
 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA Interaction Protocol Library Specification 5

 6

Document title FIPA Interaction Protocol Library Specification
Document number XC00025E Document source FIPA TC C
Document status Experimental Date of this status 2001/08/10
Supersedes FIPA00003
Contact fab@fipa.org
Change history
2001/01/29 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

 ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

 iii

Contents 38

1 Scope.. 1 39
2 Overview ... 2 40

2.1 Interaction Protocols .. 2 41
2.2 Status of a FIPA-Compliant Interaction Protocol ... 2 42
2.3 FIPA Interaction Protocol Library Maintenance ... 3 43
2.4 Inclusion Criteria .. 3 44

3 AUML Sequence Diagrams for Interaction Protocol Specification.. 4 45
3.1 Introduction .. 4 46
3.2 Extending UML by Protocol Diagrams... 5 47

3.2.1 Protocol Diagrams .. 5 48
3.2.2 AgentRoles ... 7 49
3.2.3 Agent Lifeline.. 8 50
3.2.4 Threads of Interaction... 10 51
3.2.5 Messages ... 11 52
3.2.6 Complex Messages .. 13 53
3.2.7 Nested Protocols .. 14 54
3.2.8 Complex Nested Protocols ... 15 55
3.2.9 Threads of Interaction and Messages Inside and Outside Nested Protocols... 16 56
3.2.10 Parameterised Protocols .. 17 57
3.2.11 Bound Elements ... 18 58

4 References.. 21 59
60

1 Scope 60

This document contains: 61
 62
 Specifications for structuring the FIPA Interaction Protocol Library (IPL) including a status of a FIPA Interaction 63

Protocols (IPs), maintenance of the library and inclusion criteria for new IPs. 64
 65
 A description of how to understand and express IPs using AUML (Agent Unified Modeling Language). 66
 67
 The FIPA IP registry list. 68
 69
This specification is primarily concerned with defining the structure of the FIPA IPL and the requirements for an IP to be 70
included in the library. 71

72

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 2

2 Overview 72

This specification focuses on the organization, structure and status of the FIPA IPL and discusses the main 73
requirements that an IP must satisfy in order to be FIPA-compliant. The objectives of standardising and defining a 74
library of FIPA compliant IPs are: 75
 76
 To provide tested patterns of agent interaction that may be of use in various aspects of agent-based systems, 77
 78
 To facilitate the reuse of standard agent IPs, and, 79
 80
 To express IPs in a standard agent unified modelling language (AUML). 81
 82
In the following, we present the basic principles of the FIPA IPL which help to guarantee that the IPL is stable, that there 83
are public rules for the inclusion and maintenance of the IPL, and that developers seeking a public IPs can use the IPL. 84
 85

2.1 Interaction Protocols 86

Ongoing conversations between agents often fall into typical patterns. In such cases, certain message sequences are 87
expected, and, at any point in the conversation, other messages are expected to follow. These typical patterns of 88
message exchange are called interaction protocols. A designer of agent systems has the choice to make the agents 89
sufficiently aware of the meanings of the messages and the goals, beliefs and other mental attitudes the agent 90
possesses, and that the agent’s planning process causes such IPs to arise spontaneously from the agents’ choices. 91
This, however, places a heavy burden of capability and complexity on the agent implementation, though it is not an 92
uncommon choice in the agent community at large. An alternative, and very pragmatic, view is to pre-specify the IPs, so 93
that a simpler agent implementation can nevertheless engage in meaningful conversation with other agents, simply by 94
carefully following the known IP. 95
 96
This section of the specification details a number of such IPs, in order to facilitate the effective inter-operation of simple 97
and complex agents. No claim is made that this is an exhaustive list of useful IPs, nor that they are necessary for any 98
given application. The IPs are given pre-defined names and the requirement for adhering to the specification is: 99
 100
A FIPA ACL-compliant agent need not implement any of the standard IPs, nor is it restricted from using other IP names. 101
However, if one of the standard IP names is used, the agent must behave consistently with the IP specification given 102
here. 103
 104
These IPs are not intended to cover every desirable interaction type. Individual IPs do not address a number of 105
common real-world issues in agent interaction, such as exception handling, messages arriving out of sequence, 106
dropped messages, timeouts, cancellation, etc. Rather, the IPs defined in this specification set should be viewed as 107
interaction patterns, to be elaborated according to the context of the individual application. This strategy means that 108
adhering to the stated IPs does not necessarily ensure interoperability; further agreement between agents about the 109
issues above is required to ensure interoperability in all cases. 110
 111
Note that, by their nature, agents can engage in multiple dialogues, perhaps with different agents, simultaneously. The 112
term conversation is used to denote any particular instance of such a dialogue. Thus, the agent may be concurrently 113
engaged in multiple conversations, with different agents, within different IPs. The remarks in this section, which refer to 114
the receipt of messages under the control of a given IP, refer only to a particular conversation. 115
 116

2.2 Status of a FIPA-Compliant Interaction Protocol 117

The definition of an IP belonging to the FIPA IPL is normative, that is, if a given agent advertises that it employs an IP in 118
the FIPA Content Language Library (see [FIPA00007]), then it must implement the IP as it is defined in the FIPA IPL. 119
However, FIPA-compliant agents are not required to implement any of the FIPA IPL IPs themselves, except those 120
required for Agent Management (see [FIPA00023]). 121
 122

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 3

By collecting IP definitions in a single, publicly accessible registry, the FIPA IPL facilitates the use of standardized IPs 123
by agents developed in different contexts. It also provides a greater incentive to developers to make their IPs generally 124
applicable. 125
 126
FIPA is responsible for maintaining a consistent list of IP names and for making them publicly available. In addition to 127
the list of encoding schemes, each IP in the FIPA IPL may specify additional information, such as stability information, 128
versioning, contact information, different support levels, etc. 129
 130

2.3 FIPA Interaction Protocol Library Maintenance 131

The most effective way of maintaining the FIPA IPL is through the use of the IPs themselves by different agent 132
developers. This is the most direct way of discovering possible bugs, errors, inconsistencies, weaknesses, possible 133
improvements, as well as capabilities, strengths, efficiency, etc. 134
 135
In order to collect feedback on the IPs in the library and to promote further research, FIPA encourages coordination 136
among designers, agent developers and FIPA members. 137
 138

2.4 Inclusion Criteria 139

To populate the FIPA IPL, setting fundamental guidelines for the selection of specific IPs is necessary. The minimal 140
criteria that must be satisfied for an IP to be FIPA compliant are: 141
 142
 A clear and accurate representation of the IP is provided using AUML protocol diagram, 143
 144
 Substantial and clear documentation must be provided, and, 145
 146
 The usefulness of a new IP should be made clear. 147
 148
FIPA does not enforce the use of any particular IP. 149
 150

151

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 4

3 AUML Sequence Diagrams for Interaction Protocol Specification 151

3.1 Introduction 152

During the 1970s, structured programming was the dominant approach to software development. Along with it, software 153
engineering technologies were developed in order to ease and formalize the system development lifecycle: from 154
planning, through analysis and design and finally to system construction, transition, and maintenance. In the 1980s, 155
object-oriented languages experienced a rise in popularity, bringing with it new concepts such as data encapsulation, 156
inheritance, messaging, and polymorphism. By the end of the 1980s and beginning of the 1990s, a jungle of modelling 157
approaches grew to support the object-oriented marketplace. To make sense of and unify these various approaches, an 158
Analysis and Design Task Force was established on 29 June 1995 within the Object Management Group (OMG). And 159
by November 1997, a de jure standard was adopted by the OMG members called the Unified Modelling Language 160
(UML - see [OMGuml]). 161
 162
UML unifies and formalizes the methods of many object-oriented approaches, including analysis and design [Booch94 163
and Booch95], modelling [Rumbaugh91] and software engineering [Jacobson94]. It supports the following kinds of 164
models: 165
 166
 Static models 167

Such as class and package diagrams describe the static semantics of data and messages. Within system 168
development, class diagrams are used in two different ways, for two different purposes. First, they can model a 169
problem domain conceptually and since they are conceptual in nature, they can be presented to the customers. 170
Second, class diagrams can model the implementation of classes which guides developers. At a general level, the 171
term class refers to the encapsulated unit and at the conceptual level, models types and their associations; the 172
implementation level models implementation classes. While both can be more generally thought of as classes, their 173
usage as concepts and implementation notions is important both in purpose and semantics. Package diagrams 174
group classes in conceptual packages for presentation and consideration. (Physical aggregations of classes are 175
called components that are in the implementation model family, mentioned below.) 176

 177
 Dynamic models 178

These include interaction diagrams (that is, sequence and collaboration diagrams), state charts and activity 179
diagrams. 180

 181
 Use cases 182

The specification of actions that a system or class can perform by interacting with outside actors. They are 183
commonly used to describe how a customer communicates with a software product. 184

 185
 Implementation models 186

These describe the component distribution on different platforms, such as component models and deployment 187
diagrams 188

 189
 Object Constraint Language (OCL) 190

This is a simple formal language to express more semantics within an UML specification. It can be used to define 191
constraints on the model, invariant, pre- and post-conditions of operations and navigation paths within an object net. 192

 193
For modelling agents and agent-based systems, UML is insufficient. Compared to objects, agents are active because 194
they act for reasons that emerge from themselves. The activity of agents is based on their internal states, which include 195
goals and conditions that guide the execution of defined tasks. While objects need control from outside to execute their 196
methods, agents know the conditions and intended effects of their actions and hence take responsibility for their needs. 197
Furthermore, agents do not only act solely but together with other agents. Multi-agent systems can often resemble a 198
social community of interdependent members that act individually. 199
 200
However, no sufficient specification formalism exists yet for agent-based system development. To employ agent-based 201
programming, a specification technique must support the whole software engineering process—from planning, through 202
analysis and design, and finally to system construction, transition, and maintenance. 203

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 5

A proposal for a full life-cycle specification of agent-based system development is beyond the scope of this 204
specification. Here, we suggest a subset of an agent-based extension to the standard UML, called AUML, for the 205
specification of agent interaction protocols (AIPs). 206
 207
It has to be distinguished between generic (or parameterised) protocols (and their instantiations) and domain-specific 208
protocols. 209
 210

3.2 Extending UML by Protocol Diagrams 211

In the following, we provide sequence diagrams for AUML [Odell2000], an extension to UML. We refer to these 212
sequence diagrams as protocol diagrams (PDs) which show well-defined interactions among agents. Note that we do 213
not define formal semantics for the communicative acts for AUML, but instead use the UML meta-model. 214
 215

3.2.1 Protocol Diagrams 216

Adapted from [OMGuml], section 3.59. 217
 218

3.2.1.1 Semantics 219
A PD represents an interaction, which is a set of messages exchanged among different agent roles within a 220
collaboration to effect a desired behaviour of other AgentRoles or agent instances. 221
 222

3.2.1.2 Notation 223
A PD has two dimensions: the vertical dimension represents time, the horizontal dimension represents different 224
AgentRoles. Normally the time proceeds down the page and usually only time sequences are important, but in real-time 225
applications the time axis could be an actual metric. There is no significance to the horizontal ordering of the 226
AgentRoles. 227
 228

3.2.1.3 Presentation Options 229
The axes can be interchanged, so that time proceeds horizontally to the right and different AgentRoles are shown as 230
horizontal lines. 231
 232
Various labels (such as timing marks, generated goals depending on the received message, etc.) can be shown either 233
in the margin or near the lifelines or messages that they label. 234
 235

236

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 6

3.2.1.4 Example 236
 237

 FIPA-ContractNet-Protocol

Initiator Participant

cfp (action, precondition)

refuse (reason-1)

not-understood

propose (precondition-2)

reject-proposal (reason-2)

accept-proposal (proposal)

inform

dead-
line

failure (reason-3)

x

x

x

 238
 239

3.2.1.5 Mapping 240
The mapping is analogous defined as for sequence diagrams (see [OMGuml]). 241
 242
A PD maps like a sequence diagram into an Interaction and an underlying Collaboration. An Interaction specifies a 243
sequence of communications; it contains a collection of partially ordered Messages, each specifying a communication 244
between a sender role and a receiver role. Collections of agent roles that conform to the ClassifierRoles in the 245
Collaboration owning the Interaction, communicate by dispatching Stimuli that conform to the Messages in the 246
Interaction. An AgentRole maps into a ClassifierRole. A PD presents one collection of AgentRoles and arrows mapping 247
to AgentRole and Stimuli that conform to the ClassifierRoles and Messages in the Interaction and its Collaboration. 248
 249
In a PD, each AgentRole box with its lifeline maps into an agent role that conforms to a ClassifierRole in the 250
Collaboration. The name fields maps into the name of the agent, the role name into the Classifier's name and the class 251
field maps into the names of the Classifier (in this case AgentClasses being Classes) being the base Classifiers of the 252
ClassifierRole. The splitting of lifelines has a concurrency Association defining either AND/OR parallelism or decision 253
Association denoting threads (<<thread>>). The associations among roles are not shown on the sequence diagram 254
since they must be obtained in the model from a complementary collaboration diagram or other means. A message 255
arrow maps into a Stimulus connected to two AgentRoles. the sender and receiver AgentRole. The Stimulus conforms 256
to a Message between the ClassifierRoles corresponding to the two AgentRoles' lifelines that the arrow connects. The 257
Link is used for the communication of the Stimulus and plays the role specified by the AssociationRole connected to the 258
Message. Unless the correct Link can be determined from a complementary collaboration diagram or other means, the 259
Stimulus is either not attached to a Link (not a complete model), or it is attached to an arbitrary Link or to a dummy Link 260
between the Instances conforming to the AssociationRole implied by the two ClassifierRoles due to the lack of complete 261
information. The name of the communicative act is mapped onto the behaviour associated by the action performing, 262
requested information, information passing, negotiation or error handling connected to the Message. Different 263
alternatives exist for showing the arguments of the Stimulus. If references to the actual Instances being passed as 264
arguments are shown, these are mapped onto the arguments of the Stimulus. If the argument expressions are shown 265
instead, these are mapped onto the Arguments of the action performing, requested information, information passing, 266

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 7

negotiation or error handling connected to the dispatching communicative act. Finally, if the types of the arguments are 267
shown together with the name of the communicative act, these are mapped onto the parameter types of the 268
communicative act. A timing label placed on the level of an arrow endpoint maps into the name of the corresponding 269
Message. A constraint or guard placed on the diagrams maps into a Constraint on the entire Interaction. The cardinality 270
label restricts the number of sending and receiving instances of agent roles accordingly to the numbers denoted at the 271
beginning (sender) and end (receiver) of the message. 272
 273
An arrow with the arrowhead pointing to an AgentRole symbol within the frame of the diagram maps into a Stimulus 274
dispatched by a CreateAction, that is, the Stimulus conforms to a Message in the Interaction which is connected to 275
the CreateAction. The interpretation is that the AgentRole instance (not an arbitrary agent role, nor a set of 276
AgentRole instances) is created by dispatching the Stimulus, and the AgentRole instance conforms to the receiver role 277
specified in the Message. After the creation of the AgentRole instance, it may immediately start interacting with other 278
AgentRoles. This implies that the creation of the AgentRole dispatches these Stimuli. If an AgentRole instance 279
termination symbol ("X") is the target of the of an arrow, the arrow maps into a Stimulus which will cause the receiving 280
agent role instance to be removed. The Stimulus conforms to a Message in the Interaction with a DestroyAction 281
attached to the Message or the agent instance terminates itself. 282
 283
The order of the arrows in the diagram map onto a pair of associations between the Messages that correspond to the 284
Stimuli the arrows maps onto. A predecessor association is established between Messages corresponding to 285
successive arrow ends in the vertical sequence. In case of concurrent arrows preceding an arrow, the corresponding 286
Message has a collection of predecessors. In case of exclusive-or and inclusive-or arrows preceding an arrow the 287
corresponding message has one and at least one out of the collection of possible predecessors, respectively. 288
Moreover, each Message has an activator (thread of interaction) association to the Message corresponding to the 289
incoming arrow of the activation or pro-active sending of a message. 290
 291
A nested protocol maps into a PD. The name compartment of a nested protocol maps into the name of the 292
Collaboration. The guard and constraint compartment maps into a constraint on the complete Interaction. 293
 294
A complex nested protocol maps into a PD. The order of the messages within the protocol is defined according to the 295
combination of the complex nested protocol. The ordering of the messages in the nested protocol is the ordering of 296
these protocols. Depending on the combination the messages are sent in AND/OR parallelism or decision ordering. 297
 298

3.2.2 AgentRoles 299

In the framework of agent oriented programming an agent satisfying a distinguished role behaves in a special way. In 300
contrast to this semantics role in UML is an instance focused term. Moreover the term multi-object does not fit to 301
describe AgentRoles but it is used to show operations that address the entire set, rather than a single object in it. 302
However, there is a communication with one instance of this multi-object. By AgentRole a set of agents satisfying 303
distinguished properties, interfaces or having a distinguished behaviour are meant. 304
 305
UML distinguishes between: 306
 307
 multiple classifications where a retailer agent can act as well as a buyer as well as a seller agent, for example, and, 308
 309
 dynamic classification where an agent can change its classification during its existence. 310
 311
Agents can perform various roles within one IP. Using a contract-net protocol, for example, between a buyer and a 312
seller of a product, the initiator of the protocol has the role of a buyer and the participant has the role of a seller. But the 313
seller can as well be a retailer agent, which acts as a seller in one case and as a buyer in another case, i.e. agents 314
satisfying a distinguished role can support multiple classification and dynamic classification. Another example can be 315
found in [FIPA00023] which defines the functionality of the Directory Facilitator (DF) and the Agent Management 316
System (AMS). These functionalities can be implemented by different agents, but the functionality of the DF and AMS 317
can also be integrated into one agent. 318
 319
An AgentRole can be seen as a set of agents satisfying a distinguished interface, service description or behaviour. 320
Therefore the implementation of an agent can satisfy different roles. 321

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 8

 322
Note that within FIPA the notion of role is not used, but in the framework of specifying agent-based systems this notion 323
is appropriate. 324
 325

3.2.2.1 Semantics 326
An AgentRole describes two different variations that can apply within a protocol definition. A protocol can be defined 327
between different concrete agent instances or a set of agents satisfying a distinguished role and/or class. An agent 328
satisfying a distinguished AgentRole and class is called agent of a given AgentRole and class, respectively. 329
 330

3.2.2.2 Notation 331
An AgentRole is shown as a rectangle that is filled with some string of one of the following forms: 332
 333
 role 334

This denotes arbitrary agents satisfying the distinguished AgentRole. 335
 336
 instance / role-1 ... role-n 337

This denotes a distinguished agent instance that satisfies the AgentRoles 1-n where n 0. 338
 339
 instance / role-1 ... role-n : class 340

This denotes a distinguished agent instance that satisfied the AgentRoles 1-n where n 0 and class it belongs to. 341
 342

3.2.2.3 Presentation Options 343
The second case can be abbreviated as instance if n equals zero, that is, a concrete agent is meant independent of the 344
role(s) it satisfies and class it belongs to. 345
 346

3.2.2.4 Example 347
 348

 Seller

 Seller-1

 Seller-1/Seller, Buyer

 Seller-1/Seller, Buyer : CommercialAgent

 349
 350

3.2.2.5 Mapping 351
See Section 3.2.1.5, Mapping. 352
 353

3.2.3 Agent Lifeline 354

The agent lifeline defines the time period when an agent exists. For example a user agent is created when a user logs 355
on to the system and the user agent is destroyed when the user logs off. Another example is when an agent migrates 356
from one machine to another. 357
 358

3.2.3.1 Semantics 359
A PD defines the pattern of communication, that is, the steps in which the communicative acts are sent between agents 360
of different AgentRoles. The agent lifeline describes the time period in which an agent of a given AgentRole exists. Only 361
during this time period an agent can participate on a protocol. 362
 363
The lifeline starts when the agent of a given AgentRole is created and ends when it is destroyed. The lifeline can be 364
split in order to describe AND/OR parallelism and decisions and may merge together at some subsequent point. 365
 366

3.2.3.2 Notation 367
An agent lifeline is shown as a vertical dashed line. The lifeline represents the existence of an agent of a given 368
AgentRole at a particular time. If the agent is created or destroyed during the period of time shown on the PD, then its 369
lifeline starts or stops at the appropriate point; otherwise it goes from the top of the diagram to the bottom. An 370
AgentRole is drawn at the head of the lifeline. If an agent of a given AgentRole is created during the PD, then the 371

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 9

message that creates it is drawn with its arrowhead on the AgentRole. Note, that the AgentRole (see Section 3.2.3.4, 372
Example) that receives the message is responsible for the creation of the agent instance, that is, the arrowhead ends at 373
the dashed line of the AgentRole receiving the message and the AgentRole is fixed at the left-hand or right-hand side of 374
the lifeline or the thread of interaction. If an agent instance is destroyed during the PD, then its destruction is marked by 375
a large "X", either at the message that causes the destruction or (in the case of self destruction) at the final action of the 376
AgentRole. The termination is restricted to concrete instances of an agent role. 377
 378
AgentRoles that exist when a protocol starts is shown at the top of the diagram (above the first message arrow). An 379
AgentRole that exists when the protocol finishes has its lifeline continued beyond the final arrow of the diagram. 380
 381
The lifeline may split into two or more lifelines to show AND/OR parallelism and decisions. Each separate track 382
corresponds to a branch in the message flow. The lifelines may merge together at some subsequent point. The splitting 383
of the lifeline for: 384
 385
 AND parallelism starts at a horizontal heavy bar, 386
 387
 OR parallelism (inclusive-or) starts at a horizontal heavy bar with a non-filled diamond, and, 388
 389
 decision (exclusive-or) starts at a horizontal heavy bar with a non-filled diamond with "x" inside the diamond and is 390

continued with a set of parallel vertical lifelines connected to the heavy bar. 391
 392
The merging is done the analogous way, that is, the parallel vertical lifelines stop at some of the horizontal heavy bars 393
and one lifeline is continued from at the heavy bar. 394
 395

3.2.3.3 Presentation Options 396
None. 397
 398

3.2.3.4 Example 399
 400

x

x

 401
 402
See also Section 3.2.1.4, 403

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 10

Example. 404
 405

3.2.3.5 Mapping 406
See Section 3.2.1.5, Mapping. 407
 408

3.2.4 Threads of Interaction 409

The sending of messages can be done either in parallel or as a decision between different communicative acts. 410
Receiving different communicative acts usually results in different behaviour and different answers, that is, the 411
behaviour of an AgentRole depends on the received message. 412
 413
Adapted from [OMGuml], section 7.4. 414
 415

3.2.4.1 Semantics 416
Since the behaviour of an AgentRole depends on the incoming message and different communicative acts are allowed 417
as an answer to a communicative act, the thread of interaction, that is, the processing of incoming messages, has to be 418
split up into different threads of interaction. The lifeline of an AgentRole is split and the thread of interaction defines the 419
reaction to received messages. 420
 421
The thread of interaction shows the period during which an AgentRole is performing some task as a reaction to an 422
incoming message. It represents only the duration of the action in time, but not the control relationship between the 423
sender of the message and the receiver. A thread of interaction is always associated with the lifeline of an AgentRole. 424
Note we do not mean a physical thread in this context. The specification is independent of the implementation using 425
threads or other mechanisms. 426
 427

3.2.4.2 Notation 428
A thread of interaction is shown as a tall thin rectangle whose top is aligned with its initiation time and whose bottom is 429
aligned with its completion time. It is drawn over the lifeline of an AgentRole. The task being performed may be labelled 430
as text next to the thread of interaction or in the left margin, depending on the style; alternately the incoming message 431
may indicate the task, in which case it may be omitted on the thread of interaction itself. 432
 433
If the distinction between the reaction to different incoming communicative acts can be neglected, the entire lifeline may 434
be shown as one thread of interaction. 435
 436

3.2.4.3 Presentation Options 437
 Variation 438

A thread of interaction may can take only a short period of time. To simplify diagrams, for compactification reasons 439
of the diagram the parallelism and the decisions can be abbreviated by omitting the splitting/merging and putting the 440
different threads of interaction one after another on the lifeline. 441

 442
 Variation 443

A break of the rectangle describes a change in the thread of interaction. 444
 445

3.2.4.4 Example 446
 447

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 11

request

query

not-understood

x

x

 can be abbreviated as

request

query

not-understood

x

 448
 449

3.2.4.5 Mapping 450
See Section 3.2.1.5, Mapping. 451
 452

3.2.5 Messages 453

The main issue of protocols is the definition of communicative patterns, especially the sending of messages from one 454
AgentRole to another. This sending can be done in different ways, for example, with different cardinalities, depending 455
on some constraints or using AND/OR parallelism and decisions. 456
 457
Adapted from [OMGuml], section 7.5 and section 8.9. 458
 459

3.2.5.1 Semantics 460
A message or sending of a communicative act is a communication from one AgentRole to another that conveys 461
information with the expectation that the receiving AgentRole would react according to the semantics of the 462
communicative act. The specification of the protocol says nothing about the implementation of the processing of the 463
communicative act. 464
 465

3.2.5.2 Notation 466
A message sending is shown as a horizontal solid arrow from a thread of interaction of an AgentRole to another thread 467
of interaction of another AgentRole. In case of a message is sent from an AgentRole to itself (note that there might be 468
many individual agents in an AgentRole), the arrow may start and end on the same lifeline or thread of interaction. Such 469
a nested thread of interaction is denoted by a thread of interaction that is shifted a little bit to the right side in the actual 470
thread of interaction. 471
 472
Nested protocols are represented by a separate thread of interaction, along with an arrow initiating the nested protocol 473
and one or more arrows terminating the nested protocol. The initiating arrow is drawn starting with a small solid filled 474
circle, and a terminating arrow ends with a circle surrounding a small solid filled circle. 475
 476
Each arrow is labelled with a message label that has the following syntax: 477
 478
predecessor guard-condition sequence-expression communicative-act argument-list 479
 480
Where: 481
 482
 predecessor 483

This consists of at most one natural number followed by a slash (/) defining the sequencing of a parallel construct 484
or the number of the input and output parameter in the context of Section 3.2.9, Threads of Interaction and 485
Messages Inside and Outside Nested Protocols, xxxx. The clause is omitted if the list is empty. 486

 487
 guard-condition 488

This is a usual UML guard condition, with the semantics, that the message is sent iff the guard is true. The guard 489
conditions must be defined on the behavioural semantics of the agents, that is, the internal state of the agent must 490
not be used in the definition of the guard. 491

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 12

 492
 sequence-expression 493

This is a constraint, especially with n..m which denotes that the message is sent n up to m times with n , m 494
 {*}1. The keyword broadcast denotes the broadcast sending of a message; the keyword deadline denotes a 495
string that is encoded according to [ISO8601] and represents the deadline by which a message is useful. 496

 497
 communicative-act 498

This is either the name, that is, a string representation with an underlined name, of a concrete communicative act 499
instance, the name of a concrete communicative act instance and its associated communicative act, written as 500
name:communicative-act or only the name of the communicative act, for example, inform. 501

 502
 argument-list 503

This is a comma-separated list of arguments enclosed in parentheses. The parentheses can be omitted if the list is 504
empty. Each argument is an expression in pseudo-code or an appropriate programming language or an OCL 505
expression. 506
 507

3.2.5.3 Presentation Options 508
 Variation: Cardinality 509

The cardinality of a message (for example, n senders and m receivers of a message) is shown by writing natural 510
numbers at the beginning and at the end of the arrow. This variation is only allowed if the sender and/or receiver is 511
not an instance of an agent. 512

 513
 Variation: Asynchronous Message Passing 514

An asynchronous message is drawn with a stick arrowhead (). It shows the sending of the message without 515
yielding control. 516

 517
 Variation: Synchronous Message Passing 518

A synchronous message is drawn with a filled solid arrowhead (). It shows the yielding of the thread of control 519
(wait semantics), that is, the AgentRole waits until an answer message is received and nothing else can be 520
processed. 521

 522
 Variation: Time intensive Message Passing 523

Normally message arrows are drawn horizontally. This indicates the duration required to send the message is 524
atomic, that is, it is brief compared to the granularity of the interaction and that nothing else can take place during 525
the message transmission. That is the correct assumption within many computers. If the messages requires some 526
time to arrive for mobile communication, for example, during which something else can occur then the message 527
arrow may be slanted downward so that the arrowhead is below the arrow tail (). 528

 529
 Variation: Repetition 530

The repetition of parts of a PD is represented by an arrow or one of its variations usually marked by some guards or 531
constraints ending at a thread of interaction which is according to the time axis before or after the actual time point. 532
Note, that in this case the time ordering on the PDs is violated. 533

 534

3.2.5.4 Example 535
 536

1 The asterix represents repetition an arbitrary number of times.

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 13

create-request :
Request

fipa-ams

my-new-
agent

 537
 538

3.2.5.5 Mapping 539
See Section 3.2.1.5, Mapping. 540
 541

3.2.6 Complex Messages 542

Besides the already presented kinds of messages, more complex messages can be used. 543
 544

3.2.6.1 Semantics 545
A complex message may be the parallel sending of messages or exclusively sending of exactly one message out of a 546
set of different messages. 547
 548

3.2.6.2 Notation 549
Three kinds of complex messages are distinguished. All three complex messages substitute an arrow from one thread 550
of interaction to another thread of interaction by an arrow starting at one thread of interaction ending either: 551
 552
 at a heavy bar (for AND parallelism), 553
 554
 at a heavy bar with a non-filled diamond (for OR parallelism; inclusive-or), or, 555
 556
 at a heavy bar with a non-filled diamond (for decisions; exclusive-or) with an "x" inside the diamond. 557
 558
From these different kinds of heavy bars new arrows start in a right angle at the bar and end at possibly different 559
threads of interaction, which are possibly combined in a parallel or decisional way. 560
 561
The merging of different messages is done in the analogous way, that is, the parallel horizontal message arrows stop at 562
one vertical bar and one message arrow is continued from the heavy bar. 563
 564

3.2.6.3 Presentation Options 565
None. 566
 567

3.2.6.4 Example 568
 569

 request

query

 1/request

2/query

request

query

 570
 571

(a) (b)2 (c) 572

2 This shows the restriction that request is sent before query.

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 14

 573

3.2.6.5 Mapping 574
See Section 3.2.1.5, Mapping. 575
 576

3.2.7 Nested Protocols 577

Nested protocols are applied to specify complex systems in a modular way. Moreover the reuse of parts of a 578
specification increases the readability of them. 579
 580
A nested protocol can be defined and applied, if it is used several times within the same specification. In contrast to a 581
parameterised protocol it is only an abbreviation for a fixed (part of a) protocol. Additionally nested protocols are used 582
for the definition of repetition of a nested protocol according to guards and constraints. 583
 584
Interleaved protocols show that between different agents a protocol is performed and more over in order to 585
finish/proceed the protocol an agent has to perform another protocol with other agents. 586
 587

3.2.7.1 Semantics 588
If the nested protocol is marked with some guard then the semantics of the nested protocol is the semantics of the 589
protocol under the assumption that the guard evaluates to true, otherwise the semantics is the semantics of an empty 590
protocol, that is, nothing is specified. 591
 592
If the nested protocol is marked with some constraints the nested protocol is repeated as long as the constraints 593
evaluate to true. 594
 595

3.2.7.2 Notation 596
A nested protocol is shown as a rectangle with rounded corners. It may have one or more compartments. The 597
compartments are optional. They are as follows: 598
 599
 Name compartment 600

This holds the (optional) name of the nested protocol as a string. Nested protocols without names are anonymous. 601
It is undesirable to show the same named nested protocol twice in the same diagram except when they define the 602
same nested protocol. The compartment is written in the upper left-hand corner of the rectangle. 603

 604
605

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 15

 Guard compartment 605
This holds the (optional) guard of the nested protocol in the usual guard notation as [guard-condition]. Nested 606
protocols without guards are equivalent with nested protocols with guard [true]. The guard compartment is 607
written together with the constraint compartment in the lower left-hand corner of the rectangle. 608

 609
 Constraint compartment 610

This holds the (optional) constraint of the nested protocol in the usual constraint notation as {constraint-611
condition}. Nested protocols without constraints are equivalent with nested protocols with constraint {1}. The 612
constraint compartment is written together with the guard compartment in the lower left-hand corner of the 613
rectangle. In addition to the constraint condition used in UML the constraint n..m denotes that the nested protocol 614
is repeated n up to m times with n , m {*}. 615

 616
Another nested protocol can completely be drawn within the actual nested protocol denoting that the inner one is part of 617
the outer one. 618
 619

3.2.7.3 Presentation Options 620
The abbreviations n and * can be applied to denote n..n and 0..*, respectively. Beyond the above usage of nested 621
protocols for simple protocols, nested protocols can also be used applying parameterised protocols or instantiated 622
parameterised protocols. 623
 624
Another presentation option is the definition of interleaved protocols. For a nested protocol being part of another 625
protocol the rectangle representing it has to be completely drawn within the other one. If interleaved protocols are 626
defined, that is, during performing one IP another IP has to be processed, the rectangles are not drawn within each 627
other. 628
 629

3.2.7.4 Example 630
 631

 buyer-1 seller-1

request-good :
Request

request-pay :
Request

commitment

...

...
[commit]

 Broker Retailer

cfp

Wholeseller

request

inform

propose

...

 632
 633

Nested Protocol Interleaved Protocols 634
 635

3.2.8 Complex Nested Protocols 636

Beyond the already presented nested and interleaved protocols, other kinds of complex nested protocols can also be 637
defined. 638
 639

3.2.8.1 Semantics 640
A complex nested protocol defines the parallel or decisional combination of nested protocols. It has to take into 641
consideration the thread of interaction at the beginning and at the end of the complex nested protocol. Furthermore the 642
starting and ending point within the nested protocols have to be considered. 643
 644

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 16

3.2.8.2 Notation 645
Three kinds of complex nested protocols are distinguished. All three complex nested protocols are drawn over the 646
lifeline and threads of interaction within a PD. Each individual nested protocol in a complex nested protocol is 647
introduced by a line that is terminated by the rectangle of a nested protocol. These lines are connected either by: 648
 649
 a heavy bar defining AND parallelism, 650
 651
 a heavy bar with a non-filled diamond defining OR parallelism (inclusive-or), or, 652
 653
 a heavy bar with a non-filled diamond defining decisions (exclusive-or) with an "x" inside the diamond. 654
 655
The threads of interaction which are continued in the different nested protocols are drawn as usual. 656
 657

3.2.8.3 Presentation Options 658
None. 659
 660

3.2.8.4 Example 661
 662

 Broker Retailer

cfp

propose

request

inform

x

 663
 664

3.2.8.5 Mapping 665
See Section 3.2.1.5, Mapping. 666
 667

3.2.9 Threads of Interaction and Messages Inside and Outside Nested Protocols 668

Usually, nested protocols have input and output parameters, namely threads of interaction and messages. 669
 670

3.2.9.1 Semantics 671
Nested protocols are defined in detail either within a PD where it is used or outside another PD. Threads of interaction 672
and messages inside and outside nested protocols define the input and output parameter for nested protocols. 673
 674
The input parameters are the threads of interaction, which are carried on in the nested protocol, and the messages 675
which are received from other IPs. 676
 677
The output parameters are on the one side the threads of interaction which are started within the nested protocol and 678
are carried on outside the nested protocol and the messages which are sent from inside the nested protocol to 679
AgentRoles not involved in the actual nested protocol. A message or thread of interaction ending at an input or starting 680
at an output parameter of a nested protocol describes the connection of a whole PD with the embedded nested 681
protocol. 682
 683

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 17

3.2.9.2 Notation 684
The input and output parameters for the threads of interaction of a nested protocol are shown as a tall thin rectangle 685
(like a thread of interaction) which is drawn beyond the bounds of over the top line and bottom line of the nested 686
protocol rectangle, respectively. 687
 688
The input and output message parameters are shown by arrows starting with a small solid filled circle, and arrows 689
ending at a circle surrounding a small solid filled circle (a bull's eye), respectively. 690

3.2.9.3 Presentation Options 691
The message arrows can be marked like usual messages. In this context, the predecessor denotes the number of the 692
input/output parameter. The input/output thread of interaction can be marked with natural numbers to define the exact 693
number of the parameter. 694
 695

3.2.9.4 Example 696
 697

request-good :
Request

request-pay :
Request

commitment

 698
 699

3.2.9.5 Mapping 700
See Section 3.2.1.5, Mapping. 701
 702

3.2.10 Parameterised Protocols 703

Adapted from [OMGuml], section 5.11. 704
 705

3.2.10.1 Semantics 706
A parameterised protocol is the description for an IP with one or more unbound formal parameters. It therefore defines 707
a family of protocols, each protocol specified by binding the parameters to actual values. Typically the parameters 708
represent agent roles, constraints, instances of communicative acts and nested protocols. The parameters used within 709
the parameterised protocol are defined in terms of the formal parameters so they are become bound when the 710
parameterised protocol itself is bound to the actual values. 711
 712
A parameterised protocol is not a directly-usable protocol because it has unbound parameters. Its parameters must be 713
bound to actual values to create a bound form that is a protocol. 714
 715

3.2.10.2 Notation 716
A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle with rounded corners as 717
when defining a nested protocol. The dashed rectangle contains a parameter list of formal parameters for the protocol. 718
The list must not be empty, although it might be suppressed in the presentation. The name of the parameterised 719
protocol is written as a string in the upper left-hand corner. 720
 721

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 18

The parameter list is a comma-separated list of arguments (formal parameters) defined by identifiers, like names for 722
AgentRoles, constraint expressions, communicative acts or nested protocol names. 723
 724

3.2.10.3 Presentation Options 725
The input/output parameters like messages and threads of interactions can be used and defined as for nested 726
protocols. 727
Communicative act can be marked with an asterisk in the parameter specification, denoting different kinds of messages 728
that can alternatively be sent in this context. 729
 730

3.2.10.4 Example 731
 732

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

not-understood

propose

reject-proposal

accept-proposal

inform

dead-
line

failure

x

x

x

Initiator, Participant,
deadline,

cfp, refuse*, not-
understood*, propose,

reject-proposal*, accept-
proposal*, inform*

 733
 734

3.2.10.5 Mapping 735
See Section 3.2.1.5, Mapping. 736
 737

3.2.10.6 Comment 738
Note the difference between interleaved, nested and parameterised protocols. An interleaved protocol is used to show 739
that during the execution of one protocol another one is started/performed. Nested protocols are used to show 740
repetitions of sub-protocols, identifying fixed sub-protocols, reference to a fixed sub-protocol, like asking the DF for 741
some information, or guarding a sub-protocol. Parameterised protocols are used to prepare patterns which can be 742
instantiated in different contexts and applications, for example, the FIPA Contract Net Protocol for appointment 743
scheduling and negotiation about some good which should be sold. 744
 745

3.2.11 Bound Elements 746

Adapted from [OMGuml], section 5.12. 747
 748

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 19

3.2.11.1 Semantics 749
A parameterised PD cannot be used directly in an ordinary interaction description, because it has free parameters that 750
are not meaningful outside of a scope that declares the parameter. To be used, a formal parameter of a parameterised 751
protocol must be bound to actual values. The actual value for each parameter is an expression defined within the scope 752
of use. If the referencing scope is itself a parameterised protocol, then the parameters of the referencing parameterised 753
protocol can be used as actual values in binding the referenced parameterised protocol, but the parameter names in the 754
two templates cannot be assumed to correspond, because they have no scope outside of their respective templates. 755
We can assume without loss of generality that the parameter names of the different parameterised protocols are 756
different. 757
 758

3.2.11.2 Notation 759
A bound element is indicated in the name string of an element, as follows: 760
 761
parameterised-protocol-name < role-list, constraint-expression-list, value-list > 762
 763
Where: 764
 765
 parameterised-protocol-name 766

This is identical to the name of the parameterised protocol. 767
 768
 role-list 769

This is a comma-delimited list of role labels. constraint-expression-list is a comma-delimited list of constraint terms. 770
 771
 value-list 772

This is a comma-delimited non-empty list of pairs, separated by a colon consisting of a value expression and a 773
communicative act. The communicative act is optional. 774

 775
The number and types of the values must match the number and types of the parameterised protocol formal 776
parameters for the parameterised protocol of the given name. The bound element name may be used anywhere that 777
protocol of the parameterised kind could be used. 778
 779

3.2.11.3 Presentation Options 780
None. 781
 782

783

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 20

3.2.11.4 Example 783
 784
FIPA-ContractNet-Protocol 785
< 786
 Buyer, Seller 787
 20000807 788
 cfp-seller : cfp, 789
 refuse-1 : refuse, 790
 refuse-2 : refuse, not-understood, propose, reject-proposal, accept-proposal, 791
 cancel, inform, failure 792
> 793
 794

refuse-1

FIPA-ContractNet-Protocol

Buyer Seller

cfp-seller

not-understood

propose

reject-proposal

accept-proposal

inform

2000
0807

failure

x

x

x

refuse-2
x

 795
 796

3.2.11.5 Mapping 797
The use of the bound element syntax for the name of a symbol maps into a Binding dependency between the 798
dependent ModelElement corresponding to the bound element symbol and the provider ModelElement whose name 799
matches the name part of the bound element without the arguments. If the name does not match a parameterised 800
protocol or if the number of arguments in the bound element does not match the number of formal parameters in the 801
parameterised protocol, then the model is ill-formed. Each argument in the bound element maps into a ModelElement 802
bearing a templateArgument association to the Namespace of the bound element. The Binding relationship bears the 803
list of actual argument values. 804
 805

806

© 2000 Foundation for Intelligent Physical Agents FIPA Interaction Protocol Library

 21

4 References 806

[Booch94] Booch, G., Object-Oriented Analysis and Design with Applications. Benjamin/Cummings, 1994. 807
[Booch95] Booch, G., Object Solutions: Managing the Object-Oriented Project. Addison-Wesley, 1995. 808
[FIPA00007] FIPA Content Language Library Specification. Foundation for Intelligent Physical Agents, 2000. 809

http://www.fipa.org/specs/fipa00007/ 810
[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 811

http://www.fipa.org/specs/fipa00023/ 812
[ISO8601] Date Elements and Interchange Formats, Information Interchange – Representation of Dates and 813

Times, ISO 8601:1988(E), 1988. 814
[Odell2000] Odell, J., Parunak, H. van Dyke and Bauer, B., Extending UML for Agents. In: AOIS Worshop at AAAI, 815

2000. 816
[OMGuml] OMG Unified Modelling Language Version 1.1, Object Management Group, 1999. 817

http://www.omg.org/uml/ 818
[Rumbaugh91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorenzen, W., Object-Oriented Modeling and 819

Design. Prentice Hall, 1991. 820

	Scope
	Overview
	Interaction Protocols
	Status of a FIPA-Compliant Interaction Protocol
	FIPA Interaction Protocol Library Maintenance
	Inclusion Criteria

	AUML Sequence Diagrams for Interaction Protocol Specification
	Introduction
	Extending UML by Protocol Diagrams
	Protocol Diagrams
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	AgentRoles
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Agent Lifeline
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Threads of Interaction
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Messages
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Complex Messages
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Nested Protocols
	Semantics
	Notation
	Presentation Options
	Example

	Complex Nested Protocols
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Threads of Interaction and Messages Inside and Outside Nested Protocols
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	Parameterised Protocols
	Semantics
	Notation
	Presentation Options
	Example
	Mapping
	Comment

	Bound Elements
	Semantics
	Notation
	Presentation Options
	Example
	Mapping

	References

