

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Policies and Domains Abstract Architecture
Specification

Document title FIPA Domains and Policies Abstract Architecture Specification
Document number PC00089B Document source FIPA TC Architecture
Document status Preliminary Date of this status 2001/01/02
Supersedes None
Contact arch@fipa.org
Change history
2000/12/15 An initial summary of use case scenarios and architectural elements that have been

identified to support policy mechanisms in Agent Platforms.
2000/12/26 Edits and clean ups of initial text.
2001/01/03 Format conversion to FIPA2000 compliance + edits and clean-up.

© 2001 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification may
be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their current
status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA specifications
may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Introduction ... 1
1.1 Contents .. 1
1.2 Audience.. 1
1.3 Acknowledgements ... 1

2 Scope and Methodology ... 2
2.1 Background .. 2
2.2 Why Policies and Domains? .. 2
2.3 Scope of Policies and Domains .. 2
2.4 Methodology ... 3

3 Policies, Domains and Agent Platforms ... 4
4 Policy Scenarios ... 6

4.1 Access Use Case... 6
4.1.1 Summary... 6
4.1.2 Scenario.. 6

4.2 Social Grouping Use Case... 6
4.2.1 Summary... 6
4.2.2 Scenario.. 6

4.3 Obligation Use Case.. 7
4.3.1 Summary... 7
4.3.2 Scenario.. 7

4.4 Content Use Case... 7
4.4.1 Summary... 7
4.4.2 Scenario.. 7

4.5 System Configuration Use Case... 8
4.5.1 Summary... 8
4.5.2 Scenario.. 8

4.6 Cooperation use case.. 8
4.6.1 Summary... 8
4.6.2 Scenario.. 8

4.7 Meta Order Use Case.. 8
4.7.1 Summary... 8
4.7.2 Scenario.. 9

4.8 High Order Use Case... 9
4.8.1 Summary... 9
4.8.2 Scenario.. 9

4.9 Trust Use Case... 9
4.9.1 Summary... 9
4.9.2 Scenario.. 9

5 Architectural Elements Needed to Support Policies ...10
5.1 Introduction..10
5.2 Policy structures ..10

5.2.1 Policy...10
5.2.2 Policy language...10
5.2.3 Policy library ...10
5.2.4 Interpretation engine ..10
5.2.5 Distribution mechanism..11
5.2.6 Conversation policy..11

5.3 Enforcement mechanisms...11
5.3.1 Guards ...11
5.3.2 Sanctions ...11
5.3.3 Policy exception..11
5.3.4 Reputation service...11

 iv

5.3.5 Policy domain ...12
5.3.6 Domain manager ...12

5.4 Domain management..12
6 References...13

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 1

1 Introduction
This document gives a set of use cases and abstract architectural elements that can be used to guide the specification of
policy mechanisms in concrete Agent Platform architectures. It is based on and derives from the FIPA abstract
architecture [FIPA00001].

See Section 2, Scope and Methodology for a complete introduction to this document.

1.1 Contents
This document is organized into the following sections:

• This Introduction.

• The Scope and Methodology section explains the background of this work, its purpose, and the methodology that

has been followed.

• The Policies, Domains and Agent Platforms section is a description of the concepts and considerations necessary

to the creation of policy driven agent systems.

• The Policy Scenarios section contains a selection of use cases illustrating the contexts in which policies are

applied to agent systems.

• The Architectural Elements section describes architecture components required.

1.2 Audience
The primary audience for this document is developers of concrete specifications for agent systems – specifications
grounded in particularly technologies, representations, and programming models. It may also be read by the users of
concrete specifications including implementers of agent platforms, agent systems, and gateways between agent
systems.

This document describes abstract architectural elements for guiding the creation of policy mechanisms in intentional
multi-agent systems. It assumes that the reader has a good understanding about the basic principles of multi-agent
systems. It does not provide the background material to help the reader assess whether multi-agent systems are an
appropriate model for their system design, nor does it provide background material on topics such as Agent
Communication Languages, BDI systems, or distributed computing platforms.

1.3 Acknowledgements
TBD.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 2

2 Scope and Methodology
This section provides a context for Policies and Domains, the scope of the work and the methodology employed.

2.1 Background
As stated in the Abstract Architecture specification, FIPA’s goal in creating agent standards is to promote inter-operable
agent applications and agent systems. Throughout the lifetime of FIPA a series of agent system specifications addressing
this requirement have been issued, culminating in the latest 2000 document set.

Incorporating the ethos behind these specifications the FIPA Abstract Architecture takes a holistic approach to creating a
framework accommodating all of the commonly used mechanisms; it defines a methodology for designing interoperable
agent systems.

However, it became clear during the development of the Abstract Architecture that a similarly abstract specification of how
agents are behaviourally constrained within their operating environments would also be required. Definitions of policy
application and context would be needed, as would mechanisms to monitor and police the obligations and permissions
described by policy constraints. This document therefore defines the additional architectural elements required to support
policy management in agent systems.

2.2 Why Policies and Domains?
Developers and users of multi-agent systems often wish to place strong constraints on the behavior of agents within agent
environments. This includes being able to apply and enforce these constraints and policies across distributed agents,
systems and domains. This specification therefore describes the application and management of policies and constraints
on agents and collections of agents, not the detailed management of agent lifecycle, and areas currently addressed by
FIPA agent management specifications.
...more...

2.3 Scope of Policies and Domains
As this specification is defined in terms of generic abstractions rather than specific concrete elements, this specification
would require reification in order to derive particular specifications for particular types of Agent platform. However, we
anticipate that the architectural elements identified here would be present in all Agent Platforms that support policy
mechanisms.

The basic services offered by an agent platform1 to an agent are unconstrained. An agent may register any attributes that
it chooses through the Agent Directory Service; it may use the Agent Message Transport Service to communicate with
any reachable agent using any available transport using messages of any size or encoding, and it may operate on behalf
of any principal.

In practice, however, developers and users of multi-agent systems often wish to place strong constraints on the behavior
of agents within agent environments. This especially means being able to apply and enforce these constraints and
policies across distributed agents and systems.

Typical constraints that we may wish to enforce include:

• Requiring that an agent use a particular encoding for its messages.

• Preventing an agent from communicating with non-local agents (agents which lie outside some domain, in the

transport addressing sense of the word).

1 The Abstract Architecture specification does not refer to an Agent Platform. However, we use the term here informally to mean the set of inter-
related services that are offered to an agent in order for it to discover other agents, and to communicate with those agents.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 3

• Requiring than an agent select a particular quality of service (e.g. encryption, non-repudiation) when communicating

with non-local agents.

• Preventing an agent from registering certain attributes with the Agent Directory Service unless it is operating on behalf

of a particular principal.

• Limiting the total number of agents registered with a platform.

• Restricting access to certain host directories or setting ceilings on the amount of system resources that can be used.

All of these constraints may be expressed as constraints over agent platform services. There may be other types of
constraint that we wish to apply to an agent X for example, requiring the use of a particular conversation policy when
interacting with a particular class of agent, or preventing an agent from transmitting confidential data to a non-local agent
X but these lie outside the scope of this specification.

2.4 Methodology
TBD.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 4

3 Policies, Domains and Agent Platforms
A set of constraints is termed an Agent Service Policy. In this specification, we are only concerned with policies that
are public, i.e., accessible to systems, machine readable, i.e., can be processed by computer systems and in particular
declarative, i.e., amenable to inference.

Policies may be expressed in a variety of languages. At one extreme they may be written in some propositional or
constraint language such as SL2, in terms of some kind of agent platform service ontology. There are a wide variety of
simpler schemes, each of which gives up some types of expressivity. The choice of language will be affected by (at least)
the following considerations:

• Composability The ability to combine two or more policies.

• Computability The ability to compute the legality of some service request.

• Efficiency The resource cost of evaluating the legality of a request.

• Consistency Whether it is possible to express Ð or detect Ð inconsistent or contradictory requirements.

• Expressivity Whether it is possible to express the required constraints in the language.

• Equivalency Whether it is possible to compute the functional equivalence of two policies (and so, for

example, reduce "legality of request" to "membership of some class associated with a given
policy").

We assume that there are fundamentally two kinds of policy constraints: those relating to permissions and those
relating to obligations. Not all platforms require both kinds of policies; however this specification introduces architectural
elements that correspond to both forms. These policies are often related: by entering into particular obligations an agent
may acquire specific permissions; and vice versa: when an agent is given permission to access a shared resource, it may
incur obligations as a result.

Associated with policies and the mechanisms required to support policy application is the concept of a contract. A
contract is an agreement entered into by agents and services to be constrained by one or more sets of policy constraints.
In addition to the architectural elements needed by platforms to support policy mechanisms a given reification of these
architectural elements may also require the promise communicative act. A promise is a speech act uttered by an agent
when it agrees to abide by a set of policy constraints.

Many policies are applied at the point where an agent invokes a service of the agent platform (what about invariants?). The
constraints on the use of a service can be of many kinds: constraints on the parameters supplied by the agent (for
example on the size or format of a message), and constraints based upon the state of the agent platform, including the
history of the interactions between the agent and the platform. In order for a service request to be honored, an inference
procedure must be used to verify that the applicability requirements of the service may be satisfied in relation to the
policies in force.

In principle, the inference procedure can be performed for every service request performed by every agent on a platform.
However this may be prohibitively expensive from a computational standpoint. There are also situations when it is
desirable to ask whether or not a request, or set of requests, would be permitted if an agent were to make them. (For
example, a mobile agent might wish to know this before deciding whether to move to a particular agent platform.)

It is common to associate policy mechanisms with policy domains. A policy domain is simply a set of agents that is
characterized by a set of policies. However, there are many benefits to constructing explicit domains: as aids to efficiently
applying policies for example. The infrastructure needed to support policy domains typically includes constructs such as
domain managers, etc.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 5

Policy domains enable agent users to be assured of policy uniformity across multiple platforms and hosts, as long as
semantically equivalent monitoring and enforcement mechanisms are available across those platforms and hosts. Under
these conditions, it follows that a given domain could extend across host boundaries and, conversely, multiple domains
could exist concurrently on the same host. With respect to platform independence, it should be possible for agents
running on the same platform to be in different domains (for example, a resident and a visiting mobile agent running on the
same platform may belong to different domains having more or less restrictive security privileges).

It is easy to imagine that agents might want to simultaneously belong to multiple domains. For example, it might be
useful to structure an agent application as a series of hierarchically nested sub-domains. It might also be useful in some
instances to specify a policy that precludes an agent from simultaneously belonging to more than one domain (e.g., if two
domains are governed by incompatible security policies). Simultaneous membership of agents in multiple domains raises
a number of currently unsolved technical issues.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 6

4 Policy Scenarios
In this section, we identify a number of use case scenarios that illustrate many of the classical situations where policies
and policy enforcement are relevant. They cover a range of situations that we may expect to encounter in policy
application.

These scenarios are abstract in nature, rather than examples of concrete situations. The emphasis is on illustrating the
many different situations that policies may be applied and the kind of architectural support that would be required on
Agent Platforms in order to support them.

4.1 Access Use Case

4.1.1 Summary

Many policies relate to the provision of shared resources to agents. Shared resources are often constrained by quality of
service constraints, access constraints and availability constraints. A key aspect of this class of policy scenarios is that
an owner of each resource must be identifiable (which may or may not be an agent) and that an owner be responsible for
applying any policy constraints to the resource.

This scenario is characterized by a set of resources, methods for accessing those resources, ownership of the resources
and quality of service constraints upon the resources.

4.1.2 Scenario

An agent presents its credentials and requirements to the owner of a resource.

The owner of the resource applies policy constraints to the request.

The result is a quality of service specification that constrains the set of actions that the agent may perform on that
resource.

4.2 Social Grouping Use Case

4.2.1 Summary

There may be policy constraints on the permissible communication between agents based on external attributes of those
agents.

In many situations agents with access to one set of resources are not permitted to communicate with agents that have
access to other resources. For example, in a merchant bank, agents (typically human agents) who have access to the
stock market - i.e., are able to buy and sell stocks and shares, are not permitted access to financial services such as
loan arrangements. This is the so-called 'Chinese Wall' encountered in larger merchant banks and represents the
conditions that legislation imposes on merchant banks to allow them to do business in multiple sectors.

These policy constraints are therefore strongly connected to groups of agents rather than the ability of individual agents to
access resources.

4.2.2 Scenario

The different groups of agents in a merchant bank are divided into disjoint domains. An agent is required to register with a
domain, either the stock domain or the mortgage domain (say), in order to communicate with agents in those domains.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 7

An agent enters a domain by registering with the domain manager of that domain. Once registered, the agent is permitted
to send and receive messages from agents in the same domain. In general, an agent may be permitted to be a member of
several domains; depending on the policy constraints of the various domain managers.

This policy is enforced by preventing agents in one domain from communicating with agents in another domain.

In addition to preventing communication, other restrictions may include hiding agent descriptions: a directory service can
hide information about agents to non-member agents.

4.3 Obligation Use Case

4.3.1 Summary

Agents may enter into agreements that oblige them into a certain future behaviour. Obligation constraints cannot be
enforced a priori, however sanctions can be applied to agents that fail to meet their obligations.

There are many situations where an agent may be obliged to perform a task: for example, a clock agent will enter into an
agreement to send a message at specific intervals, a database update agent will agree to inform the requester that an
update has taken place within the database and a file printing agent will agree to print a file within some interval or at an
agreed time.

An important service that can support obligations is the reputation service (see Section ??). Such services provide a
means for agents to `complain' about other agents' failure to meet obligations and for agents to verify the reliability of other
agents before entering into agreements.

4.3.2 Scenario

A user agent and a database agent file their agreement for regular updates with a reputation service.

The user agent notices that it did not receive a requested update and files a complaint with the reputation service.

A subsequent query by an agent to the reputation service reveals that the database agent was delinquent and thereby
affecting future agreements with the database agent.

4.4 Content Use Case

4.4.1 Summary

Agents often apply policy constraints to their interactions with other agents. Policy driven agents such as these may
publish public policies to guide interactions with other agents.

For example, an agent may choose to constrain the form of messages it receives from other agents, and publish those
policies in a way that is revealed to certain other agents. This may perhaps include requirements that messages are
signed or have specific content attached.

4.4.2 Scenario

In a legal advice scenario, a client agent may require the services of a Lawyer agent to resolve a legal issue.

A Lawyer agent interacts with a client agent only if the messages contain a form of payment.

The client agent must therefore ensure that, in addition to any of its own requirements, any messages it sends to the
Lawyer agent contain some form of payment.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 8

A third party, such as a bank service, may be involved to provide the client agent with appropriate modification to its
messages thereby ensuring the Lawyer agent recognize the payment portion of the message content.

4.5 System Configuration Use Case

4.5.1 Summary

In addition to individual agents entering into individual obligations, a group or system of agents (and services) may enter
into coordinated performance related obligations. For example, a group of agents may guarantee to provide high
availability for an explicit period.

Such obligations may not, in fact, be honored by individual agents but by the agent system as a whole; and therefore will
typically require monitoring and maintenance services.

4.5.2 Scenario

A group of agents is required to offer continuous high availability, with automatic reconfiguration as necessary.

A monitoring agent is used to observe the health of this group of agents and exert control if necessary. For example, if it
observes that one or more agents are not performing as expected, it can compensate by adjusting the properties of the
offending agents or by launching additional agents to offset the performance deficit.

Such a group service may be governed by service level agreements established between the agents and the monitoring
agent.

4.6 Cooperation use case

4.6.1 Summary

This is an agreement to agree between agents. For example, an agent may enter a non-antagonistic posture agreement
with other agents incorporating guarantees and obligations on future behavior. This amounts to a sharing of goals between
agents.

4.6.2 Scenario

Using the Lawyer-client scenario expressed above; the client can pay a retainer to the Lawyer agent thereby creating a
co-operational stance between the two.

The client can then make requests without submitting further payment for the duration of the contract.

This may require use of a reputation service to which a client agent may submit a complaint if the Lawyer agent refuses a
request covered by the cooperation agreement.

4.7 Meta Order Use Case

4.7.1 Summary

A meta order policy governs the nature of other policies. For example, it may specify that all agreements between agents
must involve a 'consideration' on both sides. (In Anglo-Saxon law, it is not possible to have a contract without something
of value being exchanged between all participating parties.)

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 9

4.7.2 Scenario

Returning to the Lawyer-client scenario once more; the exchange of information between the two parties may be governed
by the mutual-consideration meta order policy.

In such a case, the reputation service must ensure that the client agent receives information from the Lawyer agent
sufficient to represent any payment made.

Therefore, when a reputation service is asked to validate an agreement, it must verify that it contains an co-exchange of
appropriate value. It will refuse to validate non-conforming agreements.

4.8 High Order Use Case

4.8.1 Summary

A higher order constraint is parameterized by other constraints. This is a form of dependency amongst constraints;
however, it is different to normal conjunction (which is implied by policy inheritance for example), in that a higher-order
policy refers explicitly to a `policy variable'.

4.8.2 Scenario

A contract specifies that in the event of a dispute, the conflict resolution procedure associated with the domain that a
particular agent is in should be used.

4.9 Trust Use Case

4.9.1 Summary

Multiple levels of security may govern the relationships between agents and establishing a level of trust constrains the
type of agreement relationships agents can enter into. A particular trust level, indicated by a label or directly by a set of
policies, defines the constraints applicable to a given relationship.

4.9.2 Scenario

A new agent registers with a domain manager in order to interact with other agents within the domain.

The manager determines an appropriate trust level to assign the new agent and thereby a set of policies governing its
interaction with other agents within the domain.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 10

5 Architectural Elements Needed to Support Policies

The elements of the policies and domains framework are defined here. For each element, the semantics are described
informally followed by the relationships between the element and others.

5.1 Introduction

5.2 Policy structures

5.2.1 Policy

A constraint on the behavior of agents and services.

We are concerned with policies that are both public, i.e., available for inspection by third parties (although with obvious
caveats regarding access control) and machine readable, i.e., a software system should be able to interpret a policy
statement and determine legal courses of action.

5.2.2 Policy language

The language used to express policy statements and contracts. Semantically, a policy statement and contract are
equivalent: they express an agreement between an agent and other agents and/or services that constrain the behavior of
both.

We are assuming that policy languages are declarative. This fits with the overall FIPA methodology as well as providing a
number of substantial benefits to policy developers and policy mechanism implementers.

Logically, a policy statement takes the form of a conjunction of implications: when a condition holds then an action is
permitted, prohibited or whatever. In fact, the consequence of a policy rule need not be limited to single actions: it may
also denote an enabling condition which allows other policy rules to trigger.

In addition to standard predicate logic, we envisage a policy language having built-in ontologies for the concepts of action,
permission, and obligation. For example, SL can be straightforwardly extended to include permission and obligation in a
manner similar to its model for action.

5.2.3 Policy library

A set of rules that form coherent collections of policy statements. A policy library may introduce higher-level policy
concepts (for example, National Security Classification) to simplify the task of generating specific policy rules for agents
and services.

5.2.4 Interpretation engine

An interpretation engine is a mechanism that is able to interpret a set of policy rules and a proposed action to determine if
the action is legal according to the policy rules.

It is possible that for certain classes of policy languages an interpretation engine could also determine that a particular
action is required at a given situation. However, in general this is a hard problem.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 11

5.2.5 Distribution mechanism

A distribution mechanism is a means for distributing policy rules from originating authorities to mechanisms that have the
ability and responsibility of applying policies.

5.2.6 Conversation policy

Conversations are sequences of messages involving two or more agents intended to bring about a particular set of
(perhaps jointly held) goals. Conversation policies are declarative specifications that govern specific instances of
communications between agents using an agent communication language.

Conversation policies are best represented as sets of fine-grained constraints on ACL usage. These constraints then
define the computational process models that are implemented in agents.

Conversation policies provide a level of analysis that abstracts from the precise propositional content, agent
communication language, and implementation of individual conversations. These reusable policies (which have been
constructed offline) can help ensure reliable communication among heterogeneous agents while lessening the burden of
inferring what communicative or other action should be taken in response to a message.

5.3 Enforcement mechanisms
The two classes of constraints, corresponding to prohibitions and obligations, require different kinds of enforcement
mechanisms. The former can be supported with policy domains and the latter with reputation services.

5.3.1 Guards

An active computational element that interprets high level policies and ensures their enforcement in a platform-specific
way. Permissions are necessarily enforced in a different fashion than obligations. Permissions are granted or not before
an action is taken; whereas one can only monitor an agentÕs performance on its obligations and apply necessary
remedies after the fact. (Include examples of exception handling here, e.g., rollback)

5.3.2 Sanctions

Violations of policy can result in remedies being applied to the offending agent; e.g., restrictions on the future behavior of
an agent, price controls, reduction in access. An indirect consequence of policy violation can also be that other agents
choose not to communicate with an offending agent. The most extreme form of sanction could be loss of domain
membership and even termination.

5.3.3 Policy exception

An event raised as a consequence of a policy violation.

5.3.4 Reputation service

Is a service that allows agents and services to monitor the public performance of agents and services in terms of their
compliance to publicly entered into policy agreements.

A reputation service takes the role of a trusted third party that agents and service providers may use to monitor
compliance with agreements. Reputation services are one of the few mechanisms that are able to enforce obligations;
since obligations cannot be prevented but only required.

A typical use of a reputation service is for all parties to an agreement to `escrow' their agreement with the reputation
service. If one of the parties determines that another party has defaulted on an obligation it may lodge a complaint with the
reputation service.

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 12

In a software system the concept of a legal remedy may seem moot; however, simply recording instances of default and
offering that information to others querying the service may be a powerful deterrence mechanism. If an agent defaults on
an obligation, other agents and services may become more reluctant to offer it facilities if they are able to query a
reputation service.

5.3.5 Policy domain

A set of agents to which a given set of policies apply. In certain cases it may be possible to use domain membership as a
shorthand for applying the policy constraint inference procedures. In other words, the inference that a particular service
request is consistent with the policies in force in a given context may be reduced to the tests that (1) the domain policies
are consistent with the agent platform and (2) that the agent is a member of the domain.

A major purpose of Policy Domains is to ensure consistency of policy across a set of agents potentially running on
different agent platforms and hosts. This can be accomplished as long as semantically equivalent monitoring and
enforcement mechanisms are available across those platforms and hosts. Under these conditions, it follows that a given
domain could extend across host boundaries and, conversely, multiple domains could exist concurrently on the same
host. With respect to platform independence, it should be possible for agents running on the same platform to be in
different domains (for example, a resident and a visiting mobile agent running on the same platform may belong to different
domains having more or less restrictive security privileges).

5.3.6 Domain manager

An agent domain consists of a unique instance of a domain manager along with any agents that are registered to it. The
function of a domain manager is to serve as a single point of administration for policy management, i.e., configure, re-
configure, store, publish and enforce where possible the set of policies declared for that domain.

5.4 Domain management
It is possible to define domains that explicitly require registration, as well as domains that require no registration, or
subordinate registration to other elements of the FIPA environment, such as physical agent platforms. In this
specification, we are only concerned with policy domains that are active, and have explicit notions of domain membership
(i.e., there is an explicit list of agents that are members of a given domain).

Directory functions (registration, lookup, discovery, authentication, etc.)

Conflict resolution- between any combination of: agent, domain, host, and computational environment

Policy derivation (rule generation)

Querying of domain policies

 - Structural constraints

- Operational constraints
 - Policy change notification (broadcast/sub-domain broadcast)

Policy/domain administration tools

© 2001 Foundation for Intelligent Physical Agents FIPA Domains and Policies Abstract Architecture

 13

6 References
[FIPA00001] FIPA Abstract Architecture Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00001/

