make
remote invocations possible. This involves setting up a proxy. A reference
to the proxy can then be returned to the client. Obtaining a reference is
also termed binding to an object.

® Remote invocations in OrbixVWeb occur when normal Java method calls are
made on proxies.

Refer to Chapter 8 “Making Objects Available in OrbixVVeb” on page 171 for more
information on object references and object location.

These three concepts are illustrated in the following code extract from a client application
which uses the banking service:

/1 dient application code
/1 In file javaclientl.java

package bank_deno;
i mport org.ong. CORBA. Syst enExcepti on;
i nport org. ony. CORBA. ORB;
public class javaclientl {
public static void main(String args[]) {
org.ong. CORBA.ORB orb = ORB.init (args,null);

/] create variables to hold proxy objects
bank mybank = null;

152

Developing the Client Application

account currAccount = null;
String hostnanme = null;

/] Search for an object offering the bank
/'l server and construct a proxy.
try {
Systemout. println
("Attenpting to bind to : bank on "+hostnane);
nybank = bankHel per. bind (":bank", host nane);
}
catch (org.ong. CORBA. Syst enmException ex) {
Systemout.println
("Exception during bind :

+ ex.toString());
}
Systemout. println

("Connection to " + hostnanme + " succeeded.\n");

try {
curr Account = mybank. newAccount ("chris");

Systemout.println ("Account created ");
curr Account . nakeLodgenent ((fl oat)56.90);
Systemout.println
("Bal ance of first account is ");
Systemout.println (""+currAccount. bal ance());
mybank. del et eAccount (currAccount);
}
catch (SystenkException ex) {
Systemout.println
(" Unexpect ed system exception :
"+ ex.toString());
Systemexit (1);

153

Using and Implementing IDL Interfaces

Object Location

The static method bankHel per . bi nd() requests OrbixVVeb to search for an object
offering the bank IDL interface. The IDL compiler generates six overloaded bi nd()
methods for each IDL interface. In the case of the bank interface, these methods are
defined as follows:

/1 Use Hel per class code

/1 In file bankHel per.java

/1 Java generated by the O bi xWeb I DL conpiler
package bank_deno;

i nport | E.lona. Orbi xWeb. _O bi x\Wb;

public class bankHel per {
public static final bank bind() {
}

public static final bind
(org. ong. CORBA. ORB orb) {

}

public static final bank bind
(String markerServer) {

}

public static final bank bind
(String marker Server, org.ong. CORBA. ORB orb) {

}

public static final bank bind
(String markerServer, String host) {

154

Developing the Client Application

public static final bank bind
(String markerServer, String host,
org. ong. CORBA. ORB orb) {

}

public static bank narrow(Object _obj) {

}
}
}

The parameters to bi nd() are described in detail in the section “Tabular Summary of
bind() Parameters” on page 209.

In the bank example, the client specifies a host at which to contact the server. If a host is not
specified, OrbixVVeb makes an implicit call to the default locator to find a host where the
required server has been registered. Chapter 25 “Locating Servers at Runtime” on

page 473 describes the functionality of the OrbixVVeb locator mechanism.

The OrbixVVeb bi nd() methods provide two alternatives to the default locator when
attempting to locate a host on which a given server resides:

® Locate the server host in advance of a call to bi nd(), and then specify the
known host name to the bi nd() method, as described in “Binding to
Objects in OrbixWeb Servers” on page 204.

® Opverride the default locator with a user-defined locator implementation,
as described in Chapter 25 “Locating Servers at Runtime” on page 473.

The parameter nar ker Ser ver allows the object marker and server name to be specified
in the bi nd() call. In the example, no object marker is specified, so OrbixVVeb can select
any available object that matches the remaining location parameters. The mar ker Ser ver
value “: bank” instructs OrbixVVeb to search for the required object in the bank server.

155

Using and Implementing IDL Interfaces

OrbixWVeb supports collocation of clients and servers in a single address space. However,
in the bank example the client and server applications are distributed. Consequently, the call
to bi nd() in the client constructs a proxy for the specified object. The bi nd() method
returns a reference to the proxy object of type bank. The Java methods of this reference
type define the client view of the bank IDL interface.

There are two case in which this bi nd() call does not create a proxy for the specified
object:
* |f a proxy for the object already exists in the client address space, this
existing proxy is returned.

* If a system exception is thrown during the bi nd() call, the return value is
undefined.

Note: Calling bi nd() is not always required before communicating with a
particular object. If a call to another object returns a reference to a
remote object, this results in the creation of a proxy for this remote
object. For example, operation newAccount () returns a reference to an
account object.

The OrbixVWeb mechanism of binding client references to server objects is discussed in
detail in “Binding to Objects in OrbixVWeb Servers” on page 204.

Remote Invocations

The proxy object reference returned by bi nd() provides access to remote bank
operations using the Java methods defined on interface bank. The dlient can invoke these
operations by calling the equivalent Java methods on the proxy object. The proxy is
responsible for forwarding the invocation requests to the target server implementation
object and returning resullts to the client.

The Java interfaces account and bank are generated by the IDL compiler. These interfaces
define the Java client view of the IDL account and bank interfaces.

156

Developing the Client Application

The code for interface account is as follows:
/1 Java generated by the IDL conpiler

package bank_denv;

public interface account
ext ends org. ong. CORBA. Obj ect {
public float bal ance();

’

public void makelLodgenent (fl oat sum
public void makeW thdrawal (fl oat sum

}

The code for interface bank is as follows:
/1 Java generated by the IDL conpiler

package bank_deno;

public interface bank
ext ends org. ong. CORBA. Obj ect {
publ i ¢ bank_denp. account newAccount

(String nane)
public void del et eAccount

(bank_denp. account a)

}

All three Java types inherit from the Java interface or g. ong. CCRBA (bj ect . Thisis an
OrbixWeb interface which defines functionality common to all IDL object reference types.
Refer to the APl Reference in the OrbixWeb Programmer’s Reference on

or g. ong. OCRBA. (bj ect for further information on this extra functionality.

157

Using and Implementing IDL Interfaces

Registration and Activation

The last step in developing and installing the bank application is to register the bank server.

Running the OrbixWeb Daemon

Before registering the server you should ensure that an OrbixWWeb daemon process
(or bi xd or or bi xdj) is running on the server machine.

To run the OrbixVWeb Java Daemon, type the or bi xdj command from the bi n directory
of your OrbixWeb installation.

To run the OrbixVWeb Daemon, type the or bi xd command from the bi n directory of
your OrbixVWVeb installation.

In Windows, you can also start a daemon process by clicking on the appropriate menu item
from the OrbixVVeb menu.

The Implementation Repository

The OrbixVWeb Implementation Repository records the server name and the details of the
Java class which should be interpreted in order to launch the server. Implementation
Repository entries consist of the class name, the class path, and any command line
arguments which the class expects.

Every node in a network which runs servers must have access to an Implementation
Repository. Implementation repositories can be shared using a network file system.

You can register a server in the Implementation Repository using the put i t command,
which takes the following simplified form:

putit [putit switches] -java serverNane
-classpath <cl ass pat h> <cl ass name>
[conmand- 1 i ne-ar gs-f or - server]

For example, you could register the bank server as follows:
putit -java bank bank_denv.j avaserverl

The class bank_deno. j avaser ver 1 is then registered as the implementation code of the
server called bank at the current host. The put i t command does not cause the specified
server class to be interpreted. The Java interpreter can be explicitly invoked on the class, or
the OrbixVVeb daemon causes the class to be interpreted in response to an incoming

operation invocation. It uses the OrbixVWVeb | T_DEFAULT_CLASSPATHas its CLASSPATH

158

Execution Trace

when searching for the class. You can specify an alternative CLASSPATH using the put i t
utility. Further information on the put i t command is given in “Registration and Activation
of Servers” on page 251.

Execution Trace

This section examines the events which occur when the bank server and client are run.
The TIE approach is used to show the initial trace. This is followed by a comparison
between the TIE approach and the ImplBase approach.

Server-Side
First, a server with name bank is registered in the Implementation Repository.

When an invocation arrives from a client, the OrbixVWeb daemon launches the server by
invoking the Java interpreter on the specified class. The server application creates a new TIE
object, of type _t i e_bank, for an object of class bank! npl enent at i on:

/1 Java
/1 In file javaserverl.java

package bank_deno;

i mport | E. lona. O bi x\Web. _CORBA

i mport | E. lona. O bi xWeb. _Or bi x\\eb

i mport org. ong. CORBA. Syst enExcepti on;
i mport java.util.Vector;

/1 The bank_deno server.
public class javaserverl {
public static void main (String args[]) {

/1 Initialize the ORB and inplicitly

/1 call ORB.connect().

org.ong. CORBA. ORB orb = nul |

orb = org.ong. CORBA.ORB.init (args,null)
bank Al Bbankl npl = nul | ;

bank server |l npl nul |

bank CGbhankl npl nul | ;

159

Using and Implementing IDL Interfaces

/1 create 3 bank objects
try {
serverlnpl = new _tie_bank
(new bankl npl enent ati on
(orb));
Al Bbankl npl = new _tie_bank
(new bankl npl enentati on
(orb),"AIB");
CGoankl npl = new _tie_bank
(new bankl npl enentati on
(orb),"Col |l ege Green AIB");

/| Pause the server to prevent exiting
/1 and al |l ow incom ng invocati ons.

try {
Thr ead. sl eep (50000);
}

catch (InterruptedException ex) {}

orb. di sconnect (CGohanklnpl);
orb. di sconnect (Al Bbankl npl);
orb. di sconnect (serverlnpl);

}

catch (SystenmkException se) {
Systemout.println

("Exception in new bankl npl ementation: ");

Systemout.println (se.toString());
Systemexit (1);

_Or bi xWeb. ORB(or b) . shut down(true);

160

Execution Trace

Client-Side
The client first binds to any bank object, using bi nd() , for example:

/'l Java
/1 In file javaclientl.java.

package bank_deno

public class javaclientl {
public static void main (String args[]) {
org.ong. CORBA. ORB orb = ORB.init (args,null)
bank nybank = nul |
try {
/1 Bind to any bank object in bank server
nybank = bankHel per. bind (": bank");

}
catch (Systenkxception se) {
/] Details onmtted

}

}
}

No object name or marker is specified in the bankHel per . bi nd() call, so OrbixVWeb
chooses any bank object within the chosen server. When the bi nd() call is made, the

OrbixWVeb daemon launches an appropriate process by invoking the Java interpreter on
thej avaser ver 1 class, if a process is not already running.

It is assumed that the bankHel per . bi nd() call binds to one of our newly created

_ti e_bank objects. The result of the binding is an automatically generated proxy object in
the client. This acts as a stand-in for the remote bankl npl enent at i on object in the
server. The object reference nybank within the client is now a remote object reference as
shown in Figure 16 on page 163.

The client programmer is not aware of the TIE object. Nevertheless, all remote operation
invocations on the bank! npl enent at i on object are via the TIE object.

161

Using and Implementing IDL Interfaces

The client program proceeds by asking the bank to open a new account, and making a
deposit:

/1 In file javaclientl.]java.
/'l In class javaclientl.
try {
/] Ootain a new bank account.

currAccount = mybank. newAccount ("chris");
Systemout.println ("Account created ");

/'l 1nvoke operations on account.

currAccount . nekeLodgenent ((fl oat)56. 90);
Systemout.println ("Balance of first account is ");
Systemout.println (""+currAccount. bal ance());
nybank. del et eAccount (currAccount);

}
catch (SystenException se) {
// Details omtted.

}

When the nybank. newAccount () call is made, the method

bankl! npl enent at i on. newAccount () is called (via the TIE) within the bank server.
This generates a new account | npl errent at i on object and associated TIE object. The
TIE object is added to the bank! npl erent at i on object’s list of existing account s.
Finally, newAccount () returns the account reference back to the client.

A new proxy is created at the client-side for the account object. This is referenced by the
curr Account variable as shown in Figure 16 on page 163.

If the ImplBase approach is used, the final diagram is as shown in Figure 17 on page |64.

162

Execution Trace

Client Server
nggnk account | npl enent ati on
—_— obj ect

account
curr Account

account
pr oxy

l

bank
pr oxy

bankl npl enent ati on

obj ect

T ‘- _nanages
L

_tie_bank _tie_account
obj ect obj ect

Y r)

bi xWeb !

Cl asses

L - — >

T 1
L — » — — |

- c

bi x\eb
asses

Figure 16: Client Creates Object (TIE Approach)

163

Using and Implementing IDL Interfaces

Client Server
bapk
rTf}Bank .
— | bank account I npl ement ati on
pr oxy obj ect

/ A

accoynt manages .’
curr Account

account
pr oxy

|

bankl npl errent at i on
obj ect

bi x\b

bi xVeb
_________ 4 classes

Cl asses L — —

yy

Figure 17: Client Creates Object (ImplBase Approach)

164

Comparison of the ImplBase and TIE
Approaches

Comparison of the ImplBase and TIE
Approaches

The TIE and ImplBase approaches to interface implementation impose similar overheads on
the implementation programmer. However, there are two significant differences which may
affect the choice of implementation strategy:

® The ImplBase approach requires the implementation class to extend a
generated base class, while the TIE approach merely requires the
implementation of a Java interface.

® The TIE approach requires the creation of an additional object for each
implementation object instantiated in a server.

The first of these differences has important implications for the viability of the ImplBase
approach in most applications. Java does not support multiple inheritance, so the inheritance
requirement which the ImplBase approach imposes on implementation classes limits the
flexibility of those classes and eliminates the possibility of reusing existing implementations
when implementing derived interfaces. The TIE approach does not suffer from this
restriction and, for this reason, is the recommended approach.

The creation of a TIE object for each implementation object may be a significant decision
factor in applications where a large number of implementation objects are created and tight
restrictions on the usage of virtual memory exist. In addition, the delegation of client
invocations by TIE objects implicitly involves an additional Java method invocation for each
incoming request.

Of course, it is not necessary to choose one approach exclusively, as both can be used
within the same server.

The next two sections examine two important aspects of IDL interface implementation:

* Providing different implementations of the same interface.

* Implementing different interfaces with a single implementation class.

165

Using and Implementing IDL Interfaces

Providing Different Implementations of the Same Interface

Both the ImplBase and TIE approaches allow a you to provide a number of different
implementations classes for the same IDL interface. This is an important feature, especially
in a large heterogeneous distributed system. An object can then be created as an instance of
any one of the implementation classes. Client programmers do not need to be aware of
which implementation class is used.

Providing Different Interfaces to the Same Implementation

Using the TIE approach, you can have a Java implementation class which implements more
than one IDL interface. This class must implement the generated Java Qper at i ons
interfaces for all of the IDL interfaces it supports, and must therefore implement all the
operations defined in those IDL interfaces. This common class is simply instantiated and
passed to the constructor of any TIE objects created for a supported IDL interface. Thisis a
way of giving different access privileges to the same object.

With the ImplBase approach, it is not possible to implement different interfaces in a single
implementation class, as each interface requires the implementation class to extend an IDL
generated base class.

An Example of Using Holder Classes

This section outlines an example of using holder classes in the bank application. You should
refer to “Holder Classes and Parameter Passing” on page 100 for a detailed description of
holder classes.

Recall the definition of operation newAccount (), from interface bank, in the IDL
definition for the banking application:

/1 1DL
account newAccount(in string nane);

In order to illustrate the use of Holder types, this IDL definition is modified as follows:

/1 1DL
voi d newAccount (in string name, out account acc);

The IDL compiler maps this operation to a method of Java interface bank as follows:

166

An Example of Using Holder Classes

/1 Java
/1 I'n package bank_deno.

public voi d newAccount
(String name, bank_denp. account Hol der acc);

The out parameter of type account maps to an OrbixWeb Hol der class,
bank_deno. Account Hol der, which is generated by the IDL compiler. The source code
for this class appears as follows:

/1 Java generated by the O bixWb | DL conpiler.
package bank_deno;
inport |E lona. ObixWb. O bi xVéb;

public final class accountHol der
i npl enents org. ong. GORBA portabl e. Streamabl e {

publ i ¢ bank_deno. account val ue;
publ i ¢ account Hol der () {}
publ i ¢ account Hol der (bank_deno. account val ue) {

}

This Hol der class stores a val ue member variable of type account , which can be
modified during the operation invocation. The example dlient application can be now coded
as follows:

/1 Java
/!l Alternative client code

package bank_deno;
i mport org.ong. CORBA. Syst enExcepti on;

public class javaclient2 {
public static void main (String args[]) {
bank nmybank = null;
account currAccount = null;
account Hol der aHol der = new account Hol der ();
float f = (float) 0.0;

167

Using and Implementing IDL Interfaces

try {
/1 Bind to any bank object.
/1 in bank server.
nybank = bankHel per.bind (":bank");

/1 Obtain a new bank account.
nybank. newAccount ("Joe", aHol der);

catch (SystenkException se) {
Systemout.println
(" Unexpect ed exception on bind");
Systemout.println (se.toString ());
}

/'l Retrieve value from Hol der object.
currAccount = aHol der. val ue;

try {
/'l I nvoke operations on account.
currAccount . makeLodgenent ((fl oat)56. 90);
f = currAccount. bal ance();
Systemout.println ("Current balance is "+ f);
}
catch (SystenmkException se) {
Systemout.println
(" Unexpect ed exception"
+ " on nmakelLodgenent or bal ance");
Systemout.println (se.toString ());

}

168

An Example of Using Holder Classes

In the server, the implementation of method newAccount () receives the Hol der object
for type account and can manipulate the value field as required. For example, in this case
the newAccount () method could instantiate a new account implementation object as
follows:

/1 Java
/1 1n class banklnpl ementati on.

public void newAccount
(String nane, bank_deno. account Hol der acc) {
account | npl enentati on acclnpl =
new account | npl ementation (0, nane);

acc.value = new _tie_account (acclnpl);

}

Holder classes are required for all out ori nout parameters.

Note: If the account parameter in the IDL definition was labelled i nout, you
would need to instantiate the val ue member of the Hol der class before
calling the newAccount () operation.

For more information on Hol der classes refer to Chapter 6, “IDL to Java Mapping” on
page 91.

169

Using and Implementing IDL Interfaces

170

Making Objects Available in
OrbixWeb

A central requirement in a distributed object system is for clients to
be able to locate the objects they wish to use. This chapter describes
how object references are published and resolved in OrbixWeb.
OrbixWeb Naming Service, IONA’s implementation of the CORBA
Naming Service, is described in this chapter.

Note: OrbixWeb Naming Service is available with the OrbixWeb Professional
Edition.

The role of the CORBA Naming Service is to allow a name to be bound to, or associated
with, an object and to allow that object to be found by resolving that name within the
Naming Service. The OrbixVWeb Naming Service is IONA’s implementation of the
CORBA Naming Service. This chapter describes in detail how to use the OrbixVVeb
Naming Service, and briefly describes a couple of alternative methods for making object
references available to clients.

171

Making Objects Available in OrbixWeb

OrbixWeb Object References

Every CORBA object is uniquely identified by its object reference. An object reference is an
internal identification structure which contains a fixed set of fields. This object reference
allows a dlient to locate the object in the system.

If an application wishes to bind to an object, it must have a mechanism for obtaining the
information stored in the object reference. There are several ways for a server to make this
information available. These are discussed in “Making Objects Available to Clients” on
page 177.

Each OrbixVWVeb object reference includes the following information:
¢ An object name that is unique within its server.
This name is referred to as the object’s marker.

® The object’s server name
(sometimes called an implementation name in CORBA terminology).

* The server’s host name.

For example, the object reference for a bank account would include the object's marker
name, the name of the server that manages the account, and the name of the server’s host.
The bank server could, if necessary, create and name different bank objects with different
names, all managed by the same server.

In more detail, an OrbixVVeb object reference is fully specified by the following fields:

¢ Object marker.

® Server name.

® Server host name.

* IDL interface type of the object.

¢ Interface Repository (IFR) server in which the definition of this interface
is stored.

* IFR server host.
All OrbixVVeb objects implement the Java interface or g. ong. CCRBA. (hj ect . This
interface supplies several methods common to all object references including

obj ect _to_string() which produces a stringified form of the object reference. The
form of the resultant string depends on the protocol being used. In the case of IOP, a string

172

OrbixWeb Object References

representation of an IOR is produced. In the case of Orbix Protocol, a string of the
following form is produced:

:\'server _host: server_name: marker: | FR host: | FR server:IDL_in
terface

| E. 1 ona. O bi xWb. OCRBA. Chj ect Ref also provides access to the individual fields of
an object reference string via the following set of accessor methods:

/1 Java

/'l in package |E |ona. O bi x\Wb. CCRBA,

/1 in interface bjectRef.

public String _host();

public String _inplenentation();

public String _marker();

public String _interfaceHost();

public String _interfacel npl ementation();
public String _interfaceMarker();

OrbixWVeb automatically assigns the server host, server name and IDL interface fields on
object creation and it is not generally necessary to update these values. OrbixWWeb also
assigns a marker value to each object, but you may choose alternative marker values in
order to explicitly name OrbixVVeb objects. The assignment of marker names to objects is
discussed in the following section. In general, the IFR host name (i nt er f aceHost) and IFR
server (i nt er f acel npl enent at i on) fields are set to default values. In the stringified
form these are ‘| FR and the blank string, respectively.

Assigning Markers to OrbixWeb Objects

An OrbixVWeb marker value allows a name (in string format) to be associated with an
object, as part of its object reference. You can specify a marker name at the time an object
is created, as shown in “Assigning a Marker on Creation” on page 174. If you do not specify
a marker for a newly created object, a name is automatically chosen by OrbixVVeb.

You can use the modifier method _nar ker (St ri ng) to rename an object which has a
user-specified name or a name assigned by OrbixVWeb. This is defined in the interface
(bj ect Ref, in package | E. | ona. O bi xVeb. GORBA. For details on how to convert an
OrbixVWVeb object to an instance of Chj ect Ref , refer to the class

_O bi xWb. (bj ect Ref in the OrbixWeb Programmer’s Reference.

173

Making Objects Available in OrbixWeb

You can use the accessor method _mar ker () to find the marker name associated with an
object. The following code demonstrates the use of this method:

/1 Java
i mport org.ong. CORBA. Syst enExcepti on;
i nport | E.lona. Orbi xWeb. _O bi x\Web;

account a;

try {
a = new _tie_account
(new account | mpl enentation ());
Systemout.println ("The marker name chosen " +
"by OrbixWeb is " + _ObixWeb. Object(a)._marker ());

}
catch (SystenmException se) {

}

Assigning a Marker on Creation

To assign a marker for an object on creation, do either of the following:

* Pass a marker name to the second parameter (of type Stri ng) of a TIE-
class constructor. For example:
/1 Java

i mport org.ong. CORBA. Syst enException
bank b;
try {

b = new _tie_bank

(new bankl npl ementation (), "College_Geen");
}

catch (SystenkException se) {

}

174

OrbixWeb Object References

Pass a marker name to the first parameter (of type Stri ng) of a ImplBase
class constructor. For example:

/1 Java
/] Constructor definition in inplenentation class:

public class bankl npl enent ati on
ext ends _bankl npl Base {

bankl mpl ementation (String marker) {
super (marker);
}

}

/1 Usage in server class:
i mport org.ong. CORBA. Syst enExcepti on;
bankl npl ement ati on bankl npl ;

try {
bankl mpl = new bankl nmpl ement ati on
("Col | ege Green");
catch (SystenException se) {

}

Choosing Marker Names

The marker names chosen by OrbixWWeb consist of a string composed entirely of decimal
digits. To ensure that your markers are different from those chosen by OrbixVVeb, do not
use strings consisting entirely of digits.

Note: Marker names cannot contain the character ‘: ’ and cannot contain the null

character.

175

Making Objects Available in OrbixWeb

An object’s interface name together with its marker name must be unique within a server. If
a chosen marker is already in use when an object is named, OrbixVVeb assigns a different
marker to the object. The object with the original marker is not affected. There are two
ways to test for this, depending on how a marker is assigned to an object:

¢ |If 1 E lona. O bi x\eb. OORBA (bj ect Ref . _narker (String) is used, you
can test for a f al se return value. A f al se return value indicates a name
clash.

® If the marker is assigned when calling a TIE- class or an ImplBase class
constructor, you can test for a name clash by calling the accessor method
| E. 1 ona. O bi xV¢b. CCRBA. (hj ect Ref . nar ker () on the new object and
comparing the marker with the one the programmer tried to assign.

Interoperable Object References
OrbixWeb supports two protocols for communications between distributed applications:

¢ The Orbix protocol.
¢ The CORBA standard Internet Inter-ORB Protocol (IIOP).

IIOP enables interoperability between different ORB implementations.
This is the default protocol. Refer to Chapter 9, “ORB Interoperability”
for a detailed discussion of IIOP.

Both of the two available protocols require a different object reference format. The Orbix
protocol requires an OrbixVVeb object reference format. IlOP requires the CORBA
Interoperable Object Reference (IOR) format. This section introduces object references
and shows how you may use the fields of an object reference.

IOR Structure

An object which is accessible via lIOP is identified by an interoperable object reference
(IOR). Since an ORB's object reference format is not prescribed by the OMG, the format
of an IOR includes the following;

* An ORPB’s internal object reference.
* Aninternet host address.

¢ A port number.

176

Making Objects Available to Clients

An IOCR is managed internally by the ORB. It is not necessary for you to know the structure
of an IOR. However, an application may wish to publish the stringified form of an object’s
IOR. You can obtain the stringified IOR by calling the method

or g. ong. OCRBA. CRB. obj ect _to_stri ng() with the required object or
_object_to_string() on thel E | ona. O bi x\b. OCRBA (hj ect Ref interface of
the required object.

Making Objects Available to Clients

Clients must be able to locate objects in a distributed system. Consequently, servers must
make information about the objects they create available to other system components.
There are three fundamental ways of making objects available to clients:

® Using the CORBA Naming Service.

The OrbixVWeb Naming Service is an implementation of the CORBA
Naming Service. The Naming Service is the preferred method for locating
objects in servers. OrbixTrader may also be used to make objects
available, but this is not discussed here.

® Using the bi nd method.
This method is an OrbixVVeb-specific alternative to the Naming Service.

® Using Object Reference Strings to create proxy objects.

The CORBA Naming Service

The CORBA Naming Service holds a ‘database’ of bindings between names and object
references. A server that holds an object reference can register it with the Naming Service,
giving it a unique name that can be used by other components of the system to locate that
object. A name registered in the Naming Service is independent of any properties of the
object, such as the objects’s interface, server or host name.

The OrbixVWeb Naming Service is IONA’s implementation of the CORBA Naming Service.

The bind Method

The OrbixVVeb-specific bi nd() method provides a mechanism for creating proxies for
objects which have been created in servers. A client which uses bi nd() to create a proxy
does not need to specify the entire object reference for the target object.

177

Making Objects Available in OrbixWeb

Using Object Reference Strings to Create Proxy Objects

Given a stringified form of an OrbixVVeb object reference, an OrbixVVeb client can create a
proxy for that object, by passing the string to the method st ri ng_t o_obj ect () onan
instance of or g. ongy. CORBA. ORB.

The OrbixWeb Naming Service

This section describes the features of OrbixVWeb Naming Service, IONA's full
implementation of the CORBA Naming Service. The following topics are outlined:

® Terminology and the CosNaming module.
® Format of names within OrbixVWeb Naming Service.
® The interfaces Nani ngCont ext and Bi ndi ngl t er at or.

® Exceptions raised by operations in OrbixVWeb Naming Service.

Terminology and the CosNaming Module

The Naming Service maintains a database of bindings between names and object
references. A binding is an association between a name and an object. The Naming Service
provides operations to resolve a name, to create new bindings, delete existing bindings and
to list the bound names.

The interfaces which are provided by the Naming Service are defined within the IDL
module CosNani ng:

/1 1DL
nodul e CosNam ng {

typedef string Istring;
struct NameConponent {
Istring id;
I string kind;
b
t ypedef sequence<NaneConponent > Naneg;

enum Bi ndi ngType {nobject, ncontext};

struct Binding {
Name bi ndi ng_nane;

178

The OrbixWeb Naming Service

Bi ndi ngType bi ndi ng_t ype;
b
t ypedef sequence <Bi ndi ng> Bi ndi nglLi st;

interface Bindinglterator;

i nterface Nanmi ngContext {
enum Not FoundReason {ni ssi ng_node,
not _context, not_object};

exception Not Found {

Not FoundReason why;

Nane rest _of _nane;
b
exception Cannot Proceed {

Nam ngCont ext cxt;

Nane rest _of nane;
b
exception InvalidName {};
exception Al readyBound {};
exception Not Empty {};

void bind(in Name n, in Cbject obj)
rai ses (Not Found, Cannot Proceed,

I nval i dNanme, Al readyBound);
void rebind(in Name n, in Cbject obj)
rai ses (Not Found, Cannot Proceed,

I nval i dNane) ;
voi d bind_context(in Narme n,
i n Nam ngCont ext nc)
rai ses (Not Found, Cannot Proceed,
I nval i dNanme, Al readyBound);
voi d rebind_context (in Nane n,
i n Nam ngCont ext nc)
rai ses (Not Found, Cannot Proceed,
I nval i dNan®) ;
bj ect resolve(in Nane n)
rai ses (Not Found, Cannot Proceed,
I nval i dNane) ;
voi d unbi nd(i n Nane n)
rai ses (Not Found, Cannot Proceed,
I nval i dNan®) ;
Nam ngCont ext new_cont ext();
Nami ngCont ext bi nd_new_context (i n Narme n)

179

Making Objects Available in OrbixWeb

rai ses (Not Found, Cannot Proceed
I nval i dNanme, Al r eadyBound) ;
voi d destroy() raises (NotEnpty)
void list(in unsigned | ong how nmany,
out Bi ndi ngLi st bl
out Bindinglterator bi);

interface Bindinglterator {
bool ean next_one(out Binding b);
bool ean next_n(in unsigned | ong how many,
out Bi ndi ngList bl);
voi d destroy();
i

Format of Names within the Naming Service

A name is always resolved within a given naming context. The naming context objects in
the system are organised into a naming graph, which may form a naming hierarchy, much
like that of a filing system. This gives rise to the notion of a compound name. The first
component of a compound name gives the name of a Nani ngCont ext , in which the
second name in the compound name is looked up. This process continues until the last
component of the compound name has been reached.

NameComponents

A compound name in the Naming Service takes the more abstract form of an IDL sequence
of name components. Also, the name components which make up a sequence to form a
name are not simple strings. Instead, a name component is defined as a struct,
NarreCGonponent , that holds two strings:

/1 1DL
typedef string Istring;

struct NaneConponent {
Istring id;
I string Kind;

b

The i d member is intended as the real name component, while the ki nd member is
intended to be used by the application layer. For example, you can use the ki nd member
to distinguish whether the i d member should be interpreted as a disk name or a directory

180

The OrbixWeb Naming Service

or a folder name. Alternatively, you can use ki nd to describe the type of the object being
referred to. The ki nd member is not interpreted by the OrbixVVWeb Naming Service.

The type | st ri ng is a placeholder for a future IDL internationalized string which may be
defined by OMG.

A name is defined as a sequence of name components as follows:
typedef sequence<NaneConponent> Nane;

Both the i d and ki nd members of a NaneConponent are used in name resolution. Thus,
two names which differ only in the ki nd member of one NaneConponent are considered
to be different names.

Names with no components (names of length zero) are not allowed.

The NamingContext Interface

The IDL interface Nanm ngCont ext defines the core of the Naming Service.

/1 In modul e CosNani ng.
i nterface Nam ngQont ext {
/1 Details shown in this section.

¥

An application can obtain a reference to its default naming context by passing the string
“NaneSer vi ce” to the method r esol ve_i ni ti al _ref erences() on an instance of
or g. ong. CCRBA. CRB:

i nport org. ongy. CORBA CRB;
i nport org.ong. CORBA (hj ect ;

CRB orb = CGRB.init(args,null);
(hject initRef = orb.resolve_initial_references("NaneService");

The result must be narrowed using CosNam ng. Nam ngCont ext Hel per. narrow(),
to obtain a reference to the naming context.

You can discover which services are available by calling| i st _i ni ti al _services().
Refer to OrbixWeb Programmer’s Reference for details of using this method on
or g. ong. CORBA. CRB,

181

Making Objects Available in OrbixWeb

The Nani ngCont ext interface provides operations to:

¢ Bind a name to an object reference.
® Resolve a name to find an object reference.
¢ Unbind a name, to remove a binding.

¢ List the names within a naming context.

These operations are described in the subsections which follow. “Exceptions Raised by
Operations in NamingContext”’ on page 187 describes the exceptions that may be raised
by operations defined within interface Nani ngCont ext .

All of the operations shown in the following subsections are defined in IDL interface
CosNam ng: : Nam ngCont ext .

Resolving Names

Name resolution is the process of looking up a name to obtain an object reference.

resolve()

(bj ect resol ve(in Name n)
rai ses (Not Found, Cannot Proceed, |nvalidNane);

Ther esol ve() operation returns the object reference bound to the specified name,
relative to the target naming context. This is the naming context on which the operation is
invoked. The first component of the specified name is resolved in the target naming context.

The return type is of the r esol ve()) operation is IDL (bj ect . This translates to type
or g. ong. CORBA. (bj ect in Java. This result must therefore be narrowed, using the
appropriate nar r ow() method, before it can be properly used by an application.

Binding

bind()

void bind(in Nane n, in (bject 0)
rai ses (Not Found, CannotProceed, |nvalidNanme, Al readyBound);

The bi nd() operation creates a binding (relative to the target naming context) between a
name and an object.

182

The OrbixWeb Naming Service

If the name passed to bi nd() is a compound name with more than one component, all
name components, with the exception of the last component, are used to find the naming
context to which to add the binding. Note that these naming contexts must already exist.
The last name component names the specified object reference in the desired naming
context.

Thebi nd() operation raises an exception if the specified name is already bound within the
final naming context.

bind_context()

voi d bi nd_context (in Nane n, in Nanm ngContext nc)
rai ses (Not Found, CannotProceed, InvalidName, Al readyBound);

Thebi nd_cont ext () operation creates a binding between a name and a specified naming
context, relative to the target naming context. This new binding may be used in any
subsequent name resolutions. The entries in naming context nc may be resolved using
compound names.

All but the final naming context specified in parameter n must already exist. This operation
raises an exception if the name specified by n is already in use.

Note that the naming graph built using bi nd_cont ext () is not restricted to being a tree.
This can be a general naming graph in which any naming context can appear in any other.

It is also possible to create a binding between a name and a naming context using bi nd() .
This is because interface NaneCont ext is a derived interface of interface Cbj ect . An
object reference to an object of type Nam ngCont ext can be passed as the second
parameter to bi nd() . However, the resulting binding cannot be used as part of a
compound name. Only bindings created with bi nd_cont ext () and

rebi nd_cont ext () can be used as part of a compound name.

rebind()

void rebind(in Name n, in Chject 0)
rai ses (Not Found, CannotProceed, InvalidNare);

Ther ebi nd() operation creates a binding between a name that is already bound in the
context and an object. The previous name is unbound and the new binding is made in its
place. As is the case with bi nd(), all but the last component of a compound name must
name an existing Nam ngCont ext . A Not Found exception is thrown if the name is not
already in use.

183

Making Objects Available in OrbixWeb

rebind_context()

voi d rebi nd_context (in Nane n, in Nanm ngContext nc)
rai ses (NotFound, CannotProceed, I|nvalidNane);

Ther ebi nd_cont ext () operation creates a binding between a name that is already
bound in the context and a naming context, nc. The previous name is unbound and the
new binding is made in its place. As is the case for bi nd_cont ext (), all but the last
component of a compound name must name an existing Nani ngCont ext . A Not Found
exception is thrown if the name is not already in use.

You can also change a binding between a name and a naming context using r ebi nd() .
This is because interface NameCont ext is a derived interface of interface Chj ect . An
object reference to an object of type Nam ngCont ext can be passed as the second
parameter to r ebi nd() . However, the resulting binding cannot be used as part of a
compound name. Only bindings made with bi nd_cont ext () and r ebi nd_cont ext ()
can be used as part of a compound name.

Deleting a Binding

unbind()

voi d unbi nd(in Nane n)
rai ses (Not Found, Cannot Proceed, |nvalidNane);

The operation unbi nd() removes the binding between the specified name and object.

Creating Naming Contexts

Two operations are provided to create naming contexts.

new_context()

Nam ngCont ext new_cont ext ()

The operation new_cont ext () creates a new naming context only, without entering it
into the naming graph and without binding it to any name. The returned naming context can
subsequently be entered into the naming graph using bi nd_cont ext () or

r ebi nd_cont ext () . The returned context is created within the same name server as the
context that is the target of the call.

184

The OrbixWeb Naming Service

bind_new_context()

Nam ngCont ext bi nd_new _cont ext (i n Nane n)
rai ses (Not Found, CannotProceed, InvalidName, Al readyBound);

The operation bi nd_new _cont ext () creates a new naming context and binds it using
the specified name, relative to the target naming context. The operation

bi nd_new cont ext () is equivalent to calling new_cont ext () followed by

bi nd_cont ext () . The returned context is created within the same name server as the
context that is the target of the call.

Deleting Contexts

destroy()

voi d destroy()
rai ses (Not Enpty);

The operation dest r oy() deletes the naming context on which it is invoked. The target
naming context must be empty; it must not contain any bindings.

Listing a Naming Context

Before describing the | i st () operation on a Nani ngCont ext , the different types of
bindings must be explained.

Types of Bindings

The operations bi nd(), r ebi nd(), bi nd_cont ext () andrebi nd_cont ext () create
bindings. However it can be seen from the previous sections that the first two create
different forms of binding than the last two. The methods bi nd() and r ebi nd() allow a
name to be bound to any object, including a Nam ngCont ext , while bi nd_cont ext ()
and r ebi nd_cont ext () are used to construct the naming network supported by the
Naming Service.

The two binding types are captured by the following IDL types:
/1 In 1DL nodul e CosNam ng.

enum Bi ndi ngType { nobj ect, ncontext };

185

Making Objects Available in OrbixWeb

struct Binding {
Narre bi ndi ng_nanre;
Bi ndi ngType bi ndi ng_t ype;
b
When browsing a network of naming contexts, an application can list a Nani ngCont ext
and determine the type of each binding in it.

The operations bi nd_cont ext () and r ebi nd_cont ext () create bindings of type
ncont ext ; the operations bi nd() and r ebi nd() create bindings of type nobj ect .

The important difference is that a binding of type nobj ect cannot be used in a compound
name, except as the last element in that name. To draw from familiarity with a filing system,
you can view bindings of type ncont ext as naming “directories”, while those of type

nobj ect name “files”.

Listing Names
/!l I'n DL nodul e CosNam ng.

typedef sequence<Bi ndi ng> Bi ndi ngLi st ;
interface Bindinglterator;

i nterface Nam ngCont ext {

void list(in unsigned | ong how nany, lout Bi ndi ngList bl,
out Bindinglterator bi);
¥

list()
The operation | i st () obtains a list of the name bindings in the target naming context.

The parameter how_nany specifies the maximum number of bindings that should be
returned in the Bi ndi ngLi st parameter bl . The Bi ndi ngLi st parameter is a sequence
of Bi ndi ng structs where each Bi ndi ng indicates the name and type of the binding. The
type indicates whether the name is that of an object, possibly a Nani ngCont ext object or
whether it is a name of a node in the naming graph which participates in name resolution.

I. The three parameters used here are an example of a pattern used often in the CORBAservices.
They allow a sequence of manageable size to be returned to a client; and the entries that would not
fit into that sequence to be obtained using an iterator.

186

The OrbixWeb Naming Service

If the naming context contains more than the number of requested bindings in the
how_nany parameter, the | i st () operation returns a Bi ndi ngl t er at or . The number
of remaining bindings are given in the parameter bi , while the first how_nany bindings are
in parameter bl . If the naming context does not contain any additional bindings, the
parameter bi is a nil object reference.

Exceptions Raised by Operations in NamingContext

The exceptions in Nan ngCont ext are defined as follows:

/1 In DL nodul e CosNam ng.
i nterface Nam ngCont ext {
enum Not FoundReason { ni ssi ng_node,
not _context, not_object };

exception Not Found {
Not FoundReason why;
Narre rest_of _nane;

}s

exception Cannot Proceed {
Nam ngCont ext cxt;
Narre rest_of _nane;

}s

exception InvalidNane {};
exception A readyBound {};
exception Not Enpty {};

3

Refer to OrbixWeb Programmer’s Reference for a full listing of the exceptions in
Nan ngCont ext .

These exceptions are raised under the following conditions:

Not Found Indicates that some component of the specified
name is not bound. To aid debugging, the remainder
of the name is returned in the exception. The first
component in the returned name is the component
that failed.

187

Making Objects Available in OrbixWeb

Cannot Pr oceed Indicates that the Naming Service cannot continue
with the operation request for some reason. The
OrbixWeb Naming Service does not raise this
exception currently.

I nval i dNane Indicates that the specified name is invalid. A Nane of
length zero (without any name components) is
invalid. A Nane which contains a NaneConponent
whose i d member is zero or is an empty string is
also invalid.

Al r eadyBound Indicates that an object is already bound to the
specified name. At any time, only one object can be
bound to a given name in a naming context.

Not Enpt y Indicates that the target naming context contains at
least one binding. A naming context cannot be
destroyed if it contains any bindings.

The Bindinglterator Interface

Recall that interface Nani ngCont ext provides an operation | i st () to obtain the list of
name bindings within a context:

/1 In DL interface GosNam ng: : Nam ngCont ext .
void list(in unsigned | ong how many, out BindingList bl,
out Bindinglterator bi);

This operation returns a maximum of how_rrany bindings in the parameter bl . If the target
context contains more than how_nany bindings, the Bi ndi ngl t er at or parameter can
be used to access the remaining entries. The relevant IDL definitions are as follows:

/1 I'n DL nodul e CosNam ng.
enum Bi ndi ngType { nobj ect, ncontext };

struct Binding {

Nane bi ndi ng_nane;

Bi ndi ngType bi ndi ng_t ype;
b

typedef sequence<Bi ndi ng> Bi ndi ngLi st ;

188

Using OrbixWeb Naming Service

interface Bindinglterator {
bool ean next _one(out Bi nding b);

bool ean next _n(in unsi gned | ong how many, out Bindi ngList bl);

voi d destroy();
h

The operations next _one() and next _n() can be used to access the additional entries.
These are the entries which are other than those returned by the out Bi ndi ngLi st bl
parameter in the | i st () operation. Each entry is returned at most once. Hence, you can
use consecutive calls to next _one() and/ornext _n() to retrieve additional entries in a
naming context. The operation next _n() returns at most n entries, but can also return
less than n entries.

The operation next _one() returnst r ue if an entry can be returned, otherwise it returns
fal se.

The operation next _n() returnst r ue if n (or less) entries can be returned. If no entries
can be returned, next _n() returns f al se.

You can delete a Bi ndi ngl t er at or object by calling its dest r oy() operation.

Using OrbixWeb Naming Service

This section explains how to use OrbixVVeb Naming Service. The example code used here
reflects the OMG Standard IDL to Java mapping.

The following topics are discussed:

® Using the CosNami ng interfaces to create bindings and resolve bound
names.

* Building an application using OrbixVWeb Naming Service.

® Using the command-line interface to OrbixVWeb Naming Service which
allows naming context graphs to be built and manipulated.

* Federation of name spaces.

189

Making Objects Available in OrbixWeb

String Format of Names

The convention used for the string representation of names is illustrated by the following
example:

docunents-dir.reports-dir.april 98-txt

In this example, the first name component’s id is docurrent s and its kind is di r . This is
followed by a second component with id r epor t s and kind di r, which in tumn is followed
by a component withid apr i | 98 and kind t xt .

You should include the dash -’ character in every name component. If you omit this, the
utiliies assume that the i d and ki nd field are identical. Therefore:

docunents. reports. april 98
is synonymous with the following name:
docunent s- docunent s. reports-reports. april 98-april 98

If you want to omit a kind field from the initial components of a name, finish each
component with a dash -’. An example is docunent s-. reports-. april 98-t xt. This
practice is followed here.

OrbixWeb Naming Service Example

Consider a software engineering company that maintains an administrative database of
personnel records which includes details of names, login names, addresses, salary and
holiday entitlements. These records are used for various administrative purposes. The
Naming Service is used to locate an employee record by name. Figure 18 on page 191
shows part of a naming context graph designed for this purpose.

The nodes conpany, st af f, engi neer i ng and suppor t represent naming contexts. A
name such as conpany- . st af f - . paul a- r ecor d names an object. The same object
may have more than one name. For example, each person is listed in both the generic
conpany- . st af f - context, and is also listed in a particular division such as conpany-

. engi neeri ng- or conpany-. sal es-.

In addition, in this case it is convenient to use ‘abstract’ names, so that, for example, the
person who is engineering manager can be found by looking up the name conpany-
. engi neeri ng- . manager - .

Allowing different paths to the same data allows many uses to be made of the Naming
Service. For example, a payroll system might be interested only in the conpany- . st af f -

190

Using OrbixWeb Naming Service

engineering

support

james john paula john paula manager

james manager
Figure 18: A Naming Context Graph

context; while the engineering manager might want the holiday records for all the
employees with entries in the conpany- . engi neeri ng- context to be written to a
spreadsheet.

The remainder of this section shows code samples based ona St af f naming context. The
full code for a version of this example is available in the deros/ nanes St af f directory of
your OrbixVVeb installation.

Finding the Default Naming Context
There are three ways for an application to find its initial naming context:

® Using the CORBA Initialization Service.
® Using the bi nd() call.

® Using the root naming context IOR.

191

Making Objects Available in OrbixWeb

Using the CORBA Initialization Service

The CORBA defined and recommended approach is to use the CORBA Initialization
Service. To use the Initialization Service, pass the string “NarmeSer vi ce” to the following
method call on the or g. ong. CCRBA. CRB:

/1 Java

/1 In class org. ony. CORBA CRB.

or g. ong. CORBA. (hj ect resol ve_initial _references
(String identifier)

The result must be narrowed, using CosNam ng. Nanm ngCont ext Hel per . narr ow()
to obtain a reference to the naming context.

Note: Usingresol ve_ini tial _references() requires that the default Naming
Service host and port are configured in the file O bi x\\b. properti es.
You can set these values using the Initialization page of the Configuration
Tool.

Using the bind() Call

A second approach is to use the OrbixVVeb specific bi nd() call. The normal way to do
this is to bind to the r oot naming context in a name server. For example, the following call
binds to a naming context with the marker name r oot , within the server NS:

/1 Java
CosNam ng. Nam ngCont ext r oot Cont ext
= CosNam ng. Nanm ngCont ext Hel per. bi nd
("root:NS', host);

Using the Root Naming Context IOR

A third approach is to read the root naming context IOR from a shared file. You should
start up the naming server using the following form of command:

ns -1 /sharedl GRs/ns.ior

The IOR for the root naming context is stored in this file as the naming server starts up.
You can use this IOR to obtain the initial naming context:

/1 Java
i nport org. ony. CORBA. CRB;

192

Using OrbixWeb Naming Service

String rootl CR

or g. ong. CCRBA. (hj ect obj Ref;

CRB orb = CRB.init(args, null);

/1 Read the contents of file /sharedl CRs/ns.ior
/1 into the string rootl CR ..

obj Ref = orb.string_to_object(rootl R ;
The resulting object reference must subsequently be narrowed using the following call:
GosNam ng. Nam ngQont ext Hel per. nar r ow(obj Ref) .

Once a program has a reference to the initial naming context, it can look up further names
in contexts held in that name server. Other naming servers can also be used, because it is
possible for a name in one naming server to name a naming context in another naming
server. Refer to “Federation of Name Spaces” on page 203 for more details.

Creating a Naming Context

The code in this section shows how to build a St af f naming context. The following IDL
interface is assumed:

/1 1DL

interface Person {
readonly attribute string name;
readonly attribute string home_address;
readonly attribute string job_ title;
readonly attribute string user_id;
readonly attribute string phone_extn;
/1 More enpl oyee rel ated information.

¥
In the example the Per son IDL definition is implemented by a Per sonl npl enent at i on
class.

The following server code resolves the St af f context in the root context. If the St af f
context does not exist, it is created. Exception handling is not included:

/1 Java
/1 An O bi xWeb server(and client of the Nam ng
Il Service).

i mport org. ong. CORBA. ORB;
i mport org. ong. CosNami ng. *

193

Making Objects Available in OrbixWeb

public class javaserverl {

static Nam ngContext rootContext = null;
stati c Nam ngContext staffContext = null;
static org.ong. CORBA. ORB orb = null;

public static void main (String args[]) {

orb = ORB.init (args,null);

/1 find the initial nam ng context
try {
or g. ong. CORBA. Obj ect i ni t NCRef
= orb.resolve_initial _references
(" NameServi ce");
root Cont ext = Nami ngCont ext Hel per. narrow
(initNCRef);

}
catch() {}
/'l catch clause not inplenented here

Per sonl npl enent ati on j ohn nul | ;
Per sonl npl enentation colm= null;
Per sonl npl ement ati on paula = null;

try {
john = new Personl npl enent ati on

("John","Architect");
col m = new Personl nmpl ement ati on
("Col m', "Engi neer");
paul a = new Personl nmpl ement ati on
("Paul a", "Manager");
}
catch() {}
/1 catch clause not inplenmented here

/1 A NanmeConmponent[] is an array of structs
NameConponent [] nane = new NanmeConponent [2] ;
NameConponent [] NC = new NanmeConponent[1];
NC[0] = new NaneConponent ("Staff","Staff");

194

Using OrbixWeb Naming Service

Systemout.println ("Resolving...");

/ | resolve the “Staff’ context in the root context

try {
rootContext.resolve (NC);
}

catch() {}
/I catch clause not implemented here

System.out.printin ("Bind new context...");

/I if “Staff” does not exist then create it
try {
staffContext
= rootContext.bind_new_context(NC);
System.out.printin
("Created a new context Staff in the
root context\n");

Binding Names

The server code samples in this section show two different methods of binding names to
the Staff naming context:

I. The first method involves binding a name from the root context, as
follows:

/I Java
/I Server code extract

name[0] = new NameComponent ("Staff","Staff");

name[1] = new NameComponent ("john","john");
rootContext.bind (name,john);

System.out.printin
("Bound Object"
+_OrbixWeb.Object(john)._object_to_string()
+ "to name john in context root.staff");

195

Making Objects Available in OrbixWeb

2. The second method involves binding a name from the St af f context, as
follows:

/1l Java
/1 Server code extract

name[1] = new NanmeConponent ("paul a", "paula");
Systemout.println ("Binding to name@aul a");
root Cont ext. bi nd (nane, paul a);
Systemout.println
(" Bound Obj ect
+ _Orbi xWeb. Obj ect (paul a). _object _to_string()
+ " to name paula in context root.staff");

NameComponent Arrays

Recall from “Format of Names within the Naming Service” on page 180 thata
NanmeConponent is defined as follows:

public class NameConponent {

String id; /1 Context/Chject ID

String kind; // Context/Chject description
}

In order to retrieve an object reference bound to a name, you must construct a
NarmeConponent array. This array takes the following form:

cont ext | D- cont ext KI ND. cont ext | D- cont ext KI ND. obj ect | D- obj ect KI ND

The last element of this array represents the required object. This array is then passed as a
parameter to r esol ve() which is called on the required context, as shown in the next
section.

196

Using OrbixWeb Naming Service

Resolving Names

For a client, a typical use of the Naming Service is to find the initial naming context; and then
to resolve a name, to obtain the object reference that is bound to the specified name. This is
illustrated in the code segments which follow. The client finds the object named

St af f. j ohn and then prints out its details.

The client is written as follows:

/1l Java
/1 An O bi xWeb client

i mport org. ong. CORBA. ORB;
i mport | E. lona. O bi xWeb. CosNami ng. *;

public class javaclientl {

static Nami ngCont ext rootContext, staffContext

= null;
static namesStaff.Person personRef = null;
static org.ong. CORBA. ORB orb = null;

public static void main(String[] args) {
Nami ngCont ext root Context = null;
orb = ORB.init (args,null);

/1 find intial nami ng context
try {
or g. ong. CORBA. Obj ect i ni t NCRef
= orb.resolve_initial _references
(" NanmeService");
root Cont ext = Nami ngCont ext Hel per. narrow
(i ni t NCRef);

}
catch() {}
/'l catch clause not inplenented here

197

Making Objects Available in OrbixWeb

The following are two methods of retrieving a object reference which is bound to a
specified name:

I. The first methods involves calling r esol ve() on the r oot context. In this
example, the context is St af f and the required object is j ohn:

/1l Java
// Cient code extract

/'l Resol ve nane 'Staff.john’
NameConmponent[] name = new NameConponent[2] ;
or g. ong. CORBA. Obj ect obj Ref = null;

nane[0] new NaneConponent ("Staff","Staff");

nane[1] new NaneConponent ("john","john");

obj Ref = root Context.resolve (nane);

personRef = nanesStaff. PersonHel per. narrow (obj Ref);
printDetails (personRef);

2. The second method is a two step process. This involves retrieving the
Staf f context from the r oot context and resolving the object j ohn
from the r oot context, as follows:

/1l Java
// Client code extract

// Resol ve name ' Staff.colm

name = new NameConponent[1];

or g. ong. CORBA. Obj ect staff CtxRef = null;

nanme[0] = new NameConmponent ("Staff", "Staff");

staf f & xRef = root Cont ext.resol ve (nane);
nanme[0] = new NanmeConponent ("col nf',"col ni');
Nam ngCont ext staffCtx

= Nani ngCont ext Hel per. narrow (staffCt xRef);
obj Ref = staffCtx.resolve (nane);

personRef = nanesStaff. PersonHel per. narrow (obj Ref);
printDetails (personRef);

198

Using OrbixWeb Naming Service

Listing Context Bindings

The following client code extract shows a simple example of using the Bi ndi ngl t er at or
interface to list the bindings in the Staff context:

/1l Java
/1 Client code extract

/1 List all the staff context:

Bi ndi ngLi st Hol der bl i st
new Bi ndi ngLi st Hol der () ;

i terHol der
new Bi ndi nglteratorHol der ();
new Bi ndi ngHol der ();

Bi ndi ngl t er at or Hol der

I 1n o

Bi ndi ngHol der bi ndi ng

NameConponent[] NC = new NanmeConponent [1];

NC[0] = new NaneConponent ("Staff", "Staff");

obj Ref = root Context.resolve (NC);

st af f Cont ext = Nami ngCont ext Hel per. narrow (obj Ref);

/I Deliberately nmake the "how many" argunent too small,
/lonly 2 out of 3 names will be returned.

staffContext.list (2,blist,biterHolder);
Systemout.println

("\'nContents of staff context:");
Systemout.println

("The length of the list is " + blist.value.length);
Systemout.println

(blist.value[0].binding_name[0].id);

Systemout.println

(blist.value[l].binding_name[0].id);
Systemout.println

("\nPrint the remaining objects");

/1 print the renaining objects
if (biterHolder.value !'= null) {
whil e (biterHol der.val ue. next _one (binding))
Systemout.println
(bi ndi ng. val ue. bi ndi ng_nane[0].id);

199

Making Objects Available in OrbixWeb

Compiling and Running a Naming Service Application

This section outlines how to build a demonstration program that uses the Naming Service.
It describes what configuration variables are required, how to register a naming server in
the Implementation Repository and what options are available on the naming server
executable.

Building the OrbixWeb Naming Service Demonstration
Application

The Naming Service demonstration program is located in the \ denos\ narmesSt af f
directory of your OrbixVVeb installation.

Use the following steps for running the demonstration application:
I. To build the application on Solaris use gnake; on Windows run the
conpi | e. bat batch program.
2. Register the Naming Service by entering the following command:
putit -j NS IE |lona. Obi xV¢b. CosNam ng. NS
3. Register the Staf f server by entering the following command:
putit -j Staff nanesStaff.javaserverl

4. Start the Java server by running the j avaser ver 1 script on Solaris or
j avaserver 1. bat on Windows. This launches the Naming Service and
populates it with names.

5. Start the Java client by running the j avacl i ent 1 script on Solaris or
javacl i entl. bat on platforms. This establishes a connection with the
Naming Service and resolves the names bound by the Java server.

200

Using OrbixWeb Naming Service

Configuring OrbixWeb Naming Service

A default configuration for OrbixVVeb Naming Service is set up at installation. The
configuration parameters are stored in the O bi x\&b. pr oper ti es file. These comprise
the following entries:

Variable Description

I T_NAMES _REPCS| TORY_PATH This represents the default location of the
Naming Service Repository entries.

By default, this is set to the following directory:

<install dir>/configuration/
Nani ngReposi tory

| T_NAMES_TI MEQUT The default timeout, set to the following:
-1(1 T_I NFI N TE_TI MECUT)

I T_NAMES HASH TABLE SI ZE The initial size for the Naming Service hash
table This value must be a prime number.

| T_NAMES HASH TABLE LQAD FACTCR | Percentage of table elements used before a

resize.
Cient configuration: By default, a call to
| T_NAMES_SERVER resolve_initial _references
I T_NS_PORT ("NanmeSer vi ce") from the ORB expects a

| T_NS_HOSTNAVE

naming server to be registered in the
| T_NS_I P_ADDR

Implementation Repository with the name
“NS”.

If these variables are set,

resol ve_initial _references() searches
for a naming server with the name specified on
the specified host and port.

If the configuration parameter
I T_I' NI TI AL_REFERENCES contains a naming
service reference, this overrides the above.

Table 3: OrbixWeb Naming Service Configuration

201

Making Objects Available in OrbixWeb

Registering a Name Server with the Implementation
Repository

As a normal OrbixWVeb server, a name server must be registered with the OrbixVVeb
Implementation Repository.

As usual, register a name server using the put i t utility as appropriate to the target
platform. Using put i t, a typical command to register a name server is as follows:

putit -java NS | E lona. Orbi xWeb. CosNam ng. NS

Once registered with the Implementation Repository, the name server can either be
activated by the OrbixVWeb daemon or be manually launched.

You can terminate the name server in the same way as any OrbixWVeb server: using the
ki l11it utility on UNIX; or using the Server Manager utility on Windows.

Options to the Name Server

The OrbixVWeb name server executable is named ns. This takes the following options:
ns [-v] [-t <timeout>] [-| <ns-ior-file>] [-r <repository]

The options are listed as follows:

-1 <ns-ior-file> Specifies a file where the name server stores the root
context |OR when it starts up.

-r <repository> Specifies the location of the Naming Service
Repository
-t <tineout> Specifies the period of time, in milliseconds, that the

name server may remain idle before timing out. The
default timeout is infinite, meaning that the name
server does not time out.

-V Outputs version information. Specifying - v does not
cause the name server to be run.

202

Using OrbixWeb Naming Service

Federation of Name Spaces

The collection of all valid names recognised by the Naming Service is called a name space.
A name space is not necessarily located on a single name server: a context in one name
server can be bound to a context in another name server on the same host or on a
different host. The name space provided by a Naming Service is the association or
federation of the name spaces of each individual name server that comprises the Naming
Service.

Figure 19 on page 203 shows a Naming Service federation that comprises two name
servers running on different hosts. In this example, names relating to the company’s
engineering and PR divisions are located on one server and names relating to the company’s
marketing division are located on a separate server. Client requests to look up names start
in one name server but may continue in another name server’s database. Clients do not
have to be aware that more than one name server is involved in the resolution of a name,
and they do not need to know which server interprets which part of a compound name.

Host A

Host B

company

marketing
engineering PR

Figure 19: Naming Graph Spanning Different Name Servers

203

Making Objects Available in OrbixWeb

Binding to Objects in OrbixWeb Servers

Note: This section discusses the use of the OrbixWeb bi nd() method to
create proxy objects in clients. This should not be confused with the use
of bi nd() in the context of OrbixVWeb Naming Service.

There is a difference between binding to OrbixVVeb servers and binding in a Naming
Service. Binding in a Naming Service context involves associating an application level name,
usually a meaningful string, to an IOR. This binding is used at resolution time to map a name
to an object through its IOR. Binding to servers, however, involves the creation of a proxy
object in the client through which methods on the remote server may be activated.

The OrbixVWeb bi nd() method provides a mechanism for creating proxies for objects
that have been created in servers. A client that uses bi nd() to create a proxy does not
need to specify the entire object reference for the target object. Although bi nd() can be
invoked using either the Orbix protocol or CORBA IIOP, it can only succeed if the target
object is implemented in an Orbix or OrbixVVeb server. The bi nd() method cannot be
used with objects which are implemented using other ORBs.

The creation of a proxy in a client’s address space allows you to invoke operations on the
target object. When an operation is invoked on the proxy, OrbixVVeb automatically
transmits the request to the target object. You can use the bi nd() method to specify the
exact object required or, by using default parameters, OrbixVVeb is allowed some freedom
when choosing the object.

In OrbixVVeb, the bi nd() method has been integrated with a locator which provides a
basic service for finding objects when no host is specified. Refer to “Locating Servers at
Runtime” on page 473 for more details.

The bind() Method

The bi nd() method is a static method automatically generated by the IDL compiler for
each IDL Java class. For interface account , the full form of bi nd() is declared in Java class
account Hel per as follows:

/1 Java
public static final accountHel per
bi nd(String markerServer, String host) ({

204

Binding to Objects in OrbixWeb Servers

The bi nd() method is overloaded and takes the following sets of parameters:

* No parameters

* orb

® narker Server

* nmarkerServer, orb

® narker Server, host

® narkerServer, host, orb

® A full object reference as returned by the method
org. ony. CORBA. CRB. obj ect _to_string().

The bi nd() method supports polymorphic binds. This means that you can make a call to
account Hel per . bi nd() to an object of interface cur r ent Account, if interface
account is a base interface of interface cur r ent Account .

The or b parameter enables support for multiple ORBs. The specific ORB passed to the
bi nd() method is used to build the proxy and establish a connection to the target server
when required. The nar ker Ser ver and host parameters are explained in turn in the
following pages. Table 4 on page 209 contains a tabular summary of the parameters to

bi nd(), and “Binding and Exceptions” on page 210 describes how bi nd() can raise an
exception and how to optimize its performance.

Finally, this chapter ends with a description of methods of creating proxy objects from
object reference information, including binding to a stringified object reference.

The markerServer Parameter to bind()

The mar ker Ser ver parameter denotes both a specific server name and object within that
server. It can be a string of the following form:

marker : server_nane

The mar ker identifies a specific object within the specified server. The ser ver _nare is
the name of a server, as registered in the OrbixVVeb Implementation Repository. It is not
necessarily the name of a class or an interface although you can give a server the same name
as that of a class or interface. The OrbixVVeb Implementation Repository is described in
detail in “Registration and Activation of Servers” on page 251.

If the server name is not given in the mar ker Ser ver parameter, the server name defaults
to the name of the Java class for bi nd() 2For example, in a parameterless call to

205

Making Objects Available in OrbixWeb

bankHel per . bi nd(), the server name defaults to “bank” 3This means that the target
server must have been registered with the name “bank”.

If the marker is not given, it defaults to any object within the server that implements the
interface, or derived interface, given by the specified Java class name. The chosen object may
have been named explicitly by the programmer or assigned a default name by OrbixVVeb.

If the string does not containa “; * character, the string is understood to be a marker with
no explicit server name. Because a colon is used as the separator, it is invalid for a marker or
a server name to include a *: ’ character.

The following are examples of the mar ker Ser ver parameter which could be used ina call
to bankHel per. bi nd():

"Col | ege_Q een: Al B The Col | ege_Q een object at the A B
server.

" ol | ege_Q een” The Col | ege_Q een object at the bank
server.

" Col | ege_Q@ een: " The Col | ege_QG een object at the bank
server.

" Any bank object at the bank server.

" ol | ege_@ een: nybank" The Col | ege_Q een object at the nybank
server.

" : nybank" Any bank object at the nybank server.

Finally, if the mar ker Ser ver parameter contains at least two . ’ characters, it is not treated
as a rmar ker : server _nane pair. However, it is assumed to be the string form of a full
object reference. Refer to “Using Object Reference Strings to Create Proxy Objects” on
page 21 | for more details.

2. This is the only system recognised relationship between server names and interface names.
3. OrbixWeb will choose the name of the Java class if a null string is specified for the server name.

You can do this either by not passing a first parameter, or by passing one of the following as the first
parameter: a null string; a string with no ‘. ’; or a string which terminates with a *: ’.

206

Binding to Objects in OrbixWeb Servers

The host Parameter to bind()

Thehost parameter to bi nd() specifies the Internet host name or the Internet address of
a node on which to find the object. An Internet address is assumed to be a string of the
form xxx. XXX. XXX. XXX, whereXx is a decimal digit.

Where a null string is provided, OrbixVVeb uses the default locator to find the object’s server
in the distributed system. OrbixVVeb’s default locator allows the locations of servers to be
recorded, as is explained in “Locating Servers at Runtime” on page 473. This configuration

information is then used during bi nd() , provided that the host parameter is not explicitly

given. The locator must be configured before it can be used.

OrbixVWWeb also allows you to override the default locator with an alternative location
mechanism. The programming steps required to achieve this are described in “Locating
Servers at Runtime” on page 473.

Example Calls to bind()
This section shows a selection of sample calls to bi nd() .
I. Bind to any bank object in any bank server. That object should implement

the bank IDL interface.
bank b = bankHel per. bi nd();

2. Bind to any bank object in the bank server at node al pha (in the current
domain). That object should implement the bank IDL interface.

bank b = bankHel per. bind("", "al pha");

3. Bind to the ol | ege_Q@ een object within the bank server at node al pha
(in the current domain). That object should implement the bank IDL
interface.

bank b = bankHel per. bi nd("Col | ege_G een", "al pha");

Note: It is generally recommended that you include the server name, if known.
It is generally not recommended to use the IDL interface name as the
server name.

207

Making Objects Available in OrbixWeb

208

Bind to the Gol | ege_@ een object (in server bank) somewhere within
the network. Col | ege_Q een should implement the bank IDL interface.

bank b = bankHel per. bi nd("Col | ege_G een");

Bind to the Gol | ege_@ een object in the AIB server somewhere in the
network. That object must implement the bank IDL interface.

bank b = bankHel per. bi nd("Col | ege_Green: AlB");

Bind to the Col | ege_QG een object at the AIB server at node bet a, in the
internet domain nt. i e. That object should implement the bank IDL
interface.

bank b = bankHel per. bi nd
("Coll ege_Green: AIB", "beta.nt.ie");

Bind to the Gol | ege_@ een object at the AlB server at Internet address
123. 456. 789. 012. That object should implement the bank IDL interface.

bank b = bankHel per. bi nd
("Col |l ege_Geen: Al B", "123.456.789.012");

Binding to Objects in OrbixWeb Servers

Tabular Summary of bind() Parameters
Table 4 summarises the rules for a general form call to bi nd() :

// Java
T1 t;
t = T2Hel per.bind("MS', "H', "O);

T1 must be the same or a base type of T2.

T2 is an IDL interface name, and also a Java interface name. It is
not the name of a server, unless a server is explicitly created
with the same name. The object that is found must implement
interface T2 or a derived interface of this.

Mis a marker name. This is the name of an object within the
specified server. If Mis left blank (if the mar ker Ser ver
parameter to bi nd() is the empty string, or begins witha “: ”
character), bi nd() is allowed to find any object in the specified
server with a correct interface (T2 or a derived interface).

Sis a server name, used previously to register a server in the
Implementation Repository. If Sis left blank (if the

mar ker Ser ver parameter to bi nd() is the empty string, or has
no “: ” character, or terminates with a “: ” character), the
name T2 is used as the server name. In this case, a server must
have been explicitly registered with the name T2.

His an Internet host name or (if the string is in the format
XXX. XXX. XXX. XXX, where x is a decimal digit) an Internet
address. If His the empty string, OrbixWeb uses its locator to
try to find the required server.

Ois an additional optional or g. ong. GORBA. CRB which provides
support for multiple ORBs. The supplied ORB is used to build
the proxy and establish a connection to the target server when
required.

Table 4: Summary of Parameters to bind()

To bind to an object with interface T2 and marker “aaa” in a server called “sss”, known
to be running on host “hhh”, you could write (ignoring exception handling):

209

Making Objects Available in OrbixWeb

/1 Java
T2 tRef;
t Ref = T2Hel per. bi nd("aaa: sss", "hhh");

Since a server can support objects of any number of interfaces, the following can be used to
bind to an object of interface T3 and marker “bbb” in the same server:

/1 Java
T3 t Ref;
t Ref = T3Hel per. bi nd("bbb: sss", "hhh");

Binding and Exceptions

By default, bi nd() raises an exception if the desired object is unknown to OrbixVVeb. This
requires OrbixVVeb to ping the desired object in order to check its availability The ping
operation is defined by OrbixVVeb and has no effect on the target object. The pinging
causes the target OrbixVVeb server process to be activated if necessary, and confirms that
this server recognises the target object.

If you wish to improve efficiency by reducing the number of remote invocations, pinging can
be disabled by calling the method pi ngDur i ngBi nd() as follows:

/1 Java
import | E I ona. O bi xWb. _CORBA;

_QORBA. O bi x. pi nghuri ngBi nd(fal se);

When pinging is disabled, binding to an unavailable object does not raise an exception at that
time. Instead, an exception is raised when the proxy object is first used.

A program should always check for exceptions when calling bi nd() , whether or not
pinging is enabled. Even when pinging is disabled, this method raises an exception in some
circumstances, including on some configuration errors.

210

Binding to Objects in OrbixWeb Servers

Using Object Reference Strings to Create Proxy Objects

An OrbixVWVeb object is uniquely identified by an object reference. Given a stringified form
of an OrbixVVeb object reference, an OrbixVVeb client can create a proxy for that object,
by passing the string to the method st ri ng_t o_obj ect () on an instance of

or g. ong. CCRBA. CRB.

For example, given an object reference string which identifies a bank object:

/1 Java

i mport org. ong. CORBA. ORB;

i mport org. ong. CORBA. Obj ect;

i mport org. ong. CORBA. Syst enExcepti on;
i mport | E. lona. O bi x\Web. _CORBA;

/1 Assign to object ref string.
String bStr = ... ;
bank b;

ORB orb = ORB.init(args, null);

try {
bject o = orb.string_to_object (bStr);
b = bankHel per.narrow (o);

catch (SystenException se) {

}

Similarly, the mar ker Ser ver field of the bi nd() method can accept a stringified object
reference:

/1 Java
i mport org. ong. CORBA. Syst enExcepti on;

/1 Assign to object ref string.
String bStr = ...;
bank b;

try {
b = bankHel per. bind (bStr);
}

211

Making Objects Available in OrbixWeb

catch (SystenmException se) {

}

This has exactly the same functionality as calling st ri ng_t o_obj ect (), exceptyoudo
not have to call nar r ow() afterwards.

The method string_to_object() onl E | ona. O bi xV¢b. CORBA. CRBis
overloaded to allow the individual fields of a stringified object reference to be specified.
Refer to the section on _Cr bi xVWb. CRB() in the OrbixWeb Programmer’s Reference
for details on how to convert an instance of or g. ong. GORBA. CRB to an instance of

| E. 1 ona. O bi x\&b. CORBA. CRB.

The definition of this form of st ri ng_t o_obj ect () is as follows:

/1 Java
/1 1n package |E.Iona. O bi xWWeb. CORBA,
/1 in class ObjectRef.

publ i c Obj ect Ref

string_to_object(
String host,
String | FR host,
String Server Nane,
String marker,
String | FR_server,
String interfaceMarker);

The ability to create proxy objects from object reference strings has several useful
applications. For example, this approach to proxy creation is often used in conjunction with
the OrbixVWeb Dynamic Invocation Interface (DII).

212

ORB Interoperability

ORB Interoperability allows communication between independently
developed implementations of the CORBA standard. ORB
interoperability enables a client of one ORB to invoke operations on
an object in a different ORB via an agreed protocol. Thus, invocations
between client and server objects are independent of whether they
are on the same or different ORBs. The OMG has specified two
standard protocols to allow ORB interoperability, GIOP and lIOP. This
chapter discusses the use of these protocols.

The OMG-agreed protocol for ORB interoperability is called the General Inter-ORB
Protocol (GIOP). GIOP defines the on-the-wire data representation and message formats.
It assumes that the transport layer is connection-oriented. The GIOP specification aims to
allow different ORB implementations to communicate without restricting ORB
implementation flexibility.

The Internet Inter-ORB Protocol (IIOP) is an OMG defined specialisation of GIOP that
uses TCP/IP as the transport layer. Specialised protocols for different transports (for
example, OSI, Netware, IPX) or for new features, such as security, are expected to be
defined by the OMG in due course.

There are many reasons why interoperability between the products of different ORB
vendors is desirable. The core CORBA specification defines a standard for making
invocations on an object via an ORB. A natural extension of this standard is that conforming
implementations should allow invocations on objects from other conforming
implementations. Within an organisation different ORBs may coexist reflecting separate

213

ORB Interoperability

development effort or different ORB requirements by different parts of the organisation
and at some point, these ORBs may need to communicate.

An overview of the GIOP and lIOP specifications is provided in this chapter. The example
on page 218 shows how IIOP can be used in OrbixVVeb.

Overview of GIOP

Coding

This section provides an overview of the elements of the GIOP specification. It is provided
primarily as background information.

For full details of the GIOP specification, contact the OMG at the following Web site:
htt p: // ww:. ong. or g.

The GIOP defines a transfer syntax known as Common Data Representation (CDR). CDR
defines a coding for all IDL data types: basic types, structured types (including exceptions),
object references and pseudo-objects such as TypeCodes.

All basic types are aligned on their natural boundaries. The architecture of the message
sender determines whether the byte ordering is big-endian or litde-endian. It is then the
responsibility of the receiver to decode the message according to the byte ordering. Thus
machines with common byte ordering may exchange messages without unnecessary byte
swapping.

Message Formats

GIOP' defines eight message types. All messages include a common message header which
includes the following information:

® The message size.
® A version number indicating the version of GIOP being used.
¢ The byte ordering.

® The message type.

I. These GIOP message formats are intended for internal use only.

214

Overview of GIOP

Messages are exchanged between dlients and servers. In this context, a client is an agent that
opens connections and originates requests. A server is an agent that accepts connections
and receives requests. The seven GIOP message types are as follows:

Request

A Request message is sent by a client to a server. It encodes an operation invocation
which includes the identity of the target object, and an identifier used to match a Repl y
message to a Request . A Request may encode a get or set operation for an attribute.

Reply

A Repl y message is sent by a server to a dient. A Repl y message encodes an operation
invocation response, including i nout and out parameters and exceptions.

A server receiving a Request message may not be able to provide direct access to the
target object. This may be because the target object has moved or because the server
receiving the Request message provides a location service. To indicate this, a Repl y may
contain a LOCATI ON_FCRWARD status and an indication of the new location.

CancelRequest

A Cancel Request message may be sent from a client to a server to notify the server that
a reply to a particular pending Request or Locat eRequest message is no longer
expected.

LocateRequest

A Locat eRequest message may be used to probe for the location of a remote object.
This might be appropriate where an operation’s parameters are too large to transmit ina
Request message that might return a LOCATI ON_FCRWARD status. A Locat eRequest
message determines whether the target object reference is valid, whether the server can
handle requests for that object or, if it returns a LOCATI ON_FCRWMARD status, indicates the
location to which invocation on the reference should be sent.

LocateReply

A Locat eRepl y message is sent by a server to a client in response to a Locat eRequest
message. It may contain a new IOR.

215

ORB Interoperability

CloseConnection

A d oseConnect i on message is sent by a server to inform clients that it intends to close
the connection. Any messages for which clients have not received a reply may be reissued
on another connection.

MessageError

A MessageError message may be sent by a client or a server in response to any message
whose message type or version number is unknown to the receiver of the message or
whose message header is not properly formed.

The way in which these messages are used by an implementation of GIOP is transparent to
the application. For example, a particular implementation may respond to a
LOCATE_FCRWRD status ina Repl y message by transparently reissuing the call. Similarly,
use of the Locat eRequest message is an optional optimization.

Fragment

A Fragment message allows you to send a large message efficiently by transmitting the
message as a sequence of fragments. Any Request or Repl y message may be transmitted
as fragments. The initial message is a Request or Repl y message with a value in the GIOP
header set to indicate that more fragments should be expected. The subsequent messages
are then Fr agnment messages. Fr agnment messages are sent in the order in which
they should be assembled.

Internet Inter-ORB Protocol (11OP)

The mapping of GIOP message transfer to TCP/IP connections is called the Internet Inter-
ORB Protocal (IIOP).

An object accessible via IOP is identified by an Interoperable Object Reference (IOR).
Since the format of normal object reference is not prescribed by the OMG, the format of
an IOR includes an ORB's internal object reference as well as an internet host address and a
port number. An IOR is managed internally by the interoperating ORBs. Refer to “Viewing
Information about Object References” on page 228 for more details on IORs.

216

Internet Inter-ORB Protocol (I110P)

IHOP in OrbixWeb

OrbixWVeb supports lIOP and the native Orbix protocol as alternative protocols. IOP is
the default protocol. Support for the Orbix protocal is provided primarily for backward
compatibility.

You can indicate during compilation of an IDL definition which protocol should be used in
the generated Java code for that definition. A client program can then make invocations on
this definition and OrbixVVeb automatically uses the chosen protocol. At this point, the
chosen protocol is largely transparent at the application level.

Selection of Protocols

By default, code generated by the IDL compiler supports both IOP and the Orbix protocol.
When compiling IDL definitions, use the - moption with the following value to support the
IIOP protocol only:

idl -mll1OoPOnly

As described in Chapter 8 “Making Objects Available in OrbixVVeb” on page 171, there are
several ways in which a server can publish an object reference or IOR for retrieval by
clients. IORs are required when using [IOP. OrbixVVeb object references are required if
using the Orbix Protocol. The protocol used does not affect the options available to
application programmers.

Comparison of IIOP and the Orbix Protocol

IIOP has two important advantages over the Orbix protocol. The first is interoperability
with other ORBs. The second is the availability of servers which have no platform-specific
requirement, especially important in the Java domain.

Note: All servers which communicate using the Orbix protocol require an
OrbixWeb daemon to run on the server host. This limits these servers
to platforms where an OrbixWeb daemon is available. However, using
IIOP, you can design client and server applications which have no
external dependencies and are platform-independent.

217

ORB Interoperability

For example, the following application pair would interoperate across ORBs, and also be
platform-independent:

¢ A server which is not registered in the Implementation Repository, which
creates and publishes IORs (for instance, using the Naming Service), and
which calls the methods CRB. connect () and ORB. di sconnect () instead
of i npl _i s_ready() on the ORB object.

* A client which retrieves the IORs published by the server without calling
the OrbixWeb bi nd() method.

Refer to Chapter 12, “Registration and Activation of Servers” on page 251 for details on
how OrbixWVeb servers can be run in a distributed system and their requirements in this
context.

Example using IIOP in a Platform-Independent Application

This section illustrates the use of lIOP in OrbixVVeb to create an interoperable application
which does not rely on the availability of an OrbixVVeb daemon process. The application
developed here consists of a client and server as described in the example above. The
server creates an IOR which it publishes using OrbixVVeb Naming Service and then invokes
processEvent s() to handle client invocations on that IOR. The client retrieves the IOR
using OrbixVVeb Naming Service and invokes operations on the server object.

The example is based on the following IDL interface representing a two dimensional grid.

/1 1DL

interface grid {
readonly attribute short height;
readonly attribute short wi dth;

void set(in short row, in short col,in |long val ue);

long get(in short row, in short col);

}s

218

Internet Inter-ORB Protocol (I110P)

Compiling the IDL Definition

The marshalling protocol uses lIOP by default. It is not necessary to specify the - mswitch in
order to use [IOP.

You can compile an IDL definition as normal:

id -jP gridDeno grid.idl

Programming the Server

This section outlines the server code. It is assumed that an implementation of the Naming
Service, such as OrbixVVeb Naming Service is available and correctly installed. Following the
convention used elsewhere in this guide, it is also assumed that class

gri dl npl emrent at i on implements interface gri d.

/1 Java
/1 Server main() nethod.

i mport CosNami ng. *;

i mport org.ong. CORBA. Syst enExcepti on;
i mport org.ong. CORBA. User Excepti on;
i mport org. ong. CORBA. Obj ect;

class gridserver {
public static void main(String args[]) {
/1 Assume TI E approach.
grid gridlnpl;
ORB or b;

/] Declare Nam ng service types.
Cbj ect initRef;

Nami ngCont ext i nit Cont ext;

Nanmi ngCont ext obj ect sCont ext ;
Nami ngCont ext mat hCont ext ;
NameConponent[] nane;

219

ORB Interoperability

220

try {
/1 Create inplenentation object.
gridlnpl =
new _tie_grid (new gridlnplenentation
(100, 100));
}

catch (SystenkException se) {
/! Details omtted.

}

try {
/1 Find initial nam ng context.

orb = ORB.init(args,null);
initRef =
orb.resolve_initial _references
(" NameServi ce");
i ni t Context = Nami ngCont ext Hel per. narrow
(initRef);

/1 A CosNaming.Nanme is sinmply a sequence
/'l of structs.
name = new NameConponent[1];
nanme[0] =
new NaneConponent ("objects","");

/1 (In one step) create a new context,
/1 and bind it relative to the
/1 initial context:
obj ect sCont ext =
i ni t Cont ext. bi nd_new_context (nane);

//reuse the NanmeConponent that has
/I al ready been created

name[0].id = new String ("math");
name[0] . kind = new String ("");

Internet Inter-ORB Protocol (I110P)

/1 (In one step) create a new context,
/1 and bind it relative to the
/'] objects context:
mat hCont ext =
obj ect sCont ext . bi nd_new_cont ext (nane);

name[0].id = new String ("grid");
name[0] . kind = new String ("");

/1 Bind nane to object gridlinpl in context
/] objects. math:
mat hCont ext . bi nd (name, gridlnpl);
}
catch (SystenkException se) {
/] Details omtted.
}

catch (User Exception ue) {
/1 Use the exceptions defined in the
/] COSNami ng | DL

/1 Call ORB.connect() to process
I/ client invocations.
orb. connect (gridlnpl);

try {
}

catch (InterruptedException ex) {
// Details omtted.
}

}

Thr ead. sl eep(1000*60*3) ;

}

This server instantiates a TIE object for interface gr i d. By default, OrbixVVeb automatically
identifies this object using an IOR. The server then resolves the initial context in the
OrbixV¥Veb Naming Service and associates the compound name obj ects. mat h. gri d
with the IOR, as described in Chapter 8 "Making Objects Available in OrbixVVeb". Finally,
the server enters an OrbixVVeb event processing loop by calling pr ocessEvent s().

221

ORB Interoperability

Programming the Client

This client program resolves the name obj ect s. mat h. gri d to locate the object
reference published by the server using the Naming Service. The interoperable IOR
retrieved from the Naming Service must be narrowed to an object reference of the
appropriate interface before you can invoke operations in the normal way.

The source code for the client is as follows:

/1 Java
/1 dient application code.
/1 In file Cient.java.

i nport CosNami ng. *;
i nport | E. lona. Orbi xWWeb. _CORBA;

i mport org.ong. CORBA. Syst enExcepti on;
i mport org.ong. CORBA. User Excepti on;
i nport org. ong. CORBA. Obj ect ;

public class dient {
public static void main (String args[]) {
Nam ngCont ext i nit Cont ext;
NameConponent[] nane;
ORB or b;

Obj ect initRef, objRef;
grid gRef;

try {
/1 Find initial nam ng context.

orb = ORB.init(args,null);
initRef =
orb.resolve_initial_references
(" NameService");
i ni t Context = Nani ngCont ext. narrow
(initRef);

/1 Set up name and contexts.
name = new NarmeConponent|[3];
name[0] =
new NaneConponent ("objects","");

222

Internet Inter-ORB Protocol (I110P)

nane[1]
nane[2]

new NarrEOOrrponent (" mat hn , " ||) 3
new NaneConponent ("grid","");

/'l Resol ve the nane.
obj Ref = initContext.resolve (name);
gRef = grid.narrow (obj Ref);
}
catch (SystenkException se) {
/] Details omtted.
}

catch (User Exception ue) {
/'l Use exceptions defined in the COSNani ng

/1 1DL
}
try {
w = gRef.width();
h = gRef. hei ght();
}

catch (SystenkException se) {
/] Details omtted.
}

Systemout.println("height is " + h);
Systemout.println("width is " + w);

try {
gRef . set ((short) 2, (short) 4, 123);

v = gRef.get((short)2, (short)4);
}
catch (SystenkException se) {

/] Details onitted.
}

System out . printl n(
"value at grid position (2,4) is

+ Vv);

223

ORB Interoperability

Using IIOP and Binding from an OrbixWeb Client

It is possible to register an OrbixVVeb IIOP server in the Implementation Repository, as
illustrated throughout this guide. In this case, the OrbixVWeb daemon becomes responsible
for locating the server. It must also provide an IOR to the client on its initial invocation, and
if necessary, activate the server. This has the drawback of introducing a dependency on an
OrbixVVeb daemon at the server host. However this approach does allow the server to
take advantage of the OrbixVVeb automatic launch facilities.

The mechanism required to register a server in the Implementation Repository is
independent of the server protocol. However, an additional registration option is available
to servers which use llOP, as described in “Configuring an lOP Port Number for an
OrbixWVeb Server” on page 226.

In order to use bi nd() to resolve IORs in an OrbixVVeb client the following conditions
must be satisfied:

¢ The server must be registered in the Implementation Repository, unless
the OrbixWeb daemon is run with the - u switch
Refer to “The OrbixWeb Java Daemon” on page 271 for more details.
® The server must call i npl _i s_ready() to initialize its server name.
¢ The client must be configured to use IIOP for OrbixWeb

communications. This is the default case.

You can specify several configuration variables including the default protocol to be used
when the client binds to a server object. In the context of using lOP ina bi nd() call, a
client would look as follows:

/1 Application client
import | E |ona. O bi x\b. CCRBA CRB;

public class javaclientl {
/1 Set bind comunications protocol .
ORB. setConfiglten("I T_BIND USING | | OP",
String. val uet (true));

/1 Port nunber for conmmunicating with

/1 O bi xX\W¢b daenon using |1 CP.
ORB. set Configlten("! T_ORBI XD | | CP_PCRT", 1570) ;

224

Internet Inter-ORB Protocol (I110P)

/1 Aient perforns bind ...
...
}
}

This default assignment for | T_Bl ND_USI NG _| | CPallows calls to bi nd() that use lIOP.
You can change this to the following:

/1 Set bind comunications protocol .
CRB. set Confi gl Ten(" 1 T_BIND USING | | OP",
String. val ueCt (fal se));

In this case, calls to bi nd()) can only use the Orbix protocol.

Thel T_CGRBI XD | | CP_PQRT setting specifies the port number on which the client tries to
connect to the daemon using [IOP. You can also set this by configuring
Q bi xVeb. properti es using the OrbixVVeb Configuration Tool.

If you are using or bi xd:

® The | T_I | GP_PCRT variable in the daemon’s O bi x. cf g file must be the
same as the client’s | | CP_CRBI XD _| | OP_PCRT value.

If you are using or bi xdj (the Java Daemon):

®* The | T_CRBI XD_| | OP_PCRT variable in the Java Daemon’s

O bi xWb. properti es file must be the same as the value of the client’s
I T_CRBI XD | | CP_PCRT variable.

Note: You should only use this code occasionally. Normally you should use the
OrbixWeb Configuration Tool to set the default values. Refer to
Chapter 4, “Getting Started with OrbixWeb Configuration” on page 53,
for details on how to use the Configuration Tool.

225

ORB Interoperability

Specifying a Communications Port for the OrbixWeb
Daemon

It is important to note that the OrbixVVeb daemon process listens for incoming OrbixVVeb
events on two communications channels:

¢ the OrbixWWeb demon port (using Orbix protocol)
¢ the OrbixWeb daemon IIOP (using IIOP)

If a client wishes to invoke bi nd() using lOP and or bi xd, it should ensure that it
communicates with the OrbixVVeb daemon using the OrbixVWeb daemon IIOP port and
not the OrbixVVeb daemon (Orbix protocol) port. The ports used by or bi xdj support
both IIOP and the Orbix Protocol, and are present purely for compatibility with or bi xd.
Refer to Chapter 4, “Getting Started with OrbixVWeb Configuration” on page 53, and the
OrbixWeb Programmer’s Reference for a comprehensive discussion of configuration
issues.

Configuring an lIOP Port Number for an OrbixWeb Server

Using lIOP, an OrbixVWVeb server must listen for client connection requests on a fixed TCP/
IP port. The port number for each server is assigned by OrbixVWVeb on start-up.

In most cases this is done by the OrbixVVeb daemon. Refer to the descriptions of
| T_DAEMON SERVER BASEand | T_DAEMON SERVER RANGE in the OrbixWeb
Programmer’s Reference for more details.

When this approach is used, the port number assigned to a server subsequently becomes
embedded in the contents of any IORs which that server creates. This approach has the
drawback that a server which exits and is relaunched may no longer be able to recreate
objects with IORs which exactly match those created in an earlier process. For this reason,
OrbixWVeb allows you to select a well-known IIOP port for each server program.

By default, the OrbixVWeb daemon manages a well-known port for a server. This feature
can be disabled by setting | T_I | OP_USE_LOCATCRto f al se in the server, as follows:

/1l Java
i nport | E.lona. Orbi xWeb. CORBA. ORB;

ORB. set Configlten("|T_ || OP_USE_LOCATOR',"" + fal se);

This setting must be applied before any IORs are created in the server.

226

Internet Inter-ORB Protocol (I110P)

When registering a server in the Implementation Repository, you can specify a well-known
port for a server using the put i t - port switch, for example:

putit serverNane -java -port portNunber ...

Note: The - port switch is supported by or bi xd only.

If youset!| T_I | OP_USE_LOCATCRtot r ue and specify a port number for the server in
this manner, the OrbixV¥Veb daemon attempts to assign the required [IOP port to the
server. If that port is not available and you are using or bi xd, an attempt to createan IOR in
the server raises a system exception.

lfyouset!| T_| | CP_USE LQOCATCRtot r ue, and do not specify a port numberinaput i t
command, the OrbixWWeb daemon assigns a default well-known port to the server.

A server which does not depend on the availability of an OrbixVWeb daemon process
should set | T_I | OP_USE_LOCATCRto false. In this case, an alternative mechanism is
required to allow the server to establish a well-known IIOP port number. You can achieve
this as follows:

/1l Server listen port for Il1CP protocol.
CRB. set Configlten("1T_I I OP_LI STEN PCRT", 10, 000) ;

This approach is only effective if the new value is assigned before the creation of any IORs in
the server. The value of the | T_I | CP_LI STEN_PCRT setting has no significance if
I T_I'1 CP_USE LOCATCRIs settot r ue.

Ifyouset| T_I | GP_LI STEN PCRT to zero, the server is not associated with a well-known
port number. This means that an lIOP port is not dynamically assigned to the server on
start-up.

227

ORB Interoperability

Viewing Information about Object References
The IOR Explorer tool allows you to do the following:

* View information about object references.
* Import object references from a file.

® Save object references to a file.

a8 |0R Explorer

File =

B (no [0F loaded yet)

- Paste |OR here (using CTRL-:

- Clear

Fead [OR

L4

Laoad an [OF using Load IOR, ar by pasting it inta the text box above.

Figure 20: The Interoperable Object Reference Explorer

228

Viewing Information about Object References

To start the object reference explorer, select the IOR Explorer option
from the OrbixWeb main menu. The IOR Explorer appears as shown in
Figure 20 on page 228. It consists of an IOR navigation area and an IOR
entry area.

Importing an Object Reference into the IOR Explorer

If you bind a name to a CORBA object, you can import the reference for
that object into the explorer as follows:

In the main browser window, navigate to the object that you wish
to add to the explorer.

Select Edit/Copy as.
Select Object Reference in the resulting dialog box.

. Highlight the IOR entry area in the IOR explorer and paste the

copied IOR using CTRL-V.

Click on Read IOR to have it entered into the IOR navigation
area.

Importing an Object Reference from a File

To import an object reference from a file, do the following:

Create a text file containing the object reference.

You can obtain the string format of an object reference, for
example, by calling the function obj ect _to_string() on the object
in your CORBA application.

In the explorer, select the Load IOR option in the File menu.
The standard Open File dialog box for your operating system
appears.

Enter the name of the file containing the object reference entry.

. Click OK. The explorer displays the imported object reference in

the navigation area.

229

ORB Interoperability

Parsing an Object Reference

A object reference contains information about the location of a CORBA
object. The explorer allows you to view the information contained in a
CORBA Interoperable Object Reference (IOR). To view this information
for an object reference added to the explorer, click on the “+” icons in
the navigation area, as shown in Figure 21.

8108 Explorer

File =

B FPasted IOR
E}.r Type D DL CosMaming/MamingContext: 1.0
E""|IIZ?IL:CI:usNarningINarningCn:nnte.‘ea‘[:1.IZI
E}-r Frofile 1: TAG_INTERMET_ICP
-- Yersion: 1.0
-- Host: hpserne dubliniona.ie
=8 Port 1571
-- Ohject Key: RER:%5chpsene dublindonaie NS MNC%ATIFR CosMaming %5

. |]
- Paste |OR here (using CTRL-V:
G523a436f734ef1GdG96eET 9f4eh1 Bo696eGT 4 36TERT 465787400 (= Clear
= Fead [OR
[OF displayed.

Figure 21: The IOR Parse Dialog Box

230

Interoperability between Orbix and OrbixWeb

Interoperability between Orbix and OrbixWeb

The default protocol for the OrbixVWeb runtime is IOP. IOP is also the default protocol
for versions of Orbix 2.3 and above.

Earlier versions of Orbix use the Orbix protocol by default. If you are using code generated
by older versions of Orbix, you must select one protocol. If you choose IIOP, the C++
server must be linked with the lIOP library. An example of this is provided in the

CR D_I | CP demonstration supplied with Orbix.

If you choose the Orbix protocol, the Java client must include the line:

CRB.set Configltem("I T_BIND USING |1 CP',""+fal se);

231

ORB Interoperability

232

Part |l

Running OrbixVWeb
Programs

10

Running OrbixWeb Clients

This chapter deals with running OrbixWeb client applications and

applets, and provides information on some general runtime issues
for clients.

Running Client Applications

The procedure for running an OrbixVVeb client application is similar to the procedure for
running any stand-alone Java application. In general, you must fulfil three requirements:

* Obtain access to the Java bytecode for the application.
® Make this code available to the Java bytecode interpreter.

® Run the interpreter on the class which contains the mai n() method for
the application.

The only runtime difference between an OrbixVVeb application and a standard Java
application lies in the first of these requirements. An OrbixVWVeb application must be able to
access the classes stored in the | E. | ona. Or bi x\Web and or g. ong. CORBA packages.
It also requires access to the classes produced by compiling the IDL definitions referenced
by the application. The | E. | ona. Or bi x\Web and or g. ong. CORBA packages are
usually installed in the OrbixWeb cl asses directory. Theor g. ong. CORBA classes are
portable and may already be installed in the runtime environment.

235

Running OrbixWeb Clients

How you make class location information available to the Java interpreter is dependent on
the Java development environment you use. However, you should indicate the location of
the following:

¢ The OrbixWeb packages.

® The Java API classes.

¢ The IDL compiler output classes.
® The application-specific classes.

For example, if you are using the j ava interpreter from Sun Microsystems |DK, you
should add the location of each to the CLASSPATH environment variable or specify this
information in the - cl asspat h switch.

OrbixWWeb offers a set of convenience tools, called wrapper utilities. These make
information about defaults automatically available to the Java interpreter and the Java
compiler. The wrapper utiliies, owj ava and owj avac, are described in the section
“Using the Wrapper Utilities” on page 240.

Similarly, how you run the application through the interpreter may differ between
development environments. Again, if you are using the JDK j ava interpreter, you can pass
the name of the dlass that contains the application mai n() method to the interpreter
command, as follows:

java <cl ass nane>

Running OrbixWeb Client Applets

The requirements for running an OrbixVVeb client applet are slightly more complex than
those for an application. To display a Java applet, you should reference the applet class in a
HTML file using the HTML <APPLET> tag, and then load this file into an applet viewer ora
Java-enabled web browser. The runtime requirements for the applet depend on whether it
is loaded directly from a HTML file or downloaded from a web server.

236

Running OrbixWeb Client Applets

Loading a Client Applet from a File

When you load an OrbixWeb client applet from a file, the runtime requirements are similar
to those for running a client application. You should do the following:

® Obtain access to the Java bytecode for the applet.

® Make this code available to the Java bytecode interpreter embedded in
the browser.

* Load the HTML file that references the applet into the browser.

The second of these requirements often translates to setting the CLASSPATH
environment variable appropriately before running the viewer or browser and loading the
applet. This variable should usually include the location of the following:

® The OrbixWeb package classes.
® The Java APl classes.
® The IDL compiler output classes.

® The other applet-specific classes.

If you use a Java-enabled browser, the location of the Java AP classes is generally not
required. In some cases, the location of the or g. ong. CORBA package is also not
required.

When loading an OrbixVWeb client applet from a file, you can specify a codebase
attribute in the HTML <APPLET> tag to specify the location of the required class files. The
next section describes how you can do this.

Note: When loading an OrbixWeb applet from a file, you should use a recent
browser version. There are some browser-based URL restrictions
associated with early browser versions.

Loading a Client Applet from a Web Server

If an OrbixWVeb applet is loaded into a browser from a Web server, you cannot specify
access paths for the required Java classes at runtime. In this case, you should provide access
to all the classes the applet requires in a single directory. Then, instead of setting an

237

Running OrbixWeb Clients

environment variable, you can use the codebase attribute of the HTML tag <APPLET>
to indicate the location of the applet bytecode.

For example:

<APPLET codebase=<appl et class directory>
code=<appl et class file>

If you use a Java-enabled Web browser to view an applet, you do not need to provide
access to the Java AP classes, because these are already available.

Security Issues for Client Applets

The necessity of strict security restrictions in Java applets is well documented. There are
two primary security restrictions on applets:

® No access to local file systems.

* Limited network access.

Both of these restrictions are imposed by the browser sandbox, and apply to all applets,
regardless of how they are loaded.

Applets do not have access to the file system of the host on which they execute. They
cannot save files to the system or read files from it. Any OrbixVVeb client implemented as a
Java applet must obey this restriction.

In order to prevent the violation of system integrity, VWWeb browsers often limit the network
connectivity of applets which are downloaded from a Web server. Such applets can only
communicate with the host from which they were downloaded.

This limitation has obvious implications for OrbixVVeb client applets downloaded from
Web servers. In particular, such clients can only communicate directy with OrbixVVeb
servers located on the host from which the clients themselves were downloaded. If this
restriction applies to an OrbixVVeb client applet, attempts by that client to bind to a server
on an inaccessible host raises a system exception of type

or g. ong. CORBA. COMM FAI LURE.

Note: Using Wonderwall allows OrbixWeb client applets to be granted access
to servers on hosts other than those from which they were downloaded.
Refer to the Wonderwall Administrator’s Guide for more details.

238

Debugging OrbixWeb Clients

The exact details of applet security are dependent on the browser implementation and may
exceed the restrictions described here. Newer browsers allow security to be configured
for signed applets. Consult your browser documentation for further information.

Debugging OrbixWeb Clients

An OrbixVWeb client application or applet has the same fundamental characteristics as any
other Java program. You can debug OrbixVVeb clients with any available Java debugging
tool, for example, the JDKj db debugger.

When debugging OrbixVWeb clients, it is especially important to be aware of Java exceptions
thrown during OrbixVWeb method invocations. OrbixVWVeb provides a set of system
exceptions indicating various categories of execution errors. These represent vital
information for locating the source of invocation failures in a distributed application. You can
handle these exceptions in client code by using Java t r y and cat ch statements. Similarly,
they can be handled like standard Java exceptions when using a Java debugger.

For more details on OrbixVVeb integration with Java exceptions, refer to Chapter 15
“Exception Handling” on page 295.

Possible Platform Dependencies in OrbixWeb

Clients

In general, OrbixVVeb clients are only dependent on the availability of a Java interpreter on
the target execution platform. However, you should be aware of two issues that may affect
the platform-independence of an OrbixVVeb system:

® Using locators.

® Using the bi nd() method.

Using Locators

First, if a client depends on the OrbixVWVeb locator mechanism to find a target server, as
described in Chapter 25 “Locating Servers at Runtime” on page 473, the client requires an
OrbixWeb daemon to run on its local host. Otherwise, the server location mechanism fail.
This limits such a client to running on platforms where an OrbixWWeb daemon is available. In
the case of OrbixVWVeb client applets, an OrbixVWeb daemon must be running on the
machine from which they were downloaded.

239

Running OrbixWeb Clients

Using bind()

Second, if a client uses the OrbixVVeb bi nd() method to create a proxy for a server
object, the bi nd() call fails unless an OrbixVVeb daemon is available at the server host.
Consequently, a client using bi nd() does not execute successfully unless the target server
is restricted to running on a host where an OrbixVWeb daemon is available.

Using the Wrapper Utilities

The OrbixVVeb Wrapper Utilities, owj ava and owj avac, are convenience tools
designed to act as a front end to the Java interpreter and Java compiler, respectively. This
section outlines the use of these tools, and also describes the standard Java command line
equivalent.

Consider the following standard command line entry to invoke the Java interpreter:

C\JIDK bin\java -classpath C\JDK\lib\cl asses. zi p; C. \ OM81\ cl asses
- DO bi xWb. confi g=C \ OMB1\ cl asses\ O bi x\b. properties
nyPackage. nyd ass

Using the owj ava wrapper utility, you can reduce the standard command line entry to the
following:

owj ava nyPackage. nyd ass

You must access both owj ava and owj avac from the command line. Both of these have
an equivalent function on UNIX and Windows. The examples shown in this chapter apply
to both Unix and Windows, apart from obvious differences in paths.

Using owjava as a Front End to the Java Interpreter

The owj ava wrapper is a front end for the Java interpreter you are using, designed for use
with OrbixVWVeb. It takes all the same arguments as your chosen Java interpreter and passes
them on, together with some other defaults.

owj ava uses the ORBI XWEB_HOME registry/environment variable to find the

Or bi x\W\eb. proper ti es file. From there it reads the full path of the Java interpreter, the
default classpath and the name of the switch the Java interpreter uses to specify its class
path. For example, Microsoft J++ uses - ¢ whereas all other Java Development Kits use -
cl asspat h.

240

Using the Wrapper Utilities

By default, owj ava passes the default classpath and a variable containing the path of the
O bi xweb. properti es file to the Java interpreter.

So, for example, if OrbixWeb is installed in C: \ OAB1 and the JDK is installed in C: \ JDK,
calling owj ava as follows:

owj ava nyPackage. nyd ass
executes the following command:

C\JDK\ bin\java -classpath C\JDK\|ib\classes.zip; C\OMI1\classes
- DOr bi xVéb. confi g=C \ OMB1\ cl asses\ O bi x\b. properti es
nyPackage. nyd ass

You can override this standard behaviour by using the OrbixVVeb Configuration Tool to
change the settings. Refer to Chapter 4, “Getting Started with OrbixVVeb Configuration”
on page 53, for details on the Configuration Tool.

Using owjavac as a Front End to the Java Compiler

This tool acts as a front end to your chosen Java compiler, and is designed for use with
OrbixWWeb. Its behaviour is similar to the owj ava tool described previously, but the
defaults are different. By default, owj avac passes the default CLASSPATH and the
CLASSES directory to the compiler.

So, for example, if OrbixVWeb is installed in C: \ OAB1 and the DK is installed in C: \ JDK,
calling owj avac as follows:

owj avac -d C \ OM1\cl asses\nyd ass. j ava
executes the following command:

C\JDK\ bi n\javac -cl asspath C\JDK\|i b\ cl asses. zi p; C \ OMB1\ cl asses
-d C\OM1\cl asses\ nyd ass. j ava

You can override this standard behaviour by using the OrbixVWeb Configuration Tool to
change the relevant settings. Refer to Chapter 4, “Getting Started with OrbixVVeb
Configuration” on page 53, for more details on the Configuration Tool.

241

Running OrbixWeb Clients

Using the Interpreter and Compiler without the Wrapper

Utilities

You do not need to use the Wrapper Utilities. These are provided as convenience tools
only. You can use the standard Java command line format for j ava and j avac, by using
the formats specified as follows:

Using the java Command

C\JIDK bin\java -classpath C\JDK\lib\classes. zi p; C\O/M1\cl asses
- DO bi xWb. confi g=C \ OMB1\ cl asses\ O bi x\b. properties
nyPackage. nyd ass

Using the javac Command

C\JIDK bin\javac -classpath C\JDK\Iib\cl asses. zi p;
C\OM1\cl asses -d C\OM1\ cl asses\ nyd ass. j ava

242

Using OrbixWeb on the Internet

OrbixWeb client applets are, like any applet, subject to security
restrictions imposed by the browser in which they execute. The most
fundamental of these restrictions include the inability to access local
disks and the inability to contact an arbitrary internet host. This
chapter describes techniques that allow client applets to get around
these restrictions in a secure manner. The first technique involves
IONA’s WonderWall which is a full IIOP firewall proxy. The second
technique involves the use of signed applets.

About Wonderwall

OrbixVVeb provides inbuilt support for the Wonderwall. You can use Wonderwall in two
main ways:

* As afull firewall proxy which can filter, control and log your IIOP traffic.

* As asimple intranet request-routing server which passes IIOP messages
from your applet, via the Web server, to the target server.

243

Using OrbixWeb on the Internet

External Network

\
|3 OrbixWeb

|

|

|

|

|

| Wonderwall

lrop Server
| Server | W
|

|

|

|

IDL

Internal Network

Figure 22: Using OrbixWeb and Wonderwall

Using the Wonderwall with OrbixWeb as a
Firewall Proxy

To run the Wonderwall in a traditional secure mode, use the file secur e. cf . The
Wonderwall command is as follows:

i i opproxy -config secure. cf

This mode of operation requires that the target objects and operations be listed in the
configuration file. For further details, refer to the Wonderwall Administrator's Guide.
This provides a guide to using Wonderwall’s access control lists and object
specifiers.

244

Using the Wonderwall with OrbixWeb as a Firewall Proxy

OrbixWeb Configuration Parameters Used to Support the
Wonderwall
OrbixWVeb has automatic inbuilt support for the VWonderwall. This means that if a
connection attempt fails using the default direct socket connection mechanism, OrbixVWeb

can transparently attempt to connect to any llOP servers via the Wonderwall. This also
means that VWonderwall can be used to:

* Provide HTTP Tunnelling for OrbixVWeb-powered Java applets and
applications.

* Provide automatic intranet routing capability for OrbixVWeb-powered
Java applets, to avoid browser security restrictions.

® Use OrbixWeb applications and applets with the Wonderwall, with no
code changes.

Configuring OrbixWeb to Use the Wonderwall

To use the Wonderwall with OrbixVVeb, you must supply OrbixVVeb with the location of
the Wonderwall. You should use the following configuration parameters:

e QbixWb. 1T _I1CP_PROXY_HCST
This contains the name of the host on which the Wonderwall is running.
e QbixWb. 1T Il CP_PROXY_PCRT
This contains the IIOP port on which the Wonderwall is running.

You can set these configuration parameters using any of the following:

* The OrbixWeb Configuration Tool.
®* The Config. set Configlten() call

® Other OrbixWeb configuration mechanisms, such as applet tags, system
properties or command-line options.

For example, the following is a fragment of a HTML file which uses applet-tag parameters:

<appl et code=Q i dAppl et. cl ass hei ght =300 wi dt h=400>
<paramname="OrbixWeb.IT_IIOP_PROXY_HOST"value="wwall.ona.com™>
<param name="OrbixWeb.IT_IlOP_PROXY_PORT" value="1570">
</applet>

245

Using OrbixWeb on the Internet

Configuring OrbixWeb to Use HTTP Tunnelling

HTTP Tunnelling is a mechanism for traversing client-side firewalls. Each lIOP Request
message is encoded in HTTP base-64 encoding, and a HT TP form query is sent to the
Wonderwall, containing the IOP message as query data. The lIOP Reply is then sent as a
HTTP response.

Using HT TP Tunnelling allows your applets to be used behind a client’s firewall, even when
a direct connection, or even a DNS lookup of the VWonderwall hostname, is impossible.

To use HTTP Tunnelling, you must use the ORB. i ni t () API call to initialize OrbixVVeb.
The call to initialize OrbixVVeb from inside an applet'si ni t () method is as follows:

public void init () {
// Initialize the CRB.
| E l1ona. Obi xWb. CORBA. CRB.init (this, null);

/1 Your applet initialization code can continue bel ow

}

This allows OrbixVVeb to retrieve the codebase from which the applet was loaded. The
codebase is then used to find the VWonderwall’'s interface for HTTP Tunnelling, a pseudo-
CGl-script called ““/ cgi - bi n/ t unnel ”’. For more information on use of the codebase
in Java, see the Javasoft VVeb site, at ht t p: / / www. j avasoft. coni .

The Wonderwall should be used as the Web server that provides the applet’s classes,
because an untrusted Java applet is only permitted to connect to the VWeb server named in
the codebase parameter. However, you can provide the HTML and images for your main
Web site from another Web server, such as Apache, lIS or Netscape, and simply refer to
the VWonderwall Web server in the applet tag, as follows:

/1l For exanple, in file http://ww. iona.con deno. ht m

<appl et code=@i dAppl et . cl ass
codebase=http://wnal | . i ona. comd Qi dAppl et/ cl asses
hei ght =300 wi dt h=400>

</ appl et >

With this setup, your HTML and images are loaded from the main Web site

(W, i ona. conm), yet your applet code is loaded from wal | . i ona. com As a result the
applet is permitted to open connections to that host. For greater efficiency, you should
make a ZI P, JARand/or CAB file containing the classes used by your applet, and store these
on the main Web site also. The Web browser downloads these from the main site, and

246

Using the Wonderwall with OrbixWeb as a Firewall Proxy

does not need to load the classes from the VWonderwall site. This is a generally
recommended practice, even if you are not using VWonderwall.

You can also provide a VWonderwall set-up to support HT TP Tunnelling on the same
machine as the real HT TP server. This requires that the VWonderwall runs on a different
port from the main server. Some sites may only allow outgoing HT TP traffic on port 80,
the standard port, so this could restrict the potential audience for your applet slightly.

You should ensure that the applet’s classes are available in the directory you named in the
codebase URL. In the example above, this would be G i dAppl et/ cl asses. This
directory path is relative to the directory named inthe ht t p-fi | es parameter of your
Wonderwall configuration file.

If you wish an application to use HTTP Tunnelling, or would prefer to override an applet’s
HTTP Tunnelling setup, the following three configuration parameters are provided:
e Orbi xVeb. | T_HTTP_TUNNEL_HOST
This contains the name of the host on which the Wonderwall is running.
e Orbi xVeb. | T_HTTP_TUNNEL_PCRT
This contains the HT TP port on which the Wonderwall is running.
e OrbixVeb. | T_HTTP_TUNNEL_PROTO

This contains the protocol used. Currently the only protocol value
supported for HTTP Tunnelling is “ht t p”. Refer to “Configuring
OrbixWeb to Use the Wonderwall” on page 245 for more details on
how to set these parameters,

The Wonderwall supports HTTP I.I and HTTP 1.0’s Keep-Alive extension. This means
that more than one HT TP request can be sent across TCP connections between the client
and the Wonderwall (or between a HT TP proxy and the Wonderwall). This greatly
increases the efficiency of HTTP.

247

Using OrbixWeb on the Internet

Manually Configuring OrbixWeb to Test Tunnelling
In order to test HTTP Tunnelling or IOP via the Wonderwall, OrbixVVeb provides two

more configuration parameters:
* QbixVeb. 1T || CP_PROXY PREFERRED
e QObix\b. | T_HTTP_TUNNEL_PREFERRED
If you set either of these parameters to t r ue, the relevant connection mechanism is tried

first, before the direct connection is attempted. IOP Proxying takes precedence over
HTTP Tunnelling, so if you enable both of these parameters, IIOP Proxying is tried.

Using the Wonderwall as an Intranet Request-
Router
The Wonderwall can also be used as an intranet request router for lOP, providing a means
by which your OrbixVVeb applets can contact servers that reside on hosts other than the

host on which your Web server is running. The file i nt r anet . cf is used in this
configuration, so the Wonderwall command is as follows:

iiopproxy -config intranet.cf

Refer to the Wonderwall Administrator’s Guide more details on using the Wonderwall
as an intranet request router.

This mode of operation requires no configuration. Using the Wonderwall, any server can
be connected to, and any operation can be called.

248

Applet Signing Technology

Applet Signing Technology

Overview

For security reasons, an applet is prevented from accessing the local file system and
connecting to a host other than the host from which it was downloaded. Often these
restrictions must be relaxed, in order for an applet to be fully functional. It is possible to
achieve this using signed applet technology.

A signed applet has a digital signature which is interpreted as a sign of good intent. An applet
that has been signed with a trusted digital signature may therefore be treated more
permissively by a browser, and may even be granted the permission of a full application.

The following section provides a brief overview of signed applet technology. More detailed
information is available on-line in the IONA Knowledge Base. See the IONA Web
siteat ht t p: / / waw. i ona. com

There is no single standard implementation of applet-signing technology, however the
implementations offered by Netscape and Microsoft are widely adopted. Specific details of
these vendors implementations are available from their corporate Web sites. In this section,
discussion is limited to the implementation independent characteristics of the technology.

How Applets are Signed

Applets may be signed using public key cryptography technology. Distributors of the applet
must digitally sign the applet with their private key. VWhen an applet thus signed is
downloaded by a browser, it can determine the identity of the signing entity by consulting a
Certification Authority. A Certification Authority is a trusted third party that verifies the
identify of a key holder. The browser may also determine whether the applet has been
tampered with. Assuming there are no problems, the browser may assume that the applet
is not malicious, and grant it extended privileges.

The user must ultimately grant the applet these extended privileges, either by configuring
browser security settings or responding at runtime to individual requests for privileges from
the applet. In some circumstances it may be the case that an applet does not function
correctly unless it is granted extended privileges.

249

Using OrbixWeb on the Internet

The benefits of signed applet technology to the OrbixVVeb applet programmer include the
following:

¢ The ability to contact any host.
® The ability to cache information locally on disk.

® The ability to access system properties.

Itis common for the applet, other classes it requires and associated files to be bundled into
a single ar chi ve file. In this case, it is the archive that is signed and downloaded to the
browser, thereby reducing download time.

Looking Ahead

It is expected that browsers will be able to support multiple archives in the future.
Deployment should then become more flexible and efficient since applications can be split
into a number of archives, each containing classes pertaining to a particular area of
functionality. For example, an OrbixWWeb applet may be split into archives containing the
OrbixWWeb runtime, the Java classes generated by the IDL compiler, the applet code and
finally third party archives.

The OrbixVVeb installation includes Microsoft CAB (signed) and Netscape JAR (unsigned)
compatible archives. They can be found in the cl asses directory of your OrbixVVeb
installation.

250

| 2

Registration and Activation of
Servers

This chapter describes the Implementation Repository, which is
effectively a database of server information. This is the component
of OrbixWeb that maintains registration information about servers
and controls their activation. The Implementation Repository is
implemented in the OrbixWeb daemon. The OrbixWeb daemon and
utilities provide a superset of the functionality supported by a
standard, non-Java Orbix installation.

This chapter outlines the full functionality supported by the OrbixVWVeb Implementation
Repository. It also discusses aspects of registration and activation that affect servers
communicating over the CORBA Internet Inter-ORB Protocol (IlOP) or the Orbix
protocol. Aspects of server activation that are specific to lIOP servers are also described.
IIOP servers only need to be registered in the Implementation Repository under certain
circumstances, and this can be advantageous in a Java environment.

251

Registration and Activation of Servers

The Implementation Repository

The OrbixVVeb Implementation Repository maintains a mapping from a server’s name to
the Java program which implements that server. A server must be registered with the
Implementation Repository to make use of this mapping.

If the server is not running, it is launched automatically by OrbixVVeb when a client binds to
one of the server’s objects, or when a client invokes an operation on an object reference
which names that server. The OrbixVVeb daemon launches a Java server by invoking the
Java interpreter on the class specified in an Implementation Repository entry.

To allow the daemon to correctly locate and invoke the Java interpreter, it is important that
the values | T_JAVA | NTERPRETERand | T_DEFAULT_CLASSPATHare correctly
configured. The configuration of these values is described in the chapter “OrbixVVeb
Configuration” in the OrbixWeb Programmer’s Reference.

When a client first communicates with an object, OrbixVVeb uses the Implementation
Repository to identify an appropriate server to handle the connection. This search can
occur in the following circumstances:

¢ During a call to bi nd(), if pinging is enabled, otherwise, on the first
invocation on an object reference returned by bi nd().

You can call the method CRB. pi ngDuri ngBi nd() (in package

| E I ona. O bi x\.¢b. CORBA) on the _OCORBA O bi x object to configure
this. If this is set to true, pinging is enabled. If this is f al se, the server is
not launched automatically when a bind occurs.

¢ During a call to the method CRB. string_t o_obj ect ().

® When an object is used for the first time after being received as a
parameter or return value via an intermediate server.

If a suitable entry cannot be found in the Implementation Repository during a search for a
server, a system exception is returned to the caller.

252

Activation Modes

Activation Modes

OrbixWVeb provides a number of different mechanisms, or modes, for launching servers,
giving you control over how servers are implemented as processes by the underlying
operating system. The mode of a server is specified when it is being registered.

Note: The availability of a given activation mode depends on which OrbixWeb
daemon (or bi xd or or bi xdj) is used. The default activation modes are
available to both or bi xd and or bi xdj , and are sufficient for most
applications. Refer to “The OrbixVWVeb Java Daemon” on page 271 for
further information on or bi xdj .

Primary Activation Modes

The following primary activation modes are supported.

Shared Activation Mode (Default)
This mode is supported by or bi xd and or bi xdj .

In this mode, all of the objects with the same server name on a given
machine are managed by the same process on that machine. This is the
most commonly-used activation mode.

If the process is already launched when an operation invocation arrives
for one of its objects, OrbixVWeb routes the invocation to that process.
Otherwise OrbixWeb launches the process, using the Implementation
Repository’s mapping from server name to class name and class path.

253

Registration and Activation of Servers

Unshared Activation Mode

This mode is supported by or bi xd only.

In this mode, individual objects of a server are registered with the
Implementation Repository. All invocations for an individual object are
handled by a single process. This server process is activated by the first
invocation of that object. Thus, one process is created per active
registered object. Each object managed by a server can be registered with
a different Java class, or any number of them can share the same class.

per-method Call Activation Mode

This mode is supported by or bi xd only.

In this mode, individual operation names are registered with the
Implementation Repository. You can make inter-process calls can be
made to these operations, and each invocation results in the creation of
an individual process. A process is created to handle each individual
operation call, and the process is destroyed once the operation has
completed. You can specify a different Java class for each operation, or
any number of them can share the same class.

Secondary Activation Modes

For each primary activation mode, a server can also be launched in one of the following
secondary activation modes.

multiple-client (Default)

254

This mode is supported by or bi xd and or bi xdj .

In this mode, activations of the same server by different users or principals
will share the same process, in accordance with whichever fundamental
activation mode is selected.

Activation Modes

per-client
This mode is supported by or bi xd only.

In this mode, activations of the same server by different end-users will
cause a different process to be created for each such end-user.

per-client-process
This mode is supported by or bi xd only.

In this mode, activations of the same server by different client processes
causes a different process to be created for each such client process.

Persistent Server Mode

If a server is registered in the shared mode, it can be launched manually prior to any
invocations on its objects. Subsequent invocations are passed to the process. CORBA uses
the term persistent server to refer to a process launched manually in this way. The OMG
CORBA term “persistent server” is not ideal, because it can be confused with the notion of
persistent (long lived, on disk) objects. It may be more useful to view a “persistent” server
as a manually launched server.

Launching persistent servers is useful for a number of reasons. Some servers take
considerable time to initialize, and therefore it makes sense to launch these servers before
clients wish to use them. Also, during development, it may be clearer to launch a server in
its own window, allowing its diagnostic messages to be more easily seen. You can launch a
server in a debugger during the development stage to allow debugging.

Since OrbixVVeb uses the standard OMG IDL-toJava mapping, all clients and servers must
callor g. ony. OORBA. CRB. i ni t () to initialize the ORB. A reference to the ORB object is
returned. You can invoke the ORB methods defined by the standard on this instance. Refer
to the description of or g. ong. GORBA. CRB in the OrbixWeb Programmer’s Reference
for more details on this topic.

Manually launched servers, once they have called i npl _i s_r eady(), behave in a similar
way to shared activation mode servers. If a server is registered as unshared or per-method,
i npl _i s_ready() fails if the server is launched manually. Refer to “Persistent Servers” on
page 261 for more details.

255

Registration and Activation of Servers

Note: If you are using or bi xd, a shared server may be registered so that it may

only be launched manually. This means that OrbixVVeb does not launch
the server when an operation invocation arrives for one of its objects.
This is explained in “Unregistered Servers” on page 262. Use the -
persi stent with putit to register a server so that it may only be
launched manually.

Usually, clients are not concerned with the activation details of a server or aware of what
server processes are launched. To a client, an object in a server is viewed as a stand alone
unit; an object in a server can be bound to and communicated with without considering
activation mode details.

Although servers are registered in the Implementation Repository, you do not need to
register individual objects; only those objects for which OrbixV¥Veb should launch a process.

Implementation Repository Entries

An entry for a server in an Implementation Repository includes the following information:

256

The server name.
Server names may be hierarchical, so the Implementation Repository
supports nested directories.

The primary activation mode (shared, unshared, or per-method).

The secondary activation mode (per-client, per-client-process or
multiple-client).

Whether the server is a persistent-only server—it can only be launched
manually.

The server owner—the user who registered the server.

Permissions specifying which users have the right to launch the server and
which users have the right to invoke operations on objects in the server.

A set of activation orders specifying a marker or method and a launch
command for that marker or method. For the shared or unshared
activation modes, a number of activation orders may exist for different
markers. For the per-method activation mode, a number of activation
orders may exist for different methods.

The OrbixWeb putit Utility for Server
Registration

putit

Theputit command creates an Implementation Repository entry, if no entry exists, for
the specified server. If an Implementation Repository entry already exists for the server, the
putit command creates or modifies an activation order within the existing entry. In the

latter case, the put i t command must specify the same fundamental activation mode
(shared, unshared or per-method) as that already registered for the server.

catit

Thecatit command displays the information on a server in an Implementation
Repository entry. Alternatively, the you can use the Server Manager tool. Refer to the
OrbixWeb Programmer’s Reference for details of how to use this tool.

The OrbixWeb putit Utility for Server
Registration
Theputit utility registers servers with the Implementation Repository. This section

outlines some examples of common uses of put i t. A full description of put i t and its
switches is given in the OrbixWeb Programmer’s Reference.

Theputit command is used most often in either of the following forms:

putit serverNane -java
-classpath <full classPath> cl assName

putit serverNane -java
-addpath <partial d assPath> classNane

The first command form indicates that the server is to be registered with the specified
complete class path, independent of any configuration settings, with the specified class name.

The second command form indicates that the specified class path should be appended to
the value of | T_DEFAULT_CLASSPATHIn the O bi x\&b. pr oper ti es file, when the
daemon attempts to launch the server.

The - j ava switch is an extension of the standard Orbix put i t command This indicates
that the specified server should be launched by the Java interpreter. You can truncate this
switchto-j .

By default, put i t uses the shared activation mode. Therefore, on any given host, all objects
with the specified server name are controlled by the same process. Also by default, put i t

257

Registration and Activation of Servers

registers a server in the multiple-client activation mode. This means that all client processes
bind to the same server process. For example:

putit Bank -java -addpath
/usr/users/chris/banker bank_denp. BankServer

In this example, the class bank_deno. BankSer ver is registered as the implementation
code of the server called BankSr v at the current host. A partial class path of / usr /

user s/ chri s/ banker is also specified. The putit command does not launch the
server. You can do this explicitly from the shell or otherwise. Alternatively, OrbixVVeb may
automatically launch the server in shared mode in response to an incoming operation
invocation.

Server names may be hierarchically structured, in the same way as UNIX file names. For
example:

putit banks/BankSrv -java -addpath
/usr/users/chris/banker bank_denp. BankServer

Hierarchical server names are useful in structuring the name spaces of servers in
Implementation Repositories. You can create the hierarchical structure using the nkdi ri t
command. Alternatively, you can use the OrbixVVeb Server Manager tool. Refer to the
OrbixWeb Programmer’s Reference for details on both of these methods.

Examples of Using putit

The following examples illustrate some further switches to put i t .

-unshared

If you are using the or bi xd as your daemon process, you can use the
- unshar ed switch to register a server in the unshared activation mode:

putit -unshared National Trust -java -classpath
/ cl asses: /j dk/ cl asses: / t np/ bank bankPackage. BankSer ver

This command registers an unshared server called “Nat i onal Tr ust ” on the local host,
with the class name and full class path. Each activation for an object goes to a unique server
process for that particular object. All users accessing a particular object share the same
server process.

258

Additional Registration Commands

-marker
You can specify a marker to the put i t command to identify an object to which put i t
applies:
putit -h al pha -narker Boston National Bank -java -addpath
/ bank/ cl asses: /| ocal / cl asses bankPackage. BankSer ver

This command registers a shared server called “Nat i onal Bank”, with the specified class
name and partial class path. However activation only occurs for the object whose marker
matches “Bost on”. There is at most one server process resulting from this registration
request. Other - mar ker registrations can be issued for server Nat i onal Bank for other
objects in the server. All users accessing the “Bost on” object share the same server
process.

The - h switch specifies the host name on which to execute the put i t command.

Additional Registration Commands

Implementation Repository entries created by put i t can be managed using the following

commands:

catit Outputs full details of a given Implementation
Repository entry.

chrodi t Allows launch and invoke rights on a server to be
granted to users other than the server owner.

chowni t Allows the ownership of Implementation Repository
entries and directories to be changed.

killit Kills a running server process.

I sit Lists a specific entry or all entries.

nkdirit Creates a new registration directory.
You can structure the Implementation Repository
hierarchically like UNIX file names.

pi ngi t Pings the OrbixWeb daemon to determine whether it is
alive.

psi t Outputs a list of server processes known to the
OrbixWeb daemon.

rndirit Removes a registration directory.

259

Registration and Activation of Servers

rmt Removes an Implementation Repository entry or
modifies an entry.

Execute any of these commands without arguments to obtain a summary of its switches.

Further Mode Options: Activation and Pattern
Matching

Recall from Chapter 8, “Making Objects Available in OrbixVVeb”, that a server
programmer may choose the marker names for objects. Alternatively, they can be assigned
automatically by OrbixVWVeb.

Pattern Matching using orbixd

Pattern matching functionality for markers is supported by or bi xd only. Because objects
can be named, the various activation policies can be instructed to use pattern matching
when seeking to identify which server process to communicate with. In particular, when a
server is registered, you can specify that it should be launched if any of a set of its objects are
invoked. You can specify this set of objects by registering a marker pattern which uses wild
card characters. If no pattern is specified, invoking on any of a server’s objects causes the
server to be launched, if it has not already been launched.

You can also specify patterns for methods so that operation names matching a particular
pattern cause a particular server to be launched.

Pattern matching functionality for markers is not currently supported by or bi xdj .

260

Persistent Servers

Persistent Servers

Persistent servers refer to those that are launched manually. You should ensure that the
persistent server name is correctly set before it has any interaction with OrbixVVeb. For
example, a persistent server should not pass out an object reference for one of its objects
(as a parameter or return value, or even by printing its object reference string) until the
server name has been set.

The following methods provide two approaches in OrbixVWeb to launching servers
manually:

* ORBA Qbix.inpl_is_ready()

®* CRB.connect ()

_CORBA.Orbix.impl_is_ready()

The implementation of i npl _i s_r eady() inserts the correct server name into the
object names of the server’s objects. This is not done for any object references that have
already been passed out of the address space.

Normally, you set the server name by callingi npl _i s_r eady() . Alternatively, you can
set the server name using the method CRB. set Ser ver Nane().

Other interactions with OrbixVWeb such as calling an operation on a remote object, or
using the locator, also cause difficulties if they occur in a persistent server before
i mpl _i s_ready() is called.

Persistent servers, once they have calledi npl _i s_r eady(), behave as shared activation
mode servers. In line with the CORBA specification, if a server is registered as unshared or
per-method, i npl _i s_r eady() fails if the server is launched manually.

261

Registration and Activation of Servers

ORB.connect()

The OMG standard approach to launching a persistent server is to use
or g. ong. CORBA. CRB. connect ().

Because this approach provides no way of specifying the server name,
you must use one of the following to specify the server name:

® Before you connect, use CRB. set Ser ver nane()
or

® Add the following to the j ava or owj ava command line:
- DOr bi xVb. server _nane

Unregistered Servers

In some circumstances, it may be useful not to register servers with the Implementation
Repository. To support this, you can configure the OrbixVWeb daemon to allow
unregistered servers by using the - u switch. Any server process can then be started
manually. When the server callsi npl _i s_r eady(), it can pass any string as its server
name. The daemon does not check if this is a server name known to it. Refer to “Using the
Java Daemon” on page 273 for details of the - u switch.

A disadvantage of this approach is that an unregistered server is not known to the daemon.
This means that the daemon cannot automatically invoke the Java interpreter on the server
bytecode when a client binds to or invokes an operation on one of its objects. If a client
invocation is to succeed, the server must be launched in advance of the invocation.

In a Java context, a more significant disadvantage of this approach is that the OrbixVWeb
daemon is involved in initial communications between the client and server, even though
the server is not registered in the Implementation Repository. This restriction applies to all
OrbixVVeb servers which communicate over the standard Orbix communications
protocol and limits such servers to running on hosts where an Orbix or OrbixVVeb
daemon process is available.

262

Activation Issues Specific to IIOP Servers

Activation Issues Specific to IIOP Servers

You do not need to register OrbixVVeb servers which communicate over lIOP in the
Implementation Repository. An lIOP server can publish Interoperable Object References
(IORs) for the implementation objects it creates, and then await incoming client requests on
those objects without contacting an OrbixVVeb daemon.

Unregistered lOP servers are important in a Java domain. This is because they can be
completely independent of any supporting processes which may be platform specific. In
particular, any server which relies on the or bi xd daemon to establish initial connections
depends on the availability of the daemon on specific platforms. However, you can
overcome this problem by using the Java Daemon, or bi xdj , which is platform-
independent. An OrbixVVeb unregistered lIOP server is completely self-contained and
platform independent.

However, an [IOP server does suffer from an important disadvantage. The TCP/IP port
number on which a server communicates is embedded in each IOR that a server creates. If
the port is dynamically allocated to a server process on start-up, the port may differ
between different processes for a single server. This may invalidate IORs created by a
server if, for example, the server is killed and relaunched. OrbixVWeb addresses this
problem by allowing you to assign a well-known IIOP port number to the server.

These issues are discussed in detail in Chapter 9 “ORB Interoperability” on page 213.

Security Issues for OrbixWeb Servers

This section covers issues concerned with security for OrbixVVeb servers. The method for
addressing security issues will depend, in some cases, on which OrbixVVeb daemon process
you are using

Identity of the Caller of an Operation

A server object can obtain the user name of the process that made the current operation
call by using the method get _pri nci pal () on the CRB object. This method is listed in
class CRB as follows:

/1 Java
/1 1n package org. ong. CORBA
/1l in class CRB.

public org.omy. CORBA Princi pal get_principal ();

263

Registration and Activation of Servers

Server Security

Note: The Java Daemon (or bi xdj) does not support access rights for user
groups. An exception to this is the pseudo user group al | .

You must actively grant access control rights to ensure server security. OrbixVVeb
maintains two access control lists for each Implementation Repository entry, as follows:

Launch The users or groups that can launch the associated server.
Users on this list, and users in groups on this list, can cause
the server to be launched by invoking on one of its objects.
Only these users and groups can call i npl _i s_r eady()
with the Implementation Repository entry’s server name.

Invoke The users and groups that can invoke operations on any
object controlled by the associated server.

The entries in the access control list can be either user names or group names. Thereis also
a pseudo group name called al |, which can be used to implicitly add all users to an access
control list. The owner of an Implementation Repository entry is always allowed to launch it
and invoke operations on its objects.

The group system is determined by the underlying operating system. For example, on
UNIX; a user’s group membership is determined using the user’s primary group along with
the user’s supplementary groups, as specified in the / et ¢/ gr oup file.

You can use the chrmodi t command to modify the two access control lists. However, only
the owner of an Implementation Repository entry can call the chnodi t command on it
The original owner is the user who calls the put i t command. Subsequently, you can
change the ownership using the chowni t command.

264

Security Issues for OrbixWeb Servers

UNIX: Effective uid/gid of Launched Servers

Note: This section does not apply to or bi xdj .

On UNIX; the effective uid and gid of a server process launched by the OrbixVWeb daemon
are determined as follows:

I. If orbi xd is not running as the r oot (super-) user, the uid and gid of every
activated server process is that of or bi xd itself.

2. If orbi xd is run as root, it attempts to activate a server with the ui d and
gi d of the pri nci pal attempting to activate the server.

If the pri nci pal is unknown (not a registered user) at the local machine
on which or bi xd is running, or bi xd attempts to run the new server with
ui d and gi d of a standard user “or bi xusr”.

3. If there is no such standard user or bi xusr, or bi xd attempts to run the
new server with ui d and gi d of a user “nobody”.

4. If there is no such user “nobody”, the activation fails and an exception is
returned to the caller.

It is recommended that you do not run or bi xd as r oot . This would allow a client running
asroot on aremote machine to launch a server with r oot privileges on a different
machine. You can avoid this security risk by setting the set - ui d bit of the or bi xd
executable and giving ownership of the executable to a user called, for example, or bi xusr
who does nothaver oot privileges. Then or bi xd, and any server launched by the daemon,
do not have root privileges. Any servers that must be run with different privileges can have
the set - ui d bit set on the executable file.

265

Registration and Activation of Servers

Activation and Concurrency

In the per-method activation mode, or when the secondary activation modes per-client and
per-client-process are used, there is no inbuilt concurrency control between the different
processes created to handle operation invocations on a given object. Each resulting process
must coordinate its actions as required.

Activation Information for Servers
A server can determine a number of details about how and why it was launched:

® The activation mode (shared, unshared, per-method or persistent).
® The marker name of the object that caused the server to be launched.
¢ The name of the method called on that object.

® The server name.

You can determine this information in a server by invoking the relevant method (defined in
interface BQA) on the CRB object as follows:

Activation Mode
Use the following method to find the activation mode under which the server is registered:

/] Server activation nodes
/1 (defined in I E Ilona. Orbi x\WWb. CORBA. BQAI npl) .
static final short perMethodActivati onMde
static final short unsharedActivati onMde
static final short persistentActivationhMde
static final short sharedActivati onMbde
static final short unknownActivati onMbde

o non
hodbRo

public short nyActivati onMde ()
throws SystenException;

266

Activation Information for Servers

Marker Name

Use the following method to find the marker name of the activation object that caused this
server to be launched:

public String nyMarkerName ()
throws SystenExcepti on;

The marker name for a persistent server is null.

Marker Pattern
Use the following method to find the marker pattern that caused this server to be launched:
public String nmyMarkerPattern ()
throws SystenException;
Method Name
Use the following method to find the method name used to launch this server:

public String nmyMet hodNane ()
throws SystenExcepti on;

The method name for a persistent server is null.

Server Name
Use the following method to find the server’s name:

public String mylnpl enentati onNane ()
t hrows SystenException;

For a persistent server this is some unspecified string until i npl _i s_r eady() is called.

Each of these methods raises an exception if called by a client.

267

Registration and Activation of Servers

IDL Interface to the Implementation Repository

The interface to the Implementation Repository, called | T_daenon, is defined in IDL and
implemented by or bi xd, one of the two daemon processes available in OrbixVVeb. The
Java Daemon, or or bi xdj , currently implements a subset of the | T_daenon interface.

The IDL operations defined in | T_daenon are explained in the OrbixWeb Programmer’s
Reference. Differences in implementation between or bi xd and or bi xdj are clearly

highlighted.

The UNIX utilities, such as put i t, cat i t, and the OrbixVVeb Server Manager (available
on Windows 95 and Windows NT) are implemented in terms of the daemon’s IDL
interface.

Using the Server Manager

Note: The Server Manager is available with the OrbixWeb Professional Edition.

The Server Manager is a graphical user interface that provides much of the functionality of
the OrbixVVeb utilities. The Server Manager facilitates Implementation Repository
management, offering functionality similar toput i t,rnit, nkdi rit and other command
utilities. It also supports the activation and deactivation of servers.

Refer to the chapter “The OrbixVVeb Server Manager” in the OrbixWeb Programmer’s
Reference for a description of how to use this tool.

About the Java Daemon(orbixdj)

The Java Daemon (or bi xdj) is a Java implementation of a subset of the | T_daenon
interface.

The functionality provided by or bi xdj should be sufficient for the majority of applications.
In cases where particular features are not supported by the Java Daemon, the or bi xd
daemon process may be used as an alternative.

268

About the Java Daemon(orbixdj)

Additional Java Daemon Functionality

The Java Daemon offers the great advantage of platform independence, with a significant
subset of the functionality available to or bi xd.

In addition, it offers the following:

® An in-process activation mode, which is more efficient in terms of
resources, and quicker to start.

* A GUI console.

Limitations of the Java Daemon

The main restriction on the use of the or bi xdj is that is supports only the shared
(multiple client) activation mode.

Refer to “Scope of the Java Daemon” on page 281 for more details on the features
supported by the Java Daemon.

269

Registration and Activation of Servers

270

|3

The OrbixWeb Java Daemon

The OrbixWeb Java Daemon(or bi xdj), is a Java implementation of
the | T_daenon interface. The Java Daemon administers the
Implementation Repository and is responsible for the activation of
servers.

The Implementation Repository is an important component of CORBA. This holds
information about servers that can be used by the ORB to activate servers on demand
from clients. In previous versions of OrbixVVeb, the executable or bi xd was required to
manage this repository and carry out the activation of servers. This version of OrbixVVeb
provides both or bi xd and or bi xdj executables.

A limitation of the or bi xd executable is that it must be run on the platform for which it
was built, so automatic activation of servers on other platforms is not possible. The Java
Daemon fulfils the same role as the or bi xd executable, but as it is written in Java it can be
deployed on any Java platform. This extends considerably the flexibility of the server-side
ORB. The executable for the Java Daemon is called or bi xdj .

Note: The terms Java Daemon and or bi xdj are used interchangeably
throughout the OrbixWeb documentation. References to daemon apply
to functionality supported both by or bi xd and or bi xdj .

271

The OrbixWeb Java Daemon

Overview of the Java Daemon

The Java Daemon is responsible for transparently activating OrbixVVeb servers, and re-
activating servers that have exited. It is a separate process that is intended to be always
active. Clients can contact the Java Daemon as follows:

¢ Using the bi nd() call.

® Calling an operation on an object obtained using st ri ng_t o_obj ect on
an IOR which contains the Java Daemon’s address.

The Java Daemon activates the server if it is not already active, and provides details of the
activated server to the client. The client can then use these details to contact the server
directly.

When a server exits and the client detects the broken connection, the client can
transparently request the Java Daemon to re-activate the server. When the Java Daemon
re-activates the server, the client can resume making requests of the server.

Servers can also be launched manually and register themselves with the Java Daemon. In this
case, the Java Daemon only provides details of the server's location to clients, because the
server does not require activation.

Features of the Java Daemon

The following are the main features of the Java Daemon (or bi xdj):

® Cross platform operation.

® OrbixWeb server activation.

* Orbix (C++) server activation.

® In-process and out-of-process activation.
® Graphical console.

¢ |IOP and Orbix Protocol support.

¢ Compatibility with or bi xd (both for Orbix and OrbixWeb) and IONA's
GUI tools.

¢ Compatibility with the OrbixWeb 2 and OrbixWeb 3 Implementation
Repository format.

272

Using the Java Daemon

Using the Java Daemon

The following sections discuss how to start and configure the Java Daemon, or bi xdj .

Starting orbixdj from Windows

You can launch the Java Daemon from the OrbixVVeb menu in the Windows Start menu.

Starting orbixdj from the Command Line

To launch the Java Daemon from the command line, use the following:

orbi xdj [-inProcess] [-textConsole] [-noProcessRedirect] [-u][-V]
[-v] [-help|-7]

The purpose of each switch is as follows:

Switch Effect

-inProcess By default, the Java Daemon activates servers
in a separate process. This is termed out-of-
process activation.

If this switch is set, the Java Daemon starts
servers in a separate thread. This is termed in-
process activation.

-t ext Consol e By default, the Java Daemon launches a GUI
console.

Adding this switch causes the Java Daemon
to use the invoking terminal as the console.

-noProcessRedirect By default the st dout and st derr streams of
servers activated in a separate process are
redirected to the Java Daemon console.

Specifying this switch causes the output
streams to be hidden.

-u This allows the use of unregistered
persistently launched servers.

273

The OrbixWeb Java Daemon

-hel p
-?

This prints a detailed description of the
configuration the Java Daemon uses on start

up.
The Java Daemon then exits.

Causes the Java Daemon to print a summary
of the configuration it runs with.

The Java Daemon then exits.

Displays the switches to or bi xd; .

Configuring the Java Daemon

Use OrbixVWVeb’s Configuration Tool to customise the settings for the Java Daemon. The
following outlines the settings in Cr bi x\eb. pr oper ti es that concern the Java Daemon.
It also indicates how these settings should be changed using OrbixVWeb’s Configuration

Tool.

For more details on the Configuration Tool, refer to Chapter 4, “Getting Started with
OrbixVVeb Configuration” on page 53.

Settings
| T_I MPL_I S READY_TI MECUT

274

Effect

When an in-process server is launched, the Java
Daemon waits to be informed that the server is
active before allowing the causative client request to
proceed. See “Guidelines for Developing in-process
Servers” on page 279 for further details.

The Java Daemon waits a maximum of this amount
of time, specified in milliseconds. The default is
30, 000 milliseconds, or 30 seconds.

Using the Configuration Tool

This setting is located on the Advanced page in the
Miscellaneous Settings list box.

Select the option in the list box and enter a value in
the text box provided.

Using the Java Daemon

I T_| MP_REP_PATH

| T_DAEMON_SERVER BASE

| T_DAEMON_SERVER RANGE

I T_JAVA | NTERPRETER

This is the absolute path to the Implementation
Repository.

Using the Configuration Tool

On the Initialization page, in the Impl
Repository Path field.

Servers that are launched in separate processes
listen on their own port. This is the value of the first
port, and subsequently-allocated ports increment by
1, until the | T_DAEMON SERVER RANCE is exceeded.
At this point the port allocation wraps, starts at

| T_DAEMON _SERVER BASE, and looks for a free
port.

If a port cannot be allocated, a COMW FAI LURE
exception is thrown. The default is 2000.

Using the Configuration Tool

On the Initialization page, in the Start of Server
port base field.

Refer to | T_DAEMON SERVER BASE. The default is
2000.

Using the Configuration Tool

On the Initialization page, in the Start of Server
port range field.

This is the absolute path to the Java interpreter.
Using the Configuration Tool

On the General page, in the Java Interpreter
field.

275

The OrbixWeb Java Daemon

| T_DEFAULT_CLASSPATH

| T_ORBI XD_PORT

| T_ORBI XD_| | CP_PCRT

276

This is the class path the Java Daemon will use to
find Java servers when launching them.

You can supplement this on a per server basis using
the - addpat h parameter to putit. The OrbixWeb
cl asses must be in the CLASSPATH

There is no default.
Using the Configuration Tool

On the General page, in the Default Classpath
field.

This is the port on which the daemon listens for
incoming connections. This port supports both [IOP
and the Orbix Protocol.

Using the Configuration Tool

On the Initialization page, in the OrbixWeb
daemon port field.

This is a second port on which the daemon can
listen for incoming connections. This port is
provided to support legacy daemons which require
a separate port for each protocol.

Using the Configuration Tool

On the Initialization page, in the OrbixWeb
daemon IIOP port field.

Using the Java Daemon

Viewing Output Text using the Graphical Console

The Java Daemon launches a simple graphical console that displays output text streams
(st dout and st der r) from the Java Daemon and launched servers. The menu items are

outlined as follows:

Menu Item
File/Exit

Edit/Clear
Tools/Threads

Tools/

Garbage Collection
Diagnostics/Off
Diagnostics/Low
Diagnostics/High
Diagnostics/ORB
Diagnostics/BOA
Diagnostics/Proxy

Diagnostics/Request

Help/About

Effect

Causes the Java Daemon to exit. If there are active
servers, a prompt to exit is displayed.

Clears the content of the console window.

Outputs information about the current thread to the
console window, as shown in Figure 23 on page 278.

Causes the Java VM to run the garbage collector
synchronously, and may free more up memory.

Sets the level of diagnostics to none.
Equivalent to calling: set D agnosti cs (0) on the ORB.

Sets the level of diagnostics output to the console to LQ
Equivalent to calling: ORB.set D agnostics (1).

Sets the level of diagnostics output to the console to H .
Equivalent to calling CRB.set D agnosti cs (2).

Sets the level of diagnostics output to the console to CRB.
Equivalent to calling: ORB.set D agnosti cs (4).

Sets the diagnostics output to the console to BOA
Equivalent to calling: ORB.set D agnosti cs (8).

Sets the level of diagnostics output to the console to
PROXY. Equivalent to calling: ORB.set D agnost i cs (16).

Sets the level of diagnostics output to the console to
REQUEST. Equivalent to calling: ORB.set D agnosti cs (32).

Displays the about dialog box.

277

The OrbixWeb Java Daemon

EE—;‘; orbixd] Console _ O] x|

File Edit Toolz Diagnostic: Help

[orbixd]: Server"IT_daemon” is now available to the network |
[Configuration Orhix-TCPAATD 18T 0rhix-¥DR]

[Current thread infarmatian |
java lang ThreadGroup[name=system, maxpri=10]
Thread[Finalizer thread,1,system]
java.lang ThreadGroup[hame=main, maxpri=10]
Thread[main,5,main]
Thread[Orbixieh Server Listener thread, 5 main)
Thread[Fequest Processar,5,main]
Thread@WT-Eventueue-0,5,main]
ThreadBT-Windows, b, main)
Thread[Screen Updater 4 rmain]

Figure 23: Sample Output from Tools/Threads Menu Option

Setting Diagnostics Levels

As with other OrbixVVeb servers, you can also use the command line to specify a
diagnostics level for the Java Daemon. To specify the diagnostics level on which or bi xdj
runs, use the following command:

- DOr bi xWeb. set Di agnost i cs=val ue
where val ue is in the range 0- 255.

Refer to Chapter 14, “Diagnostics and Instrumentation Support” on page 285 for more
details.

278

In-Process Activation of Servers

In-Process Activation of Servers

In-process server activation means that each launched server runs as a separate thread of
execution in the daemon process. Out-of-process server activation means that each
launched server has its own system process. The Java Daemon supports both in-process
and out-of-process server activation. By default servers are activated out-of-process.

Running servers in-process rather than in a separate process brings significant benefits,
particularly in scalability in terms of performance and resource consumption. These benefits
include the following:

* Bind time is reduced.
* Connections are shared.

® Much less memory is required for multiple servers.

Guidelines for Developing in-process Servers

To use in-process servers, your server should initialize the ORB using
I E 1 ona. O bi x\Wb. CCRBA. CRB. i ni t ()

In in-process mode, this always returns the default ORB (_OORBA. Or bi x). Currently, in-
process servers do not support multiple ORBs. After the first in-process server is created,
calls to or g. ong. CCRBA. CRB. i ni t () returna_COCRBA. Or bi x object.

By their nature in-process servers are not as isolated from each other as separate processes
are. Specifically, they share all global and static variables, such as the ORB itself and its object
table. To prevent unintended interference between servers (including the Java Daemon
itself) you need to be aware of some additional issues regarding programming of servers
activated in-process. The main issues are listed as follows:

ORB Configuration

OrbixWVeb configuration applies to the entire ORB. In general, you should not set
configuration values in server code because this affects all servers in the Virtual Machine,
including the Java Daemon. The capability to alter configuration values can be useful in
certain situations, for example, when a different diagnostics level may be required.

279

The OrbixWeb Java Daemon

Other ORB/BOA Operations
Most ORB operations apply to the entire ORB, and should be used with caution.
Exceptions to this rule for in-process activated servers are as follows:

¢ The operations on the OrbixWeb O bQurr ent object.

You should use O bQurrent to discover information about thethi s
invocation.

Refer to the description of | E. | ona. O bi xWb. CCRBA. O bQurrent in
the OrbixWeb Programmer’s Reference, for more details.

¢ The results returned by _Q bi x\b. GRB(CRB. i ni t ()). nyServer () and
_Orbi xWb. CRB(CRB. i nit()). nyMarker Nare().

The results of these operations depend on the thread they are called from (either the main
server thread or the thread that has dispatched a server operation).

Other Global Objects

OrbixVVeb-specific features such as filters, loaders and transformers are configured for the
entire ORB. So, if you install a per-process filter in your server it is applied to all requests for
all servers in the process.

The Java Daemon installs a loader and filter for its own purpose which should not be
removed.

Object Table

All servers share the same object table. This object table is keyed by marker and interface
type so different servers should not create objects with identical marker and interface type.

Markers should generally be assigned by the server programmer.

Server/Object Life Cycle

The Java Daemon starts up each activated server in a separate thread that calls the nai n
operation of the server class. It monitors the status of this thread to determine whether the
server is active or not, as indicated by psi t .

The server becomes active when the thread calls ORB. connect () on instantiating a server
object. It becomes inactive when the thread exits or calls deact i vat e_i npl ().

280

Scope of the Java Daemon

Note: You must ensure that any clean-up operations required, such as
disconnecting all server objects are performed before the thread exits.
The Java Daemon does not clean up objects after the server.

Thei npl _i s_ready() method is redundant for in-process servers because the Java
Daemon controls event processing on behalf of the server. Refer to “Object Initialization
and Connection” on page 147 to see how i npl _i s_r eady() can control event-
processing for out-of-process servers by changing a configuration item.

The Java Daemon security manager throws a security exception if Syst em exi t () is
called in a server.

Scope of the Java Daemon

The Java Daemon implements a subset of the | T_daenon interface. The scope of the
implementation imposes some restrictions on the Java Daemon. This section discusses
these restrictions and also outlines those which no longer apply.

Activation

The Java Daemon currently only supports shared server activation mode.

Java Version

The Java Daemon requires Java |.1.

Note: The other runtime components of OrbixWeb can run on JVM 1.0.2 or
JDK I.1. This means that out-of-process servers activated by the Java
Daemon can run on either JVM.

281

The OrbixWeb Java Daemon

IT _daemon Interface

The Java Daemon currently implements a large subset of IONA’s daemon IDL,
| T_daenon. The following is a list of the methods which are not supported:

* addMar ker

* addMet hod

® changeOnner D r

® newPer Met hodSer ver
® newUnShar edSer ver
® renoveMarker

® renoveMet hod

® renoveShar edMar ker

* renovelnshar edMar ker

Utilities

The Java Daemon now supports the following utilities:

® chrodit
® chownit
* nkdirit
e rmdirit

However, because the Java Daemon only supports shared activation modes, it does not
support the following switches to putii t:

® -per -client

® -per -client -pid
® -unshared

® -per -method

®* -port

* -n

282

Scope of the Java Daemon

® -persistent

* -nethod

Markers and the Implementation Repository

The only marker pattern in the Implementation Repository supported by the Java
Daemon is “*”. However, this does not prohibit the use of named markers in calls to
bi nd().

Security

The Java Daemon now supports invoke and launch access rights for users. However, access
rights for user groups are not supported. An exception to this is for the pseudo group al | .

You can use the OrbixWeb Server Manager tool and the chnodi t command-line
utility to set access rights. Refer to the OrbixWeb Programmer’s Reference for
more details.

Server Names
Because the Java Daemon now supports Implementation Repository directory utilities, it
can also now support server names containing directory separator characters.

In-process Servers

In-process servers are launched using the Java Reflection API. This requires that the target
class be public. If a server fails to launch when the Java Daemon is in “in-process” mode, you
should ensure that the server class is public.

283

The OrbixWeb Java Daemon

284

| 4

Diagnostics and Instrumentation
Support

OrbixWeb provides a comprehensive diagnostics log and basic
instrumentation support. Diagnostics log support is supplied by the
| E. 1 ona. O bi x\b. Feat ur es. Di agnost i csLog AP,

while basic insrumentation support is provided by the

| E. 1 ona. O bi x\b. Feat ur es.| nst r unent Base API. This chapter
explains how to set diagnostics levels in OrbixWeb, and outlines the
output from each diagnostics level. This chapter also discusses how
to log instrumentation data in OrbixWeb.

285

Diagnostics and Instrumentation Support

Setting Diagnostics

The set Di agnosti cs() method controls the level of diagnostics messages output by
OrbixWVeb. This method is defined in class | E. | ona. O bi x\b. CORBA. GRB, as follows:

public int setDiagnostics(int |evel)
t hrows org. ong. CORBA. Syst emExcepti on;

To set diagnostics, specify the required | evel asa parameter to
set Di agnosti cs() . The value of this parameter must be in the range of 0- 255.

The set Di agnosti cs() method returns the previous diagnostics level.

Diagnostics Levels

OrbixVWVeb provides diagnostics for specific components, each associated with a particular
| evel , as follows:

level Diagnostics Component
0 No diagnostics

1 LO

2 H

4 CRB

8 BA

16 PROXY

32 REQUEST

64 CONNECTI ON

128 DETAI LED

Note: The values LOand H correspond to the diagnostics levels 1 and 2 from
earlier versions of OrbixWeb, and are included for backwards
compatibility.

The DETAl LED diagnostics component is of special significance. This controls the amount of
diagnostics produced by the components. Setting the level to DETAI LED (128) means that
all diagnostics from the selected components are output.

286

Setting Diagnostics

Combining Diagnostics Levels

To obtain diagnostics output from particular components, add the values
associated with the required components.

For example, consider obtaining detailed diagnostics associated with the BOAand
REQUEST components. This involves the following steps:

I. Sum the levels associated with the BQA (8), REQUEST (32) and DETAl LED
components (128):
8 + 32 + 128 =168
2. Pass the total as the | evel parameter to set D agnosti cs().
You can obtain full diagnostics output by setting the value to 255, the result of

adding all the diagnostics components together. This produces very
comprehensive output, including full buffer dumps of messages.

Overriding the Diagnostics Log

It is possible for an application to override the diagnostics log, for example, to
redirect diagnostics to a file. You can override the diagnostics log by overriding
the entry() operation implemented in

| E. 1 ona. O bi x\W&b. Feat ur es. D agnosti csLog:

entry (CRB orb, int current_diag, int conponent_di ag,
Stringabl e conponent, String nessage,
bool ean i sADetai l)

The default ent ry() operation checks the diagnostics level, and then outputs the
message to Syst em out . This message is preceded by a short string which
describes the component producing the diagnostics.

To set the new diagnostics log on the ORB, use the following call:

nyCRB. set D agnost i csLog(D agnosti csLog |);

287

Diagnostics and Instrumentation Support

Alternative Approaches to Setting Diagnostics

You can also set the level of diagnostics output by OrbixVWVeb to st dout by:

¢ Using the command line.
¢ Using the Java Daemon graphical console.

® Using the General page of the OrbixWeb Configuration Tool
(owconf i g). Refer to Chapter 4, “Getting Started with OrbixWeb
Configuration” on page 53.

Using the Command Line

You can use the command line to specify a diagnostic level that outputs to st dout ; for
example, by using a system parameter on start up. To specify the diagnostics level, use
the following command:

- DOr bi xWeb. set Di agnost i cs=val ue
where val ue is in the range 0- 255.

The diagnostics levels in this range are explained in “Setting Diagnostics” on page 286. Using
the command line enables full diagnostics log support.

Using the Java Daemon Graphical Console

The Java Daemon launches a simple graphical console which displays output text streams
(st dout and st der r) from the Java Daemon and launched servers. This console provides
diagnostics output for each diagnostics level.

The Diagnostics menu item has the following options:

Menu Item Effect

Diagnostics/Off Sets the level of diagnostics to none. Equivalent to calling:
CRB. set b agnostics (0).

Diagnostics/Low Sets the level of diagnostics output to the console to LQ
Equivalent to calling: ORB. set D agnosti cs (1).

Diagnostics/High Sets the level of diagnostics output to the console to H .
Equivalent to calling: ORB. set D agnosti cs (2).

288

Setting Diagnostics

Diagnostics/
ORB

Diagnostics/
BOA

Diagnostics/
Proxy

Diagnostics/
Request

Diagnostics/
Connection

Diagnostics/
Detailed

Eg,% orhixd] Conzole

File Edit Toolz EEEVGlE:

[

Oft

[orhixd]: Server "IT o g
Configuration 1
[Setting diagnosti
[Setting diagnosti
[Setting diagnosti v BOA

High
v CRE

¥ Proxy
Reguest

Connection

Detailed

Sets the level of diagnostics output to the console to CRB.
Equivalent to calling: ORB. set b agnosti cs (4).

Sets the level of diagnostics output to the console to BOA
Equivalent to calling: ORB. set b agnosti cs (8).

Sets the level of diagnostics output to the console to
PROXY. Equivalent to calling: ORB. set D agnosti cs (16).

Sets the diagnostics output to the console to REQUEST.
Equivalent to calling: ORB. set D agnosti cs (32).

Sets the diagnostics output to the console to CONNECTI ON
Equivalent to calling: ORB. set D agnost i cs (64).

Sets the diagnostics output to the console to DETAI LED.
Equivalent to calling: ORB. set b agnost i cs (128).

=
=] E3
Help
w available to the network]
1aT0i0rhix-<DR |
A

Figure 24: Combining Diagnostics Levels Using the orbixdj Console

289

Diagnostics and Instrumentation Support

Combining Diagnostics Levels

You can also use the Java Daemon graphical console to combine diagnostics levels as shown
in Figure 24 on page 289.

For example, if you select the LOW, ORB, BOA and Proxy menu items, the
or bi xdj console produces a combined output for these diagnostics components.

Basic Instrumentation Support

OrbixVWVeb adds support for instrumentation and system management using a new class,
| E. 1 ona. O bi x\&b. Feat ur es. | nst r umrent Base. This class provides an interface
that can be implemented by application code.

InstrumentBase

The methods provided by the class | nst r unent Base are as follows:

® startServer (String servernane, |ong tineout);
® endServer (String servernane);

® newdj (org.ony. CORBA (hj ect obj);

* deleteChj (org.onyg. CORBA (hj ect obj);

®* newOonnection (A ientConnection conn,
bool ean i sMynt Channel) ;

®* endConnection (dientConnection conn);

® inRequest (org.ong. CORBA Request obj);

® outReply (org.ong. OCORBA Request obj);

® out Request (org.omy. CCRBA Request obj);

®* inReply (org.ony. CCRBA Request obj);

® |nstrGetD agnostics (M LogMessage message) ;

The relevant method is called by OrbixVWeb when a particular event occurs.

For example, when a server starts to process requests the

I nst runent Base. st art Ser ver () method is called. This operation takes the server
name and timeout as parameters.

290

Basic Instrumentation Support

You can use the or g. ong. CCRBA. (bj ect and or g. ong. CCRBA. Request APIs to
obtain additional information on the Chj ect and Request parameters to the these
methods.

Refer to the OrbixWeb Programmer’s Reference for more details on the
or g. ong. CCRBA. (hj ect and or g. ong. GORBA. Request APls.

Logging Instrumentation Data

To log instrumentation data from OrbixVVeb, perform the following steps:

I. Implement the required interface.
2. Register the implementation with the ORB using the following method:

public final void Registerlnstrunenter
(I'nstrunment Base inst) {
_instrunment =i nst;

}

Instrumentation data from OrbixVVeb is now logged with the | nst r ument Base object
until the implementation is unregistered using the following method:

public final void Unregisterlnstrumenter () {
_instrunent=null;

}

Data is logged by calling the interface methods with arguments of the appropriate type. For
example, when a new object is connected to the object adapter the

I nst runent Base. new(bj () method is called. This operation takes the newly
connected object as a parameter.

Additional Functionality

In addition, the | nst r unent Base interface provides some extra functionality. For
example, you can intercept log messages using the | nst r Get D agnost i cs() method.
This method is passed a Myt LogMessage object as an parameter. This contains the
logged message itself as a String in the variable cont ent . The Mym LogMessage object
also contains the diagnostics level which the message was logged at, as an integer in the
variable | evel .

291

Diagnostics and Instrumentation Support

Refer to “Setting Diagnostics” on page 286 for details about diagnostics levels.

Note: To receive diagnostics messages, you must set the boolean variable
m i nstrunent D agnosti cs to true.

292

Part |V

Topics in OrbixWeb
Programming

|5

Exception Handling

This chapter extends the bank example in Chapter 7 “Using and
Implementing IDL Interfaces” on page |35, to raise a user-defined
exception. This example shows how to throw user-defined exceptions
in server code and how to handle them in a client. OrbixWeb system-
defined exceptions are also described in detail.

Note: OrbixWeb does not require any special handling for exceptions. IDL
exceptions are mapped to Java classes which inherit from
j ava. | ang. Excepti on. Therefore, exceptions thrown by a server can
be handled by t ry and cat ch statements in the normal way.

295

Exception Handling

User-Defined Exceptions

This section describes how to define exceptions in IDL and the OrbixVVeb Java mapping for
such user-defined exceptions.

The IDL Definitions

This section extends the interface bank, so that the newAccount () operation can raise an
exception if the bank is unable to create an account object.

The exception r €] ect is defined within the bank interface. It defines a string member
indicating the reason that caused the bank to reject the request.

/1 1D
/1 In file bank_deno.idl

interface account {
readonly attribute float bal ance;

voi d makeLodgenent (in float f);
voi d makeWthdrawal (in float f);

b

/1 Afactory for bank accounts.
i nterface bank {
exception reject { string reason; };

account newAccount (i n string nane)
raises (reject);

/1 Delete an account.
voi d del et eAccount (i n account a);

=

296

User-Defined Exceptions

The Generated Code

As in the example from Chapter 7, “Using and Implementing IDL Interfaces” on page 135, it
is assumed that the above IDL source file is passed to the OrbixVVeb IDL compiler using
the following command:

idl -jP bank_deno bank_deno.idl

The IDL compiler generates Java code within the bank_deno package. The following Java
class is generated from the IDL exception definition:

/1 Java generated by the QO bixWb | DL conpiler
package bank_deno
1 public final class reject
extends org. omg. CORBA User Exception {

public String reason;

public reject() {

}
2 public reject(String reason) {
this.reason = reason;
}

}

I. Theclassrej ect (in package bank_deno. bankPackage) inherits from the
or g. ong. OCRBA. User Except i on. This OrbixWeb class in turn inherits
from j ava. | ang. Except i on. This inheritance allows r ej ect to be
thrown and handled as a Java exception.

2. Because therej ect exception has one member (r eason, of type St ri ng)
the generated class provides a constructor that initializes this member.

297

Exception Handling

The Java interface for account is generated as follows:

/1 Java generated by the O bixVWb | DL conpil er
package bank_deno;

public interface account extends org.ong. CORBA (bj ect {
public float bal ance();

public voi d makeLodgenent (float f) ;
public void makeWthdrawal (float f) ;

}

The generated interface for bank is as follows:

/1 Java generated by the O bixWeb |1 DL conpil er
package bank_deno;

public interface bank extends org.ong. OCORBA (hj ect {
publ i ¢ account newAccount (String nane)
throws bankPackage. r gj ect ;
public void del et eAccount (account a) ;

Note: The generated method for operation newAccount () includes a t hr ows
clause for exception bank_deno. bankPackage. r ej ect.

298

System Exceptions

System Exceptions

The CORBA specification defines a set of system exceptions to which OrbixVVeb adds a
number of additional exceptions. These system exceptions may be raised during
OrbixWeb invocations.

The standard system exceptions are implemented as a set of Java classes (in the package
or g. ony. OQCORBA). Each system exception is a derived class of

or g. ong. CCORBA. Syst enExcept i on. This in turn is a derived class of

java.l ang. Runt i meExcept i on. This means that all system exceptions can be caught in
one single Java cat ch clause. The additional OrbixVVeb system exceptions are
implemented in the | E. | ona. O bi xXWb. Feat ur es package. These exceptions also
inherit from the or g. ong. OCRBA. Syst enExcept i on class.

A client can also handle individual system exceptions in separate cat ch clauses, as
described in “Handling Specific System Exceptions” on page 301. Each system exception is
implemented as a class of the following form:

/1 Java
package org. ong. CORBA;
i mport org. ong. CORBA. Conpl eti onSt at us;

public class <EXCEPTI ON TYPE>

ext ends org. ong. CORBA. Syst enException {
publ i ¢ <EXCEPTI ON TYPE> (){

}

publ i ¢ <EXCEPTI ON TYPE> (int m nor,
Conpl etionStatus conpl _status) {

}

public <EXCEPTION TYPE> (String reason) ({

}

public <EXCEPTION TYPE> (String reason, int mnor,
Conpl eti onStatus conpl _status) {

299

Exception Handling

The full set of system exceptions defined by OrbixVVeb are documented in an appendix to
the OrbixWeb Programmer’s Reference. This appendix provides a complete listing
of the OrbixVVeb system exception classes and gives a brief description of each.

The Client: Handling Exceptions

A client that calls an operation that may raise a user exception should handle that exception
using an appropriate cat ch statement. Naturally, a client should also provide handlers for
potential system exceptions. The following is an example client program:

/1 Java
/1 In file javaclientl.java

package bank_deno;

i mport org.ong. CORBA. Syst enExcepti on;
i nport bank_denp. bankPackage. rej ect ;

public class javaclientl {
public static void main(String args[]) {

bank mybank = null;
account currAccount = null;
String hostnane = null;

/1 Search for an object offering the bank
/1 server and construct a proxy.

try {
nybank = bankHel per.bind (":bank", host nane);

/'l Create a new bank account.
curr Account = nybank. newAccount ("chris");
}
catch (SystenkException ex) {
System out. println("Unexpected system exception
1 "+ ex.tosString());

Systemexit (1);

300

The Client: Handling Exceptions

2 catch (reject r) {
System out . println("Unexpected user exception
' + r.reason);
Systemexit (1);
}

/] continue here if no exception.

}
}

I. ThetoString() method defined on class Syst enExcept i on generates a
text description of the individual system exception raised.

2. The handler for the bank_deno. bankPackage. r ej ect exception outputs
an error message and exits the program.

Handling Specific System Exceptions

A client may also provide a handler for a specific system exception. For example, to
explicitly handle a GOMM FAI LURE exception that might be raised from a call to bi nd(),
you could write the following code:

/'l Java
/1 In file javaclientl.java

i nport org. ong. CORBA Syst enExcept i on;
1 i nport org. onyg. CORBA. COW FAl LURE;

public class javaclientl {
public static void main (String args[]) {

bank nybank = nul|;

try {
/1 Bind to bank with narker ol |l ege_ Geen A B
/1 in the bank server.
nybank = bankHel per. bi nd("Col | ege G een A B: bank");

}

2 catch (OCOW FA LURE cfe) {
Systemout. println
("Wnexpected commfailure exception:");

301

Exception Handling

Systemout.println (cfe.toString ());
Systemexit (1);
}
catch (Systenkxception se) {
Systemout.println
(" Unexpect ed system exception:");
3 Systemout.printin (se.toString ());
Systemexit (1);
}

/1 Continue here if no exception.

I. To handle individual system exceptions, you must import the required
exceptions from the or g. ony. OCRBA package. Alternatively, you could
reference the exception classes by fully scoped names.

2. The handler for a specific system exception must appear before the
handler for Syst enExcepti on. In Java, cat ch clauses are attempted in the
order specified, and the first matching handler is called. A handler for
Syst enExcept i on matches all system exceptions. All system exception
classes are derived classes of Syst enExcept i on due to implicit casting.

3. If you only wish to know the type of exception that occurred, the
message output by t oSt ri ng() on class Syst enExcept i on is sufficient. A
handler for an individual exception is required only when specific action is
to be taken if that exception occurs.

The Server: Throwing an Exception

All OrbixVVeb exceptions inherit from Java class j ava. | ang. Except i on. Consequently,
the rules for throwing OrbixVVeb exceptions follow those for throwing standard Java
exceptions: you must throw an object of the exception class.

For example, you can use the following to throw an exception of IDL type bank: : r ej ect :

/1 Java
i mport bank_denp. bankPackage. r ej ect ;

throw new reject ("Some reason");

302

The Server: Throwing an Exception

Use the automatically generated constructor of class r] ect to initialize the exception
object's r eason member with the string “Sore r eason”.

The implementation of the newAccount () operation in class bankl npl enent at i on
can be coded as follows:

/1 Java
/1 In file banklnpl enentation.java,

i nport org. ong. CORBA Syst enExcept i on;
i nport bank_deno. bankPackage. r ej ect ;

/1 The bank creates accounts and nai ntains
// a Vector of all accounts created.
cl ass bankl npl enent ation i npl enents _bankQperations {

/l1nternal record() operation adds new accounts to the Vector
void record (String name, accountlnplenmentation p) {

AcclLi st. addH erment (p);

nanelLi st. addE enment (nane);

}

/1 newAccount () creates a new account

/1l and adds it to an account Vector.

publ i ¢ account newAccount (String nane)
throws bank_deno. bankPackage. rej ect {
Systemout.println ("Oreating account for " + nane);
account | npl enentati on acclnpl = nul|;

/1 Throws a reject exception if there is an
/1 existing account of the same nare.
i f (naneList.contains (nare))
t hr ow new bank_deno. bankPackage. r ej ect
("Dupli cate nane "+nane);
try {
accl npl = new account | npl enentation (0, nane);

catch (SystenkException se) ({

Systemout.println ("Exception : " + se.toString());
Systemexit (1);

303

Exception Handling

account acc = new _tie_account (acclnpl);

record (name , acclnpl);
return acc;

}

/1 Account (bject list.

Vect or AccList = new Vector();

/1 nare |ist

Vector naneLi st = new Vector();

Operation Completion Status in System Exceptions

Class Syst enExcept i on includes a public member variable called st at us of type

Conpl et i onSt at us, which may be of use in some applications. This variable holds ani nt
value that indicates how far the operation or attribute call progresses before the exception
is raised. The return value must be one of three values defined in the OrbixVVeb class
Conpl et i onSt at us (in the package or g. ong. CCORBA).

These values are as follows:

Gonpl eti onSt at us. COMPLETED NO

Conpl eti onSt at us. COMPLETED_YES

The system exception is raised before
the operation or attribute call starts to
execute.

The system exception is raised after the
operation or attribute call finishes its
execution.

Conpl eti onSt at us. COMPLETED _MAYBE It is uncertain whether or not the

304

operation or attribute call starts
execution, and, if it does, whether or
not it finishes. For example, the status is
Gonpl eti onSt at us. COMPLETED NMVAYBE
if a client’s host receives no indication of
success or failure after transmitting a
request to a target object on another
host.

16

Using Inheritance of IDL Interfaces

This chapter illustrates how to implement inheritance of IDL
interfaces using OrbixWeb.

IDL allows you to define a new interface by extending the functionality provided by an
existing interface, as described in Chapter 5, “Introduction to CORBA IDL” on page 69.
New interfaces inherit or derive from existing interfaces. IDL also supports multiple
inheritance. This allows an interface to have several immediate base interfaces.

305

Using Inheritance of IDL Interfaces

Single Inheritance of IDL Interfaces

This section extends the bank account example, in “Defining IDL Interfaces to Application
Objects” on page 136, to include current (checking) accounts:

/1 1 DL
/1 In for exanple, "bank.idl".
/1 A bank account.
interface account {
readonly attribute float bal ance

voi d makeLodgement (in float f);
void makeWthdrawal (in float f);

}s

/1 Derived frominterface account.

interface currentAccount : account {
readonly attribute float overdraftLimt;
/1 No new operations in this exanple

}s

interface bank {
exception reject { string reason; };

account newAccount (in string nane)
rai ses (reject);

voi d del et eAccount (i n account a)

/1 An extra operation

current Account newCurrent Account
(in string nanme, in float limt)
rai ses (reject);

}s

The new interface cur r ent Account derives from interface account . A new operation
called newQur r ent Account is added to interface bank to manufacture new instances of
current Account .

You could also derive from the interface bank to produce a new interface, for example,
conmer ci al Bank. This would also support the newQur r ent Account operation.

306

The Client: IDL-Generated Types

The Client: IDL-Generated Types

As in previous chapters, it is assumed that this IDL definition has been compiled using the
following command:

idl -jP bank_deno bank_deno. i dl

OrbixVWVeb maps IDL interfaces to Java interfaces. The IDL interface inheritance hierarchy
maps directly to the Java interface inheritance hierarchy, as shown in Figure 25:

account account
current Account current Account
IDL interfaces Java interfaces

Figure 25: IDL and Corresponding Java Hierarchies

The interface account maps to the following Java interface type:

/1 Java
/1 Autonatically generated
/1 in file account.java.

package bank_deno;

public interface account
ext ends org. ong. CORBA. Obj ect {

public float bal ance();

public void makeLodgenent (float f);

public void makeWthdrawal (float f);
}

307

Using Inheritance of IDL Interfaces

The IDL interface cur r ent Account maps to the following interface type:

/1 Java

/1 Autonatically generated

/1 In file currentAccount.java
package bank_deno;

public interface current Account
ext ends bank_deno. account,
or g. ong. CORBA. Obj ect {
public float overdraftLimt();

}

The IDL compiler also generates Java implementation classes for the Java interfaces. These
Java implementation classes provide client proxy functionality for the appropriate IDL
operation. It is this proxy functionality that facilitates the distribution of objects in
OrbixWeb.

In addition, the IDL compiler generates a Java helper class which implements the static
bi nd() and narrow() methods.

Note: The implementation of Java interfaces in client-side generated code
supplies proxy functionality to client applications. This should not be
confused with the implementation of IDL interfaces in OrbixWeb
servers.

IDL interface inheritance maps directly to the inheritance hierarchy of the generated Java
interfaces, but does not map to the generated Java classes for those interfaces. Therefore,
each Java class which implements an IDL generated Java interface must implement both the
methods of that interface and the methods of all interfaces from which itinherits. Of course,
this is an internal OrbixVVeb implementation detail and does not impose any additional
burden on the programmer.

This feature facilitates the mapping of IDL multiple inheritance to Java, as discussed in
“Multiple Inheritance of IDL Interfaces” on page 315.

308

The Client: IDL-Generated Types

The generated Java class that implements the account interface is as follows:

/1 Java
/1 In file accountStub.java

package bank_deno
i mport org. ong. CORBA. Conpl eti onSt at us
public class _account Stub
ext ends org. ong. CORBA. port abl e. Obj ect | npl
i mpl ements account {
public float bal ance() {

}

public void makeLodgenent (float f) {

}
public void makeWthdrawal (float f) {
} -

} Ce

The generated Java class which implements the cur r ent Account interface is as follows:

/1 Java
/1 In file currentAccount Stub.java

package bank_deno
i mport org. ong. CORBA. Conpl eti onSt at us;

public class _current Account St ub
ext ends org. ong. CORBA. portabl e. Obj ect | npl
i mpl enents current Account {

public float overdraftLimt() {

}

309

Using Inheritance of IDL Interfaces

public float balance() {

}

public void makelLodgerent (float f) {

}

public void makeWthdrawal (float f) {

}

Using Inheritance in a Client

You can manipulate instances of cur r ent Account in a similar way to the instances of
account in “Developing the Client Application” on page 152:

/1 Java
/1 In file javaclientl.java

i mport org.ong. CORBA. Syst enException
i mport bank_denp. bankPackage. r ej ect ;

public class javaclientl {
public static void main (String args[]) {

bank mybank = null
account accountl = null
current Account currAccount = null

try {
/1 Bind to any bank object in the

/'l bank server.
nybank = bankHel per.bind (":bank");

/1 Obtain a new bank account.
account 1 = nmybank. newAccount ("John");

account 1. nakeLodgenment ((float) 56.90);

310

Using

Inheritance in a Client

catch (reject re) {
Systemout. println
("Error on newAccount():");
Systemout. println
("Account creation rejected "
+ "with reason: " + re.reason);
Systemexit(1);

catch (SystenException se) {
Systemout. println
("Unexpect ed system exception:”
+ se.toString ());
Systemexit(1);

}
try {
// Ootain a new current account.
currAccount = mybank. newCurr ent Account
("Susie", (float) 100.00);
currAccount . makeLodgenent ((float) 87.78);
}

catch (reject re) {
Systemout.println (
"Error on newCurrentAccount():");
Systemout.println
("Account creation rejected "
+ "with reason: " + re.reason);
Systemexit(1);
}
catch (SystenkException se) {
Systemout.println
(" Unexpect ed system exception:
+ se.toString ());
Systemexit(1);

311

Using Inheritance of IDL Interfaces

The Server: IDL-Generated Types

This section uses the bank example to describe the two approaches to server
implementation:

¢ The TIE Approach
® The ImplBase Approach

The TIE approach is preferred for the majority of implementations in Java. This is due to the
restriction of single inheritance of classes in Java which limits the ImplBase approach. Refer
to “Comparison of the ImplBase and TIE Approaches” on page 165 for a detailed discussion
of both approaches.

The TIE Approach

Using the TIE approach to implementing IDL interfaces, the cur r ent Account
implementation class simply implements Java interface _cur r ent Account Qper at i ons.
This means that there is no implicit inheritance requirement imposed on the
implementation class. This has the advantage of allowing you to inherit from any existing
class that may implement a subset of the required methods.

On the server side, the IDL compiler generates the Java interface

_current Account Qper at i ons. This defines the methods that a server class must
implement in order to support IDL interface cur r ent Account . This Java interface inherits
from type _account Qper at i ons, which serves a similar purpose for IDL type account .

For example, if existing class account | npl enent at i on implements the methods defined
in interface _account Qper at i ons, you could code class
cur rent Account | npl enent at i on as follows:

/1 Java
/1 In file currentAccountl npl enentation.java.
package bank_deno;

/1 Inherits account inplenentation, so the
/1 methods for type account do not need to be
/1 reinplenmented.

cl ass current Account | npl ement ati on
extends account | npl enent ati on,

312

The Server: IDL-Generated Types

i mpl ements _current Account Qperations {
float mlimt;
public currentAccountlnpl () {
/] Details omtted.
}

public current Account | npl
(float initialBalance, String nane,float linmit)
throws SystenException {
/] Details omtted.

}

/1 Method for new IDL attribute.

public float overdraftLimt () {
return mlimt;

}

}

The TIE approach allows you to take advantage of the reuse characteristics of object-
oriented programming.

The ImpliBase Approach

The IDL compiler generates the abstract class _cur r ent Account | npl Base. This
supports the ImplBase approach to IDL interface implementation. To implement IDL
interface cur r ent Account using the ImplBase approach, define a Java class that inherits
from class _cur r ent Account | npl Base, and then implement the methods defined in this
class. This has important consequences for the reusability of implementation classes.

Java does not support multiple inheritance of classes. So if an existing class implements a
subset of the abstract methods defined for type cur r ent Account (for example, an
existing class also implements IDL type account), this class cannot be reused in the
current Account implementation class. The cur r ent Account implementation class
must directly implement all the operations of IDL interface cur r ent Account and all
interfaces from which it inherits. This restriction severely limits the flexibility of the ImplBase
approach.

Interfaces account and cur r ent Account can be implemented as follows:

/1 Java
/1 In file account|npl ementation.java.
package bank_deno;

public class account | npl ement ati on

313

Using Inheritance of IDL Interfaces

ext ends _account | npl Base {
/1 Methods and variabl es to inpl ement
/1l interface account. As before.

}

/1 Java
/1 In file currentAccount!npl ementation.java.
package bank_deno;

/1 Cannot inherit account inplenentation,
// so the account methods nust be reinpl enent ed.
public class currentAccount | npl enentati on
extends _current Account | npl Base {
/1 Reinplenent all methods and vari abl es
/1 defined in class account | npl enent ati on.
/1 As before.

/1 Inpl enent new net hods and vari abl es
/1l for currentAccount.
float mlimt;

public current Accountlnpl () {
/| Details omtted.

}

public current Account | npl
(float initialBalance, String nane,
float limt) {
/] Details omtted.

}

/1 Method for new IDL attribute

public float overdraftLimt () {
return mlimt;

}

314

Multiple Inheritance of IDL Interfaces

Multiple Inheritance of IDL Interfaces

IDL supports multiple inheritance of interfaces. The following serves as an example:

// 1DL
/1 In for exanple, "bank.idl".
/1 A bank account.
interface account {
readonly attribute float bal ance

voi d nakeLodgerent (in float f);
voi d nakeWthdrawal (in float f);

I

/1 Derived frominterface account
interface current Account : account {
readonly attribute float overdraftLimt;

s

/1 Derived frominterface account
i nterface savingsAccount : account {

s

/1 Indirectly derived frominterface account
i nterface prem umAccount
current Account, savi ngsAccount {

I

Java also supports multiple inheritance of interfaces, but does not support multiple
inheritance of classes. As in the case of single inheritance, the inheritance hierarchy of IDL
interfaces maps directly to an identical inheritance hierarchy of Java interfaces which define
client-side functionality. For example, the interface hierarchy in the above definition maps as
shown in Figure 26 on page 316.

315

Using Inheritance of IDL Interfaces

‘ account l

!

current Account savi ngsAccount

‘prem’ umAccount ‘

Figure 26: Multiple Inheritance of IDL Interfaces

The inheritance hierarchy does not map to the Java classes which implement the generated
Java interfaces. Consequently, each generated Java class implements the methods of the
corresponding Java interface and of all interfaces from which it inherits. In this way, a client
that holds a pr em umAccount object reference can invoke all inherited operations (from
account, cur r ent Account , and deposi t Account) directly on that reference.

Implementing Multiple Inheritance

On the server side, the implementation class requirements are identical to those for single
inheritance.

The TIE Approach

Using the TIE approach, the implementation class must implement Java interface

_prem umAccount Qper at i ons, but may inherit implementation methods from an
existing class. However, the absence of support for multiple inheritance of classes in Java
implies that a multiple inheritance hierarchy of IDL interfaces can never map directly to the
implementation classes for those interfaces.

316

Multiple Inheritance of IDL Interfaces

IDL avoids any ambiguity due to name clashes of operations and attributes, when two or
more direct base interfaces are combined. This means that an IDL interface can not inherit
from two or more interfaces with the same operation or attribute name. It is permitted,
however, to inherit two or more constants, types or exceptions with the same name from
more than one interface. However, you must qualify every use of these with the name of
the interface, by using the full IDL scoped name.

The ImplBase Approach

Using the ImplBase approach, the implementor of type pr em umAccount must inherit
from class_pr em unmAccount | npl Base and directly implement all methods for interface
prem umAccount and all types from which it inherits.

317

Using Inheritance of IDL Interfaces

318

|7

Callbacks from Servers to Clients

OrbixWeb clients usually invoke operations on objects in OrbixWeb
servers. However, OrbixWeb clients can implement some of the
functionality associated with servers, and all servers can act as clients.
This flexibility increases the range of client-server architectures you
can implement with OrbixWeb. This chapter describes a common
approach to implementing callbacks in an OrbixWeb application and
this is illustrated by an example.

A callback is an operation invocation made from a server to an object that is implemented
in a dlient. Callbacks allow servers to send information to clients without forcing clients to
explicitly request the information.

Implementing Callbacks in OrbixWeb

This section introduces a simple model for implementing callbacks in a distributed system.
The following steps are described:

* Defining the IDL interfaces for the system.
® Writing a client.

* Writing a server.

319

Callbacks from Servers to Clients

Defining the IDL Interfaces

In the example system, clients invoke operations on servers and servers invoke operations
on dients. Consequently, our IDL definitions must define the interfaces through which each
type of application can access the other. In the simplest case, this involves two interfaces, for

example:
/1 1DL
interface dient Qs {
b

interface Server Qs {

b

In this model the dlient application supplies an implementation of type A i ent (ps, while
the server implements Ser ver (ps.

It is important to note that clients are not registered in the OrbixVWeb Implementation
Repository and therefore the server in this example cannot bind to the client’s
implementation object. Instead, our IDL definition supplies an operation that allows the
client to explicitly pass an implementation object reference to the server. For example, the
IDL for the example system can be defined as follows:

/1 1DL
interface CientOps {
void cal |l BackTod ient (in String nessage);
i
interface Server Qs {
voi d sendObj Ref (in dientOps obj Ref);
};
“An Example Callback Application” on page 329 describes a more realistic application, and
outlines the factors which you must consider when modifying this definition.

Writing a Client

The first step in writing a client is to implement the interface for the client objects, in this
case type d i ent ps. You can use the TIE or ImplBase approach, as if the client were an
OrbixWVeb server. In this example, it is assumed that the implementation is named

d i ent Qosl npl enent at i on.

320

Implementing Callbacks in OrbixWeb

The client mai n() method is as follows:

/1l Java

i mport org. ong. CORBA. ORB;
i mport org. ong. CORBA. Syst enExcepti on;

public class dient {
public static void main(String args[]) {
/1 Initialize the ORB.
ORB orb = ORB.init(args, null);
/'l TIE approach.
ClientOps clientlnpl;
Server Ops server Ref;

try {
/1 Instantiate inplementation and proxy.
clientlmpl = new _tie_CientOps
(new Cientlnplenentation ());

//Start a background event-processing thread
//and connect to the runtine.

ORB. connect (clientlnpl);

Server Ref = Server QpsHel per.bind ();

/1 Send object reference to server.
Server Ref. sendCbj Ref (clientlnpl);

/] Process requests for 2 mns.

try {
Thr ead. sl eep(1000* 60* 2) ;
}

catch (Exception ex){}
orb. di sconnect (clientlnpl)
catch (SystenException se) {
Systemout . printl n(
"Unexpect ed exception:\n"
+ se.toString());
return;

321

Callbacks from Servers to Clients

The client creates an implementation object of type A i ent Qps| npl enent at i on. It then
binds to an object of type Ser ver Qps in the server. At this point, the client holds an
implementation object of type A i ent Ops and a proxy for an object of type Ser ver Ops,
as shown in Figure 27.

OrbixWeb Client

4)

Implementation
object for type
dient Qs

Proxy of type
Ser ver os

Figure 27: Client Objects

o J

To allow the server to invoke operations on the A i ent Qps implementation object, the
client must pass this object reference to the server. Consequently, the client now calls the
operation send(hj Ref () on the Ser ver (s proxy object, as shown in Figure 27.

The GRB. connect () method explicitly connects object implementations to the ORB.
This method starts an event-processing thread in the background, if there is no such thread
running already, the client calls ORB. connect () after the TIE or ImplBase object has been
created. Refer to OrbixWeb Programmer’s Reference for more details on the
connect () method.

Finally, the client’s main thread must either sleep or do other processing to avoid exiting,
until it wishes to disconnect its implementation object.

322

Implementing Callbacks

in OrbixWeb

OrbixWeb Client

-

Implementation
object for type
dient Qs

Proxy of type
Ser ver Qos

N

send(oj Ref
(clientlnpl)

OrbixWeb Server

Proxy of type
Aient Qs

Implementation

object for type

Ser ver Qps

~

Figure 28: Client Passes Implementation Object Reference to Server

Writing a Server

You can code the server application as a normal OrbixVVeb server. Specifically, you should

define an implementation class for type Ser ver Ops, and create one or more
implementation objects.

The implementation of the method sendhj Ref () for type Ser ver Ops requires special

attention. This method receives an object reference from the client. When this object

reference enters the server address space, a proxy for the client’s O i ent Qps object is
created. The server will use this proxy to call back to the client. The implementation of

send(j Ref () should store the reference to the proxy for later use.

For example, the implementation of type Ser ver Ops might look as follows:

// Java

/1 (TIE approach).

public class Server sl npl enent ati on
i npl ements _Server QpsQperati ons {
/1 Menber variable to store proxy.
dient Qs mobj Ref;
/1 Constructor.
public Server Qosl npl enentation () {

323

Callbacks from Servers to Clients

clientjRef = null;

}

/1 Cperation inplenentation.
public void sendChj Ref (A ient s obj Ref) {
m obj Ref = obj Ref;

}
}

Once the server creates the proxy in its address space, it may invoke the operation

cal | BackTod i ent () . For example, the server might initiate this call in response to an

incoming event or afteri npl _i s_r eady() returns. The method invocation on the
A i ent Ops proxy is routed to the client implementation object as shown in Figure 29.

OrbixWeb Client

-~

Implementation
for type
dient Qs

Proxy of type
Server Qps

cal | BackTod i ent ()

_ routed to client
implementatioobject

OrbixWeb Server

Proxy of type
dient Qs

Implementation
for type

Ser ver Qps

o

~

/

Figure 29: Server Invokes Operation on Client’s Callback Object

The transmission of requests from server to client is possible because OrbixVVeb maintains
an open communications channel between client and server while both processes remain
alive. The server can send the callback invocation directly to the client and does not need to

route it through an OrbixVVeb daemon. Therefore, the client can process the callback

event without being registered in the OrbixVWeb Implementation Repository and without

being given a server name.

324

Callbacks and Bidirectional Connections

Callbacks and Bidirectional Connections

If you use the Orbix protocol, the server sends its callbacks on the same connection that
the client initiated and used to make requests on the server. This means that the client does
not need to accept an incoming connection.

Standard lIOP, on the other hand, requires that the client accept a connection from the
server to allow the callbacks to be sent. Many firewalls do not allow an application inside the
firewall to receive connections from outside. As result a client applet downloaded behind
such a firewall cannot use standard [IOP to receive callbacks from a server outside the
firewall.

OrbixVVeb introduces an optional extension to [IOP to allow the protocol to use
bidirectional connections. Bidirectional connections allow clients to receive requests from
servers on the connection that the client originated to the server. This gets around the
problem of downloading client applets behind a firewall. To configure your client to use
bidirectional connections set the OrbixVWVeb configuration parameter

IT_USE BIDR |1 CPtotrue.lf you set this to t r ue, and your server supports this
feature, you can also set | T_ACCEPT_CCNNECTI ONSto f al se. This ensures that your
client does not open a listening port for accepting connections. If the server does not
support the feature, it attempts to open a connection back to the client according to the
standard llOP model.

Avoiding Deadlock in a Callback Model

Note: The potential for deadlock is specific to use of the OrbixVVeb class BOA (in
package | E. | ona. O bi x\#b. GCRBA). Deadlock does not occur when the
class ORB is used; specifically, the methods CRB. connect () and
CRB. di sconnect ().

When an application invokes an IDL operation on an OrbixVVeb object, by default, the
caller is blocked until the operation has returned. In a system where several applications
have the potential to both invoke and implement operations, deadlocks may arise.

For example, in the application already described in this chapter, a simple deadlock may
arise if the server attempts to call back to the dlient in the implementation of the method
sendChj Ref (). In this case, the client is blocked on the call to send(oj Ref () when the
server invokes cal | BackTod i ent (). Thecal | BackTod i ent () call blocks the

325

Callbacks from Servers to Clients

server until the client reaches an event processing call and handles the server request. Each
application is blocked, pending the return of the other, as shown in Figure 30.

OrbixWeb Client 2.) server blocked OrbixWeb Server

/

in sendj Ref ()
\ pending return of / \
cal | BackTod i ent ()
Proxy of type
dient s

I mplementation
for type
Ser ver (ps

Implementation
for type
dient Qps

Proxy of type
Ser ver os

return of

/ 1.) client blocked pendingK

sendj Ref ()

Figure 30: Deadlock in a Simple Callback Model

Unfortunately, it is not always possible to design a callback architecture in which
simultaneous invocations between groups of processes are guaranteed never to occur.
However, there are alternative methods to avoid deadlock in an OrbixVWeb system. The
two primary approaches are:

¢ Using non-blocking operation invocations.

® Using a multi-threaded event processing model.

These approaches are discussed in the two subsections which follow.

Using Non-Blocking Operation Invocations

There are two ways to invoke an IDL operation in an OrbixVVeb application without
blocking the caller the first is to declare the operation as oneway in the IDL definition; the
second is to invoke the operation using the deferred synchronous approach supported
by the OrbixVVeb Dynamic Invocation Interface (DII).

You can declare an IDL operation oneway only if it has no return value, out, or i nout
parameters. A oneway operation can only raise an exception if a local error occurs before

326

Avoiding Deadlock in a Callback Model

a call is transmitted. Consequently, the delivery semantics for a oneway request are “best-
effort” only. This means that a caller can invoke a oneway request and continue processing
immediately, but is not guaranteed that the request arrives at the server.

You can avoid deadlock, as shown in Figure 30 on page 326, by declaring either
sendChj Ref () orcal | BackTod i ent () asa oneway operation, for example:

// 1DL
interface dientQps {
void cal | BackTod ient (in String nessage);

I

interface Server Qps {
oneway void sendCoj Ref (in dientOps objRef);

H
In this case, the dlient’s call to sendhj Ref () returns immediately, without waiting for the
server’s implementation method call to return. This allows the client to enter the
OrbixWVeb event processing call. At this point, the callback invocation from the server is
processed and routed to the client’s implementation of cal | BackTod i ent () . When
this method call returns, the server no longer blocks and both applications again wait for
incoming events.

You can achieve a similar functionality by using the OrbixVVeb DIl deferred synchronous
approach to invoking operations. As described in Chapter 19, “Dynamic Invocation
Interface” on page 355, the Dl allows an application to dynamically construct a method
invocation at runtime, by creating a Request object. You can then send the invocation to
the target object using one of a set of methods supported by the DII.

“Deferred Synchronous Invocations” on page 370 describes how to call the following
methods on the _ CCRBA. O bi x object to invoke an operation without blocking the caller.

Request . send_def erred()

Request . send_oneway()

CRB. send_nul tiple_ requests_deferred()
CRB.send_mul tipl e _requests_oneway()

If any of these methods are used, the caller can continue to process in parallel with the
target implementation method. Operation results can be retrieved at a later point in the
caller’s processing, and avoid deadlock as if the operation call was a oneway invocation.

327

Callbacks from Servers to Clients

Using Multiple Threads of Execution

Note: or g. ong. CORBA CRB. connect () which connects an implementation to
the runtime, by default also causes the ORB to launch a background
event-processing thread. This means that a separate event-processing
thread is not necessary. Use of the methods pr ocessEvent s() and
processNext Event () outlined in this section is optional.

An OrbixVWVeb application may create multiple threads of execution. To avoid deadlock, it
may be useful to create a separate thread dedicated to handling OrbixWWeb events. For
example, an OrbixVVeb application could instantiate an object as follows:

/1 Java
/1 In file EventProcessor.java.

import | E |ona. Obi x\b. _CORBA
i nport org.ongy. CORBA. Syst enExcept i on;

public class EventProcessor extends Thread {
public void run () {
try {
_QOCRBA. O bi x. processEvent s
(_CORBA I T. I NFINTE TI MEQUT)

catch (Systenkxception se) {
Systemout.println
(" Unexpect ed exception: " + se.toString());
}
}
}

Invoking r un()) on an object of this type starts the execution of a thread that processes
incoming OrbixVVeb events.

If another thread in this application becomes blocked while invoking an operation on a
remote object, the event processing continues in parallel. So, in the example, the remote
operation can safely call back to the multi-threaded application without causing deadlock.

328

An Example Callback Application

Event Processing Methods

OrbixVVeb applications can use event processing methods that do not implicitly initialize the
application server name. The dlient can safely call either the method pr ocessEvent s() or
the method pr ocessNext Event () on the ORB object.

These event processing methods are defined on OrbixVVeb class BOA (in package

| E. 1 ona. O bi x\b. OORBA). If the client is to receive callbacks, the client’s ORB object
must be initialized as type BOA The client call, for example, to, processEvent s() blocks
while waiting for incoming OrbixVVeb events. If the server invokes an operation on the

d i ent Ops object reference forwarded by the client, this call is processed by
processEvent s() and routed to the correct method in the client's implementation
object.

An Example Callback Application

The example described in this section is based on a distributed chat group application. The
source code for this application is available in the denos/ WbChat directory of your
OrbixWeb installation.

Users join a chat group by downloading an OrbixVVeb callback-enabled client. Using this
client, the user can send text messages to a central server. The server then forwards these
messages to other clients which have joined the same group.

The client provides an interface that allows each user to select a current chat group, to view
messages sent to that group and to send messages to other group members. For example,
if user “brian” runs the client, this user is added to the group “General” by default. At this
point, the client interface appears as shown in Figure 31 on page 330.

329

Callbacks from Servers to Clients

[E: WebChatGUI window _[O]
Groups : I General j Current Chat Group General
----- » [rian: has joined group General ;I

I Send

Clear (it

3| |Java Applet window

Figure 31: WebChat Client Interface

The Groups drop-down box allows the user to select a chat group. The user receives all
messages sent to the current group and can only join one group at any given time.

The main text area displays all messages sent to the current group. These messages include

messages from other group members and system messages indicating that other members
have joined or left the group.

Finally, a text field and Send button allow users to send messages to the group.

330

An Example Callback Application

The central server manages all messages sent to all chat groups. It receives the messages
from client applications and forwards these messages to other clients appropriately. The
server does not require any direct user interaction and can run without a user interface.

However, in this example, a server monitor interface is provided which displays statistical
information about the messages in the system. This interface is shown in Figure 32.

Eﬁf’iw ebChat Administrator Server

Humber of Lsers N 1]

Mo of Messages sent: 0

Il=er List: Message Group Statistics
a General || i
Engineeting || i
Prof Services || 0
Sales | O
Marcom | 0
~ Bus Dey | 0
s o

hessage Peek... it

Figure 32: WebChat Server Interface

331

Callbacks from Servers to Clients

The interface includes information about the number of users, the members of each group,
the total number of messages sent through the system and the total number of messages
sent to each group. A Message Peek button also allows you to view each message sent
through the system. This information is available because all messages are routed through
this central server.

The IDL Specification

The IDL specification for this application includes two interface definitions: a Cal | Back
interface implemented by clients and a Chat interface implemented by the server. The
source code for this IDL is as follows:

/1 1D
/1 Infile "WbChat.idl ".

// Interface definition for callbacks from
// server to client. This interface is
// inplenented by clients.

interface Cal | Back {
/1 Qperation which allows the server to forward
Il a chat nessage to a client.
oneway voi d NewMessage (in string Message);

}s

// Interface which allows clients to register
I/l with central server. This interface is
/1 inplenented by the server.

interface Chat {
/1 Join a chat group.
oneway void registerdient (in CallBack obj, in string Nane);

/'l Leave a chat group.
oneway voi d Renovedient (in CallBack obj, in string nane);

/1 Send a message to all group menbers.
oneway voi d SendMessage (in string Mess);

b

Each client implements a single Cal | Back object. This object allows the client to receive
notification from the server when new messages are sent to the client’s current chat group.

332

An Example Callback Application

The server implements a set of Chat objects; one object for each available chat group. A
client invokes the operation Regi st er d i ent () ona Chat object to join the chat group
supported by that object. Similarly, a client application calls Renoved i ent () to leavea
chat group. A client that is registered with a chat group calls the operation
SendMessage() to send a text message to other members of the same group.

The Client Application

You can run the VébChat GJ client as an applet, using the 0 i ent St art applet, or as an
application, using the client’s mai n() method. The source code for the client application
consists of the following Java classes:

® Class | ocal _i npl enent at i on implements the IDL interface Cal | Back.

* Class WbChat QU initializes the client application and implements the
client mai n() method.

® Class Process_Event s supports the creation of a thread to handle
incoming OrbixWeb events, such as callbacks from the server.

Callback Implementation

Theclass| ocal _i npl enent at i on allows a server to forward a chat message to a client.
The implementation of operation NewMessage() displays the incoming message in the
main text area of the dlient user interface:

/1 Java
/1 In file WbChatQJ .| ava.

package VébChat ;

/1 Call back object inplementation class.
class | ocal _inpl enentati on extends _Cal | Backl npl Base {

VbChat G bkChat ;
/1 Cal |l back objects hold a WbChat GJ obj ect.
public | ocal _i npl enent ati on(WbChat Q) bkChat) {

super () ;
thi s. bkChat = bkChat ;

333

Callbacks from Servers to Clients
}
/1l Called by the server when a new message has been
/1 sent to the current group.

public void NewMessage(String s) {

Systemout. println
("Executing | ocal _inplementation:: NewMessage("+s+")\n");

try{
bkChat . Chat Edi t . appendText (s+"\n");
}

cat ch(Exception se){
Systemout.println
("Exception in NewMessage
Systemexit(1);

+ se.tosString());

Constructor and main() Method

The constructor of class VbChat GJ and the nai n() method implement the initial flow
of control for the client application. The code for the VébChat GJ class is outlined as

follows:

package VebChat ;

i mport
i mport
i mport
i nport
i nport
i nport

I E lona. O bi x\Wb. _COCRBA
I E lona. O bi x\Wb. _QO bi xVéb;

| E. I ona. O bi xV¢b. Feat ur es. Confi g;
or g. ong. CORBA. Syst enExcept i on;
or g. ong. CORBA. CRB;

java.aw . *;

/1 The WbChat client class.
public class WbChat @) extends Frane {

11

V¢bChat constructor

public WbChat GJ (String host, String name) {

334

super ("Vé¢bChat GJ wi ndow') ;
/1 Set up WbChat@J client w ndow

An Example Callback Application

Host
Narre

new String(host);
new String(nane);

/1 Ceate the ObixWb cal | back obj ect

try {
Cal | Gbj = new | ocal _i npl enentation(this);
}

catch (Systenkxception ex) {
di spl ayMsg ("Exception creating | ocal inplenentation
\n"+ ex.toString());
Systemexit(1);
}

// Bind to "General" group Chat object.

try{
TALK = Chat Hel per . bi nd(" Gener al : ebChat ", Host) ;
}

cat ch(Syst enkException se){
di spl ayMsg (" Exception during Bind to VbChat\n" +
se.tostring());

return;
}
/!l Register the Qient with the General group server object
try {

TALK Regi sterdient(Call (bj, Nane);

TALK. SendMessage("----- > " +Name+" : has joined group "

+ @ ouplLabel . get Text ());

catch (Systenkxception ex) {
di spl ayMsg(" FAI L\t Exception during Register,
SendMessage \n"+ex.toString());
Systemexit(1);
}

/1 Enter the O bixWb event |oop and wait for call backs.
Process_Events EventLoop = new Process_Events();

Event Loop. start ();

show() ;

335

Callbacks from Servers to Clients

/1 \bChat client nainline used when running the client
/1 as an application.
public static void main(String args[]) {

CRB.init(args,null);
String hostnane, usernare;

// Initialize host and nane from comand-I|ine
/1 argunents

I/ set the O bixV¢b user name
_QOCRBA. O bi x. set _pri nci pal (usernane) ;

new VbChat GJ (host nane, usernane);

}

Method Regi ster d i ent () invokes operation Regi st er d i ent () on the server
Chat object, passing the client’s Cal | Backl npl enent at i on object reference as a
parameter.

Method Pr ocess_Event s() creates a thread in which incoming OrbixVVeb events are
processed, including server callback invocations. This class is defined as follows:

/1 Java
/1 I'n package WebChat,
/Il in class WbChatQJ .

/1 O bi xWeb event handl er thread.
cl ass Process_Events extends Thread {
public Process_Events(){}

public void run() {

try {
_CORBA. O bi x. processEvent s

(_CORBA. | T_I NFI NI TE_TI MEQUT) ;
/! one second tineout
catch (SystenkException ex) {

return;

336

An Example Callback Application

}
}

The definition of class Pr ocess_Event s is as described in “Using Multiple Threads of
Execution” on page 328.

The static mai n() method begins by retrieving command-line arguments and then
instantiates an object of type VebChat QU .

Event-Handling Methods

When the client’s initialization is complete, it enters the Java event-processing loop and
responds to user interface events through the method handl eEvent () and a set of
subsidiary methods. Each of the subsidiary methods handles an event for a specific user
interface component. Figure 3| on page 330 shows the Web Chat client user interface.

Send Button

The Send button implementation sends a new message to the server object as follows:

/1l Java
/1 In package WbChat,
[/ in class WbChat QU .

public void clickedSendButton() {

String buff;
buff = Nane + " : " + SendEdit.getText();
try {

synchroni zed(TALK) {
TALK SendMessage(buff);

}
cat ch(Syst enException se){
di spl ayMsg
("Exception during SendMessage \n "+se.toString());
Systemexit(1);
}
SendEdi t . set Text ("");

337

Callbacks from Servers to Clients

Clear Button

The Clear button implementation sets both the message and main chat group text boxes
to null.

public void clickedd earButton() {
SendEdi t. set Text ("");
Chat Edi t. set Text ("");

}

Groups Drop-Down Box

The Groups drop-down box implementation changes groups by binding to a new server
group object.

public void sel ect ed@ oupChoi ce() {
String New@ oup = nul | ;
tryf
TALK SendMessage("----- >" +Name+" : has left group "
+ QG ouplLabel . get Text ());
New@ oup = new String(Q& oupChoi ce. get Sel ectedltem());
@ oupLabel . set Text (New@ oup) ;

/1 Renove client fromcurrent group.
TALK Renoved i ent (Cal | Cbj , Nane) ;

/1 Bind to server object for new group.
TALK = Chat Hel per . bi nd(NewQ oup+": WbChat ", Host) ;

/1 Register client wth new group.
TALK Registerdient(Cal | Qj, Nane);
TALK SendMessage("----- > " +Name+" : has joined group "
+ NewQ@ oup) ;

cat ch(Syst eniException se) {
di spl ayMsg(" Exception during SendMessage /n"
+ se.toString());
Systemexit(1);

338

An Example Callback Application

Quit Button
The Quit button implementation is as follows:

public void clickedQuitButton() {
if (TALKI =nul 1) {
synchr oni zed(TALK) {

try{
TALK. SendMessage("----- > " +Name+" : has left

WbChat ") ;
TALK Renoved i ent (Cal | Cbj, Narre) ;

cat ch(Syst enExcepti on se){
this. hide();
thi s. di spose();
Systemexit(1);

}
TALK=nul | ;

The Central Server Application

The server application maintains a single Chat implementation object for each chat group.
Each Chat implementation object stores a list of Cal | Back proxy objects, where each
proxy is associated with a single client. In this way, each server object is aware of every client
which has joined that object’s chat group, and can forward incoming chat messages to those
group members.

The main functionality of the server is implemented in the following Java classes:

® Class Chat | npl erent at i on implements the IDL interface Chat . Each
Chat | npl enent at i on object implements a single chat group and
maintains a linked list of clients who have joined that group.

® Class (bj ect CacheEnt ry implements a single entry for a linked list of
client objects. Class Chat | npl errent at i on uses this class to store a list of
Cal | Back proxy objects.

® Class Server QJ initializes the server application and implements the
server mai n() method.

339

Callbacks from Servers to Clients

The class Chat | npl enent at i on allows a client to register with a server object that
implements a chat group. The source code for this class is as follows:

/1 Java
Il Infile Server@J.java.

package VébChat;

/1l Server-side Chat inplenmentation class.
class Chat | npl ement ati on extends _Chat | npl Base {

Il First linked list entry.
bj ect Cachebntry first(oj;

/1 Goup name for current object.
String m

int NoOf Users = O;
static int NoMess=0;

/1 Marker is inplemented as group nane in this exanpl e.
Chat | npl enentati on(String narker) {

super (marker) ;

m = new String(narker);

}
public void SendMessage(String Mess) {

/1 Updat e nessage count
NoMess++;

/1 Loop through list of registered clients.
(bj ect CacheEntry ptr = firstQj;

while(ptr '=null) {
try{
obj = Call BackHel per.narrow(ptr.oref);
obj . NewMessage(Mess) ;

cat ch(Syst enException se) {

340

An Example Callback Application

}
ptr = ptr.next;

}
}

public void Registerdient(CallBack obj, String Nane) {
// Add message to server display to indicate a new
/1 group menenber

if (firstj == null) {
firstj = new (bj ect CacheEntry(obj);
return;

}

(bj ect CacheEntry ptr = firstQj;
while(ptr.next!=null) ptr = ptr.next;
ptr.next = new (bj ect CacheEntry(obj);
ptr.next.prev = ptr;

}

public void Renovedient(CallBack obj, String Nane) {
/1 Update nai n displ ay

/1 Renve cal | back object fromlist.
if (firstj == null) {

return;
}

Chj ect CacheEntry ptr = firstChj;
Cal | Back t np;

while (ptr !'=null) {

try {
tnp = Cal |l BackHel per.narrow(ptr.oref);
if ((_ObixWb. ject(tnp)._object_to_string()).equals
(_O bi xWb. (hj ect (obj). _object _to_string())) {
/1 Update linked list of objects.

br eak;

341

Callbacks from Servers to Clients

cat ch(Syst enException se) {

}
ptr = ptr.next;

}
}
}

An Chat | npl enent at i on object maintains an Cbj ect CacheEnt r y object asa member
variable. This variable represents the head of a linked list of Cal | Back proxy objects,
where each object is associated with a client that has joined the current chat group. The
linked list is initially empty.

A dlient joins the Chat | npl enent at i on object’s chat group by calling

Regi st erd i ent () . The implementation of this operation adds the client’s Cal | Back
object reference to the linked list. A client leaves a chat group by calling Renoved i ent () .
This removes the client’s Cal | Back object reference from the linked list.

The operation SendMessage() allows a client to send a text message to all clients in the
same chat group. The implementation of this operation accepts the message as a string
parameter. It then cycles through the linked list of client object references, making a callback
operation invocation on each, with the string value as a parameter. In this way, the server
object redistributes text messages to all clients in a chat group.

The class (hbj ect CacheEnt ry, is a simple linked list node structure which stores an object
reference value. The source code for this is as follows:

/1 Java
/1l Infile Server@J.java.

package VebChat ;
i nport org.ony. CORBA. *;
cl ass (pj ect CacheEntry {
public bj ect CacheEntry (Chject oref) {
this.oref = oref;
/1 Linked list next

public (bj ect CacheEntry next;
/1 Linked list previous

342

An Example Callback Application

public oj ect CacheEntry prev;
public bject oref;
}

The class Ser ver QU implements the flow control for the server application. The source
code for this class is outlined below:

/1 Java
/1 In file Server@J.java.

package WebChat ;
inport |E |ona. ObixWb. CORBA

public class ServerGJ extends Frane {
public static void main(String args[]) {
CRB.init(args,null);
mai NG = new ServerGJ ();

[/ Initialize the server and enter the O bi xX\b event | oop
try {
_QOORBA. Orbi x. i npl _i s_ready
("VebChat", CORBA | T_I NFI NI TE_TI MEQUT) ;
}

cat ch(Syst enkException se){
mai nGJ . di spl ayMsg
("Exception during inpl _is_ready : " + se.toString());
Systemexit(1);

}

/1 QGoup inplementation objects.

Chat I npl enent ati on Chat_General = null;
Chat | npl enent ati on Chat _Engi neering = nul | ;
Chat | npl enent ati on Chat _Marcom = nul | ;

Chat | npl enentation Chat_Sales = nul | ;

Chat | npl enentation Chat_Prof = null;

Chat | npl enentation Chat_Bus = nul | ;

343

Callbacks from Servers to Clients

public ServerGJ () {
super ("WbChat Adnministrator Server");
/1 Set up ServerGJ wi ndow

/Il Oeate the 6 server objects

try{
Chat _General = new Chat | npl ement ati on(" General ");
Chat _Engi neeri ng = new Chat | npl enent ati on(" Engi neeri ng");
Chat _Mar com = new Chat | npl enent ati on(" Mar cont) ;
Chat _Sal es = new Chat | npl enent ati on(" Sal es") ;
Chat _Prof = new Chatl npl enent ati on("Prof Services");
Chat _Bus = new Chat | npl enent ati on(" BusDev");

}
cat ch(Syst enExcepti on se) {

di spl ayMsg("Exception : " + se.toString());
}

}

The server mai n() method first instantiates an object of type Ser ver GJ . The
constructor for this object initializes the server display and creates a set of

Chat | npl enent at i on objects. Each Chat | npl enent at i on object implements a single
chat group, where the group name is implemented as the object marker.

When the Ser ver GJ object has been created and the server implementation objects are
available, the server mai n() method invokesi npl _i s_ready() onthe OORBA O bi x
object and awaits incoming requests from clients.

344

Part V

Advanced CORBA
Programming

|8

Type any

This chapter gives details of the IDL type any, and the corresponding
Java class Any (defined in package or g. ong. CORBA), which is used
to indicate that a value of an arbitrary type can be passed as a
parameter or a return value.

Consider the following interface:

/1 1DL
interface Test {
void op (in any a);
H
A dlient can construct an any to contain any type of value that can be specified in IDL. The
client can then pass the any in a call to operation op() . An application receiving an any
must determine what type of value it stores and then extract the value.

The IDL type any maps to the Java class or g. ong. CCRBA. Any. Refer to the OrbixWeb
Programmer’s Reference for more details. Conceptually, this class contains the following
two instance variables:

* type

* value

Thet ype isa TypeCGode object that provides full type information for the value contained
in the any. The Java Any class providesa t ype() method to return the TypeCode object.
The val ue is the internal representation used to store Any values. The value object is
accessible via the OMG standard insertion and extraction methods. These methods are
described in full in this chapter.

347

Type any

Constructing an Any Object

You must use the CRB class (in package or g. ong. GCRBA) to construct Any objects. This is
illustrated by the following example:

/1 Java
i mport org. ony. CORBA. *

Any a = ORB.init().create_any();

Inserting Values into an Any Object

The Java class Any contains a number of insertion methods that you can use to insert any of
the pre-defined IDL types into an Any object. The pre-defined IDL types are as follows:

short

unsi gned short
| ong

unsi gned | ong
I ong I ong

unsi gned | ong | ong
fl oat

doubl e

bool ean

char

wchar

oct et

any

(hj ect

string
wstring
TypeCode
Princi pal

The insertion methods for these types are named i nsert _short,i nsert_ushort,
i nsert_| ong, and so on.

A single-element insertion method simply takes the element value as a parameter. For
example, the signature of Any. i nsert _| ong() is as follows:

public void insert_long(int |);

348

Inserting Values into an Any Object

Helper classes for user-defined types providei nsert () methods to support the insertion
of user-defined types into an any. The signature for i nsert () can be defined as:

public void insert(org.ong. CORBA. Any a,
<user-def type> val ue);

Consider the following IDL definition:
/1 1DL

struct Foo {
string bar;
fl oat nunber;

b

interface Flexible {
void doit (in any a);
b
Assume that a client programmer wishes to pass an any containingan IDL shor t as the
parameter to the doi t () operation. The following insertion method, which is a member of
class Any, may be used:

public void insert_short(short s);
The client programmer can then write the following code:

/1 Java
/1 Cient.java

i mport org. ong. CORBA. *;

Fl exi bl e fRef;

Any param = ORB.init().create_any();
short toPass = 26;

try {
f Ref = Fl exi bl eHel per. bi nd();
paraminsert_short (toPass);
fRef.doit (param;

}catch (Syst enException se) {

}

349

Type any

If the client wishes to pass a more complex user-defined type, such as the struct Foo
defined above, the appropriate helper classi nser t () methods can be used. For example,
the client programmer can write the following:

[/l Java
// dient.java,

i mport org. ong. CORBA. *;

Fl exi bl e fRef;
Any param= CRB.init().create_any();
Foo toPass = new Foo();

toPass. bar = "Bar";
toPass. nunber = (float) 34.5;

try {
f Ref = Fl exi bl eHel per. bi nd();

f ooHel per.insert (param toPass);

fref.doit (param;

}
catch (Systentxception se) {

}

These insertion methods provide a type-safe mechanism for insertion into an any. Both the
type and value of the Any are assigned at insertion. If an attempt is made to insert a value
which has no corresponding IDL type, this results in a compile-time error.

Extracting Values from an Any Object

The Any Java class contains a number of methods for extracting pre-defined IDL types
from an Any object. These extraction methods are named ext r act _| ong(),
extract _ul ong(),extract _fl oat (), and so on. Each extraction method simply
returns a value of the appropriate type.

User-defined type helper classes provide ext r act () methods, which support the
extraction of user-defined types from an any.

350

Extracting Values from an Any Object

The signature of this method is as follows:

public <user-def type>
extract (org. ong. CORBA. Any a);

The following example IDL can be used to illustrate the use of extraction methods:
/1 1DL
typedef sequence<l ong, 10> | ongSeq;

interface Versatile {
any getit();
You can extract a simple type from an any as follows:
/1 Java
/1 Qdient.java
i nport org.ongy. CORBA. *;

Versatil e vRef;
Any rv;
short toRecei ve

try {
vRef = Versatil eHel per. bi nd();

rv = vRef. getit();
/] extract a short val ue

if ((rv.type()).kind() == TQKi nd.tk_short) {
toRecei ve = rv.extract_short();

}

catch (Systenkxception se) {

}

351

Type any

You can extract a sequence of type | ongSeq from an any as follows:
/1 Java
/1 Qient.java

Versatile vRef;
or g. ong. CORBA Any rv;
I ong[] toRecei ve;

try {
vRef = Versatil eHel per. bi nd();

rv = vRef. getit();
/1 extract a sequence of |ongs

if ((rv.type()).equal (I ongSeqHel per.type())) {
toRecei ve = | ongSeqtel per. extract (rv);
}
}

catch (Systenkxception se) {

}

OrbixVWVeb does not destroy the value of an any after extraction. You can therefore
extract the value of an any more than once.

Note: The OrbixVWeb-specific operations on any to extract or insert arrays are
no longer supported. To insert or extract arrays, define array types in
IDL and use the generated Helper class insert and extract operations.

352

Any as a Parameter or Return Value

Any as a Parameter or Return Value

The mapping for IDL any operation parameters and return values are illustrated by the
following IDL operation:

/1 1DL
any opl (in any al, out any a2, inout any a3);

This IDL operation maps to the following Java method:

/1 Java

i nport org. ong. CORBA Any;

i nport org. onyg. CORBA AnyHol der ;

public Any opl (Any al, AnyHolder a2, AnyHol der a3);

Bothi nout and out parameters map to type AnyHol der as explained in “Details of
Parameter Type Mappings” on page 133.

Additional Methods

In addition to the standard Any interface described in the or g. ong. OORBA. Any abstract
class, there are some additional methods on the actual implementation class
I E. I ona. O bi xV¢b. CORBA. Any:

* AtoString() method.

e Afrontring() method.

® A constructor Any(j ava. | ang. String).
* Areset() method

* A copy() method.

* Aclone() method.

* Anequal s() method.

* A containsType() method.

* Aval ue() accessor method.

You can use the methodst oSt ri ng() and fronSt ring(), and the constructor that
takes a string as an argument to maintain persistent any values.

353

Type any

To convert from a standard or g. ong. CCRBA. Any object to the actual implementation
class | E | ona. O bi x\#b. GCRBA. Any, use the following casting operation:

| E 1 ona. O bi xWb. _O bi xVéb. Any(or g. ong. CCRBA. Any a)

Note: The additional methods on the implementation class
| E 1 ona. O bi x\&b. CORBA. Any may not be supported in a future release
of OrbixWeb.

354

|9

Dynamic Invocation Interface

In @ normal OrbixWeb client program, the IDL interfaces that the
client can access are determined when the client is compiled. The
Dynamic Invocation Interface (DII) allows a client to call operations
on IDL interfaces that were unknown when the client was compiled.

IDL is used to describe interfaces to CORBA objects and the OrbixWeb IDL compiler
generates the necessary support to allow dlients to make calls to remote objects.
Specifically, the IDL compiler automatically builds the appropriate code to manage proxies,
to dispatch incoming requests within a server, and to manage the underlying OrbixVVeb
services.

Using this approach, the IDL interfaces that a client program can use are determined when
the client program is compiled. Unfortunately, this is too limiting for a small but important
subset of applications. These application programs and tools need to use an indeterminate
range of interfaces: interfaces that perhaps were not even conceived at the time the
applications were developed. Examples include browsers, gateways, management support
tools and distributed debuggers.

OrbixVVeb supports the CORBA Dynamic Invocation Interface (DII) that allows an
application to issue requests for any interface, even if that interface was unknown at the
time the application was compiled.

The DIl allows invocations to be constructed by specifying, at runtime, the target object
reference, the operation or attribute name and the parameters to be passed. A server
receiving an incoming invocation request does not know whether the client that sent the
request used the normal, static approach or the dynamic approach to compose the
request.

355

Dynamic Invocation Interface

Using the DII

This chapter uses the bank example to demonstrate the use of the DIl. The example uses
the following IDL definitions:

/1 1DL

/1 A bank account.

interface account {
readonly attribute float bal ance;
attribute | ong account Nunber;

voi d nakeLodgenent (in float sun;
void makeWt hdrawal (in float sum
out float newBal ance);

}s

/1 A factory for bank accounts.
interface bank {
exception reject { string reason; };

I/l Oeate an account.
account newAccount (i n string owner,
inout float initialBalance) raises (Reject);

/1 Delete an account.
voi d del et eAccount (i n account a);

b

You can make dynamic invocations by constructing a Request object and then invoking an
operation on the Request object to make the request. Class Request is defined in the
or g. ong. CORBA package.

In the examples that follow, a request for the operation newAccount () is created, to
dynamically invoke an operation whose static equivalent is:

/1 Java

bank b = bankHel per. bi nd();

account a;

a = b.newAccount ("Chris", (float)1000.00);

356

Using the DII

Programming Steps for Using the DII

This chapter explains how a client can make dynamic invocations. To do so, the following
steps are required:

2
3.
4.
5

. Obtain the result, if necessary.

Obtain an object reference.

. Create a Request object using the object reference.

Populate the Request object with the parameters to the operation.

Invoke the request.

These programming steps are described in detail later in this chapter.

Examples of Clients Using the DIl

There are two common types of client program that use the DII:

A client interacts with the Interface Repository to determine a target
object’s interface, including the name and parameters of one or all of its
operations and then uses this information to construct DIl requests.

A client, such as a gateway, receives the details of a request to be made.
In the case of a gateway, this may arrive as part of a network package.
The gateway can then translate this into a DIl call, without checking the
details with the Interface Repository. If there is any mismatch, the
gateway receives an exception from OrbixWeb, and can report an error
to the caller.

Some client programs also use the DIl to call an operation with deferred synchronous
semantics, which is not possible using normal static operation calls. Deferred synchronous
calls are described in “Deferred Synchronous Invocations” on page 370.

357

Dynamic Invocation Interface

Programming Steps: Code Example

The following code illustrates some of the programming steps using the standard
or g. ony. OCRBA Request operations:

/1 Java

/1l in class dient

i mport org. ony. CORBA. Request ;
i mport org. ong. CORBA. Any;

/1 Initialize using either the Nam ng Service
// or CRB.string_to_object() details omtted
or g. ong. CCRBA. (hj ect aBankChject =

/1 Oeate a Request
Request r = aBank(bj ect. _request ("newAccount™);

I/ Prepare the inout paraneter
float iovVal = (float) 1000;

/1 Add the in string
r.add_in_arg().insert_string("Chris");

/1 Add the inout float
Any val Any =r.add_i nout _arg().insert_float(ioVval);

// Add the Streamabl e for return val ue
account Hol der account Hdr = new account Hol der () ;
r.return_val ue().insert_Streanabl e(account Hlr);

/1 1nvoke the Request
r.invoke ();

/1l Extract the inout argunent
ioVal = val Any.extract_float();

// The account object ref. is nowin the value nenber of
/1 the account Hdr vari abl e.

To improve clarity, exception handling code is not included in this example or in most of
the remaining examples in this chapter. However, developers should note that this sample
code will not compile without the inclusion of OrbixV¥Veb exception handling. Refer to

358

The CORBA Approach to Using the DII

Chapter |5 “Exception Handling” on page 295 for details of how to handle exceptions in
OrbixVVeb.

This example is unrealistic since it assumes that the name of the operation (newAccount) is
known. In practice, this information is obtained in some other way, for example from the
Interface Repository.

The CORBA Approach to Using the DII

This section demonstrates how to use the DIl using the OrbixWWeb implementation of the
classes and operations defined in the CORBA specification. A number of alternative
approaches to setting up a Request are illustrated, all of which are CORBA-compliant.

Obtaining an Object Reference

Assume that there is already some server containing a number of objects that implement
the interfaces in “Using the DII” on page 356. The first step in using the Dll is to obtain an
object reference of interface type (hj ect (defined in package or g. ongy. CCRBA) that
references the target object.

If the full object reference of the target object is known in character string format, an object
reference, of a type that implements or g. ong. CORBA. (bj ect, can be constructed to
facilitate making a dynamic invocation on it. For example, you can invoke the method
string_to_object () ontheorg. ong. CCRBA. CRB object as follows:

/1 Java
i mport org. ong. CORBA. Obj ect;
i mport org. ong. CORBA. ORB;

ORB orb = ORB.init(args, null);
bject o = orb.string_to_object (refStr);

In the above example, the variable r ef St r is a stringified object reference for the target
object, perhaps retrieved from a file, a mail message, or an IDL operation call. Object
references can also be obtained from the Naming Service. Refer to “Making Objects
Available in OrbixVWeb” on page 171 for further information on this topic.

359

Dynamic Invocation Interface

Creating a Request

CORBA specifies two ways to construct a Request object. These are implemented in
OrbixWVeb using the _r equest () and _cr eat e_r equest () methods:

_request()

The method _r equest () is defined in interface or g. ong. CORBA. (bj ect Itis declared
as:

/1 Java
/1 in package org. ony. CORBA,
/1 in interface (bject

i mport org. ony. CORBA. Request ;

public Request _request(String operation);

This method takes a single parameter which specifies the name of the operation to be
invoked on the target object.

_create_request()
Thereisalsoa _create request() methods defined in interface Object. It is declared as:

/1 Java
/1 in package org. ong. CORBA,
// in interface (hject

i mport org. ony. CORBA. Request ;

i mport org. ong. CORBA (Cont ext ;

i mport org. ong. CORBA NanedVal ue;
i mport org. ong. CORBA NWLi st ;

Request _create_request (Context ctx, String operation,
NVLi st arg_list, NamedVal ue result);

The use of these methods is described in the next two sections. An alternative approach to
request construction is explained in “Resetting a Request Object for Reuse” on page 369.

360

The CORBA Approach to Using the DII

Setting up a Request Using _request()

You can set up a request by invoking _r equest () on the target object, and specifying the
name of the operation that is to be dynamically invoked. In the first attempt at constructing
the request, the code is written in a verbose fashion so that the individual steps can be
explained easily. A simpler, more compact, version of the same code is then shown.

The following steps are required in setting up a Request using the _r equest () method:

Obtain an object reference to the target object. The stringified object
reference obtained earlier is used:

/1 Java

i mport org. ong. CORBA. Obj ect;

i mport org. ong. CORBA. ORB;

i mport org. ong. CORBA. Request ;

ORB orb = ORB.init(args, null);
bject o = orb.string_to_object (refStr);
Construct a Request object by calling _r equest () on the target object,
as follows:
Request request = o._request("newAccount");
Populate the Request . The most efficient and straightforward approach
to populating a DIl Request is the one used by the OrbixWeb IDL
generated stubs. This approach takes advantage of the following methods
in the or g. ong. CORBA. Request class:

i nport org.ony. CORBA. Any;

i nport org. ong. CORBA. TypeCode;

Any add_in_arg();

Any add_i nout _arg();

Any add_out _arg();

voi d set_return_type(TypeCode tc);
Any return_val ue();

It also uses the following insertion method in the
or g. ong. CCRBA. Any class:

i nport org.onmy. CORBA portabl e. Streanabl e;

voi d insert_Streanmabl e(Streanabl e s);

361

Dynamic Invocation Interface

The example code using this approach appears as follows:

Request request = oRef._request ("newAccount");

/1 Insert the in paraneter into the Request
request.add_in_arg().insert_string ("Ciris");

/1 Insert the inout paraneter:
float ioval = 1000. 00);
request. add_i nout _arg().insert_float(ioval);

/1 Add the Streamabl e for return val ue
account Hol der account Hdr = new account Hol der () ;
request.return_val ue().insert_Streamabl e(account Hr);

/1 1nvoke the Request
request. i nvoke ();

/1 Extract the inout argumnent
ioval = val Any.extract_float ();

// The account object ref. is nowin the value nenber of
/1 the account Hdr vari abl e.

All non-primitive i nout and out parameters are inserted as St r eanabl e objects (those
that implement or g. ong. GORBA. por t abl e. St r earmabl e). All primitive i nout and
out parameters must be explicitly inserted and extracted using the various Any primitive
insert and extract methods. Refer to Chapter 18, “Type any” on page 347, for more details
on these methods.

Alternative approach

The following method provides an alternative approach to setting up a request.

362

First obtain an empty NVLi st, and build it to contain the parameters to
the operation request.

To create an operation list whose length is specified in the first
parameter, invoke the method create_list() on the

or g. ong. CORBA. CRB object.

The CORBA Approach to Using the DII

Note: If the IFR has been set up, an easier approach is to call
create_operation_|list() onorg. ony. CORBA CRB.
See “Using the DIl with the Interface Repository” on page 367.

An NVLi st is a list of NamedVal ue elements. A NanedVal ue contains a
name and a value, where the value is of type Any and is used in the DIl to
describe the arguments to a request. To obtain the Any, use the val ue()
method defined on class NanedVal ue.

2. Using the following code as a guideline, create the NVLi st and add the
NarredVal ues:
i mport org. ong. CORBA. NanedVal ue;
i mport org. ong. CORBA. NVLi st ;
i mport org. ong. CORBA. Any;

i mport org. ong. CORBA. ARG | N;
i mport org. ong. CORBA. ARG _| NOUT;

NVLi st argList = ORB.init().create_list(2);
NarmedVal ue owner = argList.add(ARG_|I N. val ue);
owner.value().insert_string (“Chris”™);

NamedValue initBal = argList.add(ARG_INOUT.value);
initBal.value().insert_float (56.50);

/I Fillin name of operation and parameter values

The method NVList.add() | creates a NamedValue and adds it to the
NVList . It returns a NamedValue pseudo object reference for the newly
created NamedValue .

I. Class NVList also provides a method add_value() that takes three parameters:
the name of the NamedValue (the formal parameter in the IDL operation); the value (of type Any)
of the NamedValue ; and a flag indicating the mode of the parameter. For example:

NamedValue owner = argList.add_value
("owner",ownerAny, ARG_IN.value);

NamedValue initBal = argList.add_value
(“initialBalance”, balAny, ARG_INOUT.value));

363

Dynamic Invocation Interface

The parameter to NVLi st. add() can be a Fl ags object initialised with
one of the following:

ARG | N val ue Input parameters (IDL i n).
ARG QUT. val ue Output parameters (IDL out).
ARG | NOUT. val ue Input/output parameters (IDL i nout).

You must choose the appropriate parameter that matches the
corresponding formal argument.

The NanedVal ues added to the NVLi st correspond, in order, to the
parameters of the operation. They must be inserted in the correct order.
To fully populate the request, update the Any contained in each

NanedVal ue element of the argument list with the value that is to be
passed in the operation request.

/!l Insert the paraneter values into the
/1 NaredVal ues

owner.value().insert_string ("Chris");
bal ance. val ue.insert _fl oat ((fl oat)100. 00);

Compact Syntax

You can write the code in the last section in a more compact way by making use of the
return values and the method Request . ar gurent s() which returns the argument list
(of type NVLi st):

364

/1 Java

i nport org. ong. CORBA. Obj ect ;

i nport org. ong. CORBA. CRB;

i nport org.onyg. CORBA. Request ;

i nport org. onyg. CORBA. ARG _I N,

i nport org. onyg. CORBA. ARG _| NOUT;

/] Obtain an object reference from

/] string refStr

ORB orb = ORB.init(args, null);

Ghject o = orb.string_to_object (refStr);

The CORBA Approach to Using the DII

/1 Create a Request object
Request request = oRef. _request ("newAccount");

/1 Insert the first paraneter into the Request
(request.argunents().add (ARG I N. value)).val ue())
.insert_string ("Chris");

/1 Insert the second paraneter:
(request. argunents().add

(ARG_I NOQUT. val ue)) . val ue())
.insert_float ((float) 1000.00);

Setting up a Request Using _create_request()

This section shows how to use the CORBA defined method
Request . _create_request () to create a request:

/1 Java
/1 in package org. ong. CORBA,
/1 in interface Object
public org. ong. CORBA. Request _create_request(
org. ong. CORBA. Cont ext ctx,
String operation,
org. ong. CORBA. NVLi st arg_list,
or g. ong. CORBA. NanedVal ue result);

The parameters of this method are as follows:

* Context object to be sent in the request.

® The name of the operation.

® The parameters to the operation (of type NVLi st).
® Location for the return value (of type NarmedVal ue).

® The return value is a Request object which contains the new Request
object.

The following example constructs a Request for operation newAccount (). The
parameters “Chris” and 1000. 00 are passed as before. The argument list is created as in
“Setting up a Request Using _request()”’ on page 361 using

org. ong. CORBACRB. create_list().

365

Dynamic Invocation Interface

The compact syntax is used to add the arguments to ar gLi st (of type NVLi st):

/1 Java

/1 As before allocate space for an
/1 NVList of length 2

i nport org. ong. CORBA. *;

ORB orb = ORB.init(args, null);
NVLi st argList = ORB.init().create_list(2);

(argLi st.add(ARG_I N. val ue)). val ue())
.insert_string ("Chris");
/1 The second paraneter to newAccount ()

(argLi st. add(ARG_|I NOUT. val ue)) . val ue())
.insert_float ((float) 1000.00);

/] Construct a Request object with
/1 this information
Any a = ORB.init().create_any();
a.type(ORB.init().create_interface_tc(

“IDL:account:1.0","account”));
NamedValue result = ORB.init().create_named_value

(""1 a‘ O)r

Context ctx = ORB.init().get_default_context();

Object o0 = orb.string_to_object (refStr);
Request request = 0._create_request(
ctx,
"newAccount”,
argList,
result)) {

366

The CORBA Approach to Using the DII

Invoking a Request

Once the parameters are inserted, you can invoke the request as follows:

/1 Java
/1 Send Request and get the outcone
i mport org. ong. CORBA. Syst enExcepti on;
try {
request.invoke ();
if (request.env().exception() != null)
throw request. env().exception();

}
catch (SystenException ex) {

}

catch (java.lang. Exception ex){

}

Note: A Request invocation can raise both OrbixVWeb system exceptions and
user-defined exceptions. To retrieve an exception raised in this manner,
use request . env(). exception(), as shown above.

Using the DIl with the Interface Repository

If the programmer has obtained a description of the operation (of type

or g. ong. CORBA. per at i onDef) from the Interface Repository, an alternative way to
create an NVLi st is to call the operation cr eat e_operati on_| i st() onthe

or g. ony. QORBA. CRB object. This method fills in the elements of the NVLi st . If you use
org. ong. CCRBA. CRB. creat e_| i st () instead, you must fill the NVLi st .

The prototype of cr eat e_operation_l i st () is shown below:

/1 Java

/1 in package org. ong. CORBA,

/1 in class ORB

public NVLi st create_operation_list (
or g. ong. CORBA. Oper ati onDef oper);

367

Dynamic Invocation Interface

This method returns an NVLi st , initialised with the argument descriptions for the
operation specified in oper at i on. The returned NVLi st is of the correct length, with one
element per argument. Each NanedVal ue element of the list has a valid name and valid
flags which denote the argument passing mode. The value (of type Any) of the

NarredVal ue has a valid type which denotes the type of the argument. The value of the
argument is left blank. However it should be pointed out that this method performs more
work thancreat e | i st () onorg. omy. CORBA CRB.

Setting up a Request to Read or Write an IDL Attribute

The DIl can also be used to read and write attributes. To read the attribute bal ance, for
example, the operation name should be setto " _get _bal ance" . For example:

/|l Create a Request to read attribute bal ance
Request r = target._request ("_get_bal ance");
r.set_return_type(

org. ong. CORBA.ORB.init ().

get_primtive_tc(

org.ong. CORBA. TCKi nd. tk_float));
r.invoke();
float balance = r.return_value().extract_float();

In general, for attribute A, the operation name should be set to one of the following:

_get_A This reads the attribute.

_set_A This writes the attribute.

Operation Results

A request can be invoked as described in “Invoking a Request” on page 367. Once the
invocation has been made, the return value and output parameters can be examined. If
thereareany out ori nout parameters, then these parameters would be modified by the
call, and no special action is required to access their values. Their values are contained in the
NVLi st argument list which can be accessed using the method Request . ar gunent s() .

The operation’s return value (if it is not voi d) can be accessed using the method
Request . resul t () which returns a NanedVal ue.

368

The CORBA Approach to Using the DII

Results can also be retrieved by using St r eanabl es and the Any. r et ur n_val ue()
operation. See the return value in the code in“Programming Steps: Code Example” on
page 358 for details.

Interrogating a Request

The operation name and the target object’s object reference of a Request can be
determined using the methods oper at i on() andt ar get (), respectively.

Resetting a Request Object for Reuse

In an OrbixVVeb client that uses the DII, it is often necessary to make several operation
invocations. You can do this by declaring and instantiating individual Request objects for
each invocation. However, OrbixVVeb provides the method r eset () , which allows you to
reuse a Request variable.

The method r eset () is called on the Request object and clears all of the Request fields,
including its target object and operation name. For example, you can reuse the Request
variable r in the example for an invocation of operation nekelLodgerrent () as follows:

/1 Java
org. ong. CORBA. Request r =...

I E. 1 ona. O bi x\Wb. CORBA. Request req
= | E. I ona. Or bi x\Web. _Or bi x\Web. Request (r);

req.reset ();
req. set Target (oRef);
reg. set Operation ("makelLodgenent");

or as follows:

/1 Java
reg.reset (oRef, "mamkelLodgenent");

369

Dynamic Invocation Interface

Deferred Synchronous Invocations

In addition to using the i nvoke() operation on a Request, OrbixWeb supports a
deferred synchronous invocation mode. This allows clients to invoke on a target object and
to continue processing in parallel with the invoked operation. Ata later point, the client can
check to see if a response is available, and if so can obtain the response. This may be useful
to improve the throughput of a client, particularly in the case of long-running invocations.

Note: It is often more straightforward to start a thread that makes a normal
CORBA call concurrently than to use deferred synchronous calls. They
are defined by the OMG mainly for environments where threads are not
available.

To use this invocation mode, call one of the following methods on the Request :

* send_deferred()

® send_oneway

send_deferred()

When calling method send_def er r ed() onthe Request, the caller continues in parallel
with the processing of the call by the target object. The caller can use the method

pol | _response() on the Request to determine whether the operation has completed
and get _response() to determine the result. Consider the following code segment,
which invokes a deferred request:

try {
r.send_deferred();

cat ch(Syst enException ex) {
/1 error handling

}

// Execute here in parallel with the call

The caller can perform a blocking wait for the response as follows:

try {
r.get_response();
/] Extract result, etc
} catch(SystenkException ex) {

370

Deferred Synchronous Invocations

/1 get_response throws an exception on
[/ failure/timeout

}

Alternatively, the caller can poll for the response as follows:

try {
whi | e(r. poll _response() == fal se){
/| Execute other code

}

/] Extract result, etc
} catch(SystenkException ex) { }

send_oneway()

You can call method send_oneway() can on any Request , however you must use this
method for a oneway operation. The caller continues in parallel with the processing of the
call by the target object.

Usage of send_oneway() is similar to send_def er r ed(), except that there is no
response.

Multiple requests are also supported. There are two methods provided for this that can be
called on an ORB. These are as follows:

® ORB. send_nul tiple_requests_oneway()

® ORB. send_multiple_requests_deferred()

The relevant prototypes are as follows:

/1 Java

/1 In class org. ong. CCRBA CRB

public void send_nul tipl e_requests_oneway
(Request[] requests);

public void send_nultiple_requests_deferred
(Request[] requests);

371

Dynamic Invocation Interface

The caller can perform a blocking wait for a response using the following code:

try {

Request r = orb. get_next_response();
/] Extract result, etc

} catch(SystenException ex) {

Alternatively the caller can call get _r esponse() or pol | _response() on an individual
Request instance.

Using Filters with the DIl

OrbixWVeb allows a you to implement methods which are invoked at specified filter points
in the invocation of a request, as described in “Filters” on page 415. All filter points that you
implement are called during the invocation of a dynamic request.

372

20

Dynamic Skeleton Interface

The Dynamic Skeleton Interface (DSI) is the server-side equivalent
of the DII. It allows a server to receive an operation or attribute
invocation on any object, even one with an IDL interface unknown
at compile time. The server does not need to be linked with the
skeleton code for an interface to accept operation invocations on
that interface.

Instead, a server can define a method that is informed of an incoming operation
or attribute invocation. This method determines the identity of the object being
invoked. The operation name and the types and values of each argument must
be provided by the user. The method can then perform the task being requested
by the client, and construct and return the result.

Just as the use of the DIl is less common than the use of normal static
invocations, the use of the DSl is less common than use of the static interface
implementations. Also, clients are not aware that a server is in fact implemented
using the DS, clients simply makes IDL calls as normal.

373

Dynamic Skeleton Interface

Uses of the DSI

The DSl is explicitly designed to help you write gateways. Using the DSI, a
gateway can accept operation or attribute invocations on any specified set of
interfaces and pass them to another system. A gateway can be written to
interface between CORBA and some non-CORBA system. The gateway needs
to know the protocol rules of non-CORBA system. However, it is the only part
of the CORBA system which requires this knowledge. The rest of the CORBA
system continues to make IDL calls as usual.

The IIOP protocol allows an object in one ORB to invoke on an object in
another ORB. Non-CORBA systems do not have to support this protocol. One
way to interface CORBA to such systems is to construct a gateway using the
DSI. This gateway appears as a CORBA server containing many CORBA objects.
The server uses the DSI to trap the incoming invocations and translate them into
calls to the non-CORBA system. A combination of the DSI and DIl allows a
process to be a bi-directional gateway. The process can receive messages from
the non-CORBA system and use the DIl to make CORBA calls. It can use the
DSl to receive requests from the CORBA system and translate these into
messages in the non-CORBA system.

Another example of the use of the DSl is a server that contains a large number
of non-CORBA objects that it wishes to make available to its clients. One way to
achieve this is to provide an individual CORBA object to act as a front-end for
each non-CORBA object. However, in some cases this multiplicity of objects
may cause too much overhead.

Another way is to provide a single front-end object that can be used to invoke
on any of the objects, probably by adding a parameter to each call that specifies
which non-CORBA object is to be manipulated. This changes the client’s view
because the client would cannot invoke on each object individually, treating it as
a proper CORBA object.

You can use the DSI to achieve the same space saving as that achieved when
using a single front-end object. You can give clients a view that there is one
CORBA object for each underlying object. The server indicates that it wishes to
accept invocations on the IDL interface using the DSI, and when informed of
such an invocation, it identifies the target object, the operation or attribute being
called, and the parameters. It then makes the call on the underlying non-CORBA
object, receives the result, and returns it to the calling client.

374

Using the DSI

Using the DSI

To use the DSI you must perform the following steps in your server program:
I. Implement a class that extends the class
or g. ong.CORBA. Dynami cl npl erent at i on.
2. Implement the i nvoke() and _i ds() operations.

The i ds() operation is contained in the package
or g. ong. CORBA. port abl e. Obj ect | npl which
Dynami cl npl enent at i on extends.

3. Create an object of this class and call ORB. connect () to connect the
object to the ORB.

Creating Dynamiclmplementation Objects

The class or g. ong.CORBA. Dynami cl npl erent at i on is defined as follows:

public abstract class Dynam cl npl ement ati on
ext ends org. ong. CORBA. portabl e. Obj ect | npl {
public abstract void invoke
(org. ong. CORBA. Server Request request)
throws SystenException;

}

The i nvoke() method is informed of incoming operation and attribute requests.
This method can use the Server Request parameter to do the following:

* Determine what operation or attribute is being invoked and on what
object.

® Obtaininandinout parameters.
® Returnout andinout parameters and the return value to the caller.
® Return an exception to the caller.

An implementation of the i nvoke() method is known as a Dynamic
Implementation Routine (DIR).

375

Dynamic Skeleton Interface

The class Dynani cl npl enent at i on is not visible to clients. Specifically, the
interfaces used by clients do not inherit from class Dynam cl npl erent at i on. If
clients inherit from Dynami cl npl enent at i on, the fact that the DSl is used at the
server-side is not transparent to clients.

The ServerRequest Data Type

The Ser ver Request object which is passed to
Dynami cl npl enent at i on. i nvoke() is created by OrbixWeb once it receives
an incoming request and recognizes it as a request to be handled by the DSI.

The Ser ver Request type is defined in IDL as follows:

/! Pesudo | DL
/1 I'n nmodul e CORBA.

pseudo interface ServerRequest {
String op_nane();
Context ctx();
voi d paranms(NVLi st parns);
any result(Any a);
voi d except (Any a)
H
Instances of the Ser ver Request interface are pseudo-objects. This means that
references to these instances cannot be transmitted through IDL interfaces.

The attributes and operations of Server Request are described as follows:

op_nane() Gives the name of the operation being invoked.

ct x() Returns the context associated with the call.

par ans() Allows the i nvoke() operation to specify the types of incoming
arguments.

resul t () Allows the i nvoke() operation to return the result of an
operation or attribute call to the caller.

except () Allows the i nvoke() operation to return an exception to the
caller.

376

Example of Using the DSI

Example of Using the DSI

To implement the Dynamic Implementation Routine (DIR), you must define a
class that extends or g. onmg. OCRBA Dynani cl npl enent at i on.

For example:

/1 Java

/1 In file javaserverl.java.

/1 Inplermentation of Dynamc |nplenentati on Routine
package grid_dsi;

class grid_i extends org.ony. CORBA Dynam cl npl ement ati on {

public void invoke(org. ong. OCRBA Server Request _req) {
/1 1nplenentation of the invoke() method

}
public String[] _ids() {
/1 Inplenmentation of the _ids() nethod

}

3

Your DSI class must contain the following methods:
* _ids()
® invoke()

_ids()

The _i ds() method should return a list of all interfaces supported by the
Dynamic Implementation Routine, as shown in the following sample code:

/1 Java
/1 In file javaserverl.java.
/1 1nplenentation of ids() nethod

public String[] _ids() {
String[] tnp = {"IDL:grid:1.0"};
return tnp;

}

377

Dynamic Skeleton Interface

invoke()

The following is an example of the DSI i nvoke() method:

/1 Java
/1 In file javaserverl.java.
/1 Inplenentation of invoke() method

// Simulates the operations on the grid interface using the DSl .
public void i nvoke(org. ong. CORBA Server Request _req) {
String _opName = _req.op_name() ;
org.ong. CORBA. Any _ret = org.ong. CORBA CRB.init().create_any();
org. ong. CORBA. NVLi st _nvl = nul|;

i f(_opNane. equal s("set")) {

378

_nvl = org.ong. CORBA CRB.init().create list(3);

/1 Create a new any.
org.ong. CCRBA. Any n = org.ong. OCCRBA. CRB.init().create_any();

I/ Insert the TypeCode(tk_short) into the new Any.
n.type(org. ong. CORBA. CRB.init().get_prinmtive_tc
(org.ong. CORBA. TCKi nd. tk_short)) ;

/1l Insert this Any into the NVList and set the flag to IN
_nvl.add_val ue(nul I, n, org.ong. GCORBA. ARG | N val ue);

/1 Create new Any, set Typecode to short, insert into NVList.
org. ong. CCRBA. Any m = org. ongy. CCRBA. CRB.init().create_any();
mtype(org. ong. CORBA GRB.init().get_primtive_tc

(org. ong. OCRBA. TCKi nd. t k_short));
_nvl.add_val ue(nul |, m org.ong. GCORBA. ARG | N val ue);

// Oreate new Any, set Typecode to long, insert into NWList.
or g. ong. CCRBA. Any val ue
= org.onyg. CORBA CRB.init().create_any();
val ue. type(org. ong. CORBA. ORB.init().get_primtive_tc
(org. ong. GORBA TCKi nd. tk_| ong)) ;
_nvl.add_val ue(nul I, val ue, org.omy. CCRBA ARG | N val ue);

Example of Using the DSI

}

/1 Use parans() nethod to marshal data into _nvl.
_req. parans(_nvl);

/1l Get the value of row, col fromAny row, col
/1 and set this element in the array to the val ue.
ma[n.extract_short()][mextract_short()] =

val ue. extract _long() ;
return;

i f (_opNane. equal s("get")) {

_ret = org.ony. CORBA. CGRB.init().create_any();
_nvl = org.ony. CORBA. CRB.init().create_list(2);

org.ong. CORBA. Any n = org. ong. CCRBA CRB.init().create_any();
ntype(org. ong. CORBA. CRB.init().get_primtive_tc

(org. ong. OORBA TCKi nd. t k_short));
_nvl.add_value(null, n, org.ong. CORBA ARG | N val ue);

org. ong. CORBA. Any m = org. ong. CCRBA CRB.init().create_any();
mtype(org. ong. CORBA CRB.init().get_primtive_ tc

(org. ong. OORBA TCKi nd. t k_short));
_nvl.add_val ue(null, m org.ong. OCCRBA. ARG | N val ue);
_req. parans(_nvl);
int t = ma[n.extract_short()][mextract_short()] ;
_ret.insert_long(t);
_req.result(_ret);
return;

(_opNane. equal s("_get _height")) {

_ret = org.ony. CORBA. CRB.init().create_any();
_req. parans(_nvl);
_ret.insert_short(mheight);
_req.result(_ret);

return;

379

Dynamic Skeleton Interface

i f (_opNane.equal s("_get_wdth")) {
_ret = org.ony. CCRBA CRB.init().create_any();
_req. parans(_nvl);
_ret.insert_short(mwidth);
_req.result(_ret);
return;

}

The complete code for this example is available in the denos/ gri d_dsi
directory of your OrbixWeb installation.

380

21

The Interface Repository

This chapter describes the Interface Repository (IFR). This is the
OrbixWeb component that provides persistent storage of IDL
interfaces, modules, and other IDL types. OrbixWeb programs can
query the Interface Repository at runtime to obtain information about
IDL definitions.

Note: The Interface Repository is available with the Professional Edition of
OrbixWeb.

The Interface Repository (IFR) enables persistent storage of IDL modules, interfaces and
other IDL types. A program can browse through or list the contents of the Interface
Repository. A client can also add and remove definitions from the Interface Repository
using its IDL interface. Alternatively, given an object reference, an object’s type and full
details about that type can be determined at runtime by calling functions defined by the
Interface Repository. These facilities are important for tools such as the following:

* Browsers that allow you to determine the types that have been defined in
the system, and to list the details of chosen types.
® CASE tools that aid software design, writing and debugging.

* Application level code that uses the Dynamic Invocation Interface (DII) to
invoke on objects whose types were not known to it at compile time.
This code may need to determine the details of the object being invoked
to construct the request using the DII.

381

The Interface Repository

¢ Gateways that require runtime type information about the type of objects
being invoked.

OrbixWVeb provides the put i dl utility to enter definitions defined in an IDL file into the
Interface Repository. This utility provides the simplest and safest way to populate the
Interface Repository.

The Interface Repository also defines IDL operations to update its definitions and to enter
new definitions. However, while you can write client code that populates the IFR interface
database, this is complicated and requires a lot of consistency checking by the client
application. It is possible to use the update operations to define interfaces and types which
do not make sense. While the Interface Repository checks for such updates, it cannot
prevent all incorrect updates.

Configuring the Interface Repository

The Interface Repository stores its data in the file system. You can configure the path name
of its root directory using the | T_I NT_REP_PATHentry in the OrbixVVeb configuration
file; or by setting the | T_I NT_REP_PATH environment variable. The environment variable
takes precedence.

An application can find the path name of its Interface Repository store by calling the
following function on the _OCRBA. Or bi x object:

import | E |ona. Obi x\b. _CORBA

String s = _OCRBA O bi x. nyl nt RepPat h() ;

Runtime Information about IDL Definitions

The Interface Repository maintains full details of the IDL definitions that are passed to it. A
program can use the Interface Repository to browse through the set of modules and
interfaces, determining the name of each module, the name of each interface and the full
definition of that interface. Given a name of particular IDL definition, a program can find its
full definition.

382

Using the Interface Repository

For example, given any object reference a program can use the Interface Repository to
determine the following information about that interface:

® The module in which the interface was defined, if any.
* The interface name.
* The attributes of the interface, and their definitions.

® The operations of the interface, and their full definitions, including
parameter, context and exception definitions.

®* The base interfaces of the interface.

There is also a short example at the end of this chapter which demonstrates the use of the
Interface Repository.

Using the Interface Repository

The Interface Repository is located in the bi n directory of your OrbixVVeb installation.
The overall requirements for using the Interface Repository are as follows:

®* You must set the | T_| NT_REP_PATHin the OrbixWeb configuration file,
or the | T_| NT_REP_PATH environment variable; and the corresponding
directory must exist.

® The Interface Repository must be installed as explained in “Installing the
Interface Repository” on page 383.

® An application must import relevant Java classes.

Installing the Interface Repository

The Interface Repository is itself an OrbixVVeb server. The interfaces to its objects are
defined in IDL and it must be registered with the Implementation Repository. The Interface
Repository can then be activated by the OrbixVVeb daemon, or manually launched.

383

The Interface Repository

The executable file of the Interface Repository isi f r. This takes the following switches:

-L Immediately load data from the IFR directory. The default is to
load data on demand at runtime as it is required.

-V Print version information about the Interface Repository.

-h Print summary of switches.

-t <time> Specifies the timeout in seconds for the Interface Repository
server. The default is infinity.

You can explicitly run the Interface Repository executable as a background process. This
has the advantage that the Interface Repository can initialize itself before any other
processes need to use it, especially if you specify the - L switch.

The registration record in the Implementation Repository should be named “I FR” as
follows:

putit | FR <absolute path name and sw tches>
To terminate the Interface Repository process, use the ki | | i t utility. Alternatively you
can use the Windows Server Manager GUI utility or send the S| G NT signal (*C), as
appropriate.

Utilities for Accessing the Interface Repository

OrbixWVeb provides three utilities for accessing the IFR as follows:

e putidl
* readifr
* rmdl

Theputi dl utility is used to populate the IFR with definitions. r eadi f r is used to check
its contents, while r m dl removes definitions from the IFR.

putidl

Theputi dl utility is the basic means of populating the IFR. You can register the IDL
definitions of, for example, gri d. i dl as follows:

putidl grid.idl

384

Using the Interface Repository

The Interface Repository stores its information in the directory specified by

| T_I NT_REP_PATH The puti dl utility parses the definitions in thefile gri d. i dl and
integrates the definitions into the existing definitions of the repository. If the file gri d. i dl
uses definitions already registered in the IFR, the utility checks that the definitions are used
consistently before updating the repository. If gri d. i dl is modified, for example by adding
an extra attribute to the gr i d interface, it is possible to update the IFR by repeating the
command puti dl grid.idl.This causes old definitions to be overwritten by new
definitions. put i dl also checks for consistency.

While put i dl takes a file as an argument, the IFR itself is not file oriented. Once the file
grid.idl hasbeen registered using put i dl , the IFR has no knowledge of specifically
where those definitions came from. This means that the IDL file cannot be removed from
the IFR because the file, as such, does not exist within the IFR. To simplify the maintenance
of definitions within the IFR it is recommended that you use modules to group definitions in
a logical manner.

The syntax for the put i dl command is:

putid { [-?] | [-v] [-h <hostnane>] [-s <filenane for output>]
[-I<path>] <IDL file name> }

These switches have the following effects:

-? Lists the allowed switches for the puti dl tool.

-V Outputs version information for the puti dl tool.

-h Allows you to specify a host for the object.

-s Specifies that no output from the puti dl tool should be
displayed.

-1 Allows searches for included IDL files in alternative directories.

rmidl

Complementary to put i dl is ther m dI utility, used to depopulate the IFR. The r ni dI
utility removes individual definitions. It does not remove files. For example, to remove the
attribute wi dt h from the gri d interface use the following:

rmidl grid::lwidth

I. Note that the C++ scoping operator is used in IFR scoped names.

385

The Interface Repository

The use of modules is clearly advantageous when using r nmi dl . When a set of related
definitions have been grouped under module Modul eNane, you can easily remove these
definitions from the IFR by executingr m dl Modul eNarre.

rm dl is given a scoped name identifying the definition to be deleted from the repository as
its main argument. The general syntax of ther m dl command is:

rmdl {[-?] | [-h <hostnane>] <scoped-nane>}

where the scoped name has the format as described in or g. ong. GCRBA. ScopedNarnre.
For example, an attribute bal ance, defined in interface account , has the scoped name
account : : bal ance. The switches are as follows:

-? Lists the allowed switches for the rm dl tool.

-h Allows a host to be specified for the object.

Where a scoped name is given as the argument tor m dl you can remove the whole gri d
interface by using the command r m dl gri d. You you should only use the r m dl utility
to remove old or incorrect entries.

readifr

You can use ther eadi f r utility to read a definition from the IFR and print it on the
standard output. It also takes a scoped name as a argument and has the following general
form:

readifr {[-?] | [-h hostnane] [<scoped-nanme>]}

The switches are as follows:

-? Lists the allowed switches for the readi fr tool.

-h Allows for a host to be specified for the object.

-d Also lists derived interfaces.

-t Also list TypeCodes (for parameters, return types and members).
-C Does not prompt user for input. This is useful when readi fr is

invoked with no other argument.

You can invoke r eadi f r with no arguments, in which case the default is to output the
whole repository. Because the repository may be very large, you are prompted to confirm
this operation.

386

Structure of the Interface Repository Data

Structure of the Interface Repository Data

The data in the Interface Repository is best viewed as a set of CORBA objects where, for
each IDL type definition, one object is stored in the repository. Objects in the Interface
Repository support one of the following IDL interface types, reflecting the IDL constructs

they describe:
Reposi tory

Modul eDef

I nt er f aceDef

At tribut eDef

Qper at i onDef

Const ant Def

Except i onDef

St ruct Def

Uni onDef

The type of the repository itself, in which all of its
other objects are nested.

The interface for a Mbdul eDef definition. Each
module has a name and can contain definitions of
any type (except Reposi t ory).

The interface for an | nt er f aceDef definition. Each
interface has a name, a possible inheritance
declaration, and can contain definitions of type
attribute, operation, exception, typedef and
constant.

The interface for an At tri but eDef definition. Each
attribute has a name and a type, and a mode that
determines whether or not it is r eadonl y.

The interface for an Qper at i onDef definition. Each
operation has a name, a return value, a set of
parameters and, optionally, rai ses and cont ext
clauses.

The interface for a Const ant Def definition. Each
constant has a name, a type and a value.

The interface for an Except i onDef definition. Each
exception has a name and a set of member
definitions.

The interface for a St ruct Def definition. Each
struct has a name, and also holds the definition of
each of its members.

The interface for a Uni onDef definition. Each union
has a name, and also holds a discriminator type and
the definition of each of its members.

387

The Interface Repository

EmunDef

Al i asDef

PrimtiveDef

St ri ngDef

SequenceDef

Arr ayDef

The interface for an EnunDef definition. Each enum
has a name, and also holds its list of member
identifiers.

The interface for a t ypedef statement in IDL. Each
alias has a name and a type that it maps to.

The interface for primitive IDL types. Objects of
this type correspond to a type such as short and
| ong, and are pre-defined within the Interface
Repository.

The interface for a stri ng type. Each string type
records its bound. Objects of this type do not have
a name. If they have been defined using an IDL
typedef statement, they have an associated

Al i asDef object. Objects of this type correspond
to bounded strings.

The interface for a sequence type. Each sequence
type records its bound (a value of zero indicates an
unbounded sequence type) and its element type.
Objects of this type do not have a name. If they are
defined using an IDL t ypedef statement, they have
an associated Al i asDef object.

The interface for an array type. Each array type
records its length and its element type. Objects of
this type do not have a name. If they are defined
using an IDL t ypedef statement, they have an
associated Al i asDef object. Each ArrayDef object
represents one dimension. Multiple Ar r ayDef
objects are required to represent a multi-
dimensional array type.

In addition, the following abstract types (those without direct instances) are defined:

| Rbj ect

| DLType
Typedef Def
Cont ai ned
Cont ai ner

388

Structure of the Interface Repository Data

Understanding these types is the key to understanding how to use the Interface Repository.
Refer to “Abstract Interfaces in the Interface Repository” on page 391 for more details.

Any object of an IDL interface type can be interrogated to determine its definitions.
Interface types are organized in a logical manner according to the IDL interface. For
example, each | nt er f aceDef objectis said to contain objects representing the interface’s
constant, type, exceptions, attribute and operation definitions. The outermost object is of
type Reposi tory.

The containment relationships between the Interface Repository types are as follows:
A Reposi t ory can contain:

Const ant Def
Typedef Def
Except i onDef
I nt er f aceDef
Modul eDef

A Modul eDef can contain:

Const ant Def
Typedef Def
Except i onDef
Modul eDef

I nt er f aceDef

An I nt erfaceDef can contain:

Const ant Def
Typedef Def
Except i onDef
Attri but eDef
Qper at i onDef

Objects of type Modul eDef, | nt er f aceDef, Const ant Def , Except i onDef and
Typedef Def can appear outside of any module, directly within a repository.

Given an object of any of the Interface Repository types, you can determine full details of
that definition. For example, | nt er f aceDef defines operations or attributes to determine
an interface’s name, its inheritance hierarchy, and the description of each operation and
each attribute.

389

The Interface Repository

Simple Types
The Interface Repository defines the following simple IDL definitions:

/1 1D

/1 I'n modul e CCRBA

typedef string Identifier;
typedef string ScopedNang;
typedef string Repositoryld,;
typedef string VersionSpec;

enum DefinitionKi nd {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Modul e, dk_Qperation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Prinmtive, dk_String, dk_Sequence, dk_Array,
dk_Repository

b

Anldentifier isasimple name that identifies modules, interfaces, constants, typedefs,
exceptions, attributes and operations.

A ScopedNarre gives an entity’s name relative to a scope. A ScopedNarre that begins with
“ 1 ”is an absolute scoped name. This is a name that uniquely identifies an entity within a
repository. An example is : : f i nance: : account : : makeW t hdr aval . A ScopedNane
that does not begin with *“: : ”is a relative scoped name. This is a name that identifies an entity
relative to some other entity. An example is rakeW t hdr anal within the entity with the
absolute scoped name : : f i nance: : account.

A Reposi t oryl d is a string that uniquely identifies an object within a repository, or
globally within a set of repositories if more than one is being used. An object can be a
constant, exception, attribute, operation, structure, union, enumeration, alias, interface or
module.

Type Ver si onSpec is used to indicate the version number of an Interface Repository
object; that is, to allow the Interface Repository to distinguish two or more versions of a
definition, each with the same name but with details that evolve over time. However, the
Interface Repository is not required to support such versioning: it is not required to store
more than one definition with any given name. The OrbixVVeb Interface Repository
currently does not support versioning,

390

Abstract Interfaces in the Interface Repository

Each Interface Repository object has an attribute (called def _ki nd) of type

Defi ni tionkKi nd that records the kind of the Interface Repository object. For example,
the def _ki nd attribute ofani nt er f aceDef object will be dk_i nt er f ace. The
enumerate constants dk_none and dk_al | have special meanings when searching for
objects in a repository.

Abstract Interfaces in the Interface Repository

There are five abstract interfaces defined for the Interface Repository. These are as

follows:
* | RMpj ect
e |DLType

* Typedef Def
* (Contai ned

* (Contai ner

These are of key importance in understanding the basic structure of the Interface
Repository and provide basic functionality for each of the concrete interface types.

Class Hierarchy and Abstract Base Interfaces

The Interface Repository defines five abstract base interfaces. These are interfaces that
cannot have direct instances, and are used to define the other Interface Repository types:

| R(pj ect This is the base interface of all Interface
Repository objects. Its only attribute defines the
kind of an Interface Repository object.

| DLType All Interface Repository interfaces that hold the
definition of a type directly or indirectly inherit
from this interface.

Typedef Def This is the base interface for all Interface
Repository types that can have names (except
interfaces). These include structures, unions,
enumerations and aliases (results of IDL t ypedef
definitions).

391

The Interface Repository

Cont ai ned Many Interface Repository objects can be
contained within others and these all inherit from
Cont ai ned.

Cont ai ner Some Interface Repository interfaces, such as

Reposi t ory, Modul eDef and I nt er f aceDef, can
contain other Interface Repository objects. These
interfaces inherit from Cont ai ner.

The interface hierarchy for all of the Interface Repository interfaces is shown in Figure 33.

Interface IRObject

Interface | RCbj ect is defined as follows:

/1 1 DL
/1 1n nodul e CORBA.
interface | Rbject {
/] read interface
readonly attribute DefinitionKind def_kind;

/Il wite interface
voi d destroy ();

b
This is the base interface of all Interface Repository types. The attribute def _ki nd provides
a simple way of determining the type of an Interface Repository object. Other than defining
an attribute and operation, and acting as the base interface of other interfaces, | RObj ect
plays no further role in the Interface Repository.

Modifying Objects of Type IRObject

You can delete an Interface Repository object by callingits dest r oy() operation. This also
deletes any objects contained in the target object. It is an error to calldest r oy() ona
RepositoryoraPrimtiveDef object

392

Abstract Interfaces in the Interface Repository

/1 Abstract

IRObject |readonly attribute Definitionkind def_kind

/1 Abstract

IDL Type readonly attribute TypeCode type;

/1 Abstract /'l Abstract
Contained |attribute identifier name... Container
/'l Abstract
TypedefDef
I// Base interface
/1 of all named
I// types (except
I// interfaces)
| Repository
ModuleDef |
I
I
ISet of named types. Set of unnamed types.
Const ant Def St ruct Def I nt er f aceDef PrimtiveDef
Except i onDef Uni onDef St ri ngDef
Attri but eDef EnunDef SequenceDef
Qper at i onDef Al i asDef Ar r ay Def

Figure 33: Hierarchy for Interface Repository Interfaces

393

The Interface Repository

Containment in the Interface Repository

Definitions in the IDL language have a nested structure. For example a module can contain
definitions of interfaces and the interfaces themselves can contain definitions of attributes,
operations and many others. Consider the following IDL fragment:

/1 1DL

nodul e finance {
interface account {
readonly attribute float bal ance;
voi d nakeLodgenent (in float anount);
voi d nakeWt hdrawal (in fl oat anount);
H
interface bank {
account newAccount ();
b
H
In this example the module f i nance (represented in the Interface Repository as a
Modul eDef object) contains two definitions: interface bank and interface account (each
represented by an individual | nt er f aceDef object). These two interfaces contain further
definitions. For example, the interface account contains a single attribute and two
operations.

Since the notion of containment is basic to the structure of the IDL definitions, the Interface
Repository specification abstracts the properties of containment. For example, an Interface
Repository object (such as a Modul eDef or | nt er f aceDef object) that can contain
further definitions needs a function to list its contents. Similarly, an Interface Repository
object that can be contained within another Interface Repository object may want to know
the identity of the object it is contained in. This leads to the definition of two abstract base
interfaces, Cont ai ner and Cont ai ned, which group together common operations and
attributes. Most of the objects in the repository are derived from one or both of

Cont ai ner or Cont ai ned. The exceptions to this are instances of Pri m t i veDef,

St ri ngDef, SequenceDef and ArrayDef.

You can access much of the structure of the Interface Repository by using the operations
and attributes of Cont ai ner and Cont ai ned. Understanding containment is the key to
understanding most Interface Repository functionality.

394

Containment in the Interface Repository

There are three different kinds of interface which use containment. There are interfaces
that inherit only from Cont ai ner, interfaces that inherit from both Cont ai ner and
Cont ai ned, and interfaces that inherit only from Cont ai ned. These are as follows:

base Cont ai ner Reposi tory
base Cont ai ner and Cont ai ned Mdul eDef, | nt er f aceDef

base Cont ai ned Const ant Def, Except i onDef,
At tri but eDef, Qperati onDef,
St ruct Def, Uni onDef, Enunbef,
Al i asDef, Typedef Def

The last interface Typedef Def is exceptional because it is an abstract interface.

The Reposi t ory itself is the only interface that can be a pure Cont ai ner . There is only
one Reposi t or y object per Interface Repository server. This has all the other definitions
nested within it.

Objects of type Modul eDef and | nt er f aceDef can create additional layers of nesting,
and therefore these derive from both Cont ai ner and Cont ai ned.

The remaining types of object have a simpler structure and derive from Cont ai ned only.

The Contained Interface

This section is limited to a discussion of the basic attributes and operations of interface
Cont ai ned. Refer to the OrbixWeb Programmer’s Reference for a full description of
this interface. An outline of the Cont ai ned interface is as follows:

/11D
typedef Identifier string;

interface Contained : | RObject {
/1 Inconplete list of operations and attributes...

attribute Identifier nane;
readonly attribute Container defined_in;

struct Description {
Defi ni tionkKi nd ki nd;

395

The Interface Repository

any val ue;
H
Descri ption describe();

=

A basic attribute of any Cont ai ned object is its nane. The attribute nane has the type
Identifier whichisatypedef fora string. For example, the module f i nance is
represented in the repository by a Modul eDef object. The inherited Modul eDef : : narre
attribute resolves to the string “f i nance”. Similarly, an Qper at i onDef object
representing makeW t hdr awal has an Qper at i onDef : : nane which resolves to
“nmakeW t hdr awnal . The Reposi t or y object itself has no nane because it does not
inherit from Cont ai ned.

Another basic attribute is Cont ai ned: : def i ned_i n, which returns an object reference
to the Cont ai ner in which the object is defined. This attribute is all that is needed to
express the idea of containment for a Cont ai ned object. Since a given definition appears
only once in IDL, the attribute def i ned_i n returns a uniquely-defined Cont ai ner
reference. However, because of the possibility of inheritance between interfaces, a given
object can be contained in more than one interface. For example, interface

current Account is derived from interface account as follows:

//1DL

/1 in nodul e finance

interface currentAccount : account {
readonly attribute overDraftLinit;

}s

Here the attribute bal ance is contained in interface account and also contained in
interface cur r ent Account . However, querying At t ri but eDef : : def i ned_i n for the
bal ance attribute always returns an object for account . This is because the definition of
attribute bal ance appears in the base interface account .

The operation Cont ai ned: : descri be() returns a generic Descr i pt i on structure.
This provides access to details such as the parameters and return types associated with a
specified object.

396

Containment in the Interface Repository

The Container Interface

Some of the basic definitions for interface Cont ai ner are as follows:

/11DL

typedef sequence<Cont ai ned> Cont ai nedSeq;

enum DefinitionKind {dk_name, dk_all, dk_Attribute,
dk_Constant, dk_Exception, dk_Interface, dk_Mdul e,
dk_Qperation, dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Reposi tory};

interface Container : | RMject {
/1 Inconplete list of operations and attributes

Cont ai nedSeq cont ent s(
inDefinitionKind limt_type,
i n bool ean excl ude_i nherited);

.

contents()

The cont ent s() operation is the most basic operation associated with a Cont ai ner .
This returns a sequence of Cont ai ned objects belonging to the Cont ai ner . Using

cont ent s you can browse a Cont ai ner and descend nested layers of containment. Once
the appropriate Cont ai ned object is found, you can find the details of its definition by
invoking Cont ai ned: : descri be() to obtain a detailed Descri pt i on of the object.
Using Cont ai ner : : cont ent s() coupled with Cont ai ned: : descri be() providesa
basic way of browsing the Interface Repository.

However, there are other approaches to browsing the Interface Repository which may be
more efficient. These more sophisticated search operations are discussed in “Retrieving
Information from the Interface Repository” on page 405.

The arguments to the cont ent s() operation make use of Def i ni ti onKi nd. This is an
enumtype which is used to tag the different kinds of repository objects. In addition to the
interfaces for concrete repository objects there are three additional tags:

dk_none This tag matches no repository object.

dk_al | This tag matches any repository object.

397

The Interface Repository

dk_Typedef This tag matches any one of dk_Al i as, dk_Struct,
dk_Uni on, dk_Enum

The parameters to cont ent s are as follows:

limt_type A tag of type Defi ni ti onKi nd which can be used to
limit the list of contents to certain kinds of repository
objects. A value of dk_al | lists all objects.

exclude_i nherited This argument is only relevant if the Cont ai ner
happens to be an | nt er f aceDef object. In this case, it
determines whether or not inherited definitions
should be included in the contents listing. t r ue
indicates they should be excluded, while f al se
indicates they should be included.

The value returned from the cont ent s() operation is a sequence of Cont ai ned objects
which match the given criteria.

Containment Descriptions

The containment framework reveals which definitions are made within a specific interface
or module. However, each interface repository object, besides being a Cont ai ned or
Cont ai ner, also contains the details of an IDL definition. Calling descr i be() ona

Cont ai ned object returns a Descr i pt i on struct holding these details.

Both interfaces Cont ai ned and Cont ai ner define their own version ofa Descri pti on
struct. These are, respectively, Cont ai ned: : Descri pti on and

Cont ai ner: : Descri pti on. The structure of Cont ai ner : : Descri pt i on differs
slightly from that of Cont ai ned: : Descri pt i on, as shown in “The Contained Interface”
on page 395. Consider the following fragment of the IDL interface for Cont ai ner :

//1DL
interface Container : |RObject {
/'l Inconplete listing of interface

struct Description {
Cont ai ned cont ai ned_obj ect ;
DefinitionKi nd ki nd;
any val ue;

}s

398

Containment in the Interface Repository

typedef sequence<Descri ption> Descri ptionSeq;
Descri ptionSeq descri be_content s(

in DefinitionKind limt_type,

i n bool ean exclude_inherited,

in long max_returned objects);

b

Cont ai ner: : Descri pti on includes the extra member cont ai ned_obj ect .

describe_ contents()

The Cont ai ner: : Descri pti on is used by the operation descri be_cont ent s().
This operation effectively combines calling cont ent s() on the Cont ai ner with calling
descri be() on each of the returned objects. The parameters to

descri be_cont ent s() are as follows:

limt_type A tag of type Defi ni ti onKi nd that can be used
to limit the list of contents to certain kinds of
repository objects. A value of dk_al | lists all
objects.

excl ude_i nherited This parameter is only relevant if the Cont ai ner
is an | nt er f aceDef object. In this case, it
determines whether inherited definitions are
included in the contents listing. t r ue indicates
they are excluded, while f al se indicates they are
included.

max_returned_objects Specifies the maximum length of the sequence
that is returned.

Thedescri be_cont ent s() operation returns a sequence of Descri pt i on structs,
one for each of the Cont ai ned objects found.

Interface Description Structures

TheDescri pti on struct itself serves as a wrapper for a detailed description specific to the
repository object. For example, the interface Qper at i onDef inherits the
Qper at i onDef : : descri be() operation.

399

The Interface Repository

Associated with the Qper at i onDef interface is the struct Qper at i onDescri pti on.
This has the following structure:

struct OperationDescription {
Identifier nane;
Repositoryld id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode result;
Oper ati onMbde node;
Cont ext | dSeq cont exts;
Par Descri pti onSeq par anet ers;
ExcDescri pti onSeq excepti ons;

}s

This st ruct is not returned directly by the operation Qper at i onDef : : descri be().
Initially, it returns a Cont ai ned: : Descr i pti on wrapper. The first layer includes
Descri ption: : ki nd, which in this case equals dk_Qper at i on. The second layer
includes Descr i pti on: : val ue, which is an any. This is the substance of the

Descri pti on. Inside the any thereisa TypeCode _t c_Qperati onDescri pti onand
the value of the any is the per at i onDescr i pti on structure itself.

The structure of Cper at i onDescri pti on is as follows:

name

defined_in

ver si on

400

The nare of the operation as it appears in the definition.
For example, the operation account : : makeW t hdr aval
has the name “nakeWt hdr aval ”.

Theidis a Reposi toryl d for the Qper ati onDef object.
A Reposi toryl d is a string that uniquely identifies an
object within a repository, or globally within a set of
repositories if more than one is being used.

The member def i ned_i n gives the Reposi t or yl d for
the parent Cont ai ner of the Qper at i onDef object.

The ver si on of type Ver si onSpec is used to indicate the
version number of an Interface Repository object. This
allows the Interface Repository to distinguish two or
more versions of a definition with the same name, but
whose details evolve over time. The OrbixWeb Interface
Repository currently does not support versioning.

Containment in the Interface Repository

resul t The TypeCode of the result returned by the defined
operation.

node The node specifies whether the operation is normal
(CP_NCRVAL) or onevay (CP_CNEWAY).

contexts The member cont ext s is of type Cont ext | dSeq which is

a typedef for a sequence of strings. The sequence lists the
context identifiers specified in the context clause of the
operation.

par anet ers The member par anet er s is a sequence of
Par anet er Descri pti on structs giving details of each
parameter to the operation.

excepti ons The member except i ons is a sequence of
Except i onDescri pti on structures giving details of the
exceptions specified in the r ai ses clause of the
operation.

The Qper at i onDescr i pt i on provides all of the information present in the original
definition of the operation. The CORBA specification provides for more than one way of
accessing this information. The interface Qper at i onDef also defines a number of
attributes allowing direct access to the members of Oper at i onDescr i pt i on. Frequently,
it is more convenient to obtain the complete description in a single step, which is why the
Qper ati onDescri pti on structure is provided.

Only those interfaces that inherit from Cont ai ned have an associated description
structure. Of those which do inherit from Cont ai ned, only Enunef , Uni onDef,
Al i asDef and Struct Def have a unique associated description structure called
TypeDescri ption.

Theinterface | nt er f aceDef is a special case. It has an extra description structure called
Ful I I nt er f aceDescri pti on. This structure is provided because of the special
importance of | nt er f aceDef objects. It enables a full description of the interface in one
step. The description is given as the return value of the special operation

I nterfaceDef:: describe_interface().Further details are given in the OrbixWeb
Programmer’s Reference.

401

The Interface Repository

Type Interfaces in the Interface Repository

A number of repository interfaces are used to represent definitions of types in the Interface
Repository, as follows:

® Struct Def
® Uni onDef
® Enunbef

* AiasDef

® InterfaceDef
* PrimtiveDef
® StringDef

® SequenceDef
* ArrayDef

This property is independent of, and overlaps with, the properties of containment. It is
useful to represent this property by inheriting these objects from an abstract base interface
called | DLType.

This is defined as follows:

/1 1DL

/1 1n nmodul e CORBA.

interface I DLType : | RObject {
readonly attribute TypeCode type;

b
This base interface defines a single attribute giving the TypeCode of the defined type. This is
also useful for referring to the type interfaces collectively.

The type interfaces can be classified as either named or unnamed types.

Named Types

The named type interfaces are as follows:

® Struct Def
® Uni onDef

402

Type Interfaces in the Interface Repository

* Enunbef
* AiasDef
* InterfaceDef
For example, consider the following IDL definition:

/1 1DL
enum UD {UP, DOM};

This effectively defines a new type UD which for use wherever an ordinary type might
appear. It is represented by an EnunDef object. More obviously, the IDL definition

typedef string account Nare;
gives rise to the new type account Nane.

Both these interfaces are examples of named types. This means that their definitions give
rise to a new type identifier, such as “UD’ or “account Nane” which can be reused
throughout the IDL file.

The named types St r uct Def, Uni onDef , EnunDef and Al i asDef can be grouped
together by deriving from the abstract base interface Typedef Def .

Note: It is important to note that interface Typedef Def does not directly
represent an IDL t ypedef . The interface Al i asDef, which derives from
Typedef Def , is the interface representing an IDL t ypedef .

The abstract interface Typedef Def is defined as follows:

/1 1DL
/1 I'n nmodul e CORBA.
interface TypedefDef : Contained, |DLType {

b
The definition of Typedef Def is trivial and causes the four named interfaces to derive from
Cont ai ned in addition to | DLType. The interfaces inherit the attribute

Cont ai ned: : nane, which gives the name of the type, and the operation
Gont ai ned: : descri be().

For example the definition of enumUD gives rise to an EnunDef object that has an
EnunDef : : nane of “UD". Calling EnunDef : : descri be() gives access to a description
of type TypeDescr i pti on. The t ype member of the TypeDescr i pt i on gives the

403

The Interface Repository

TypeCode of the enum The Typedef Def interfaces all share the same description
structure TypeDescr i pti on.

The interface | nt er f aceDef is also a named type but it is a special case. Its inheritance is
given as follows:

/1 1DL

/1 I'n nmodul e CORBA.

interface InterfaceDef : Contained, Container,

| DLType {

H
It has three base interfaces. Since you can use IDL object references in just the same way as
any ordinary type the interface | nt ef aceDef inherits from | DLType. For example, the

definiioni nt er f ace account {. ..} gvesrisetoan| nt er f aceDef object. This
object has an | nt er f aceDef : : nane thatis account , and this name can be reused as a

type.

Unnamed Types

The unnamed type interfaces are as follows:
® PrinmtiveDef
® StringDef
® SequenceDef
* ArrayDef

These interfaces are not strictly necessary but offer an approach to querying the types in the
repository that operates in parallel to the use of TypeCodes.

There are two independent approaches to querying types in the repository. The traditional
approach is to provide TypeCode attributes whenever necessary so that all the types
defined in the repository can be determined. However the Interface Repository also
provides a complete object-oriented approach for querying the types. Consider the
following example which allows you to determine the return type of get LongAddr ess() :

interface Mailer {
sequence<string> get LongAddress();

b

404

Retrieving Information from the Interface
Repository

The definition of get LongAddr ess() maps to an object of type per at i onDef in the
repository. One way of querying the return type is to call Qoer at i onDef : : r esul t _def
which returns an object reference of type | DLType. You can determine the type of object
returned by r esul t _def by obtaining the attribute Qper at i onDef : : def _ki nd
inherited from | RObj ect .

In this example, the object reference is of type SequenceDef corresponding to the
sequences<st r i ng> return type. To query the returned SequenceDef object further,
obtain the attribute SequenceDef : : el enent _t ype_def . This returnsan | DLType
whichisaPrim tiveDef object ThisPri m tiveDef object, in turn, has an attribute
PrimtiveDef::kind that has a value of pk_st ri ng. At this stage the return type is
fully determined to be a sequence<st ri ng>.

The alternative approach is to obtain the TypeCode that retrieves the complete type
information in a single step at the outset. For example, the Oper at i onDef object
associated with get LongAddr ess() has an attribute Qper at i onDef : : resul t that
gives the TypeCode of sequence<st ri ng>.

Retrieving Information from the Interface
Repository
There are three ways to retrieve information from the Interface Repository:

I. Given an object reference, you can find its corresponding | nt er f aceDef
object. You can determine from this all of the details of the object’s
interface definition.

2. Obtain an object reference to a Reposi t ory, the full contents can then
be navigated.

3. Given a Reposi toryl d, a reference to the corresponding object in the
Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three subsections.

org.omg.CORBA.Object._get_interface()

Given an object reference to any CORBA object, for example, obj Var , you can acquire an
object reference to an | nt er f aceDef object as follows:

i mport org.ong. CORBA. I nt er f aceDef;
InterfaceDef ifVar = objVar._get_interface();

405

The Interface Repository

The member function _get _i nt erface() returns a reference to an object within the
Interface Repository. See the example in “Retrieving Information from the Interface
Repository” on page 405 for an illustration of how to use _get _i nterf ace().

For _get _i nterface() towork correctly the program must be set up to use the
Interface Repository as described in “Using the Interface Repository” on page 383.

Browsing or Listing a Repository

When you obtain a reference to a Reposi t or y object, you can then browse or list the
contents of that repository. There are two ways to obtain such an object reference as
follows:

® Usingresol ve_initial _references()
® Using bi nd()
Youcan call theresol ve_i ni ti al _ref erences() operation on the ORB
(or g. ong. OCRBA. CRB), passing the string “| nt er f aceReposi t or y” as a parameter.

This returns an object reference of type or g. ong. GORBA. (bj ect . You can then narrow
this object reference to a or g. onmy. GORBA. Reposi t or y reference.

Alternatively, you can use the OrbixVVeb bi nd() function, as follows:

i mport org.ong. CORBA. Repository;
i mport org.ong. CORBA. Reposi t or yHel per;
Repository repVar =

Reposi toryHel per.bind(":1FR","");

The operations which enable you to browse the Reposi t or y are provided by the
interface or g. ong. CORBA. Cont ai ner . There are four provided as follows:

e contents()

® describe_contents()
® | ookup()

® | ookup_narne()

The last two are particularly useful as they provide a facility for searching the Reposi t ory.
The IDL for the search operations is:

/1 1DL
/1 I n nmodul e CORBA.
interface Container : |RObject {

406

Retrieving Information from the Interface
Repository

Cont ai ned | ookup(in ScopedNane search_nane);

Cont ai nedSeq | ookup_nang(
in ldentifier search_naneg,
in long |levels_to_search,
in DefinitionKind Iimt_type,
i n bool ean exclude_i nherited);

b

The operation | ookup() provides a simple search facility based on a ScopedNane. For
example, consider the case where Cont ai ner isa Modul eDef object representing

f i nance. Passing the string “account::balance” to ModuleDef.lookup() then
retrieves a reference to an AttributeDef object representing balance . This is an
example of using a relative ScopedName. However, lookup() is not restricted to
searching a specific Container . By passing an absolute ScopedName as an argument it is
possible to search the whole Repository given any Container as a starting point. For
example, given the InterfaceDef ~ for account you can pass the string
“finance::bank::newAccount’ to InterfaceDef.lookup to find the
newAccount() operation lying within the scope of the interface bank .

The operation lookup_name() provides a different approach to searching a Container
Instead of the ScopedName it specifies only a simple name to search for within the
Container . Because more than one match is possible with a given simple name, the
lookup() operation can return a sequence of Contained objects. The parameters to
lookup_name() are as follows:

search_name Specifies the simple name of the object to search
for. The OrbixWeb implementation also allows
the use of “** which matches any simple name.

levels_to_search Specifies the number of levels of nesting to be
included in the search. If set to 1, the search is
restricted to the current object. If set to -1, the
search is unrestricted.

407

The Interface Repository

limt_type Limits the objects which are returned. If it is set
to dk_al I, all objects are returned. If set to the
Def i ni ti onki nd for a particular Interface
Repository kind, only objects of that kind are
returned. For example, if operations are of
interest, you can set | i mt_type to
dk_operat i on.

exclude_inherited If set to true, inherited objects are not
returned. If set to f al se, all objects, including
those inherited, are returned.

Note: You cannot use | ookup_nane() to search outside of the given
Cont ai ner.

Finding an Object Using its Repository ID
You can pass a Repository ID (of type or g. ong. CORBA. Reposi t or yI d) as a parameter
to the | ookup_i d() operation of an object reference for a repository (of type

or g. ong. CORBA. Reposi t or y). This returns a reference to an object of type
Cont ai ned, which you can narrow to the correct object reference type.

Using the Interface Repository with the Dynamic
Invocation Interface

When the Interface Repository is used in conjunction with the Dynamic Invocation
Interface (DIl) it is frequently necessary to retrieve type information for the parameters of
an operation.

The function or g. ong. CORBA. CRB. creat e_operati on_| i st () isa convenient
function that obtains the types of all the parameters in a single step. Refer to the AP
Reference in the OrbixWeb Programmer’s Reference for more details.

408

Example of Using the Interface Repository

Example of Using the Interface Repository

This section presents some sample code that uses the Interface Repository.

The following code prints the list of operation names and attribute names defined on the
interface of a given object:

i nport org.ony. CORBA. *;
i nport org. ong. CORBA CRB;
i nport org. omy. OORBA | nt er f aceDef Package. *;
try {
/1
/1 Bind to the Interface Repository server
/1
Repository ifr_repository = RepositoryHel per.bind(":IFR");
/1
/1l Get the interface definition
/1
Cont ai ned contained = ifr_repository.|ookup("grid");
I nterfaceDef interfaceDef =
I nt er f aceDef Hel per. narrow (contained);
/1l Get a full interface description
Ful | I nterfaceDescription description =
i nterfaceDef.describe_interface();
/1 Now print out the operation nanes:
Systemout. println "The operation names are: ";
for(int i =0; i < description.operations.length; i++)
Systemout.println("-> " + description.operations[i].nane

);
/1 Now print out the attribute nanes:
Systemout.println "The attribute names are: ";
for(int i =0; i < description. attributes.length; i++)
Systemout.println("->" + description.attributes[i].nane
);
}

catch (Systenbxception ex){
/1 Handl e exceptions

}

You can extend the example by finding the Qper at i onDef object for an operation called
doi t. You can use the Cont ai ner . | ookup_narne() as follows:

Gont ai ned[] opSeq = nul | ;
Qper ati onDef opRef = null;

409

The Interface Repository

try
{

i nt erfaceDef. | ookup_nare
("doit", 1, DefinitionkKi nd.dk_Qperation, 0);
if(opSeqg.length =1){
Systemout. println
("Incorrect |ookup name for | ookup_name() ");
Systemexit(1);

}
11

/1 Narrowthe result to be an Qperati onDef
/1
opRef = (perati onDef Hel per. narrow(opSeq[0]);

catch (SystenException ex)

{
/1 Handl e Excepti ons

}

Repository IDs

Each Interface Repository object describing an IDL definition has a Repository ID. A
Repository ID globally identifies an IDL module, interface, constant, typedef, exception,
attribute or operation definition. A Repository ID is simply a string identifying the IDL
definition.

Three formats for Repository IDs are defined by CORBA. However Repository IDs are
not, in general, required to be in one of these formats. The formats defined by CORBA are
described as follows.

OMG IDL Format

This format is derived from the IDL definition’s scoped name. It contains three components
which are separated by colons (%) as follows:

IDL:<identifier/identifier/identifier/
...>.<version nunber>

The first component identifies the Repository ID format as the OMG IDL format.

410

Example of Using the Interface Repository

The second component consists of a list of identifiers. These identifiers are derived from the

scoped name by substituting /" instead of “::

The third component contains a version number of the format:
<major>.<minor>

Consider the following IDL definitions:

// 1DL
interface account {
attribute float balance;
void makeLodgement(in float amount);

k

An IDL format Repository ID for the attribute account::balance based on these
definitions is:

IDL:account/balance:1.0

This is the format of the Repository ID used by default in OrbixVWVeb.

DCE UUID Format
The DCE UUID format is:

DCE:<UUID>:<minor version number>

LOCAL Format

Local format IDs are intended to be used locally within an Interface Repository and are not
intended to be known outside that repository. They have the format:

LOCAL:<ID>

Local format Repository IDs can be useful in a development environment as a way to avoid
conflicts with Repository IDs using other formats.

411

The Interface Repository

Pragma Directives

You can control Repository IDs using pragma directives in an IDL source file. These
pragmas allow you control over the format of a Repository ID for IDL definitions.

At present OrbixVVeb supports the use of a pragma that allows you to set the version
number of the Repository ID. In the present implementation of the Interface Repository
you should only use one version number per Interface Repository.

Version Pragma

You can specify a version number for an IDL definition Repository ID (IDL format) using a
version pragma. The version pragma directive takes the format:

#pragma versi on <nane> <mngj or >. <m nor >

The <narre> can be a fully scoped name or an identifier whose scope is interpreted relative
to the scope in which the pragma directive is included.

If you do not specify a version pragma for an IDL definition, the version number defaults to
1. 0. Thus the following definitions:

/1 1DL

nodul e finance {
#pragma versi on account 2.5
interface account {

};
}s

yield the following Repository IDs:

| DL: finance: 1.0
and
| DL: fi nance/ account: 2.5

It is important to realise that #pr agna ver si on does not only affect Repository IDs. If
#pr agna is used to set the version of an interface, the version number is also embedded in
the stringified object reference. A client must bind to a server object whose interface has a
matching version number-. If the IDL interface on the server side has no version, bi nd()
does not require matching versions.

412

Part VI

Advanced OrbixVVeb
Programming

Filters

22

OrbixWeb allows you to specify that additional code be executed
before or dfter the normal code of an operation or attribute. This
support is provided by allowing applications to create filters, which
can perform security checks, provide debugging traps or information,
maintain an audit trail, and so on.

There are two forms of filters in OrbixVVeb:
® Per-process filters.
® Per-object filters.

Per-process filters monitor all operation and attribute calls leaving or entering a client’s or
server’s address space, irrespective of the target object. Per-object filters apply to individual
objects. Both of these filter types are illustrated in Figure 34 on page 416. This chapter
briefly introduces each filter type, and then describes each in detail.

415

Filters

Client or Server Process

/ Objects \

per -object filter
attached to object 02

chain of per-process
KD_’D D filters /

Figure 34: Per-Process and Per-Object Filtering

Multiple ORB Support

All parameterized calls to CRB. i ni t () create a separate ORB. Each newly-created ORB
instance is completely independent; for example, in terms of its configuration and listener
ports. OrbixVWVeb allows you to associate filters with a particular ORB instance.

By default, OrbixVVeb associates filters with the first fully-functional ORB created in a
process. To associate a filter with a particular ORB instance, use the following constructor
for your derived class:

protected Filter(org.ong. CORBA CRB orb, bool ean installne);

Refer to the OrbixWeb Programmer’s Reference for details of
org. ong. OCRBA CRB. i ni t () andclass| E. 1 ona. O bi x\W¢b. Features. Fil ter.

OrbixWVeb also provides constructors that associate a Thr eadFi | t er or an

Aut henti cati onFi | t er with a particular ORB instance. Refer to package

| E. 1 ona. O bi xV¢b. Feat ur es in the OrbixWeb Programmer’s Reference for more
details.

416

Introduction to Per-Process Filters

Introduction to Per-Process Filters

Per-process filters monitor all incoming and outgoing operation and attribute requests to
and from an address space. Each process can have a chain of such filters, with each element
of the chain performing its own actions. You can add a new element to the chain by
performing the following two steps:

* Define a class that inherits from class Fi | t er (defined in package
| E I ona. O bi xV¢b. Feat ur es).

* Create a single instance of the new class.

Pre-Marshalling Filter Points

Each filter of the chain can monitor ten individual points during the transmission and
reception of an operation or attribute request, as shown in Figure 35 on page 419. The four
most commonly-used filter points are:

® out Request PreMar shal (in the caller’s address space).

This filter monitors the point prior to the transmission of an operation or
attribute request from the filter’s address space to any object in another
address space. Specifically, it monitors the point before the operation’s
parameters are added to the request packet.

* inRequest PreMarshal (in the target object’s address space).

This filter monitors the point after an operation or attribute request has
arrived at the filter’s address space, but before it has been processed.
Specifically, it monitors the point before the operation has been sent to
the target object and before the operation’s parameters have been
removed from the request packet.

* out Repl yPreMarshal (in the target object’s address space).

This filter monitors the point after the operation or attribute request has
been processed by the target object, but before the result has been
transmitted to the caller’s address space. Specifically, it monitors the
point before an operation’s out parameters and return value have been
added to the reply packet.

417

Filters

i nRepl yPreMar shal (in the caller’s address space).

This filter monitors the point after the result of an operation or attribute
request has arrived at the filter’s address space, but before the result has
been processed. Specifically, it monitors the point before an operation’s
out parameters and return value have been removed from the reply
packet.

Post-Marshalling Filter Points

These four monitor points are as follows:

out Request Post Mar shal (in the caller’s address space).

This filter operates the same way as out Request Pr eMar shal , but after
the operation’s parameters have been added to the request packet.

i nRequest Post Mar shal (in the target object’s address space).

This filter operates the same way as i nRequest Pr eMar shal , but after the
operation’s parameters have been removed from the request packet.

out Repl yPost Mar shal (in the target object’s address space).

This filter operates the same way as out Repl yPr eMar shal , but after the
operation’s out parameters and return value have been added to the
reply packet.

i nRepl yPost Mar shal (in the caller’s address space).

This filter operates the same way as i nRepl yPr eMar shal , but after the
operation’s out parameters and return value have been removed from
the reply packet.

Failure Points

Two additional monitor points deal with exceptional conditions:

418

out Repl yFai | ur e (in the target object’s address space).

This filter is called if the target object raises an exception, or if any
preceding filter point (‘in request’ or ‘out reply’) raises an exception or
uses its return value to indicate that the call should not be processed any
further.

Introduction to Per-Process Filters

® inRepl yFail ure (in the caller’s address space).

This filter is called if the target object raises an exception or if any
preceding filter point (‘out request’, ‘in request’, ‘out reply’ or ‘in reply’)
raises an exception, or uses its return value to indicate that the call
should not be processed any further.

Once an exception is raised or a filter point uses its return value to indicate that the call
should not be processed further, no further monitor points are called (with the exception
of the two failure monitor points). If this occurs in the caller’s address space,

I nRepl yFai | ur e is called. If it occurs in the target object’s address space,

out Repl yFai | ure andi nRepl yFai | ur e are both called.

All per-process monitor points (eight marshalling points and two failure points) are shown

in Figure 35 on page 419.

~

N

calling
object

Client \ f Server \
Process Process
outRequestPreM arshal request inRequestPostMarshal
o —1 @ ® o>
outRequestPostMarshal inRequestPreMarshal
objec
inReplyPostMarshal reply outReplyPostMarshal
- & —1@ L 4 L L
inReplyFailure inReplyPreMarshal outReplyFailure outReplyPreMarshal

J

N J

Figure 35: Per-Process Monitor Points

419

Filters

A particular filter on the per-process filter chain may perform actions for any number of
these filter points, although it is common to handle four filter points, for example:

® out Request Pr eMar shal
® inRequest PreMarshal
® out Repl yPr eMar shal

® inRepl yPreMarshal

Along with monitoring incoming and outgoing requests, a filter on the client side and a filter
on the server side can cooperate to pass data between them, in addition to the normal
parameters of an operation (or attribute) or call. For example, you can use the ‘out’ filter
points of a filter in the client to insert extra data into the request package; for example, using
out Request Pr eMar shal . You can use the ‘in’ filter points of a filter in the server to
extract this data, for example, using i nRequest Pr eMar shal .

Each filter point must indicate how the handling of the request should be continued once
the filter point itself has completed. Specifically, a filter point can determine whether or not
OrbixWWeb should continue to process the request or return an exception to the caller.

Note: Per-process filters are not informed of calls between collocated objects.
This is because the filters are applied only when a call leaves or arrives at
an address space.

You can use a special form of per-process filter to pass authentication information from a
client to a server. This type of filter is called an authentication filter. This supports the
verification of the identity of a caller, a fundamental requirement for security. Refer to
“Defining an Authentication Filter”” on page 432 for more details.

420

Introduction to Per-Object Filters

Introduction to Per-Object Filters

Per-object filters are associated with a particular object, and not with all objects in an
address space as in per-process filtering. Unlike per-process filters, per-object filters apply to
intra-process operation requests. The following filtering points are supported:

* Per-object pre
This filter applies to operation invocations on a particular object—before
they are passed to the target object.

® Per-object post
This filter is applied to operation invocations on a particular object—after
they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that the actual operation call
should not be passed to the target object.

To create per-object filters, perform the following steps:

I. Derive a new class from the IDL generated per at i ons class. For
example, inherit from class _G i dQper at i ons for an object implementing
interface @i d.

2. Create an instance of this new class. This instance behaves as a per-object
filter when installed.

3. Install this filter object as either a pre-filter or as a post-filter to a
particular target object.

It is important to realise that a per-object filter is either a pre-filter or a postfilter. In
contrast, a single per-process filter can perform actions for any or all of its eight monitor
points.

Note: You can only use per-object filtering if it was enabled when the
corresponding IDL interface was compiled by the IDL compiler.
Refer to “IDL Compiler Switch to Enable Object Filtering” on page 435.

The parameters to an IDL operation request are readily available for both pre and post per-
object filters. Any i n and i nout parameters are valid for pre filters; i n, out and i nout
parameters and return values are valid for post filters. In contrast, for per-process filters,
parameters to the operation request are not available in general.

421

Filters

The per-process i nRequest Pr eMar shal and i nRequest Post Mar shal filters are
applied before any per-object pre-filter. The per-object postfilters are applied before any
per-process out Repl yPr eMar shal and out Repl yPost Mar shal filters.

Using Per-Process Filters

To install a per-process filter, define a class deriving from the
| E. 1 ona. O bi x\eh. Feat ur es. Fi | t er class, and redefine one or more of its

methods:

out Request Pr eMar shal ()

out Request Post Mar shal ()

i nNRequest Pr eMar shal ()

i NRequest Post Mar shal ()

out Repl yPr eMar shal ()

out Repl yPost Mar shal ()

i nRepl yPreMar shal ()

i nRepl yPost Mar shal ()

out Repl yFai | ure()

i nRepl yFai | ure()

422

Operates in the caller’s address space before
outgoing requests (before marshalling).

Operates in the caller’s address space before
outgoing requests (after marshalling).

Operates in the receiver’s address space before
incoming requests (before marshalling).

Operates in the receiver’s address space before
incoming requests (after marshalling).

Operates in the receiver’s address space before
outgoing replies (before marshalling).

Operates in the receiver’s address space before
outgoing replies (after marshalling).

Operates in the caller’s address space before
incoming replies (before marshalling).

Operates in the caller’s address space before
incoming replies (after marshalling).

Operates in the receiver’s address space if a
preceding filter point raises an exception or
indicates that the call should not be processed
further or if the target object raises an
exception.

Operates in the caller’s address space if the
target object raises an exception or a preceding
filter point raises an exception or indicates that
the call should not be processed further.

Using Per-Process Filters

Each of the eight marshalling methods take a single parameter. This is the request on which
the filtering is to take place. The return value is bool ean, indicating whether or not
OrbixWVeb should continue to make the request. For example:

publ i ¢ bool ean out Request PreMar shal (or g. ong. CORBA. Request r)

Both failure methods take two parameters: the request on which the filtering was to take
place, and the exception which representing the failure of that request. The failure methods
have a voi d return type. Refer to the APl Reference in the OrbixWeb Programmer’s
Reference for full details of these methods.

You can obtain the details of the request being made by calling methods on the Request
parameter. See “An Example Per-Process Filter”” on page 424for more details.

The constructor of class Fi | t er adds the newly created filter object into the per-process
filter chain. You cannot create direct instances of Fi | t er ; its constructor is pr ot ect ed to
enforce this. Classes derived from Fi | t er normally have publ i ¢ constructors.

The marshalling methods return a value which indicates how the call should continue.
Redefinitions of these methods in a derived class should retain the same semantics for the
return value as specified in the relevant entries in the OrbixWeb Programmer’s
Reference.

You should define derived classes of Fi | t er and redefine some subset of the filter point
methods to perform the required filtering. If you do not redefine any of the non-failure
monitoring methods in a derived class of Fi | t er, the following implementation is inherited
in all cases:

/1 Java
{ return true; } // Continue the call.

The failure filter methods inherit the following implementation:

/1 Java
{ return; }

423

Filt

ers

An Example Per-Process Filter

Consider the following simple example of a per-process filter:

[/l Java

i mport
i mport
i mport
i nport

| E lona. O bi x\Wb. Features. Filter;
or g. ong. CORBA. Request ;

or g. ong. CORBA CRB;

or g. ong. CORBA. Syst enExcept i on;

CRB orb = CGRB.init(args, null);

public class ProcessFilter extends Filter {
publ i c bool ean out Request PreMarshal (Request r) {

}

String s, ©;
try {
s
o}

}
catch (Systenkxception se) {

orb.object_to string((r.target ());
r.operation ();

}
Systemout. println ("Request outgoing to "+ s

+ " with operation nane "+ o + ".");
return true; // continue the call

bool ean i nRequest PreMarshal (Request r) {

424

String s, ©;

try {

s = orb.object_to_string(r.target ());

o =r.operation ();
}
cat ch (Systenkxception se) {
}

Systemout.println ("Request incomng to "+ s
+ " with operation name " + o0 + ".");
return true; // continue the call

Using Per-Process Filters

bool ean out Repl yPreMar shal (Request r) {
String o;
try {
o =r.operation ();
}

catch (Systenkxception se) {

}

Systemout.println ("l ncomng operation "
+ 0+ " finished.");
return true; // Continue the call.

}
bool ean i nRepl yPreMarshal (Request r) {
String o;
try {
o =r.operation ();
}
catch (Systenkxception se) {
}

Systemout.println ("Qutgoi ng operation "
+ 0 + " finished.");
return true; // Continue the call.

}
voi d out Repl yFai | ure (Request r, Exception ex) {
String o;
try {
0 =r.operation ();
}
catch (Systenkxception se) {
}

Systemout.println ("Qperation " + o
+ " raised exception.");
return;

425

Filters

voi d i nRepl yFai lure (Request r, Exception ex) {

String o;
try {

o =r.operation ();
}

catch (Systenkxception se) {

}

Systemout.println ("Qperation " + o
+ " raised exception.");
return;

}
}

Filter classes can have any name, however they must inherit from the class Fi | t er . This
class has a protected default constructor. In the example, Pr ocessFi | t er is givena
parameterless publ i ¢ constructor by Java.

Each filter object method can examine the Request object it receives by calling its member
functions. However, this examination must be performed in a non-destructive manner.
Modification of the Request instance is only permitted if it is to “unwind” modifications
made by a corresponding filter at the other end of the connection. This process is known as
piggybacking. Refer to “Piggybacking Extra Data to the Request Buffer”” on page 429 for
more details. Modification of data inserted by the OrbixVVeb runtime into the Request
instance invariably causes the request to fail after the filtering stage.

Getting Additional Information about Requests
You can obtain additional information about the request by using the filter methods.

For example, you can obtain an instance of | E. | ona. O bi xX\Wb. CCRBA. O bQur r ent
by including the following code:

i nport | E. lona. Orbi xWWeb. CORBA. Or bCurrent;
i nport | E.1ona. Orbi xWeb. _O bi x\Web;
i nport | E. lona. Orbi xWWeb. _CORBA;

Current curr = _O bi xX\Web. ORB(orb).get_current();
O bCurrent orbcurr = _O bi xXWeb. Current (curr);

You can then call the O bQur r ent () methods on the current instance.
Refer to the description of O bQur r ent () in the APl Reference of the OrbixWeb
Programmer’s Reference.

426

Using Per-Process Filters

The following methods are of particular interest:

® get_principal ()
® get_object()

® get_server()

Installing a Per-Process Filter

To install this per-process filter, you need only create an instance of it

/1 Java
ProcessFilter nyFilter = new ProcessFilter ();

This object must be created after the call to CRB. i ni t () and before the handling of
requests.

How to Create a System Exception

Any of the per-process filter points can raise an exception in the normal manner.
Exceptions have three constructors, as shown in the following example, which uses the
NO_PERM SSI ON exception:

public NO PERM SSI ON(String reason, int minor,

Conpl eti onStat us conpl et ed)
public NO PERM SSI Q\(i nt ninor, ConpletionStatus conpl et ed)
public NO PERM SSI ON(String reason)

The r eason parameter represents an exception message in text form. VWhen using lIOP,
the marshalling of this string back to a client is not supported. This is because IIOP does not
permit exception r eason strings to be passed over the wire. The client receives, instead,
the string “unknown”. The string can be marshalled successfully back to the client when
using the OrbixVVeb Protocol.

The m nor parameter represents an error code used to look up an error message when
reconstructing the exception on the client side.

The conpl et ed parameter indicates whether the requested operation succeeded. Its
possible values are COMPLETED YES, COMPLETED NOand COMPLETED NMAYBE. Refer to
the description of Conpl et i onSt at us in the APl Reference of the OrbixWeb
Programmer’s Reference.

427

Filters

Rules for Raising an Exception

The following rules apply when a filter point raises an exception:

428

Per-process filters can raise only system exceptions. Any such exception
is propagated by OrbixVVeb back to the caller. However, raising an
exception in an i nRepl yPost Mar shal () filter point does not cause the
exception to be propagated. At that stage, the call is essentially already
completed, and it is too late to raise an exception.

If any filter point raises an exception, no further filter points are
processed for that call, except for one or both of the failure filter points,
out Repl yFai | ure() and i nRepl yFai | ure().

If one of the filter points

® out Request PreMar shal ()
® out Request Post Mar shal ()
® inRequest PreMarshal ()

® inRequest Post Mar shal ()

raises an exception, the actual operation call is not forwarded to the
target application object.

If the operation implementation raises a user exception, and one of the
filter points

® out Repl yFail ure()
* inRepl yFailure()

raises a system exception, the system exception is raised in the calling
client. The user exception is overwritten.

If the operation implementation raises a system exception, no further
filter points, except one or both of out Repl yFai | ure() and
i nRepl yFai | ure() are called for this invocation.

Using Per-Process Filters

Piggybacking Extra Data to the Request Buffer

One of the out Request filter points in a dient can add extra piggybacked data to an
outgoing request buffer. This data is then made available to the corresponding i nRequest
filter point on the server side. In addition, one of the ‘out reply’ marshalling filter points on a
server can add data to an outgoing reply. This data is then made available to the
corresponding i NRepl v filter point on the client-side.

At each of the four ‘out’ marshalling monitor points, you can insert data by using an
appropriate or g. ong. CCRBA. por t abl e. Qut put St r eam method for the Request
parameter, for example:

/1 Java

i mport | E. lona. Obi xXWeb. _O bi xWeéb;

i mport org. ong. CORBA. Request ;

i mport org. ong. OCRBA. port abl e. Qut put St ream

int | = 27;
try {
CQut put Stream s =
_Or bi xWeb. Request (r). creat e_out put _strean();
s.wite_long (1);

}
catch (SystenException se) {

}

You can extract data at each of the ‘in’ marshalling monitor points, using
an appropriate or g. ong. CORBA por t abl e. | nput st r eam method, for
example:

/1 Java

i mport | E. lona. Obi xWeb. _O bi xWeb;

i mport org. ong. CORBA. Request ;

i mport org.ong. CCRBA. portabl e. | nput St ream

int j;
try {
I nput Stream =

_Or bi xWeb. Request (r).create_i nput_strean();
j = s.read_long ();

429

Filters

}
catch (SystenmkException se) {

Matching Insertion and Extraction Points

You must ensure that the insertion and extraction points match correctly,
as follows:

Insertion Point Extraction Point

out Request Pr eMar shal () i nNRequest PreMar shal ()
out Repl yPr eMar shal () i nRepl yPr eMar shal ()
out Request Post Mar shal () i nNRequest Post Mar shal ()
out Repl yPost Mar shal () i nRepl yPost Mar shal ()

For example, a value inserted by out Request Pr eMar shal () must be extracted by
i nRequest Pr eMar shal () . Unmatched insertions and extractions corrupt the request
buffer and can cause a program crash.

When only one filter is being used, its out Request Post Mar shal () method can insert

piggybacked data that is not removed by the corresponding i nRequest Post Mar shal ()
method on the called side. However, this causes problems if more than one filter is being

used.

Ensuring that Unexpected Extra Data is not Passed

When coding a filter that adds extra data to the request, you should ensure that you are
communicating with a server that is expecting the extra data. Frequently, a filter should add
extra data only if the target object is in one of an expected set of servers.

For example,

out Request Pr eMar shal ()
out Request Post Mar shal ()
i nNRequest PreMar shal ()

i nNRequest Post Mar shal ()

should include the following code:

[/l Java
// First find the server nane:

430

Using Per-Process Filters

i nport org. ong. GORBA. Syst enExcepti on;

String inpl;
try {
1 inpl = (r.target())._get_inplenentation().toString();
}catch (Syst entException se) {
}

if (inpl.equals ("some_server")) {
// Can add extra data.

}
el se {

/1 Do not add any extra data.
}

I. Itis assumed here that the Request parameter is r.

The method or g. ong. CCRBA. (bj ect . _get _i npl enent ation().toString()
returns the server name of an object reference. In this case, it returns the name of the
target object.

You should not add extra data when communicating with the OrbixVWeb daemon. The
OrbixWVeb classes may communicate with the daemon process, and you must ensure that
you do not pass extra data to the daemon.

Retrieving the Size of a Request Buffer

Sometimes when programming filters you may wish to obtain the size of a Request ; for
example, in order to display trace information about traffic between OrbixWeb
applications. You can obtain this information by invoking the method

get MessagelLengt h() on the or g. omg. CCRBA. Request class as follows:

/1 Java
i mport | E. lona. O bi xWeb. _O bi x\W\éb;
i mport org. ong. CORBA. Syst enExcepti on;

int meglLen;
try {
msglLen =
_Orbi xWeb. Request (r) L. get MessageLengt h() ;

431

Filters

}
catch (SystenkException se) {...}

Defining an Authentication Filter

Verification of the identity of the caller of an operation is a fundamental component of a
protection system. OrbixWWeb supports this by installing an authentication filter in every
process’s filter chain. This default implementation transmits the name of the principal (user
name) to the server when the channel between the client and the server is first established
by bi nd() . This name is also added to all requests at the server side. A server object can
obtain the user name of the caller by calling the method:

// Java
import |E Iona. Obi x\b. _OORBA

String nane = _CORBA Orbi x.get_principal _string();

You can override the default authentication filter by declaring a derived class of

Aut hent i cati onFil t er and creating an instance of this class. For example, an
alternative authentication filter could use a ticket-based authentication system rather than
passing the caller’s user name.

On the client side, a derived Aut hent i cati onFi | t er class should override the

out Request Pr eMar shal () filter point. If this filter point alters the default behaviour, the
server-side authentication filter point i nRequest Pr eMar shal () must be appropriately
overridden in all servers with which the client communicates.

I. For further details, see the description of _Cr bi x\#b. Request () in the API Reference in the
OrbixWeb Programmer’s Reference.

432

Using Per-Object Filters

Using Per-Object Filters

You can attach a pre and/or a post per-object filter to an individual object of a given IDL
type. Consider the following IDL interface:

// 1DL
interface Inc {

unsi gned | ong increnent(in unsigned |ong vin);
b

You can implement this as follows:

/1 Java
public class Inclnplenentation
i mpl ements _|I ncQperations {
public int increment (int vin) {
return (vin+l)

}
}
For example, if you have two objects of this type created, as follows:
/1 Java
Inc il, i2;
try {
il new _tie_lnc (new Inclnplenmentation ());

i2 =new _tie_Inc (new Inclnplenentation ());

}
catch (org. ong. CORBA. Syst emException se) {

}

you may wish to pre and/or post filter the specific object referenced by i 1. To achieve this,
define one or more additional classes that implement the _<I nt er f ace>Qper at i ons
Java interface.

To perform pre-filtering, you can define a class, for example Fi | t er Pr e, to have the
methods and parameters specified in the _| ncQper at i ons Java interface:

/1 Java
public class FilterPre
i npl ements _IncQperations {
public int increnment (int vin) {
Systemout. println
("*** PRE call with paraneter

+ vin);

433

Filters

return O; // Here any value will do

Similarly, to perform post-filtering, you could define a class called Fi | t er Post, as follows:

/1 Java
public class FilterPost
i mpl ements _I ncOperations {
public int increnment (int vin) {
Systemout. println
("*** POST call with parameter " + vin)
return O; // Here any value will do

}

In these examples, a per-object filter cannot access the object it is filtering. A filter can
however access the object it is filtering by having a member variable that points to the
object. You can set up this member using a constructor parameter for the filter.

To apply filters to a specific object, do the following:

/1l Java
/] Create two filter objects.
I nc. Ref serverPre, serverPost;

try {
serverPre = new FilterPre ();
serverPost = new FilterPost ();

/1 Attach the two filter objects to
/1 the target object pointed to by il.

((_incSkel eton)il).__pretnject = serverPre;
((_incSkeleton)il).__postOhject = serverPost;
It is not always necessary to attach both a pre and a post filter to an object.

Attaching a pre filter to an object which already has a pre filter causes the old filter to be
removed and the new one to be attached. The same applies to a post filter.

If a per-object pre filter raises an exception in the normal way, the actual operation call is
not made. Normally this exception is returned to the client to indicate the outcome of the
call. However, if the pre filter raises the exception FI LTER_SUPPRESS, no exception is

434

Using Per-Object Filters

returned to the caller. The caller cannot tell that the operation call has not been processed
as normal.

You can raise a FI LTER_SUPPRESS exception as follows:

/'l Java
inport |E |ona. O bixWb. Feat ures. FI LTER_SUPPRESS;
i nport org. ong. CORBA Conpl eti onSt at us;

throw new FI LTER SUPPRESS(0, Conpl eti onSt at us. COMPLETED NO) ;

In this example, you could use the same filter objects (those pointed to by ser ver Pr e and
ser ver Post) to filter call to many objects. Other filters, for example a filter holding a
pointer to the object it is filtering, can only be used to filter one object.

IDL Compiler Switch to Enable Object Filtering

You can apply per-object filtering to an IDL interface only if it has been compiled with the -
F switch to the IDL compiler. By default, - F is not set, so object level filtering is not
enabled.

435

Filters

Thread Filters

The class Thr eadFi | t er (in package | E | ona. O bi x\¢b. Feat ures) is a
special kind of filter that can be used to implement custom threading and
queueing policies.

This section explains the benefits of multi-threaded clients and servers, and describes class
ThreadFi | t er as a mechanism for implementing multi-threaded programming with
OrbixWeb.

Multi-Threaded Clients and Servers

Normally, OrbixWeb client and server programs contain one thread that starts
executing at the beginning of the program (mai n()) and continues until the
program terminates. Many modern operating systems enable you to create
lightweight threads, with each thread having its own set of CPU registers and
stack. Each thread is independently scheduled by the operating system, so it can
run in parallel with the other threads in its process. The mechanisms for creating
and controlling threads differ between operating systems but the underlying
concepts are common.

Both clients and servers may benefit from multi-threading. However, the
advantages of multi-threading are most apparent for servers.

Multi-Threaded Servers

Many servers accept one request at a time and process each request to
completion before accepting the next. Where parallelism is not required, there
is no need to make a server multi-threaded. However, some servers can provide
improved service to their clients by processing a number of requests in parallel.
Parallelism of requests may be possible because a set of clients can concurrently
use different objects in the same server. Also some objects in the server can be
used concurrently by a number of clients.

Benefits of Threading

Some operations can take a significant amount of time to execute. This can be
because they are compute bound, or perform a large number of /O operations,
or make invocations on remote objects. If a server can execute only one such
operation at a time, clients suffer because of long delays before their requests

436

Thread Filters

can be started. Multi-threading enables a reduction in latency of requests, and an
increase in the number of requests that a server can handle over a given period.
Multi-threading also allows advantage to be taken of multi-processor machines.

The simplest threading model involves automatically creating a thread for each
incoming request. Each thread executes the code for each call, executes the low
level code that sends the reply to the caller, and then terminates. Any number of
such threads can be running concurrently in a server. These can use normal
synchronisation techniques, such as mutex or semaphore variables, to prevent
corruption of the server’s data. This protection must be programmed at two
levels. The underlying ORB library must be thread safe so that concurrent
threads do not corrupt internal variables and tables. Also, the application level
must be made thread safe by the application programmer.

Drawbacks of Threading

The main drawbacks associated with threads are as follows:

* It may be more efficient to avoid creating a thread to execute a very
simple operation. The overhead of creating a thread may be greater than
the potential benefit of parallelism.

® You must ensure that application code is thread safe.

Nevertheless, multi-threaded servers are considered essential for many applications. A
benefit of using OrbixVVeb is that the creation of threads in a server is simple.

Threads can also be created explicitly in servers, using the threading facilities of
the underlying operating system. This can be done so that a remote call can be
made without blocking the server. Threads can also be created within the code
that implements an operation or attribute, so that a complex algorithm can be
parallelized and performed by a number of threads. These threads can be in
addition to those created implicitly to handle each request.

Multi-Threaded Clients

Multi-threaded clients can also be useful. A client can create a thread and have it
make a remote operation call, rather than making that remote call directly. The
result is that the thread that makes the call blocks until the operation call has
completed, while the rest of the client can continue in parallel. Another
advantage of a multi-threaded client is that it can receive incoming operation
requests to its objects without having to poll for events.

437

Filters

Clients must create threads explicitly, using the threading facilities of the
underlying operating system. Naturally, multi-threaded clients must also be
coded to ensure that they are thread safe, using a synchronisation mechanism.
As for servers, the difficulty of doing this depends on the complexity of the data,
the complexity of the concurrency control rules, and the form of concurrency
control mechanism being used.

Thread Programming in OrbixWeb

OrbixWeb supports multi-threaded Java servers that handle multiple client
requests. The Java language is multi-threaded and the OrbixWeb runtime is
thread-safe.

Class ThreadFilter

The class | E | ona. O bi x\Wb. Feat ur es.Thr eadFi | t er enables the
implementation of custom threading and queuing policies in OrbixVVeb.

The class ThreadFi | t er inherits from the class Fi | t er. Although ThreadFi | t er
does not redefine any of the method in the class Fi | t er, it does change the
behaviour of i nRequest PreMar shal () and that of the default constructor.

To use the special functionality associated with class Thr eadFi | t er, you should
define a derived class of ThreadFi | t er and redefine the

i nRequest PreMar shal () method. When a request enters this filter point you
can control the dispatching of the request. You can then pass the request into a
custom event queue serviced by one or more threads, or you can create a
thread directly and pass it the Request object to be dispatched.

To use the special features of the ThreadFi | t er you must use its default
constructor, Threadfilter (). This adds a newly created object onto the
ThreadFi | ter chain. You can also pass an ORB instance to the constructor to
add the filter to that ORB’s ThreadFi | t er chain.

Refer to the OrbixWeb Programmer’s Reference for more details on
| E. I ona. O bi xV¢b. Feat ures. ThreadFi | ter.

438

Thread Filters

Models of Threading
The following are the three models of thread support provided by OrbixVVeb:
® Thread per process

® Thread per object

® Pool of threads

Thread per Process

In this model, a thread is created for each request. Each thread executes the code for each
call, executes the low level code that sends the reply to the caller, and then terminates. Any
number of such threads can be running concurrently in a server.

Thread per Object

In this model, a thread is created for each object (or for a subset of the objects in the
server). Each of these threads accept requests for one object only, and ignores all others.
This can be an important model in real-time processing, where the threads associated with
some objects need to be given higher priorities that those associated with others.

Pool of Threads

In this model, a pool of threads is created to handle incoming requests. The size of the pool
puts some limit on the server’s use of resources. In some cases this is better than the
unbounded nature of the thread per request model. Each thread waits for an incoming
request, and handles it before looping to repeat this sequence.

Implementing Threads in OrbixWeb

This section gives a brief description of how these models can be implemented in
OrbixVVeb.

Thread per Process
To implement this model, you should create a thread to handle a request.

The thread filter’s i nNRequest Pr eMar shal () method can create a thread to handle an
incoming request. You should use the underlying Java threads package to create the thread,
and then use that thread to process the request.

439

Filters

Thei nRequest PreMar shal () method returns a bool ean value. This method returns
t r ue when the request has been passed on. It returns f al se when the request is being
handled by a separate thread.

Thread per Object

To implement this model, you should create a thread for each (or for a subset of) the
objects in the server.

Each thread should have its own semaphore and queue of requests. Each thread should
wait on its own semaphore. The i nRequest Pr eMar shal () call should add the Request
to the correct queue of requests, and signal the correct semaphore.

When the thread awakens, it should call cont i nueThr eadD spat ch() to process the
topmost request, and then loop to await the next one.

Pool of Threads

To implement this model, a pool of threads should be created, and each thread should wait
on a shared semaphore.

When a request arrives, the i nRequest Pr eMar shal () function of the Thr eadFi | t er
should place a pointer to the Request in an agreed variable and signal the semaphore.
Alternatively, a queue can be used.

One of the threads awakens, and should call cont i nueThr eadD spat ch() before
looping to repeat the sequence.

The three models of threading are illustrated by the Thr eads demonstrations in the
denos directory of your OrbixVWVeb installation.

440

23

Smart Proxies

Smart proxies are an OrbixWeb-specific feature that allow you to
implement proxy classes manually, thereby allowing client interaction
with remote services to be optimized. This chapter describes how
proxy objects are generated, and the general steps needed to
implement smart proxy support for a given interface. It also describes
how a you can build a simple smart proxy. This example is based
on a small load balancing application.

The IDL compiler automatically generates proxy classes for IDL interfaces. Proxy classes
are used to support invocations on remote interfaces. VWhen a proxy receives an
invocation, it packages the invocation for transmission to the target object in another
address space on the same host, or on a different host.

441

Smart Proxies

Proxy Classes and Smart Proxy Classes

This section describes how OrbixVWeb manages proxies.

Proxy Classes

For each IDL interface, the OrbixVVeb IDL compiler generates a Java interface defining the
client view of the IDL interface. It also generates a Java proxy class, which implements proxy
functionality for the methods defined in the Java interface. The proxy class gives the code for
standard proxies for that IDL interface—these proxies transmit requests to their real
object and return the results they receive to the caller.

Smart Proxy Classes

A smart proxy class is a user-defined alternative to the IDL-generated proxy class.
OrbixWVeb implicitly constructs a standard proxy when an object reference enters the
client address space. Experienced Orbix developers should note that OrbixVWVeb does not
use proxy factory classes to construct standard proxy objects. However, OrbixVVeb does
not implicitly create smart proxies, so each smart proxy class depends on the
implementation of a corresponding class that manufactures smart proxy objects when
requested to by OrbixVWVeb. This class is called a smart proxy factory class.

Requirements for Smart Proxies
To provide smart proxies for an IDL interface, do the following:
|. Define the smart proxy class, which must inherit from the generated
proxy class.

2. Define a smart proxy factory class, which creates instances of the smart
proxy class on request. OrbixWeb calls the proxy factory's New()
method whenever it wishes to create a proxy for that interface.

3. Create a single instance of the proxy factory class in the client program.

Note: Apart from the introduction of new classes and the creation of the proxy
factory object, no changes are required to existing clients in order to
introduce smart proxy functionality. In particular, their operation
invocation code remains unchanged.

442

Proxy Classes and Smart Proxy Classes

Once you have performed these steps, OrbixVWeb communicates with the smart proxy
factory whenever it needs to create a proxy of that interface. There are three cases, as
follows:

®* When the interface’s bi nd() method is called.

®* When a reference to an object of that interface is passed back as an out
or i nout parameter or a return value, or when a reference to a remote
object enters an address space via an i n parameter.

®* When CRB. string_to_object() is called with a stringified object
reference for a proxy of that interface.

You can define more than one smart proxy class, and associated smart proxy factory class
for a given IDL interface. OrbixVWeb maintains a linear linked list of all of the proxy factories
for a given IDL interface.

A chain of smart proxy factories is allowed for an IDL interface because the same IDL
interface can be provided by a number of different servers in the system. It may be useful,
therefore, to have different smart proxy code to handle each server, or set of servers. Each
factory in turn can examine the marker and server name of the target object for which the
proxy is to be created. The factory class can then decide whether to create a smart proxy
for the object or to defer the request to the next proxy factory in the chain.

Creating a Smart Proxy
The following steps must be performed in order to create a smart proxy:

I. Implement the smart proxy class.
The constructor(s) of this class are used by the proxy factory.

2. Implement a new proxy factory class, derived from the OrbixWeb
Pr oxyFact ory class (defined in package | E | ona. O bi xV¢b. Feat ur es).
It should redefine the New() method to create new smart proxy objects.
It may also return null to indicate that it is not willing to create a smart
proxy.

3. Declare an object of this new class. The inherited base class constructor
automatically registers this new proxy factory with the factory manager
object.

443

Smart Proxies

When a new proxy is required, OrbixVVeb calls all of the registered proxy factories for the
class until one of them successfully builds a new proxy. If none succeeds, a standard proxy is
implicitly constructed. Proxy factories are automatically added to the chain of factories as
they are created. However, you cannot predict the order of use of smart proxy factories.

The factory manager requests each proxy factory to manufacture a new proxy using its
New() method:

/1 Java

/1 The String paraneter is the full object
Il reference of the target object.

/1 The return value is the new smart proxy
/1 object.

i nport org. ong. CORBA. portabl e. Del egat e;

public org.ong. CORBA. Cbj ect New (Del egate d);

If the New() method returns null, OrbixVWeb tries the next smart proxy factory in the
chain.

Examples of these smart proxy implementation steps are given in the rest of this chapter.

Multiple ORB Support

All parameterized calls to ORB. i ni t () create a separate ORB. Each newly-created ORB
instance is completely independent; for example, in terms of its configuration and listener
ports. OrbixVVeb allows you to associate smart proxies with particular ORB instances.

By default, OrbixVVeb associates smart proxies with the first fully-functional ORB created in
a process. To associate a smart proxy with a particular ORB instance, use the following
constructor for your derived class:

protected ProxyFactory(org. ong. CORBA CRB orb, String nare);

The or b parameter associates the smart proxy with a specific ORB instance. The nare
parameter refers to name of the IDL interface implemented by the smart proxy object

Refer to the OrbixWeb Programmer’s Reference for details of class
| E. 1 ona. O bi xV¢b. Feat ur es. Pr oxyFact or y and the
or g. ong. OCRBA. CRB. i ni t () method.

444

Example: A Simple Smart Proxy

Benefits of Using Smart Proxies

It is sometimes beneficial to be able to implement proxy classes manually. The
circumstances in which the use of smart proxies may be advantageous include the following:

* Load Balancing

For client programmers, a typical example is where you want to
introduce load balancing between several remote objects when invoking
operations. For example, if multiple remote objects can meet a request
for a computationally intensive operation, a client application may wish to
route each invocation to the object that is currently least busy.

* Caching Information

For interface implementers, it is often useful to implement smart proxies
to cache some information from a remote object locally at a client site. In
the simple bank application you may wish, for example, to cache the
balance of an account at a client. Requests to obtain the balance of the
account can then be immediately satisfied, provided you ensure that
withdrawals and deposits to the account refresh the cached value.

Example: A Simple Smart Proxy

Consider a very simple example of a load balancing system, based on the following IDL
definition:

/1 1DL

i nterface Nunber Cruncher {
long crunch (in |ong nunber);

b

i nterface NCMvanager {
/1 Get the | east |oaded nunber cruncher:
Nunber Cruncher get Nunber Cruncher ();

b
In this application, it is assumed that a number of objects exist that implement the
Nunber O uncher interface. Each of these objects is capable of exhibiting individual load
characteristics; this is the case, for example, if each is located in a separate OrbixVVeb
server process.

445

Smart Proxies

It is also assumed that an OrbixVVeb server exists that implements the NCVanager
interface. The NOVanager implementation object is responsible for locating the currently
least-loaded Nunber O uncher and returning the corresponding object reference to the
client. The client can then invoke the cr unch() operation, perhaps repeatedly, on the
target object.

Of course, the load on each Nurber O uncher object changes over time. If it is valid to
direct each dlient cr unch() invocation to any Nunber G uncher object, the performance
perceived by the client can be improved by updating the target object before each
operation call. In this example, a smart proxy is implemented which takes advantage of this
fact to optimize the performance of the cr unch() operation.

Creating a Smart Proxy

The following two steps are required when creating a smart proxy:

¢ Define a Smart Proxy Class.

¢ Define a Proxy Factory for Smart Proxies.

Defining a Smart Proxy Class

Define a smart proxy class, called Smar t NG for Java proxy class Nunber Or uncher .
Instances of this class stores a variable holding a default proxy for the Nunber Cr uncher
object. This proxy variable is updated before each call to cr unch() , and the operation
invocation is then routed via the refreshed default proxy.

/1 Java
package Snart Proxy;

i mport org. onmy. CORBA. Syst enExcepti on;

1 public class SmartNC
ext ends _Nunber O uncher Stub {

/1l Store an NOvanager proxy
privat e NCVanager theNCQvanager;

446

Example: A Simple Smart Proxy

public Smart NC () {

/1 O eate NCManager proxy

try {
t heNOvanager = NCManager Hel per. bind ();
}
catch (Systenkxception se) {
}

}

public int crunch (int nunber) {
Nunber Oruncher act NC = nul | ;

I/l Ceate default proxy for current
/'l 1east busy Nunmber O uncher obj ect

try {
act NC = t heNCvanager . get Nunber O uncher ();
}
catch (Systenkxception se) {
}

/1 Make renote invocation
return act NC crunch (nunber);

I. Class Smar t NCinherits from the default proxy class generated by the IDL
compiler. It therefore inherits all of the code required to make a remote
invocation: if required, each Smar t NC method can make a call-up to its
base class’s method to make a remote call. However, this functionality is
not required in this example.

2. The Smart NC constructor initialises a member variable holding a proxy
for the NOVanager object by calling NCVanager Hel per . bi nd().

3. The crunch() method first obtains a default proxy for the current least
loaded Nunber Cr uncher object by invoking
NOvanager . get Nunber O uncher () . The implementation of the smart
proxy factory class, described in “Defining a Proxy Factory for Smart
Proxies”, prevents this invocation from creating a second smart proxy.

447

Smart Proxies

The smart crunch() method then invokes the default crunch() on the
newly created object.

Defining a Proxy Factory for Smart Proxies

Define a new proxy factory to generate the smart proxies at the appropriate time. Recall
that the base class for all proxy factory classes is the following class:
| E. I ona. O bi xVb. Feat ur es. ProxyFact ory.

/1l Java
package Smart Proxy;

import | E Iona. O bi x\b. Feat ur es. ProxyFact ory;
i mport org. ony. OORBA. port abl e. Del egat e;

i nport org.ong. CORBA portabl e. (hj ect | npl ;

i nport org.ongy. CORBA. Syst enExcept i on;

i mport org. omy. CORBA (bj ect ;

public class SmartNCFactory
extends ProxyFactory {

/1 Flag to indicate whether a snart proxy
/1l or a true proxy shoul d be created
private static bool ean creat eProxy;

public SmartNCFactory () {
super (Nunber O uncher Hel per.id());
createProxy = true;

}

public Qbject New(Del egate d) {
/1 You only need one smart proxy to
// manage the default proxies, so
/l allowinplicit creation of a default
/1l proxy (if a smart proxy already exists)
if (createProxy == fal se)
return null;

createProxy = fal se;

448

Example: A Simple Smart Proxy

}

}

/1 Ceate a snart proxy
Chj ectInpl newref = null;
try {
new ref = new SmartNC ();
new ref._set_del egat e(d);

}

catch (Systenkxception ex) {
return null;

}

return new ref;

This code is described as follows:

The member initialization list of the constructor of class Snar t NCFact ory
makes a call to the constructor of class ProxyFact ory. The parameter
passed is the return value of the static method

Nurber O uncher Hel per . i d() . This automatically generated method
returns a string which holds information about the IDL interface type for
the proxy.

The proxy and proxy factory class hierarchies are shown in Figure 36.

_Nunber O uncher St ub Pr oxyFact ory

Snart NC Smar t NCFact ory

Figure 36: Class Hierarchy for Smart Proxy Classes

The Smart NOFact ory. New() method is called by OrbixWeb to signal
that a smart proxy can be created. OrbixVVeb passes it an object of type
or g. ong. CCRBA port abl e. Del egat e.

If the method decides to create a smart proxy, it must instantiate a new
smart proxy It must also set the delegate object using the

_set_del egat e() operation which all proxies inherit from

or g. ong. CORBA port abl e. hj ect | npl .

449

Smart Proxies

In this example, each client only requires a single smart proxy object to
manage all invocations on class Nunber & uncher . The New() method first
checks the member variable cr eat ePr oxy member variable to determine
if it needs to create a smart proxy.

If the value of this variable is f al se, the method simply returns nul | . This
results in the invocation of the next smart proxy factory in the factory
chain, or the creation of a default proxy object (if this is the last factory in
the chain).

A Sample Client

Finally, you must declare a single instance of the new proxy factory class in the client:

/1 Java
Smar t NCFact ory ncFact = new Smart NCFactory ();

The inherited base class constructor then registers this new factory, and enters it into the
linked list of factories for interface Nunber O uncher.

You can code a sample client that communicates using this smart proxy as follows:

/1 Java
package Snart Proxy;

i mport org. onmy. CORBA. Syst enExcepti on;

public class Qient {
static public void main (String argv[]) {

450

Nunber O uncher ncRef = null;

NCManager ncnRef = nul | ;

Smart NCFact ory ncFact =
new Snart NCFactory ();

int resultl = 0;
int result2 = 0;
int result3 = 0;
try {

/1 bind to NOvanager
ncRef = NCManager Hel per. bind ();

/1 get least |oaded nunber cruncher
ncRef = ncnRef. get Nunber O uncher ();

Example: A Simple Smart Proxy

// do sone cal cul ations

resultl = ncRef.crunch (100);
result2 = ncRef. crunch (200);
resul t3 = ncRef. crunch (300);

}
catch (Systenkxception se) {

Systemout.println (
"Nunber crunch failed.");
Systemout.println (se.toString ());

}
}
}

This code can be described as follows:

I. The client binds to the NOvanager object, from which it obtains an object
reference for the currently least-loaded Nunber O uncher. When this
object reference enters the client address space, a smart proxy is created
transparently to the client.

2. The client invocations on operation crunch() are then automatically
routed through the smart proxy, as previously described in this chapter.

451

Smart Proxies

452

24

Loaders

This chapter describes the use of loaders, an OrbixWeb-specific
feature designed to support persistent objects.

When an operation invocation arrives at a server process, OrbixVVeb searches for the
target object in the internal object table for the process. By default, if the object is not found,
OrbixVVeb returns an exception to the caller. However, if one or more loader objects are
installed in the process, OrbixVVeb informs the loader about the object fault and allows it
to load the target object and resume the invocation transparently to the caller. OrbixVVeb
maintains the loaders in a chain, and tries each loader in turn until one can load the object. If
no loader can load the object, an exception is returned to the caller.

Loaders can provide support for persistent objects—long-lived objects stored on disk in
the file system or in a database.

Loaders are also called when an object reference enters an address space, and not only
when a missing object is the target of a request. This can arise in a number of ways:

®* When a call to either of the methods bi nd() or string_to_object() is
made from within a process.

® For aserver: as an i n parameter.

® For aclient (or a server making an operation call): as an out or i nout
parameter, or a return value.

The loaders can respond to such object faults by loading the target object of the reference
into the process’s address space. If no loader can load the referenced object, OrbixVVeb
constructs a proxy for the object.

453

Loaders

Overview of Creating a Loader

To code a loader, define a derived class of Loader A ass (defined in package
| E. 1 ona. O bi x\&b. Feat ur es). To install a loader, create an instance of that new class.
Loader A ass provides the following methods:

® |oad()

OrbixWeb uses this method to inform a loader of an object fault. The
loader is given the marker of the missing object so that it can identify
which object to load.

* save()

When a process terminates, the objects in its address space can be saved
by its loaders. To allow this, OrbixWeb supplies a shut down() method,
to call on the _OORBA O bi x object before process termination.

_QORBA. O bi x. shut down() makes an individual call to save() for each
object managed by a loader. You can also explicitly call the save()
method through the | E. | ona. O bi xV¢b. CORBA. (hj ect Ref . _save()
method. The _Qr bi x\b. Cbj ect () cast operation must be used on any
org. ong. CORBA. (hj ect object before calling _save() because this
method is on the OrbixWeb-specific (oj ect Ref interface.

® record() and renane()

These methods are used to control naming of objects, and they are
explained in Chapter 8 “Making Objects Available in OrbixWeb” on
page 171.

The constructor of Loader A ass (the base class of all loaders) takes an optional bool ean
parameter. When creating a loader object, this parameter must be t r ue if the | oad()
method of the new loader is to be called by OrbixVVeb.

Multiple ORB Support

All parameterized calls to CRB. i ni t () create a separate ORB. Each newly-created ORB
instance is completely independent; for example, in terms of its configuration and listener
ports. OrbixWeb allows you to associate loaders with particular ORB instances.

By default, OrbixVVeb associates loaders with the first fully-functional ORB created in a
process. To associate a loader with a particular ORB instance, use the following constructor
for your derived class:

publ i c Loaderd ass(org. ong. OCCRBA CRB orb, bool ean registerM);

454

Specifying a Loader for an Object

You should refer to the OrbixWeb Programmer’s Reference for more details on class
Loader d ass.

Refer to the section “Example Loader” on page 460 for sample code. The sections before
this explain the different aspects of the loader mechanism in more detail.

Specifying a Loader for an Object

Each object has an associated a loader object. OrbixWeb informs the loader object when
the object is named, renamed or saved. If an object does not have a specified loader,
OrbixWeb associates it with a default loader.

You can specify an object’s loader as the object is being created, either using the TIE or the
ImplBase approach.

TIE Approach

Using the TIE approach, you can pass the loader object as the third parameter to a TIE
object constructor. For example,

/'l Java
/1 nyLoader is a | oader object:

bank bRef = new _tie_bank
(new bankl npl enentation (),
"Col | ege Geen", nyLoader);

ImplBase Approach

Using the ImplBase approach, you can declare the implementation class’s constructor to
take a loader object parameter; and define this constructor to pass on this object as the
second parameter to its ImplBase class’s constructor. For example:

/1 Java
i nport org. ong. GORBA. Syst enExcepti on;
inport |E |ona. Obi xWb. Feat ures. Loader d ass;

cl ass bankl npl enent ati on ext ends _bankl npl Base {
publ i ¢ bankl npl enent ati on

(String narker, Loaderd ass |oader) {
super (marker, |oader);

455

Loaders

}
}

OrbixWVeb associates each object with a simple default loader if it does not have a specified
loader. This loader does not support persistence.

You can retrieve an object’s loader by calling;

/1 Java

/1 I'n package | E lona. O bi x\&b. CCRBA
I/ in interface bjectRef

import | E |ona. Obi x\b. Feat ures;

public Loaderd ass _loader ();

Connection between Loaders and Object
Naming

When supporting persistent objects, you often need to control the markers that are
assigned to them. For example, you may need to use an object’s marker as a key to search
for its persistent data. The format of these keys depends on how the persistence is
implemented by the loader. Therefore, it is common for loaders to choose object markers.
Loaders can accept or reject markers chosen by application level code.

Recall that you can name an object in a number of ways:

® By passing a marker name to a TIE object constructor, for example:

bankRef bRef = new _tie_bank
(new bankl npl ementation (), "College G een",
nyLoader);

® By passing the marker name to the BOA npl constructor, for example:
bankl npl enent ati on bl npl ;

try {
bl mpl = new bankl npl emrent ati on

("Col l ege Green", nylLoader);

456

Connection between Loaders and Object
Naming

* By calling | E 1 ona. O bi x\#b. CCRBA. (bj ect Ref . _nar ker (Stri ng), for
example:

i mport | E. lona. Obi xWeb. _O bi xWeb;

or g. ong. CORBA. Obj ect bRef = //obtai ned using bind
//or Nam ng Service

_Or bi xWeb. Obj ect (bRef). _marker ("Foster Place");

In all cases, OrbixWeb calls the object’s loader to confirm the chosen name, thus allowing
the loader to override the choice. In the first two cases above, OrbixVWeb calls r ecor d() ;
in the last case it calls r enanme() because the object already exists.

OrbixWVeb executes the following algorithm when an object is created, or an object’s
existing marker is changed:

* If the specified marker is not null, OrbixWeb checks if the name is already
in use in the process. If it is not in use, the name is suggested to the
loader (by calling record() or rename()). The loader can accept the
name by not changing it. Alternatively, the loader can reject it by changing
it to a new name. If the loader changes the name, OrbixWeb again checks
that the new name is not already in use within the current process; if it is
already in use, the object is not correctly registered.

* If no name is specified or if the specified name is already in use within the
current process, OrbixWeb passes a null value to the loader (by calling
record() or renane()) which must then choose a name. OrbixWeb
then checks the chosen name; the object is not correctly registered if this
chosen name is already in use.

Bothrecord() andrename() can, if necessary, raise an exception.

The implementations of r enane() and r ecor d() in Loader d ass both return without
changing the suggested name. Its implementations of | oad() and save() perform no
actions.

The default loader (associated with all objects not explicitly associated with another loader)
is an instance of Nul | Loader O ass, a derived class of Loader A ass. This class inherits

| oad(), save() andrenane() from Loader d ass. Itimplements r ecor d() so that if
no marker name is suggested it chooses a name that is a unique string of decimal digjts.

457

Loaders

Loading Objects

When an object fault occurs, the | oad() method is called on each loader in turn until one
of them successfully returns the address of the object, or until they have all returned nul | .

The responsibilities of the | oad() method are:

To determine if the required object is to be loaded by the current loader.

If so, to re-create the object and assign the correct marker to it.

Thel oad() methed is given the following information:

The interface name.
The target object’s marker.
A bool ean value, set as follows depending on why the object fault

occurred:

true Because of a call to bi nd() or string_to_object() by the
process that contains the loader.

fal se Because of an object fault on the target object of an incoming
operation invocation, or on an i n, out or i nout parameter or
return value.

You can determine the interface name of the missing object as follows:

458

If an object fault occurs because of the call:
p = | 1Hel per. bi nd(<paraneters>);
the interface name in | oad() will be “1 1”.

If the first parameter to the bi nd() is a full object reference string,
OrbixWeb returns an exception if the reference’s interface field is not | 1
or a derived interface of | 1.

If an object fault occurs during the call

p = _CORBA. Orbix.string_to_object

(<full object reference string>);
the interface name in | oad() is that extracted from the full object
reference string.
If a loader is called because of a reference entering an address space (as
anin, out orinout parameter, a return value, or as the target object of

Saving Objects

an operation call), the interface name in | cad() is the interface name
extracted from the object reference.

Saving Objects

You can invoke the method _ CORBA. O bi x. shut down() before the application exits. If
this method is invoked, OrbixVVeb iterates through all of the objects in its object table and
calls the save() method on the loader associated with each object. A loader can save the
object to persistent storage, either by calling a method on the object, or by accessing the
object’s data and writing this data itself. The _save() method is also called if

di sconnect () ordi spose() is called for the object.

You can also explicitly cause the save() method to be called by invoking an object’s
_save() method. The_save() method calls the save() method on the object’s loader.
You must call the _save() in the same address space as the target object: calling itin a
client process, on a proxy, has no effect.

The two alternative invocations of save() are distinguished by its second parameter. This
parameter is of type i nt , and takes one of the following values:

CCRBA. processTer mi nati on The process is about to exit.

_OCRBA. obj ect Del eti on The method BQA di spose or method
BQA. di sconnect () has been called on the
object.

_CORBA explicitCall The object’s _save() method has been called.

Writing a Loader

To write a loader for a specific interface, you normally perform the following actions:

I. Redefine the | oad() method to load the object on demand. Normally,
you use the object’s marker to find the object in the persistent store.

2. Redefine the save() method so that it saves its objects on process
termination, and also when _save() is called.

3. Redefine the record() and renanme() methods normally. Often,
record() chooses the marker for a new object; and r enane() is
sometimes written to prevent an object’s marker being changed.
However, record() and rename() are sometimes not redefined in a

459

Loaders

simple application, where the code that chooses markers at the
application level can be trusted to choose correct values.

Example Loader

This section presents a simple loader for one IDL interface. A version of the code for this
example is given in the denos\ | oader s_per _si np directory of your OrbixVVeb
installation.

There are two interfaces involved in the application:

/1 1DL
/1 In file bank.idl.

interface account {
readonly attribute float bal ance
voi d nakeLodgenent (in float f);
void makeWthdrawal (in float f);

}s

interface bank {
account newAccount (in string nane);

}s

This simple example assumes that these definitions are compiled using the IDL - j P switch
as follows:

id -jP |oaders_per_sinp bank.idl

The classes output by the IDL compiler are within the scope of the | oader s_per _si np
Java package.

Interfaces account and bank are implemented by classes account | npl enent ati on
and bankl npl enent at i on, respectively. Instances of class account | npl enent at i on
are made persistent using a loader (of class Loader). The persistence mechanism used is
very primitive because it uses one file per account object. Nevertheless, the example acts as
a simple introduction to loaders. The implementation of class Loader is shown later, but
first the implementations of classes account | mpl enent at i on and

bankl npl enent at i on are shown

460

Example Loader

You can implement class account | npl enent at i on as follows:

/1 Java
package | oaders_per_si np;

i mport | E. lona. O bi x\Web. Feat ur es. Loader O ass;
i mport org.ong. CORBA. Syst enExcepti on
i mport org. ong. CORBA. (bj ect ;
public class account!| npl enentation
i mpl ements _account Operations {
protected String m naneg;
protected float m bal ance;
protected String maccountNr;

publ i ¢ account | npl ement ati on
(float initialBalance, String nane,
String nr) {
/1 Initialize nmenber variabl e val ues.
/| Details omtted.

}

/1 Methods to inplenent |IDL operations
public float balance () {
return mbal ance;

}

public void makeLodgenent (float f) {
m bal ance += f;

}

public void makeWthdrawal (float f) {
m bal ance -= f;

}

/1 Methods for supporting persistence
public static Object |oadwve
(String file_name, Loaderd ass |oader) {
/] Details shown |ater.

461

Loaders

public void saveMe (String file_nane) {
/! Details shown |ater.
}
b

Two methods are added to the implementation class. The | oad() method of the loader
calls the static method | oadMe() . This is given the name of the file to load the account
from. The method saveMe() writes the member variables of an account to a specified file.
You can code these methods as follows:

public static Cbject |oadMve

}

(String file_name, Loaderd ass |oader) {

RandonmAccessFile file = nul |l ;
String nane = null;
float bal = 0O;

try {
file = new RandomAccessFile (file_namre, "r");

nane = file.readLine ();
bal = file.readFl oat ();
file.close();

}

catch (java.io.|CException ex) {

Systemexit (1);
}
account | npl enentation al npl = new

account | npl enentati on (bal, nanme, file_nane);
account aRef = new

_tie_account (alnpl, file_nane, |oader);

return aRef;

public void saveMe (String file_nane) {

RandonmAccessFile file = null;

462

Example Loader

try {
file = new RandonAccessFile (file_nane, "rw');
file.seek (0);

file.witeBytes (mname + "\n");
file.witeFl oat (mbal ance);
f.close();

}

catch (java.io.|Cexception ex) {

&étem exit(1);
}
}

The statement:
account aRef = new _tie_account (alnpl, file_nane, |oader);

inaccount | npl ement ati on. | cadMe() creates a new TIE for the implementation
object accl npl , and specifies its marker to be f i | e_narre and its loader to be the loader
object referenced by parameter | oader . Actually, this example creates only a single loader
object as shown in the next code sample.

Class bank! npl enent at i on is implemented as follows:

/1 Java
package | oaders_per _si np;

inport |E |ona. O bixWb. Feat ures. Loader d ass;
i nport org. ong. GORBA. Syst enExcepti on;

public class bankl npl erent ati on
i npl ements _bankQperations {
protected int msort Code;
protected int ml astAc;
protected Loaderd ass m | oader;

publ i ¢ bankl npl enentati on (I ong sort Code,
Loader d ass | oader) {
m sort Code = sort Code;
m | oader = | oader;
mlastAc = 0; // Nunber of previous account.

463

Loaders

/1 Method to inplenent |IDL operation:
public account newAccount (String name) {
String accountNr = new String ("a"

+ msortCode + "-" + (++tmlastAc));

account | npl ementation alnpl = null;

try {
al npl = new account | nmpl enent ati on
(100, nane, accountNr);

}
catch (Systenkxception se) {

}

account aRef = new _tie_account(alnpl, accountN, ml oader);
return aRef;

}

The main method creates a single loader object, of class Loader , and each account object
created is assigned this loader. Each bank! npl enent at i on object holds its sort code (a
unique number for each bank, for example 1234), and also a reference to the loader object
to associate with each account object as it is created. Each account is assigned a unique
account number, constructed from its bank’s sort code and a unique counter value. The
first account in the bank with sort code 1234 is therefore given the number “a1234- 1"
The marker of each account is its account number, for example “a1234- 1”. This ability to
choose markers is an important feature for persistence.

The statement:

account aRef =
new _tie_account (alnpl, accountN, ml oader);

creates a new TIE for the account | npl erent at i on object assigning it the marker
account N and the loader referenced by m | oader . (The bank objects are not
associated with an application level loader, so they are implicitly associated with the
OrbixVWVeb default loader.)

464

Example Loader

The server application class must create a loader and a bank; for example:

/1 Java
package | oaders_per _si np;

i nport org. ong. CORBA Syst enExcept i on;

public class bankServer {
public static void main (String args[]) {
Loader nyLoader = new Loader ();
bankl npl enent ati on bankl npl =
new bankl nmpl enent ati on (1234, nyloader);
bank bRef;

try {
bRef = new _tie_bank (banklnpl, "b1234");

catch (Systenkxception se) {

}

Coding the Loader
You can implement class Loader as follows:

/1 Java
/1 In file Loader.java.
package | oaders_per _si np;

i nport org. ong. CORBA Syst enExcept i on;
i nport org. ong. CORBA (bj ect ;

inport | E |ona. Obi xWb. CCRBA Feat ur es. Loader 4 ass;
inport | E |ona. ObixWb. CORBA
inport | E |ona. Obi xWb. _C bi x\b;

cl ass Loader extends Loaderd ass {
public Loader () {
super (true);

}

465

Loaders

public bject load (String interfaceMarker,
String marker, bool ean isBind) {
/1 There will always be an interface;
/1l but the marker may be the null string.
if (marker!=null && !narker.equals ("")
&& marker.charAt (O)==a’' &&
interface.equals ("account"))
return accountimplementation.loadMe
(marker, this);
return null;

}

public void save (Object obj, int reason) {
String marker = _OrbixWeb.Object(obj)._marker ();

if (reason == _CORBA.processTermination) {
accountimplementation impl =
(accountimplementation)(((_tie_account)obj)._deref());

almpl.saveMe (marker);

}

The constructor of LoaderClass takes a parameter indicating whether or not the loader
being created should be included in the list of loaders tried when an object fault occurs. By
default, this value is false ; so the loader class’s constructor passes a value of true to the
LoaderClass constructor to indicate that instances of Loader should be added to this
list.

The accountimplementation.loadMe() method assigns the correct marker to the
newly created object. [f it failed to do this, subsequent calls on the same object result in
further object faults and calls to the Loader.load() method.

It is possible for the Loader.load() method to read the data itself, rather than calling the
static method accountimplementation. loadMe() . However, to construct the
object, load() dependent on there being a constructor on class

accountimplementation that takes all of an account’s state as parameters. Since this is
not be the case for all classes, it is safer to introduce a method such as loadMe() . Equally,
Loader.save() can access the account’s data and write it out, rather than calling
accountimplementation.saveMe() . However, it is then dependent on
accountimplementation providing some means to access all of its state.

466

Example Loader

In any case, having | oadMe() and saveMe() within class account | npl enent at i on
provides a sensible split of functionality between the application level class,
account | npl enent at i on, and the loader class.

Client-Side

Loaders are transparent to clients. A client that wishes to create a specific account could
execute the following:

/1l Java

bank bRef;
account aRef;

try {
/'l Find the bank sonehow, for exanple,

/'l using bind():
bRef = bankHel per.bind (": per_sinmp", host);

aRef = bRef.newAccount ("John");

}
catch (SystenException se) {

}

A client that wishes to manipulate an account can execute the following:

/1 Java

/1 To access account with account
/!l nunber "al234-1".

account aRef;

float bal;

try {
aRef = account Hel per. bi nd

("al234-1: per_simp", host);
bal = aRef.bal ance ();
aRef . makeW t hdr awal (100. 00);

catch (SystenException se) {

}

467

Loaders

If the target account is not already present in the server then the | oad() method of the
loader object is called. If the loader recognises the object, it handles the object fault by re-
creating the object from the saved data. If the load request cannot be handled by that
loader, then the default loader is tried next and this always indicates that it cannot load the
object. This finally results in an or g. ong. CCRBA. | NV_OBJREF exception being returned
to the caller.

Polymorphism

Every loader you write should allow for polymorphism. In particular, the interface name
passed to a loader may be a base interface of the actual interface that the target object
implements. This may arise, for example, when the client has bound to an object using

| 1Hel per . bi nd() but where the object’s actual interface is in fact a derived interface of
I 1.

The class of the target object must therefore be determined either from the marker passed
to the loader, or from the data used to load the target object. The demonstration code for
loaders shows the marker names being used to distinguish the real interface of an object,
using the first character of each marker. This is a simple approach, but it is probably better in
a large system to use some information stored with the persistent data of each object.

You must also remember that it may not be necessary to distinguish the real interface of an
object in all applications and for all interfaces. If you always use the correct interface name in
calls to bi nd() (thatis, you always used | 1Hel per . bi nd() when binding to an object
with interface | 1) handling polymorphism is not required. This is also the case if you do not
use bi nd() for a given interface: for example, you may obtain all object references to
accounts by searching (say, using an owner name) in a bank, rather than using bi nd() .

It is however possible that, because of programmer error, the actual interface of the target
object is not the same or a derived interface of the correct one. This should be detected by
a loader.

468

Approaches to Providing Persistent
Objects

Approaches to Providing Persistent Objects

There are many ways to use the support described so far in this chapter. This section
outlines some of the choices available.

The information provided to a loader on an object fault comprises the object’s marker and
the interface name. The loader must be able to find the requested object using these two
pieces of information. It must also be able to determine the implementation class of the
target object—so that it can create an object of the correct class. Naturally, this
implementation class must implement the required interface or one of its derived interfaces.

It is normal, therefore, to use the marker as a key to find the object, and either to encode
the target object’s implementation class in the marker, or to first find the object’s persistent
state and determine the implementation class from that data.

For example, a prefix of the marker could indicate the implementation class and the
remainder of the marker could be the name of the file that holds the object’s persistent
state.

The following are some of the choices available when using loaders to support persistent
objects:

® You can store each object in its own file, or you may use a record system
in which one or more records represent an object. You can store
records, for example, in a relational database management system, or by
using lines of a normal file.

* An object can be loaded when a request arrives for it; or all of the
required objects can be loaded when the first request is made. For
example, in the bank application, an account object can be loaded when
an invocation is made on it, or all of the accounts controlled by a bank
can be loaded when the bank, or any of its accounts, is first interacted
with.

469

Loaders

¢ An object can be saved to the persistent store at the termination of the
process, or it can be saved before that time: for example, at the end of
the method call that caused it to be loaded, or if the object has not been
used for some period of time.

Many different arrangements are possible for the loaders themselves, for example:

¢ A process can have a single loader to handle all of the interfaces that it
supports. However, it is difficult to maintain such a loader for many
interfaces.

® A process can have one loader to handle each interface, or each separate
hierarchy of interfaces.

If one loader per interface is used, each loader’s | oad() method is called in turn until one
indicates that it can load the target object. Although this approach is simple to implement,
such a linear search may be inefficient if a process handles a large number of interfaces. One
efficient mechanism is to install a master loader, with which the other loaders can register.
Each registration gives some key indicating when the registering loader’s | oad() method is
to be called by the master loader; a key can be a marker prefix and an interface name.

Another reason for having more than one loader is that a process may use objects from
separate subsystems—each of which installs its own loader(s). These loaders must be able
to distinguish requests to load their own objects. You can avoid confusion if the subsystems
handle disjoint interfaces, since the interface name is passed to a loader; however, some co-
operation between the subsystems is required if they handle the same interfaces, or
interfaces which have a common base interface. Each subsystem must be able to distinguish
its objects based on their markers or their persistent state.

If I 1 is a base interface of | 2 and | 3, the objects of interfaces | 2 and | 3 must be
distinguishable to avoid confusion when “l 1" is passed as an interface name to | oad() .

In particular, the subsystems must choose disjoint markers.

470

Disabling the Loaders

Disabling the Loaders

On occasion, it is useful to be able to disable the loaders for a period. If, when binding to an
object, the caller knows that the object already loaded if it exists, it might be worthwhile to
avoid involving the loaders if the object cannot be found.

You can disable the loaders by calling the following method:

/1 Java

/1 I'n package | E.|ona. Orbi x\\eb. CORBA

/1 in class BOA

publ i c bool ean enabl eLoaders (bool ean b)

on the _COCRBA. Or bi x object, with a f al se parameter value. This returns the previous
setting; the default is to have loaders enabled.

471

Loaders

472

25

Locating Servers at Runtime

When bi nd() is called with a null host name, OrbixWeb uses the
locator to find the target object in the distributed system. This chapter
describes the default locator supplied with OrbixWeb and explains
how to replace it with a user-defined locator implementation.

The Default Locator

The default OrbixVVeb locator mechanism searches for a server using the following
sequence of steps:

I. The locator first attempts to contact an OrbixVVeb daemon process at
the local (client) host. If no such process exists, the location attempt fails.

2. The locator invokes the method | ookUp(). This contacts the local
OrbixWeb daemon and requests a list of host names for the specified
server name.

This list is generated from the O bi x. host s and O bi x. host gr oups files.
If there is no entry for the requested server in these files, the OrbixVVeb
daemon connects to a daemon specified in an | T_daenon entry in the

O bi x. host s file, and calls | ookUWp() on this daemon (less one hop). This
daemon then in turn returns a sequence of hosts that the server may be
registered on from its O bi x. host s and O bi x. host gr oups files.

473

Locating Servers at Runtime

3. The host names returned by the daemon are arranged in a random order.
OrbixWeb then iterates through this list, attempting to verify the
registration of the server at each host in turn. The locator returns the
first host at which the specified server is registered.

If the client is an applet and or g. ong. CCRBA. CRB. i ni t (j ava. appl et . Appl et
app,java. util.Properties props) hasbeeninvoked, step | above uses the applet's
codebase host instead of the local host.

If the location attempt fails, the bi nd() call also fails and throws an OrbixVWVeb system
exception. The location attempt succeeds when it locates a host at which the server name
passed to bi nd() has been registered. However, this does not guarantee that the bi nd()
call itself will succeed. The bi nd() method requires additional criteria, such as successful
launching of the server and location of the specified object within the server.

For successful operation of the default locator, you should specify server names and
corresponding target hosts in advance. You must configure the default locator with the local
OrbixWVeb daemon process, which manipulates the locator configuration files. Refer to the
chapter “OrbixVVeb Configuration” in the OrbixWeb Programmer’s Reference for more
details.

The lookUp() method

The | ookUp() method is a crucial part of the implementation of the OrbixVWVeb default
location mechanism. This method is responsible for nominating a list of candidate host
names at which the server should be sought. The signature of | cokUp() (as defined in class
| E. 1 ona. O bi x\&b. Feat ur es. | ocat or A ass) is as follows:

/1 Java
public String[] |ookUp(String ServiceNang,
int MaxHops, Context ctx);

Refer to “Parameters to lookUp()” on page 478 for more details on this method.

Unlike the location mechanism in some versions of Orbix, the OrbixVVeb default locator
does not use a publicly accessible default locator object to call the method | ookUp() .
Consequently, an OrbixWeb client cannot call the default locator | ookUp() method
directly. However, you can implement this functionality and this is discussed in the next
subsection.

The object _OCORBA. | ocat or (defined in package | E. | ona. O bi x\\¢b) is only used to
allow you to override the default | ookUp() implementation, and is assigned nul | unless
explicitly replaced, as described in “Writing a New Locator” on page 477.

474

The Default Locator

Default lookUp() functionality

Although you do not normally have to make explicit use of the | ookUp() method (since it
is used implicitly through calls to bi nd()), it may sometimes be useful to do so. A direct call
to the | ookUp() method invoked by the OrbixVWVeb default locator is not possible, but
you can easily copy this functionality.

The default | ookUp() implementation uses the | T_daenon IDL interface, which is
implemented by the OrbixVVeb daemon. To copy the behaviour of | ookUp() , you need
to bind to the local OrbixVWeb daemon process and invoke the | T_daenon: :I ookUp()
operation. The IDL signature of this operation is:

// 1DL
bool ean | ookUp (in string service,
out stringSeq hostList,
in octet hops, in string tag);

You can code the operation invocation as follows:

/1 Java
/1l in class Cient

i mport | E.lona. ObixWb. Activator.|T_daenon;
i mport | E. lona. Orbi xWeb. Acti vat or.
| T_daenonPackage. st ri ngSeqHol der;
import | E. lona.Orbi xWeb. Activator.|T_daenonHel per;
i mport org. ong. CORBA. Syst enExcepti on;

| T_daermon dRef;

String service;

String tag = nul l;

byt e hops;

stringSeqHol der hostList = new stringSeqHol der();

/] initialize server nane
service = "MyServer";

/1 initialize nunber of |ocator hops
hops = 5;

try {
/1 bind to Obix daenpn

dRef = I T_daenonHel per.bind ();

475

Locating Servers at Runtime

/'l invoke | ookUp() operation

dRef .| ookUp (service, hostList, hops, tag);
}
catch (SystenkException se) {

}

if (hostList.value.length > 0) {
int i;

for (i=0; i<hostList.value.length; i++)
Systemout.println (hostList.value[i]);

}
el se {

/'l server not found in configuration file ...
}

Each string in the sequence of strings returned by operation | ookUp() gives the name ofa
host on which the specified server may be registered. The | ookUp() operation returns an
empty sequence if no host names can be found for the specified server. If the call succeeds,
the program can choose any of the returned host names, or perhaps iterate over the host
names, attempting to bind to the required object at each in turn. If an exception is raised on
one of the binds, this indicates an error such as the host not being available.

The default implementation of the locator randomizes the sequence before returning it.
This is a basic technique in load balancing to avoid swamping any one server.

The hops parameter to | 0okUp() specifies the maximum number of hops that can be
used to fulfil a request, thereby limiting the number of hosts involved in a search. The

bi nd() method uses the value | T_LOCATCR _HOPS configuration value. You can change
this value if you wish to modify how bi nd() uses | ookUp() . Explicit calls to | ook Up()
can specify any byt e value. The constant value _ CCRBA. _ MAX_LOCATCR HOPSisusedifa
greater value is specified.

You can set the hops configuration variable as follows:
ORB. set Configltem ("I T_LOCATOR HOPS", "5");

Thet ag parameter is simply a string used in daemon diagnostic messages and can generally
be assigned the value nul | .

476

Writing a New Locator

Writing a New Locator
If the search facility provided by the OrbixVWVeb default locator is not appropriate, or if it

needs to be augmented for a given application, you can install an user-defined alternative
locator by:

|. Defining a derived class of | ocat or 4 ass.

2. Creating a single instance of the new class.

3. Assigning the pointer _CCORBA | ocat or to point to that instance.

The default value of _OCRBA. | ocat or is nul | . This indicates that the default locator
algorithm should be used where appropriate.

The locator | ookWo() method is passed the name of the server being sought. It should
return a list of names of hosts on which that server is registered in the Implementation
Repository. It is often advisable for a locator to randomize the sequence before returning it.

Class | ocat or A ass is defined as follows:

/1 Java
package | E | ona. O bi xX\&b. Feat ur es;

public class | ocatordass {
public String[] I ookUp(
String ServiceNane, int MaxHops,
Context ctx);

477

Locating Servers at Runtime

The parameters to | ookUp() are described as follows:

Parameters to lookUp()

Ser vi ceNane
MaxHops

cont ext

478

The name of the server being sought.

This is interpreted as the maximum number of
machines to search for the required server. You
should retain an interpretation similar to this one in a
user defined locator if you want to use it without
changing client code that explicitly calls | ookUp() .

A context parameter. This allows a client to pass
extra information to the locator: for example,
constraints on how to search for the server. A trader
is an example of where this is important. You can use
the context parameter to define properties to be
used when deciding between a set of servers with the
same name.

26

Opaque Types

OrbixWeb provides an extension to IDL that allows you to define
opaque data types. Opaque data types can be passed by value
through an IDL definition. This chapter describes how to use opaque
data types with OrbixWeb.

In accordance with the CORBA standard, OrbixWeb objects are passed to and
from IDL operations by reference. OrbixWeb objects are described by an
interface which is defined in IDL. These objects are created in a server. Object
references rather than actual copies of the objects are passed to clients.

This model applies to the majority of applications that use an ORB. However, in
some cases, you may wish to pass objects across a CORBA IDL interface by
value rather than by reference. Passing an object by value means that the internal
state of the object is included in an operation parameter or return value. A copy
of the object is constructed in the process.

In addition, there has been demand for a mechanism that allows existing objects
to be passed across an IDL interface without having to retrospectively define
IDL interfaces for these objects. Such a mechanism allows the integration of IDL
types with non-IDL data types within a CORBA environment.

Opagque types address both of these issues. A new opaque keyword identifies a
IDL data type as opaque. This means that nothing is known at the IDL level. A
type defined to be opaque behaves like an interface type. This means that it may
be passed as a parameter or return value to an IDL operation. It may also be
used as an attribute type or as a member of a struct or exception.

479

Opaque Types

An opaque type is always passed to and from |IDL operations by value. You must
supply the following:

* A Java class which implements the opaque object.

® The opaque's Helper class which implements the stream based
marshalling and unmarshalling of the opaque object.

Possible Alternative Solutions

As outlined in the previous section, IONA’s approach to passing objects
between client and server processes by value is to introduce a new type
constructor at the IDL level.

It is possible to achieve similar results without extending the IDL language. One
solution to transmitting an object by value is to define its state in an IDL st r uct
definition. This solution is unsatisfactory for two reasons: first, you are forced to
separate state information from interface information; second, you must make
explicit in the IDL definition information that properly belongs to the
implementation.

A second solution is to pass an object’s state information in binary form, as a
sequence<oct et >. This mechanism does not make explicit the type of the
information transmitted, so it does not violate the privacy of the object.
However, no marshalling or unmarshalling is performed on a sequence<oct et >,
so byte-swapping and other data-conversion becomes the responsibility of the
programmer. Further, in stripping the interface of type information, the ORB
assumes the role of an RPC package.

480

Using Opaque Types

Using Opaque Types

This section demonstrates how to use the opaque mechanism to pass a user-
defined type by value in IDL operations. The sample code described in this section is
available in the denos/ Dat e directory of your OrbixWeb installation.

IDL Definition

The example used here defines an IDL interface Cal endar that makes use of the
opaque type Dat e. The IDL definitions are as follows:

/1 1DL
/!l In file calendar.idl.

opaque Dat e,

interface Cal endar {
/1 Today’'s date.
readonly attribute Date today;

/1 Length of time fromgiven date until today.
unsi gned | ong daysSi nce(in Date d);
H
The opaque data type is introduced by the keyword opaque, denoting a new IDL
type. An opaque type may be defined at file level scope or within a module, at

the same level as an interface definition. In this example, the new Dat e type is
used as an attribute type and as an i n parameter.

Compiling the IDL Definition

You can compile IDL definitions using the -K switch, as follows:
idl -jPopaqueDat eDenmo -K cal endar. i dl

opaque is not a keyword in CORBA IDL. The - K switch to the IDL compiler
indicates that support for opaque types is required.

481

Opaque Types

Mapping of Opaque Types to Java

The following template classes are generated by the IDL compiler:

// the date class
_DateTenpl ate. j ava

/1l the Holder class
_Dat eHol der Tenpl ate. j ava

/1 the Hel per class
_Dat eHel per Tenpl at e. j ava

Implementing the Opaque Type

The generated file _Dat eTenpl at e. j ava contains the template Dat e
implementation class. You should change the name of _Dat eTenpl at e. j ava to
Date. j ava. The following is an example implementation for the Dat e class:

/1 Java
/1l Infile _DateTenpl ate.java.

package opaqueDat eDenv;
public class Date {
public Date () {}
public Date (int day, String nonth, int year) {
this. day = day;

this.nmonth = nonth;
this.year = year;

}
public String toString() {

return("Date ==>" + day + " " + nonth +" " + year);
}

public int day;
public String month;
public int year;

482

Using Opaque Types

The Helper Class

The generated file _Dat eHel per Tenpl at e. j ava contains the code you must use
to stream information into and out of the Dat e objects.

This involves implementing r ead() and wi t e() methods to marshal and
unmarshal the objects. The or g. ong. CCRBA. por t abl e. | nput St r eamand
Qut put St r eam interfaces are use for this:

/1 Java
/1 In file _DateHel per Tenpl at e. j ava.

package opaqueDat eDeno;
inport | E |ona. ObixWb. _C bi x\V¢b;
public class DateHel per {

public static Date read
(org. ong. CORBA portabl e. I nput Stream _strean) {
Date val ue = new Date();
val ue.day = _streamread | ong();
val ue.nonth = _streamread_string();
val ue. year = _streamread_short();
return val ue;

}

public static void wite
(org.ong. QORBA portabl e. Qut put Stream _stream Date val ue) {
streamwite| ong(val ue. day);
_streamwite_string(val ue. nonth);
streamwite|l ong(val ue.year);

}

You should change the name of_Dat eHel per Tenpl at e. j ava to
Dat eHel per. j ava.

483

Opaque Types

The Holder Class

The generated file _Dat eHol der Tenpl at e. j ava is the Holder for Dat e. You can
avoid implementing the marshalling again by invoking the Helper class r ead()
and wite() methods as follows:

/1 Java
/1 In file _DateHol der Tenpl ate. j ava.

package opaqueDat eDeno;
import | E |ona. Obi x\b. _QO bi x\¢b;

public final class Datehbol der
i npl enent's org. ong. OCRBA portabl e. Streanabl e {

public Date val ue;

publ i ¢ Dat eHol der () {
val ue = new Date();
}

publ i c Dat eHol der (Date val ue) {
this.val ue = val ue;

}

public void _read
(org. onmg. CORBA portabl e. I nput Stream _strean) {
Dat eHel per. read(_strean);

}

public void _wite
(org. ong. CORBA portabl e. Qut put Stream _strean) {
Dat eHel per. wite(_stream val ue);

}
o

You should also change the name of this file from _Dat eHol der Tenpl at e. j ava
to Dat eHol der . j ava.

Refer to the denps/ Dat e directory of your OrbixVVeb installation for an example client/
server application that uses the Dat e type.

484

27

Transforming Requests

This chapter describes how you can modify the data buffers
containing OrbixWeb operation call information immediately before
and dfter transmission across the network.

In OrbixWWeb, an operation invocation or an operation reply is transmitted between a
client and a server in a or g. ong. QCRBA. Request object. Using the Dynamic Invocation
Interface, an or g. ong. CORBA. Request is explicitly created. A static invocation results in
the implicit creation of a or g. ong. CCRBA. Request object.

This chapter describes how you can modify an OrbixVWeb Request data buffer and allow a
client or server process to specify what modifications to the buffer should occur when
requests or replies are transmitted to other processes. The ability to modify this data just
before its transmission, or just after its reception means that you can add additional
information to the data stream. For example, you can add information identifying the
participants in the communication or encrypt the data stream for security purposes. The
process of modifying the data buffer is known as transforming the data buffer.

The functionality provided by transformers is at a lower level than that provided by filters,
since it allows access to the actual data buffer transmitted in a Request .

485

Transforming Requests

Transforming Request Data

You can transform a Request data buffer using a transformer object. To obtain a new
transformer object, perform the following steps:

|I. Define a class which inherits from the class
| E 1 ona. O bi x\Wb. Feat ures. | T_reqTr ansf or ner.

2. Create an instance of this class.
3. Register this instance with the OrbixWeb runtime.

You can register the transformer object so that it performs
transformations on all communications to and from the process that
contains the transformer object. Alternatively, you can register it so that
transformations are performed only on communications to and from a
particular server on a particular host that contains the transformer.

Note: Because transformations are applied when an operation invocation leaves
or arrives at an address space, no transformations are applied when the
caller and invoked object are collocated.

The IE.lona.OrbixWeb.Features.IT_reqTransformer Class

The | T_reqTr ansf or mer class defines the interface to transformer objects. This class is
defined as follows:

/1 Java
package | E | ona. O bi x\&b. Feat ures;
public class I T reqTransforner {
publ i ¢ bool ean transforn{oct et SeqHol der dat a,
String host,
bool ean i s_send,

org. ong. GORBA. Request req) {
return true;

486

Transforming Request Data

public String transformerror() {
return null;

}
}

A class derived from | T_r eqTr ansf or mer can access a data buffer just before
transmission and can therefore manipulate or transform the data as required. The derived
class must, at least, override the t r ansf or n{) method. Refer to the OrbixWeb
Programmer’s Reference for full details of the | T_r eqTr ansf or ner class.

Thetransf or m{) method is called by OrbixVWeb immediately prior to transmitting the
datain a Request out of an address space and immediately subsequent to receiving a
Request from another address space. The derived class can allocate new storage to handle
any alteration in the data size caused by the transformation.

Thet ransf or n{) method can indicate that a or g. ong. CCRBA. COMM FAI LURE
system exception should be raised by OrbixVVeb by returning f al se.

A derived class may implement the t r ansf or m er r or () method to return a string
containing suitable error text.

Ther eq parameter in the t r ansf or () method holds a reference to the Request
object when an outgoing t r ansf or () is called. This has a value of null for all incoming
transform operations.

Registering a Transformer

OrbixVVeb provides two methods to register a transformer object (an instance of
| T_reqTr ansf or ner). You can call both on the CRB object:

* set MyReqTransformer ()

* setReqTransformer()

487

Transforming Requests

setMyReqTransformer()
This method is defined as follows:
/1l Java
/1l In class | E. |lona. O bi x\Wb. CORBA. ORB

| T_reqTransformer set MyReqTr ansf or nmer (
| T_reqTransformer transforner)

set MyReqTr ansf or ner () registers a transformer object as the default transformer for
all Request s entering and leaving an address space.

setReqTransformer()
This method is defined as follows:

/1l Java
/1 In class | E. lona. O bi xWb. ORB.

voi d set ReqTransf or mer (
| T_reqTransformer transforner,
String server,
String host)

set ReqTr ansf or mer () registers a transformer object for all Request s destined for a
specific server and host and for all Request s received from a specific server and host. You
can call this method more than once to register different server/host pairs.

A transformer registered using set ReqTr ansf or mer () overrides any default
transformer registered with set M/ReqTr ansf or ner ().

Note: At most, one transformation is applied to any Request —the default
transformation registered with set M/ReqTr ansf or ner () or overriding
specific transformation registered with set ReqTr ansf or mer () .

488

An Example Transformer

An Example Transformer

This section presents a simple example of a transformer that adds the name of the sending
host to a Request ’s buffer when sending a Request out of a process and removes the
host name from a Request ’s buffer when receiving a Request containing an operation

reply.
The transformer is implemented as follows:

/1l Java

publ i c bool ean transforn{octetSeqHol der data
String host,
bool ean i s_send
or g. ong. CORBA. Request req)

{

if (is_send) {
byte[] buf = new byte[data.value.length +
host.length() + 4];

/1 insert the host name |ength
buf [0] = (byte)((host.length() >> 24) &

0x000000f f) ;

buf[1] = (byte)((host.length() >> 16) &
0x000000f f) ;

buf[2] = (byte)((host.length() >> 8) &
0x000000f f);

buf[3] = (byte)(host.length() & 0x000000ff);

/'l insert the host nane
System arraycopy(host. get Bytes(), 0, buf,
4, host.getBytes().length);

/1 add the O bi xWeb data buffer
System arraycopy(data.val ue, 0, buf, 4 +
host .l ength(), data.val ue.length);
dat a. val ue = buf;
}
el se {
/1 extract the host nanme |ength
int | = ((((int)data.value[0]) << 24) &
0xf f 000000) |

489

Transforming Requests

((((int)data.value[l]) << 16) &
0x00f f 0000) |
((((int)data.value[2]) << 8) &
0x0000f f 00) |
(((int)data.value[3]) & 0x000000ff);

/'l extract the host nane
String h = new String(data.value, 4, 1);
int len = data.value.length - h.length() - 4;

/'l extract the O bixWeb data buffer

byte[] buf = new byte[len];

System arraycopy(dat a. val ue, 4 +
host.length(), buf, 0, len);

dat a. val ue = buf;

}

return true;

}

java.lang. String transformerror() {
return “Error in Transformer”;
}

/I Create a Transformer:
Transformer transformer = new Transformer();

The transform() method uses the parameter is_send . This indicates whether the
Request is incoming or outgoing, to determine whether to add or remove the host name
from the Request ’s buffer.

Registering the Transformer

The following call registers this transformer as the default transformer for a client or server
process:

ORB.setMyReqTransformer(transformer);

490

An Example Transformer

To register a transformer that acts on Request s going to or received from a specific server
on a specific host, make the following call:

/'l Register a transformer that transforns data
/1 sent to or received fromnmyServer on host
/1 al pha.

ORB. set ReqTr ansf or ner (
transforner, "nmyServer", "al pha");

491

Transforming Requests

492

28

Service Contexts

Service contexts provide a means of passing service-specific
information as part of IIOP message headers. This chapter describes
OrbixWeb APIs that allow you to register handlers that intercept IIOP
requests and replies, and to store and retrieve service contexts.

A service context consists of a unique ID and a sequence of octets. Its structure
can be outlined as follows:

/1 1DL
nodul e 110P {
typedef unsigned | ong Serviceld;

struct ServiceContext {
Serviceld context _id;
sequence<oct et > cont ext _dat a;
I

typedef sequence<Servi ceCont ext> Servi ceCont ext Li st;
b
The cont ext _i d is a unique ID by which a particular service context is

recognized. The cont ext _dat a octet sequence is the part of the context
containing the data.

Note: Service contexts in OrbixWeb can only be used over [IOP.

493

Service Contexts

The OrbixXWeb Service Context API

The OrbixWeb API for service contexts comprises the following external
interfaces:

®* The Servi ceCont ext Handl er class.
* The ORB interfaces.
®* The ServiceCont ext Li st.

ServiceContextHandler Class

The Servi ceCont ext Handl er class is the base class from which you derive
handlers for a particular Servi ceCont ext . Each handler has a unique ID. This
corresponds to the ID of the particular Ser vi ceCont ext used. You should
register a handler on both the client and the server for each Servi ceCont ext .
Refer to “ORB Interfaces” on page 495 for more details.

The Servi ceCont ext Handl er base class has the following structure:

/1 Java

inport | E |ona. Obi x\b. CCRBA Request ;

cl ass Servi ceCont ext Handl er {

/1 Constructor registers the context ID
public nyServiceContext(int Context_ld) {
super (Cont ext _| d)

publ i ¢ bool ean i ncom ngRequest Handl er (Request req);
publ i ¢ bool ean out boundRequest Handl er (Request req);

publ i ¢ bool ean i ncom ngRepl yHandl er (Request req);
publ i ¢ bool ean out boundRepl yHandl er (Request req);

494

The OrbixWeb Service Context API

ORB Interfaces

ORB APIs are provided to allow you to register the handler with the ORB.
These APIs are defined as follows:

/1 Java
public class ORB {

public void regi st erPer Request Servi ceCont ext
(Servi ceCont ext Handl er & xHandl er);

publ i c voi d unregi st er Per Request Ser vi ceCont ext
(int GxHandl er_ld);

public void regi sterPerhj ect Servi ceCont ext
(Servi ceCont ext Handl er C xHandl er,

or g. ong. OCCRBA. (hj ect Handl ed(hj ect) ;
publ i c voi d unregi st er Per (bj ect Ser vi ceCont ext

(int GxHandl er_Id,
or g. ong. CCRBA. (hj ect Handl edj ect) ;

}

Per-Request Handlers

Registering a handler as per-request adds its request/reply handler methods to a
Ser vi ceCont ext Li st (SCL). The handler is then called at the appropriate point
for the request.

Per-Object Handlers

Registering a handler as per-object also adds its request/reply handler methods
to a Servi ceCont ext Li st. The handler is then called for requests /replies
associated with the specified target object.

495

Service Contexts

ServiceContextList

A Servi ceCont ext Li st is a field in a IOP message header containing all the
service context data associated with a request or reply.

A Servi ceCont ext Li st is implemented as a sequence of Ser vi ceCont ext s.
Ser vi ceCont ext Li st s support both per-object and per-request service context
handlers.

Using Service Contexts in OrbixWeb
Applications

Service contexts in OrbixWeb are based on two models:

Service Context per-request In this model service contexts are
handled on all requests and replies
entering and leaving an ORB.

Service Context per-object In this model only service context
information is handled for requests
and replies going to or coming from a
particular object.

ServiceContext Per Request Model

This section gives an overview of implementing per request service contexts in
OrbixWeb applications.

Client-Side

To add service context information to all requests leaving a client application, do
the following:

I. Call the enabl eServi ceCont ext () method on the ORB to enable
Ser vi ceCont ext s.

2. In the user code, derive a class from the base class
Ser vi ceCont ext Handl er . For example, nySer vi ceCont ext Handl er .

3. Create an instance of this class within the client, and pass it a unique
Servi ceCont ext _| d.

496

Using Service Contexts in OrbixWeb Applications

4. Register this handler instance with the ORB using the following method:

voi d regi st erPer Request Ser vi ceCont ext Handl er
(Servi ceCont ext Handl er nyHandl er)

This registration means, for example, if any outgoing requests leave the
client, the following method is called:

nySer vi ceCont ext Handl er . out boundRequest Handl er

(Request req)

This method takes the request that caused the invocation as a parameter.
The request is interrogated by the user handler class showing the
operation name.
Similarly, for incoming requests i ncom ngRepl yHandl er () is called.

Create a new instance of Servi ceCont ext in the user code of the
handler.

Populate the cont ext _dat a part of the Ser vi ceCont ext with
information, and add it to the Servi ceCont ext Li st.

This Ser vi ceCont ext Li st is marshalled with the request message and is
passed across the wire to the server.

Server-Side

The server side design is similar to the client side. It creates and registers
handlers, and re-implements the methods from the ser vi ceCont ext Handl er
class. To receive service context information from all requests entering a server,
do the following:

Call the enabl eSer vi ceCont ext () method to on the ORB enable
Servi ceCont ext s.

In the user code, derive a class from the base class
Ser vi ceCont ext Handl er. For example, nySer vi ceCont ext Handl er.

Create an instance of this class within the server passing it the
Ser vi ceCont ext _i d. You can use the same code on both the server and
client sides.

Register this handler instance with the ORB using

voi d regi st er Per Request Ser vi ceCont ext Handl er
(Servi ceCont ext Handl er nyHandl er)

This registration means that when a request comes into the server
address space, the Servi ceCont ext Li st in the request header is

497

Service Contexts

unmarshalled. This means that only the relevant handlers are called via
the following method:

publ i c bool ean i ncom ngRequest Handl er (Request req);
If there is a Servi ceCont ext in the request header list that has the same
ID as the registered handler, the i ncom ngRequest Handl er () method is
called.
5. Using the i ncom ngRequest Handl er () method, take a copy of the
Servi ceCont ext required, and extract the needed information, calling
the necessary code. This information can then be processed.

After the handler has returned, and all other Ser vi ceCont ext handlers have
completed, the request continues as normal.

Note: Replies are treated the same as requests. They activate the
out boundRepl y() and i nconi ngRepl y() handlers in the same way.

Example ServiceContextHandler
Given the following IDL definition:

/11DL
struct nyStruct {
long current;
string message;
H
you can write a Ser vi ceCont ext Handl er to send and receive nyStruct objects
across the wire, as follows:

/ljava

i nport | E | ona. O bi x\b. Feat ur es. Ser vi ceCont ext Handl er ;
inport | E |ona. Obi x\b. CCRBA Request ;

public class nyServi ceCont ext Handl er
ext ends Servi ceCont ext Handl er {
| ong num = 0;
public nyServiceContext Handl er (int id) {
super (i d);
}

498

Using Service Contexts in OrbixWeb Applications

public bool ean out boundRequest Handl er (Request req) {
Systemout. println
("Attenpting to add Service Context |ist to outgoing
Request \n" + "\ttarget \t" + req._target() +
"\tcalling \t" + req.operation());

nyStruct s = new nyStruct (++num "this i s message nunber”
+ nunj;

Any a = new Any(_OCRBA | T_I NTEROPERABLE CR KI ND) ;

nyStruct Hel per.insert(a,s);

Servi ceCont ext sc = new Servi cecontext();
sc.context_id = _getlDX);

sc.context _data = a.val ue();

reg. addSer vi ceCont ext (sc) ;

return true;

}

publ i ¢ bool ean i ncom ngRequest Handl er (Request req) {
Systemout. println
("attenpting to extract data from Servi ce Cont ext
List on incomng Request \n" + "\ttarget \t" +
reg. _target() + "\tcalling \t" + req.operation());

Servi cecontext sc = req.
get Servi ceContext(_getlX());

Any a = new Any(nyStruct Hel per.type(), sc.context_data,
sc.context _data.length, true);
nyStruct s = nyStruct Hel per. extract (a);

Systemout. println
("Extracted the following data from Servi ce Cont ext
List on incomng Request \n" + "\tID\t\t" +
sc.context_id + "\tstruct num\t" + s.num+
"\tstruct nsg \t" + s.nessage);
return true;

499

Service Contexts

ServiceContext Per-Object Model

This section gives an overview of implementing per object service contexts in
OrbixWeb applications.

Client-Side

To add Servi ceCont ext s to requests leaving the client for a particular object
you must also create and register handlers. This involves the following:

* The regi st er Per (oj ect Ser vi ceCont ext Handl er () method returns
the handler and object reference.

® The object reference is stored in a Vect or array.

® Each ServiceContext in the Servi ceCont ext Li st has the same ID as
one of the handlers registered for that object.

® Only one Servi ceCont ext Li st is marshalled and sent across on the
wire.

Server-Side

To receive Servi ceCont ext s from requests entering the server for a particular
object you must create and register handlers. The following stages are involved:

* An object reference is obtained and stored in a Vect or array.

® The i ncom ngRequest () method is called for any Servi ceCont ext IDs
that correspond to any of the handlers registered.

Main Components

The Servi ceCont ext per-request and Ser vi ceCont ext per-object models
comprise a number of common components. This section defines each
component and explains how these components interact.

ServiceContextHandler

This base class allows users to define their own handlers for a particular

Cont ext _| d. For each Servi ceCont ext you wish to handle, there is a handler
registered on both the client and on the server. Each handler is recognized by its
ID which corresponds to the ID of the Servi ceCont ext it handles.

500

Using Service Contexts in OrbixWeb Applications

The Ser vi ceCont ext Handl er base class includes the following methods:

incomingRequestHandler()

This method is called when an incoming request arrives in a server at
the point where the Ser vi ceCont ext Li st has been unmarshalled. It
accesses the unmarshalled Ser vi ceCont ext Li st, passing the
appropriate Cont ext _| d required to access a specific

Ser vi ceCont ext .

outboundRequestHandler()
This method is called when an outgoing request is being marshalled in

the client. It can add a Ser vi ceCont ext to the Servi ceCont ext Li st
for marshalling.

incomingReplyHandler()

This method is called when an incoming reply arrives in a client at the
point where the Servi ceCont ext Li st has been unmarshalled. It
accesses the unmarshalled Ser vi ceCont ext Li st, passing the
appropriate Servi ceCont ext _| d required to access a specific

Servi ceCont ext .

outboundReplyHandler()

This method is called when an outgoing reply is being marshalled in
the server. It can add a Ser vi ceCont ext to the Servi ceCont ext Li st
for marshalling.

PerRequestServiceContextHandler

This is a Seri vceCont ext Handl er that has been registered as a handler for all
requests on the client or server side. The user derives from the base class, and
registers the handler. The handler is recognised by its ID. This corresponds to
the ID of the Servi ceCont ext it handles.

PerObjectServiceContextHandler

This is a Servi ceCont ext Handl er that has been registered as a handler for all
requests to a particular object on the client or server side. The user derives
from the base class and registers the handler. The handler is recognised by its ID
which corresponds to the ID of the Servi ceCont ext it handles.

501

Service Contexts

PerRequestServiceContextHandlerList

This is a list of service context handlers. For all requests or replies leaving an
address space, all outbound methods in all handlers are called. This is because
you do not know which Servi ceCont ext to add to each request.

For all incoming requests or replies in the client address space, only the
incoming methods of the handlers with IDs corresponding to actual
Servi ceCont ext s are called.

Similarly, on the server-side, for all outgoing requests or replies, only the
outgoing methods of the handlers whose IDs corresponds to actual
Ser vi ceCont ext s in the request or reply header are called.

PerObjectServiceContextHandlerList

This works the same way as Per Request Ser vi ceCont ext Handl er Li st except
that only requests and replies relating to a particular object are both tagged and
have their Servi ceCont ext data investigated.

Per Request Ser vi ceCont ext Handl er Li st is actually a list indexed by both the
context ID and the ong. or g. CORBA. (hj ect it references.

Service Context Handlers and Filter points

Service context handlers also interact with OrbixWeb filter points. In
OrbixWeb, there are ten filter points, including the in reply and out reply failure
filter points. Refer to Chapter 22, “Filters” for more details. The service context
mechanism provides four more points for interaction with requests and replies
in a typical invocation.

Figure 37 shows the position of the Ser vi ceCont ext Handl er s in an invocation,
in the subsequent reply, and also the order in which they are called.

If an exception is thrown in any of the out Request () pre or post marshall filter
points on the client side, the i ncom ngRepl yHandl er () is not called.

Oneway calls do not return anything, thus they do not call the client side
i nboundRepl yHandl er ().

502

Service Context Handlers and Filter points

Client

out Request Post Mar shal |
out Request PreMar shal |

out boundRequest Handl er —‘

|

I

I

Server

i ncom ngRequest Handl er

i nRequest PreMar shal |

’—i nRequest Post Mar shal |

i nRepl yFai |l ure
i nRepl yPost Mar shal |

i nRepl yPreMar shal | J

i ncom ngRepl yHandl er

J

(@)

(@)

&
:

T
L

\— out boundRepl yHandl er

out Repl yPreMar shal |

out Repl yPost Mar shal |

out Repl yFai |l ure

Figure 37: Servi ceCont ext Handlers and Filter Points

503

Service Contexts

504

Appendix A

IDL Compiler Switches

This appendix describes the command-line switches to the IDL

Compiler.

The IDL Compiler supports the following switches:

-C

- D <nane>

Specify to the OrbixWeb IDL pre-processor that it
should not filter out comments. Comments are
filtered out by default.

This switch is often used with -E

Pre-define the macro nane to be 1 within the IDL
file.

- D <nane>=<def i ni ti on> Pre-define the macro nane to be defi ni ti on.

-E

-F
-flags

-1 <directory>

Only run the OrbixWeb IDL pre-processor. Do
not pass the output of the pre-processor to the
OrbixWeb IDL compiler, but output the pre-
processed file to standard output. By default, the
output of the OrbixWeb IDL pre-processor is sent
to the OrbixWeb IDL compiler.

Generate per-object filtering code.
Display the command-line usage summary.

Specify an include file directory for use with IDL
include directives of the form
#i ncl ude<fi | enane>,

You can specify more than one -1 switch.

505

IDL Compiler Switches

'jC

-j NoC

-j O <directory>

-j oM

-j P [<package> |
<nodul e>=<package>]

506

Generate support for client-side functionality only.
By default, the IDL compiler generates both client-
side and server-side support. This involves the
creation of several server-specific source files that
are not required by client programmers. This
switch suppresses the generation of these files.

Specify that the generated constructors for TIE and
Implbase classes do not implicitly call
_QCRBA O bi x. connect ().

The default is that the generated constructors
implicitly call _GORBA. O bi x. connect ().

If this switch is used an application must explicitly
connect the newly-created implementation object
before use.

Specify a target directory for the file structure
output by the IDL compiler. The directory path
may be absolute or relative.

The default directory for IDL compiler output is
j ava_out put .

Ensure the generated code is OMG-mapping
compliant by suppressing the addition of
OrbixWeb-specific functionality. This functionality
includes bi nd() and additional constructors that
require narker, | oader or or b parameters.

Calling this switch also has the same effect as
calling -j NoC

Specify a Java package name within which all IDL
generated Java code is placed, or an IDL module
which should be mapped to a specific package
name.

By default, generated code is placed within the
global package, so the use of this switch is generally
recommended to avoid naming clashes.

Generate support for the equal s() method in all
IDL produced Java classes.

IDL Compiler Switches

-K
-m<I | CPonl y>
-N

- U <nane>

-V

Required if the IDL file uses the opaque type
specifier.

Generate marshalling code for the CORBA
Internet Inter-ORB Protocol (IIOP) only.

By default, code generated by the IDL Compiler
supports both [IOP and the Orbix protocol.

Specify that the IDL compiler is to compile and
produce code for included files (files included using
the #i ncl ude directive). Without the - N switch,
included files are compiled but no code is output.
The use of the - Nflag is not encouraged as it
complicates the use of the Interface Repository.

The - Nflag also has the restriction that the
compilation must be invoked from the same
directory as the root IDL file to retain
compatibility with the Interface Repository server.

Do not pre-define the macro nane. If - Uis
specified for a macro name, that macro name is not
defined even if - Dis used to define it.

Print version information. The version information
includes the IDL compiler release and the target
JDK version number.

Note: It is necessary to process each IDL file through the IDL compiler.
Inclusion of an IDL file in another (using #i ncl ude) is not sufficient to
produce output for the included file (unless the - Nswitch is specified to
the compiler). Otherwise, Java code generation would occur more than
once for a file that was included in more than one file.

507

IDL Compiler Switches

508

IndeXx

A

activation
information for servers 266
activation modes 253
primary 253
per-method 254
shared 253
unshared 254
secondary 254
multiple-client 254
per-client 255
per-client-process 255
activation orders 256
any 347-353
constructing
insertion methods 348
constructors 353
interpreting
extraction methods 350
mapping for 93
applets
clients 237
signed 249
ARG_IN 364
ARG_INOUT 364
ARG_OUT 364
arguments() 368
Arrays
mapping for 129
arrays
IDL definitions 84
attributes
mapping for 110
authentication filters 432

basic instrumentation support 290
basic types
mapping for 92
bind() 177, 182, 192, 204-210, 473
Naming Service 182
parameters to 205-210
to proxy objects 156, 204
examples 207

exceptions 210
bind_context() 183
binding 156, 182, 204-210
to objects 204
Bindinglterator 178
bindings 178
iterating through 199
BOA
methods
disconnect() 459
dispose() 459
impl_is_ready() 148
myActivationMode() 266
mylmplementationName() 267
myMarkerName() 267
myMarkerPattern() 267
myMethodName() 267
BOAImpl Approach 140

C
callbacks
avoiding deadlock 325-329
examples 320-344
from servers to clients 319-344
implementing 319-324
casting
object references 116
catit 259
CDR 214
chmodit 259
chownit 259
clients
applets
loading from a Web servers 237
loading from files 237
security issues 238, 249
debugging 239
multi-threaded 436
possible platform dependencies 239
running 235-240
Common Data Representation 214
components 180
compound name 180

509

Index

Configuration Tool 53-65
main panel 56
requirements 55
starting 55
ConstantDef 389
context 180
default 191
_CORBA
constants
ARG_IN 364
ARG_INOUT 364
ARG_OUT 364
explicitCall 459
IT_DEFAULT_TIMEOUT 150
IT_INFINITE_TIMEOUT 150
IT_INTEROPERABLE_OR_KIND 177
_MAX_LOCATOR_HOPS 476
objectDeletion 459
processTermination 459
member variables
IT_BIND_USING_IIOP 225
locator 477
CORBA
interfaces
object 172
ObjectRef 173
CORBA Module
mapping for 94
CORBA::
IT_reqTransformer 486
CORBA::ORB:
setMyReqTransformer() 488
setReqTransformer() 488
CORBA::ServerRequest 376
CORBAservices 171
CosNaming 178
_create_request() 365
ctx() 368

D
daemon
IDL interface to 268
deadlock
avoiding in callback models 325-329
debugging
clients 239
default locator 473
default naming context 191
deferred synchronous invocations 327, 370
deleteObj() 290
diagnostics
diagnostics levels 286

510

diagnostics log 286289
setDiagnostics() 288
DIl 355-372
steps in using 357
using CORBA based approach 359
using filters with 372
using with the Interface Repository 367
disconnect() 459
dispose() 459
Dsl 373-380
Dynamiclmplementation 375

E
endConnection() 290
endServer() 290
event processing
in threads 328
example
using OrbixWeb Naming Service 190
examples
Interface Repository 409
ExceptionDef 389
exceptions 295-304
handling 299
in filters 427
mapping for 110
system exceptions 299
user-defined exceptions 296-298
explicitCall 459

F
filter 422
methods
inReplyFailure() 422
inReplyPostMarshal() 422
inReplyPreMarshal() 422
inRequestPostMarshal() 422
inRequestPreMarshal() 422
outReplyFailure() 422
outReplyPostMarshal() 422
outReplyPreMarshal() 422
outRequestPostMarshal() 422
outRequestPreMarshal() 422
filters 415435
authentication 432
filter points
in reply failure 419
in reply post marshal 418
in reply pre marshal 418
in request post marshal 418
out reply failure 418
out reply post marshal 418

Index

out reply pre marshal 417 oneway 73
out request post marshal 418 orb.idl 86
out request pre marshal 417 pseudo types 85
per-object post 421 sequences 125
per-object pre 421 string 123
multiple ORB support 416 structs |18, 127
per-object 421, 433435 unions 120
examples 433-435 _ids() 377
per-process 422-432 IIOP 217-231
chain of 417 configuring server port 226
examples 424 examples 218
installing 427 IIOP Proxy 61
piggybacking data on requests 429, 430 Implementation Repository 158, 202, 252-260
raising exceptions in 427, 428 entries 256
retrieving request buffer size 431 impl_is_ready 148
using with the DIl 372 impl_is_ready() 148
flags 364 include files
format -I switch to IDL compiler 505
of names 180 inheritance 305-317
implementation
G ImplBase approach 313

implementation classes 312
mapping for 112
multiple inheritance 315-317
single inheritance 306
examples 306-313
initial references

General Inter-ORB Protocol 213
get_response() 370
gid of server 265
GIOP 213
message formats 214
overview 214

listing
obtaining 192

H Initialization Service 192
holder classes in-process activation 279

example 166 inReply() 290
HTTP Tunnelling 61, 246 inReplyFailure() 422

inReplyPostMarshal() 422

| inReplyPreMarshal() 422
IDL inRequest() 290

arrays 126, 129 inRequestPostMarshal() 422

inRequestPreMarshal() 422
InstrGetDiagnostics() 290
instrumentation support 290
InstrumentBase 290

Interface Repository 357, 381412

attributes 110
basic types 92
compiler

switches to 505
constants |27

data types 79 _example 409
basic types 79 installing 383
constructed types 80 InterfaceDef 389
enums |17 lnt_erfaces .
exceptions 110, 129, 296 implementing 138
inheritance 112 BOAImpl approach 140
interfaces 92, 95 comparison of approaches 165
modules 70, 94 example 135
object references 110 ImplBase approach 140
opaque 481 multiple interfaces per implementation 166

operations 71, 110 providing multiple implementations 166

511

Index

steps involved 136
TIE approach 138

mapping for 92

multiple inheritance of 315
interoperability

of ORBs 213
invoke() 377
IOR Explorer

importing object references 229

parsing object refereces 230

viewing object references 228
IORs (Interoperable Object References) 176, 216

format of 176
Istring 181
IT_BIND_USING_IIOP 225
IT_DEFAULT_CLASSPATH 252
IT_DEFAULT_TIMEOUT 150
IT_INFINITE_TIMEOUT 150
IT_INTEROPERABLE_OR_KIND 177
IT_JAVA_INTERPRETER 252
IT_NAMES_SERVER 201
IT_reqTransformer 486

)

Java Daemon
configuring 274
in-process activation 279
scope of 28I
using 272

K
killit 259

L
libraries 200
load() 454, 458
load balancing
using smart proxies 445
LoaderClass
methods
load() 454, 458
record() 454, 457
rename() 454, 457
save() 454, 459
loaders 453471
creating a loader 454
disabling 471
examples 460468
multiple ORB support 454
polymorphism in 468
relationship to object naming 456
specifying for an object 455

512

locatorClass
methods
lookUp() 474
locators 473—477
default locator 155, 473
algorithm 473
writing a new locator 477
lookUp() 474
Isit 259

M
mapping

arrays 126, 129

attributes 110

basic types 92

constants 127

CORBA module 94

enums |17

exceptions 110, 129

inheritance 112

interfaces 92, 95

naming conventions |32

object references 110

sequence 125

string 123

strings 123

structs 118, 127

type any 93

unions 120
_marker() 173
markers [51, 173-176
_MAX_LOCATOR_HOPS 476
m_instrumentDiagnostics 292
mkdirit 259
module

CORBA 94
modules 70
multiple implementations

of interfaces 166
multiple inheritance

See inheritance, multiple inheritance
multiple interfaces

per implementation 166
multiple ORB support 416, 444, 454
multiple-client activation mode 254
myActivationMode() 266
mylmplementationName() 267
myMarkerName() 267
myMarkerPattern() 267
myMethodName() 267

Index

N

name server
options 202
name space 203
names
assigning 182
binding 182
format 180, 190
listing 185
rebinding 183
removing 184
resolving 182
NameService 192
naming context
default 191
Naming Service 178
applications
compiling 200
running 200
configuring 201
creating a naming graph 193
example 190
examples 219, 222
methods 18]
navigating a naming graph 197
obtaining an intial reference 191
registering names 202
NamingContext 178, 180, 181
narrow() |16
narrowing
object references |16
New() 444
newConnection() 290
newObj() 290

o
object 172
object deletion 459
object faults 453
object reference strings 177, 178, 211
object references 228
casting 116
importing from a file 229
IOR format 176
mapping for 110
markers |51
naming 456
narrowing |16
obtaining 177
parsing 230
publishing 177
viewing 228

_ObjectRef
methods
_marker() 173
_request() 360
_save() 454, 459
objects
connection 147, 148
comparison of methods 150
impl_is_ready 148
creating in servers 146
initialisation 147
initialization of 172
lifecycle 159
naming 151, 173
persistent 469
oneway operations 326
opaque types 479-483
OperationDef 389
operations
invoking 156
mapping for 110
non-blocking invocations 326
oneway operations 326
options
to name server 202
ORB
connect() 148
disconnect() 148
methods
pingDuringBind() 210
shutdown() 454
ORB.connect() 148
Orbix.cfg 54
orbixd
See daemon 268
orbixdi
See Java Daemon 272
orbixusr 265
OrbixWeb.properties 51, 54
outReply() 290
outReplyFailure() 422
outReplyPostMarshal() 422
outReplyPreMarshal() 422
outRequest() 290
outRequestPostMarshal() 422
outRequestPreMarshal() 422

P

pattern matching 260

per-client activation mode 255
per-client-process activation mode 255
per-method activation mode 254

513

Index

PerObjectServiceContextHandler 501
PerObjectServiceContextHandlerList 502
PerRequestServiceContextHandler 501
PerRequestServiceContextHandlerList 502
persistent objects 469
piggybacking data on requests 429, 430
pingDuringBind() 210
pingit 259
poll_response() 370
polymorphism

in loaders 468
processTermination 459
proxies 44|
proxy classes 445
proxy objects

creating 177, 178, 211
ProxyFactory 443

methods

New() 444

psit 259
putit 158, 257-259

examples 258

using Orbix utility 259

R
rebind() 183
record() 454, 457
registering
a request transformer 487
registering a name server 202
registering servers
See servers, registration of
registration commands 259
catit 259
chmodit 259
chownit 259
killit 259
Isit 259
mkdirit 259
pingit 259
psit 259
putit
See putit
rmdirit 259
rmit 260
remote invocations |56
rename() 454, 457
_request() 360
request
methods
arguments() 368
_create_request() 365

514

ctx() 368

get_response() 370

poll_response() 370

reset() 369

result() 368

send_deferred() 370
transforming request data 485

requests

adding a context parameter 368
constructing 359

using _create_request() 365

using _request() 361
invoking 367
piggybacking data on 429, 430
reading and writing attributes 368
resetting for reuse 369
retrieving buffer size 431
retrieving operation names 369
retrieving results

using arguments() and results() 368

retrieving target objects 369
reset() 369
resolve() 182
resolve_initial_references() 192
resolving names 182
result() 368
rmdirit 259
rmit 260
runtime information 382

S
_save() 454, 459
save() 454, 459
security
caller identity 263
effective uid/gid 265
of client applets 238
of servers 264
send_deferred() 370
ServerRequest 376
servers
activation information 266
activation of 158
configuring lIOP ports 226
creating objects 146
initalisation 148
in-process
developing 279
multi-threaded 436
registration of 158
security of 264
uid and gid 265

Index

service contexts 493-502
ServiceContext
ServiceContext per object 500
ServiceContext per request 496
ServiceContextHandler 494
example 498
incomingReplyHandler() 501
incomingRequestHandler() 501
outboundReplyHandler() 501
outboundRequestHandler() 501
using with filter points 502
ServiceContextList 496
setDiagnostics() 277, 286, 288
setMyReqTransformer() 488
setReqTransformer() 488
shared activation mode 253
shutdown() 454
signals
SIGINT 384
smart proxies 441451
examples 445—45|
factory classes 442
implementation steps 443
multiple ORB support 444
smart proxy factory classes
See smart proxies, factory classes
startServer() 290
Strings
mapping for 123
string_to_object() 211
Structs
mapping for 127
system exceptions
See exceptions, system
SystemException 299

T
threads

event processing in 328
TIE approach 138

examples 141
transformers

implementing 486

registering 487
transforming request data 485
TypeDef 389

U

uid of server 265

unregistered servers 262, 273
unshared activation mode 254
user-defined exceptions 296—298

w
Web 173
Wonderwall 243
configuring 245
configuring OrbixWeb for use 245
Wrapper Utilities
alternative standard method 241
owijava 240
owjavac 240

515

	Preface
	Audience
	Overview of OrbixWeb 3.1
	New Features

	Organisation of the OrbixWeb Documentation
	The OrbixWeb Programmer’s Reference
	A Message from the OrbixWeb Team

	Document Conventions

	Online Support for OrbixWeb
	Introduction to CORBA and OrbixWeb
	CORBA and Distributed Object Programming
	The Role of an Object Request Broker
	The Structure of a CORBA Application
	The Structure of a Dynamic CORBA Application
	Interoperability between Object Request Brokers

	The Object Management Architecture
	The CORBAservices
	The CORBAfacilities

	How OrbixWeb Implements CORBA

	Getting Started with Java Applications
	OrbixWeb Programming Steps
	Defining the IDL Interface
	Compiling the IDL Interface
	Implementing the IDL Interface
	Writing the Server Application
	Writing the Client Application
	Compiling the Client and Server
	Registering the Server
	Running the Client Application
	Summary of Programming Steps

	OrbixWeb IDL Compilation
	Examining the Roles of the Generated Interfaces and Classes

	Getting Started with Java Applets
	Review of OrbixWeb Programming Steps
	Providing a Server
	Writing a Client Applet
	Creating the User Interface
	Adding OrbixWeb Client Functionality
	Creating the Applet
	Adding the Applet to a HTML File
	Compiling the Client Applet
	Running the Client Applet
	Security Issues for Java Applets

	Getting Started with OrbixWeb Configuration
	OrbixWeb Configuration Files
	OrbixWeb.properties
	Orbix.cfg

	Configuration Tool Requirements
	Starting the OrbixWeb Configuration Tool
	The Configuration Tool Main Panel
	The General Page
	The Initialization Page
	The Server-Side Support Page
	The Wonderwall Support Page
	The Advanced Page

	Learning more about OrbixWeb

	Introduction to CORBA IDL
	IDL Modules and Scoping
	Defining IDL Interfaces
	IDL Attributes
	IDL Operations
	Inheritance of IDL Interfaces
	Forward Declaration of IDL Interfaces

	Overview of the IDL Data Types
	IDL Basic Types
	IDL Constructed Types
	IDL Template Types
	Arrays
	IDL Pseudo-Object Types
	Defining Aliases and Constants

	IDL to Java Mapping
	Overview of IDL to Java Mapping
	Mapping for Basic Data Types
	Mapping for Modules
	Scoped Names
	The CORBA Module

	Mapping for Interfaces
	Client Mapping
	Helper Classes for Type Manipulation
	Holder Classes and Parameter Passing
	Server Implementation Mapping
	Object References
	Mapping for Derived Interfaces

	Mapping for Constructed Types
	Enums
	Structs
	Unions

	Mapping for Strings
	Mapping for Sequences
	Mapping for Arrays
	Mapping for Constants
	Mapping for Typedefs
	Mapping for Exception Types
	System Exceptions
	User-Defined Exceptions

	Naming Conventions
	Parameter Passing Modes and Return Types

	Using and Implementing IDL Interfaces
	Overview of an Example Application
	Overview of the Programming Steps
	Defining IDL Interfaces to Application Objects
	Compiling IDL Interfaces
	Implementing the Interfaces
	The TIE Approach
	The ImplBase Approach

	Developing the Server Application
	Account Class Implementation
	Bank Class Implementation
	main() Method and Object Creation
	Object Initialization and Connection
	Construction and Markers

	Developing the Client Application
	Object Location
	Binding
	Remote Invocations

	Registration and Activation
	Execution Trace
	Comparison of the ImplBase and TIE Approaches
	Providing Different Implementations of the Same Interface
	Providing Different Interfaces to the Same Implementation

	An Example of Using Holder Classes

	Making Objects Available in OrbixWeb
	OrbixWeb Object References
	Assigning Markers to OrbixWeb Objects
	Interoperable Object References

	Making Objects Available to Clients
	The OrbixWeb Naming Service
	Terminology and the CosNaming Module
	Format of Names within the Naming Service
	The NamingContext Interface
	Exceptions Raised by Operations in NamingContext
	The BindingIterator Interface

	Using OrbixWeb Naming Service
	String Format of Names
	OrbixWeb Naming Service Example
	Compiling and Running a Naming Service Application
	Federation of Name Spaces

	Binding to Objects in OrbixWeb Servers
	The bind() Method
	Binding and Exceptions
	Using Object Reference Strings to Create Proxy Objects

	ORB Interoperability
	Overview of GIOP
	Coding
	Message Formats

	Internet Inter-ORB Protocol (IIOP)
	IIOP in OrbixWeb
	Example using IIOP in a Platform-Independent Application
	Using IIOP and Binding from an OrbixWeb Client
	Configuring an IIOP Port Number for an OrbixWeb Server

	Viewing Information about Object References
	Importing an Object Reference into the IOR Explorer
	Importing an Object Reference from a File
	Parsing an Object Reference

	Interoperability between Orbix and OrbixWeb

	Running OrbixWeb Clients
	Running Client Applications
	Running OrbixWeb Client Applets
	Loading a Client Applet from a File
	Loading a Client Applet from a Web Server
	Security Issues for Client Applets

	Debugging OrbixWeb Clients
	Possible Platform Dependencies in OrbixWeb Clients
	Using the Wrapper Utilities
	Using owjava as a Front End to the Java Interpreter
	Using owjavac as a Front End to the Java Compiler
	Using the Interpreter and Compiler without the Wrapper Utilities

	Using OrbixWeb on the Internet
	About Wonderwall
	Using the Wonderwall with OrbixWeb as a Firewall Proxy
	OrbixWeb Configuration Parameters Used to Support the Wonderwall

	Using the Wonderwall as an Intranet Request- Router
	Applet Signing Technology
	Overview

	Registration and Activation of Servers
	The Implementation Repository
	Activation Modes
	Primary Activation Modes
	Secondary Activation Modes
	Persistent Server Mode
	Implementation Repository Entries

	The OrbixWeb putit Utility for Server Registration
	Examples of Using putit

	Additional Registration Commands
	Further Mode Options: Activation and Pattern Matching
	Persistent Servers
	Unregistered Servers
	Activation Issues Specific to IIOP Servers
	Security Issues for OrbixWeb Servers
	Identity of the Caller of an Operation
	Server Security

	Activation and Concurrency
	Activation Information for Servers
	IDL Interface to the Implementation Repository
	Using the Server Manager
	About the Java Daemon(orbixdj)

	The OrbixWeb Java Daemon
	Overview of the Java Daemon
	Features of the Java Daemon

	Using the Java Daemon
	Starting orbixdj from Windows
	Starting orbixdj from the Command Line
	Configuring the Java Daemon
	Viewing Output Text using the Graphical Console

	In-Process Activation of Servers
	Guidelines for Developing in-process Servers

	Scope of the Java Daemon
	Activation
	Java Version
	IT_daemon Interface
	Utilities
	Markers and the Implementation Repository
	Security
	Server Names
	In-process Servers

	Diagnostics and Instrumentation Support
	Setting Diagnostics
	Diagnostics Levels
	Alternative Approaches to Setting Diagnostics

	Basic Instrumentation Support
	InstrumentBase
	Logging Instrumentation Data
	Additional Functionality

	Exception Handling
	User-Defined Exceptions
	The IDL Definitions
	The Generated Code

	System Exceptions
	The Client: Handling Exceptions
	Handling Specific System Exceptions

	The Server: Throwing an Exception
	Operation Completion Status in System Exceptions

	Using Inheritance of IDL Interfaces
	Single Inheritance of IDL Interfaces
	The Client: IDL-Generated Types
	Using Inheritance in a Client
	The Server: IDL-Generated Types
	The TIE Approach

	Multiple Inheritance of IDL Interfaces
	Implementing Multiple Inheritance

	Callbacks from Servers to Clients
	Implementing Callbacks in OrbixWeb
	Defining the IDL Interfaces
	Writing a Client
	Writing a Server

	Callbacks and Bidirectional Connections
	Avoiding Deadlock in a Callback Model
	Using Non-Blocking Operation Invocations
	Using Multiple Threads of Execution

	An Example Callback Application
	The IDL Specification
	The Client Application
	The Central Server Application

	Type any
	Constructing an Any Object
	Inserting Values into an Any Object
	Extracting Values from an Any Object
	Any as a Parameter or Return Value
	Additional Methods

	Dynamic Invocation Interface
	Using the DII
	Programming Steps for Using the DII

	The CORBA Approach to Using the DII
	Creating a Request
	Setting up a Request Using _request()
	Alternative approach
	Setting up a Request Using _create_request()
	Invoking a Request
	Using the DII with the Interface Repository
	Setting up a Request to Read or Write an IDL Attribute
	Operation Results
	Interrogating a Request
	Resetting a Request Object for Reuse

	Deferred Synchronous Invocations
	Using Filters with the DII

	Dynamic Skeleton Interface
	Uses of the DSI
	Using the DSI
	Creating DynamicImplementation Objects

	Example of Using the DSI

	The Interface Repository
	Configuring the Interface Repository
	Runtime Information about IDL Definitions
	Using the Interface Repository
	Installing the Interface Repository
	Utilities for Accessing the Interface Repository

	Structure of the Interface Repository Data
	Simple Types

	Abstract Interfaces in the Interface Repository
	Class Hierarchy and Abstract Base Interfaces
	Interface IRObject

	Containment in the Interface Repository
	The Contained Interface
	The Container Interface
	Containment Descriptions

	Type Interfaces in the Interface Repository
	Named Types
	Unnamed Types

	Retrieving Information from the Interface Repository
	Example of Using the Interface Repository
	Repository IDs
	OMG IDL Format
	Pragma Directives

	Filters
	Introduction to Per-Process Filters
	Introduction to Per-Object Filters
	Using Per-Process Filters
	An Example Per-Process Filter
	Installing a Per-Process Filter
	How to Create a System Exception
	Piggybacking Extra Data to the Request Buffer
	Retrieving the Size of a Request Buffer
	Defining an Authentication Filter

	Using Per-Object Filters
	IDL Compiler Switch to Enable Object Filtering

	Thread Filters
	Multi-Threaded Clients and Servers
	Thread Programming in OrbixWeb

	Smart Proxies
	Proxy Classes and Smart Proxy Classes
	Benefits of Using Smart Proxies

	Example: A Simple Smart Proxy
	Creating a Smart Proxy

	Loaders
	Overview of Creating a Loader
	Specifying a Loader for an Object
	Connection between Loaders and Object Naming
	Loading Objects

	Saving Objects
	Writing a Loader
	Example Loader
	Polymorphism
	Approaches to Providing Persistent Objects
	Disabling the Loaders

	Locating Servers at Runtime
	The Default Locator
	Writing a New Locator

	Opaque Types
	Using Opaque Types
	IDL Definition
	Compiling the IDL Definition
	Mapping of Opaque Types to Java
	Implementing the Opaque Type
	The Helper Class
	The Holder Class

	Transforming Requests
	Transforming Request Data
	The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class
	Registering a Transformer

	An Example Transformer

	Service Contexts
	The OrbixWeb Service Context API
	ServiceContextHandler Class
	ORB Interfaces
	ServiceContextList

	Using Service Contexts in OrbixWeb Applications
	ServiceContext Per Request Model
	ServiceContext Per-Object Model
	Main Components

	Service Context Handlers and Filter points

	Appendix A IDL Compiler Switches
	Index

