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Abstract

The growth of complexity in the scene geometry of interactive ap-
plications makes the dynamic scene visibility determination a prob-
lem of increasing importance in computer graphics. In this work,
we present an efficient occlusion culling technique for 2D densely
occluded scenes where both the viewpoint and objects move arbi-
trarily. Our method operates on a regular grid that represents a dis-
cretization of the space in volumetric cells and uses the opaque re-
gions of the scene as occluders. We introduce several optimizations
for fast discretization of objects and traversal of grid’s cells that re-
sult in efficient updates of the data structure for multiple dynamic
objects – regardless their number of polygons – and therefore en-
courage the use of regular grids with occlusion culling algorithms.
The method also exploits temporal coherence to reduce runtime in
proportion to the number of visible dynamic objects, and realizes
occluder fusion by aggregating adjacent opaque and occluded cells
in order to maximize occlusion effectiveness. For each frame, the
algorithm computes an overestimate of potentially visible objects
in an approximate front-to-back order that greatly accelerates the
visualization of large and complex scenes. We discuss the results
of a 2D case implementation and present suggestions of an easy
extension to three-dimensional scenes.

1 Introduction

The efficient visualization of complex scenarios composed by hun-
dreds of objects and millions of polygons is one of the most chal-
lenging problems in today’s computer graphics. In general, the frac-
tion of visible geometry with respect to any viewpoint in these en-
vironments is only a small subset of the overall model. Such scenes
are calleddensely occluded [3, 8], and are commonly found in com-
plex CAD models, urban scenes and indoor architectural scenes.

The exhibition and animation of densely occluded scenes can
be greatly accelerated by algorithms that avoid sending primitives
through the rendering pipeline by quickly discarding trivially hid-
den geometry. Methods based on thisculling stage are calledvisi-
bility culling techniques, and have gained important research effort
in the last years [6, 7, 19]. However, the efficient visibility deter-
mination in dynamic scenes has been an open area of research in
computer graphics [7]. In general, visibility culling techniques in-
volves expensive preprocessing stages in order to build data struc-
tures for efficient visibility queries in runtime. These queries are
commonly accelerated by hierarchical data structures since large
parts of the scene can be early classified as hidden in high levels
of the hierarchy. Nevertheless, the updates of the data structure for
dynamic objects that change much of these hierarchy relations may
be prohibitive to be done on-the-fly.

Although considerable research effort has been devoted to the
acceleration of updates in hierarchical databases (see Section 2), in
this work we suggest to abandon the use of such structures in dy-
namic scenes. Instead, we introduce a simple and flexible regular

grid combined with several optimizations of discretization of ob-
jects and traversal procedures in order to perform efficient visibil-
ity queries and real-time updates for multiple dynamic objects. The
visibility algorithm proposed to work with this structure is based on
previous works ofocclusion culling, specially on the approaches by
Schaufleret al. [22] and Sudarsky and Gotsman [26, 25, 27]. The
originality of our algorithm lies mainly on the optimizations used
to adapt efficiently these cited works to a regular grid.

The regular grid represents a discretization of the space in volu-
metric cells (voxels). Each voxel identify volumetric features of the
scene such as opaque/occluded regions and spanning objects. For
each frame, the cells that span the view-frustum are traversed in
an approximate front-to-back order, searching for opaque cells that
can be used as occluders. According to the approach introduced
by Schaufler et al. [22], each occluder can be extended by aggre-
gating opaque and occluded cells in the neighborhood of the ini-
tial opaque cell, thus maximizing occlusion effectiveness. For each
extended occluder, ashadow volume is computed and used to de-
termine occluded cells according to the viewpoint. These occluded
cells can act as new opaque cells which further increase the size of
the next occluders, thus realizingoccluder fusion, i.e., the aggrega-
tion of sets of small and disjoint occluders to build larger and more
effective ones. During this traversal of view-frustum cells, only ob-
jects entirely contained in occluded cells are considered invisible.
Therefore, the set of objects reported for rendering is always an
overestimate of the visible objects.

The maintenance of the grid follows a principle oflazy evalua-
tion of the dynamic objects, which means that a dynamic object is
updated in the data structure only when strictly needed. We use a
technique oftemporal bounding volumes [25, 26, 27] that achieves
an output-sensitive complexity of updates in the data structure with
respect to the number of visible dynamic objects. The decrease in
the number of updates, combined with the simplicity of represent-
ing dynamic objects by regular grid’s cells, results in an efficient
occlusion culling solution for applications involving highly interac-
tive and complex scenes.

The rest of the paper is organized as follows. We first review
previous works on visibility culling techniques, emphasizing the
approaches more suitable for dynamic scenes (Section 2). Then,
we give an overview of our technique and describe the proposed
data structure, in Section 3. We detail the algorithm in Section 4
and discuss, in Section 5, the results of the timing tests based on a
2D case implementation. In the following, we suggest ideas for ex-
tending the algorithm, along with its optimizations, for 3D scenes.
Finally, in Section 7 we briefly describe the steps which should be
followed in a future work.

2 Previous Works

The word visibility comprehends a vast number of problems in
computer graphics, including hidden surface removal, shadow gen-
eration, form-factor calculation for radiosity, global lighting sim-



ulation, image-based rendering, object recognition, path planning
and guarding of art galleries. For a more extensive survey, we sug-
gest Durand’s thesis [10]. Recent surveys focusing visibility culling
algorithms, are presented Cohen-Oret al. [7] and Aila and Mietti-
nen [2]. A discussion about the use of visibility culling techniques
in games is shown by Riegler [21]. For previous surveys see the
book by Möller and Haines [19] and Zhang’s thesis [31].

Visibility culling techniques has been fundamental for the treat-
ment of densely occluded scenes. In these scenes, most objects can
be detected as trivially occluded with a runtime proportional to the
number of visible primitives, and without the computational effort
of more accurate analyses. This differs mainly from the traditional
methods of hidden surface removal [12], which try to identify the
exact fragments of the visible primitives by a process at least linear
in the input size. In general, the set of objects reported as poten-
tially visible (called PVS –potentially visible set) by a visibility
culling algorithm is aconservative set,i.e., it contains all objects at
least partially visible, but maybe some invisible. For a correct ren-
dering, only this small set is filtered by a traditional hidden surface
removal algorithm, usually the Z-buffer [5].

Visibility culling comprehends three strategies that can be used
in tandem:back-face culling [12, 16, 32],view-frustum culling [4,
12, 23] andocclusion culling [9, 11, 15, 18, 22, 30]. Such strate-
gies avoid rendering, respectively, primitives that are not facing the
viewer, primitives that are outside the view-frustum, and primitives
hidden by some portion of the scene. In comparison with back-face
and view-frustum culling approaches, occlusion culling involves a
far more challenging problem due to complex global relationships
of visual events among occluders and occludees [10, 20]. However,
the use of occlusion culling has been inevitable for the efficient vi-
sualization of densely occluded scenes.

There are relatively few occlusion culling algorithms specially
devoted to dynamic scenes when compared to the number of avail-
able literature about occlusion culling in static environments. Al-
though many visibility techniques allow efficient visibility queries
of dynamic objects (i.e., answer whether a dynamic object is being
occluded by some portion of the scene), they consider as occluders
only the static objects (i.e., cannot answer whether a dynamic ob-
ject occludes some part of the scene) [11, 22]. On the other hand,
in dynamic scenes of arbitrary motion, any object can be a potential
occluder, for instance, moving right in front of the viewpoint and
blocking entirely its field of view, or simply growing in size.

Based on previous works of visibility propagation through cells
and portals in indoor architectural scenes [3, 28], Luebke and
Georges [18] proposed an occlusion culling algorithm in which the
elements that propagate visibility between rooms (e.g. doors and
windows) can be added, moved or resized on-the-fly. However, this
method is restricted to environments that can be divided in disjoint
cells connected by portals of visibility propagation, as is the case of
indoor architectural scenes.

Wonka and Schmalstieg [30] introduced a scheme of occlusion
culling for 2.5D urban scenes without visibility precomputation or
pre-selection of occluders, thus capable of handling dynamic oc-
cluders. The scene is discretized in a 2D regular grid such that
occluders near the viewer can be quickly detected in runtime and
updated efficiently. The shadow volumes of the selected occlud-
ers (in general, fac¸ades of buildings or walls) are rendered onto a
Z-buffer with a top orthographic view of the scene in which each
pixel coincides with a grid cell. In order to classify the occluded
regions, the height of each cell is compared with the depth value of
the corresponding Z-buffer pixel. An object is stated as hidden if
the height of each cell that intersects it implies a depth value greater
than the depth value indicated by the coincident Z-buffer pixel.

For the handling of dynamic three dimensional scenes, we em-
phasize the algorithms that work in image-space precision, such as
the hierarchical Z-Buffer [13, 14] and thehierarchical occlusion

map [33].
The hierarchical Z-buffer (HZB) uses a pyramid of Z-buffers and

an octree to remove large parts of the scene with few comparisons.
The levels of the pyramid are built by an iterative process that at-
tributes the furthest Z-value of 2x2 arrays of pixels of the current
level to one pixel of the subsequent level, beginning with the base of
the pyramid that is a traditional Z-buffer. Thus, each level has half
the resolution of the preceding level and the tip of the pyramid is
a single pixel containing the image’s furthest Z-value. In runtime,
the octree is traversed in front-to-back, top-down order, and each
node is compared with the pyramid of Z-values, beginning with the
finest level where pixels still cover the projection of the bounding
box of the tested node. If a node is completely occluded, then its
sub-nodes and objects contained in its interior are removed. On the
contrary, the test is recursively repeated for the sub-nodes. Objects
associated with visible leaf nodes are rendered and used to update
the pyramid.

HZB has the important advantage of considering every visible
primitive as a potential occluder, thus achieving a complete occlu-
sion fusion. On the other hand, the main drawback to use HZB as
a more powerful alternative to traditional hardware Z-buffer is the
necessity of reading back Z-buffer data. Unfortunately, most accel-
erators are too slow on Z-buffer queries, or simply cannot perform
this operation.

An alternative approach to HZB that does not depend on special
graphics hardware, is the technique of hierarchical occlusion maps
(HOM). It works like the HZB, but tends to be more conservative
and requires the precomputation of an occluder database. The vis-
ibility test is decomposed in an overlay test and a depth test. The
hierarchical occlusion map is used in the first test. It consists in
a pyramid of maps similar to a HZB pyramid that contains opac-
ity values instead of depth values. For each frame, a HOM is built
for a large group of occluders extracted from the occluder database.
The scene geometry, previously organized as a bounding box hier-
archy, is tested for coverage against that pyramid. The depth test is
then performed only for the geometry that covers (both entirely and
partially) discretized occluders in the HOM. An object is stated as
occluded if its projected bounding box covers only opaque pixels in
the HOM, and is behind the occluders according to the depth test.

For dynamic scenes, the hierarchical data structures used by the
HZB and HOM are substituted by oriented bounding boxes. Only
the pyramid hierarchy is maintained. In the HOM technique, the
precomputation of an occluder database is abandoned. Instead, oc-
cluders are chosen in runtime according to the size and distance
from the viewer. The cost to select a good set of occluders on-the-
fly is reduced by using frame coherence. However, even consid-
ering that these methods, when implemented in hardware, work in
dynamic scenes much more efficiently than a traditional Z-buffer
approach, the complexity of visibility determination is still at least
linear in the number of input objects. All objects are tested against
the pyramid, even those that do not contribute any pixel to the fi-
nal image. This complexity can be prohibitive in densely dynamic
scenes of millions of polygons.

The main problem in handling dynamic scenes is the difficulty to
update efficiently the hierarchical data structures that most visibility
algorithms use, usually octrees or kD-trees. In addition, if the data
structure is updated for each frame and for all dynamic objects, the
output-sensitivity is lost.

Many works have been made about the adaptation of octrees
for dynamic scenes. Based on the works of Ahuja, Nash and
Weng, [1, 29], Smithet al. [24] present an algorithm for efficient
adaptation of octrees for objects moved by rigid transformations
that can be decomposed in translations and rotations of voxels.
Libes [17] presents a technique to represent octrees models that ex-
pand or shrink arbitrarily. Sudarsky and Gotsman [26, 25, 27] use
temporal coherence to update the octree only to the small voxel that
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still encloses both the previous and current positions of the mod-
ified object, calledleast common ancestor voxel. Eventually, the
least common ancestor can be the root level of the hierarchy, but
for objects that move smoothly it is expected that such case does
not happen.

In order to reduce the number of updates of the data structure, it
is possible to designate for each dynamic object a region of space
that completely encloses the object during an entire sequence of
animation. These bounding volumes can be inserted in the spatial
data structure such that the corresponding dynamic objects can be
ignored until the visibility culling algorithm classifies the bounding
volumes as potentially visible. Such regions can be determined,
for instance, for sweeping volumes described by revolving doors,
railroads, moving parts of fixed machines, and any other trajectory
for which the motion is constrained.

The performance in these cases depends on the “tightness” of
the bounding volumes. In one extreme, nothing is known about the
future positions of the dynamic objects, and the bounding volumes
are equal to the bounding volume of the entire scene. Since these
volumes are always visible, all dynamic objects are updated for all
frames, and the output-sensitivity is lost. In the other extreme case,
the bounding volumes are so tight that they are coincident with the
objects’ bounding boxes. In fact, these objects are static; there is no
space to move, and the visibility culling is as output-sensitive as a
traditional algorithm for static scenes.

In scenes containing dynamic objects of arbitrary motion, it is
not always possible to find bounding volumes for complete periods
of the animation. In fact, these periods can be unlimited, and if they
were determined, they would probably have the size of the scene.

Instead of designating a bounding volume for a full sequence of
animation, Sudarsky and Gotsman [26, 25, 27] suggest to calculate
bounding volumes for short periods of time, called temporal bound-
ing volumes (TBVs). For instance, if the maximum velocity of each
dynamic object is known, then given the position of an object in a
certain moment, it is possible to compute a bounding sphere that
guarantee to contain this object for any future time. TBVs do not
need always to be spheres; they may assume other shapes provided
that some dynamic characteristics of the objects are known, like
changes in velocity and direction of motion. It is assumed that each
dynamic object can have a TBV assigned to it from a given start-
ing frame until a finish future frame. This future frame constitutes
the “TBV’s expiration date”; the time interval until this date is the
validity period of the bounding volume. A hidden dynamic object
only needs to be considered if its bounding volume becomes visible
or the expiration date is reached. Output-sensitivity with respect to
the number of dynamic objects is obtained because they are consid-
ered to update the data structure only when they really happen to
be potentially visible. In most frames the algorithm do not waste
time updating trivially hidden dynamic objects, not even testing if
such objects are hidden, since they are simply ignored during the
traversal of the data structure. ThedPVS API [2], a commercial
visibility culling library, handles dynamic objects by using TBVs.
It organizes the scene geometry into an axis-aligned BSP tree that
allows faster updates than octrees. The visibility culling algorithm
is based on several optimizations of the HOM technique, which re-
sults in a very efficient culling solution for a broad class of general
complex scenes.

3 Definitions and Overview

The scene database we use is a regular grid that represents a dis-
cretization of the scene in volumetric cells. Each cell maintains a
set of values that identify volumetric characteristics of its discrete
region of the scene, such as opacity, visibility and spanned objects.
For optimization purposes, we have organized these values into four

Figure 1: Compound visualization of the regular grid for a 2D scene
with 300 dynamic objects (32 potentially visible) with a resolution
of 256x256 cells. Potentially visible objects are shown in red; hid-
den cells in light blue and cells containing TBVs of hidden ob-
jects are shown in black. View-frustum boundaries are visualized
as solid blue lines. The line-of-sight is shown as a dashed blue line.

matrices, visualized in a compound mode in Figure 1 and detailed
in the following:

• Occluders matrix (O): Classifies each cell1 asopaque or non-
opaque. A cell is opaque if it is fully inside the solid interior
of a potentially visible object. Opaque cells are shown in light
red in Figure 1.

• Occlusion matrix (H): Classifies each cell asoccluded or non-
occluded. A cell is occluded if it is entirely hidden by one or
more opaque cells with respect to the viewer. Figure 1 shows
occluded cells in light blue.

• Identifiers matrix (I): Associates for each cell a list of identi-
fiers (IDs) of objects that span its spatial region in the scene.
Figure 1 shows non-emptyI-cells in light and dark red.

• TBVs matrix (T ): Associate for each cell a list of IDs of TBVs
that span its spatial region in the scene. IDs of TBVs may have
the same value of the IDs of the objects the TBVs belong to.
Figure 1 shows non-emptyT -cells in black.

We assume that each object has a unique ID, a maximum ve-
locity and a flag indicating whether a TBV is associated with the
object. When this flag is true, the object should also provide a TBV
expiration date, a TBV position and a TBV diameter (for objects
of arbitrary motion, TBVs are always of circular shape in 2D and
spherical shape in 3D). Finally, the algorithm must keep the PVS
result of the last frame so we can gather information about visibil-
ity coherence.

The dynamic scene occlusion culling algorithm is defined by the
following procedures which are executed for each frame:

• Scene discretization: Objects reported in the PVS of the last
frame are discretized inO andI. The remaining objects are
used to updateT according to their TBVs.

1We use the wordcell to designate both the matrix element and the area
or volume of the scene represented by this element.
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• View-frustum traversal: Cells that span the view-frustum
are traversed in an approximated front-to-back order from the
viewer. Objects that span each cell, as stated byI, and at the
same time declared non-occluded inH, are added to the PVS
of the current frame. Opaque cells are handled according to
the procedures ofoccluder extension andocclusion computa-
tion as follows.

• Occluder extension: Each opaque non-occluded cell found
during the view-frustum traversal is extended to adjacent
opaque and occluded cells, as stated byO andH, respectively,
in order to maximize the angle subtended by the occluder and
viewpoint. This set of aggregated cells defines the so-called
extended occluder.

• Occlusion computation: For each extended occluder, a
shadow volume is computed and discretized inH, such that
cells hidden by the occluder are classified as new occluded
cells.

4 Algorithm

4.1 Scene discretization

As a first procedure for the current frame, all objects reported as
potentially visible by the PVS of the last frame are discretized in
O and updated inI. The remaining invisible objects are updated
in T . Note that in the very first frame, all objects are handled as
if they were potentially visible. In addition, no object has a TBV
assigned, since at this point the algorithm cannot say which objects
are hidden.

In 2D, the discretization is done by rasterizing the top-view or-
thographic projection of each object, then associating each pixel of
the resulting frame buffer to a grid cell. Since the only purpose of
this rasterization stage is to identify opacity and coverage of pixels
associated to cells, the lighting, texturing, and Z-buffering can be
disabled.

The rasterization for scene discretization should follow a strategy
that generates conservative results,i.e., in whichO underestimates
the solid volumes of the scene andI overestimates the volumes
spanned by the objects. The ideal rasterization,i.e., the one that
produces the less conservative discretization possible, is obtained
with area anti-aliasing (see Figure 2). Area anti-aliasing defines
the opacity of pixels according to the exact percentage of coverage
of the geometry projection incident on these pixels. Thus, we can
associate opaque cells only to pixels entirely covered by the ob-
ject’s projection, which are the pixels with maximum opacity val-
ues. For instance, if an object is rendered in white over a black
background, only the cells associated with pure white pixels are re-
garded as opaque, since they are totally covered by the projection
of the object’s geometry. Also, all pixels with different colors than
the background color (e.g. grey shades) correspond to cells at least
partially spanned by the object, and the object’s ID should be added
to the list of each corresponding cell inI.

Unfortunately, area anti-aliasing is usually too expensive in soft-
ware and unavailable in most popular graphics hardware. An alter-
native, more efficient solution, yet potentially more conservative,
consists in rasterizing the object with a thick outline that overesti-
mates the cells at least partially covered by the geometry’s projec-
tion, and associate these outline pixels to non-opaque cells spanned
by the object (see Figure 3). The correspondence between pixels
and cells ofO and I is the same as before. The outline width
needed for a conservative rasterization is computed according to the
method used by Wonkaet al. [30]. Assuming a pixel-centered sam-
pling strategy, each outline edge is grown and shrunk along its nor-
mal by an epsilon of half the largest cell diagonal,i.e. , ε = d/

√
2,

Figure 2: Ideal discretization using area anti-aliasing. Left: the
rasterization (exact outline in solid lines). Center: opaque cells.
Right: cells spanned by the object.

Figure 3: Conservative discretization using thick outline. Left: ras-
terization and sampling correction for conservative discretization
(in dashed lines). Center: opaque cells. Right: cells spanned by the
object.

whered is the cell width. The rasterizations of the grown and
shrunk objects update, respectively,I andO. This procedure can
be even simplified in OpenGL by rasterizing the object’s outline
just as a loop of lines of width 2 or 3 pixels. The correct value for a
conservative rasterization will depend on how the OpenGL imple-
mentation handles thick lines without anti-aliasing.

The handling of temporal bounding volumes is based on the
procedure described by their authors, Sudarsky and Gotsman [27].
This stage handles only invisible objects, according to the following
criteria: (1) Objects without TBVs and not contained in the current
PVS were potentially visible objects in the preceding frame that are
now invisible. In this case, new TBVs are designated to them and
T is updated accordingly. (2) Objects with TBVs and not contained
in the current PVS were invisible objects in the last frame that con-
tinue to be invisible in the current frame; nothing is done unless
the TBV expiration date is reached. When this occurs, the TBV
is removed fromT and reinserted by a TBV with a new validity
period.

The handling of objects that had their TBVs revealed is per-
formed during the traversal of view-frustum cells, described in the
next subsection.

TBVs validity periods are chosen according to theadaptative
strategy proposed by Sudarskyet al. If an object is hidden but its
TBV has been expired, we conclude that the TBV validity period
was too short, since the object could stay more time without being
updated. Thus, a longer expiration date is chosen for the next TBV.
On the other hand, if the TBV has been revealed before the expira-
tion date, then the TBV was too big and loose, and a smaller validity
period is assigned to the new one. Therefore, fast moving or usually
visible objects are expected to have TBVs of short validity periods
over the time. As well, objects with a less dynamic behavior and
invisible most of the time, tend to have TBVs of longer validity pe-
riods and are updated less frequently. On the other hand, we have
noted that the efficiency of updates inT decreases approximately
in the reason that the TBVs grow in size, because the number of
cells spanned by the TBV is greater and an increasingly number
of cells must be accessed at the time the TBV is inserted. If the
TBVs are big enough such that the cost to updateT is greater than
the cost to update the original objects inI, the frames where the
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Figure 4: Optimized discretization of TBVs. Left: traditional dis-
cretization (overlapping TBVs are not distinguishable). Right: op-
timized discretization. The number of non-empty cells ofT is con-
siderably smaller.

Figure 5: Left: with the traditional discretization the TBV is cor-
rectly revealed during the traversal of view-frustum cells. Right:
TBV erroneously reported as invisible because the discretization of
the circumference arc contained in the view-frustum is totally hid-
den by the red object.

TBVs are updated may lose performance and result in uneven ani-
mation sequences. In order to avoid this behavior, we have limited
the maximum diameter of TBVs to a (empirically chosen) thresh-
old proportional to the number of cells spanned by the object and
its maximum velocity. Thus, objects of fast motion and many span-
ning cells tolerate the update ofT for bigger TBVs, while objects of
slow motion and few spanning cells limit the size of their TBVs by
smaller diameters. This scheme has been worked as a satisfactory
solution to the trade-off between the number and time of updates of
both objects and TBVs.

We suggest a more efficient way to update TBVs inT for scenes
where the viewer moves smoothly through the space. In 2D, in-
stead of discretizing a TBV as a filled circle, we can discretize only
the empty circle that overestimates the TBV, thus greatly reducing
the number of accesses of cells of the data structure (see Figure 4).
This technique can be implemented efficiently with the well-known
Bresenham’s circle rasterization algorithm [12]. We next show that
the algorithm using this new optimized discretization is correct,i.e.,
all TBVs are correctly detected regardless the reduction in the num-
ber of discretized cells. First, we consider that the viewer always
describes a smooth 8-connected path along the grid’s cells. If the
viewer describes a 4-connected path, he cannot enter into a TBV
without detecting it, since the Bresenham’s rasterization produces
an 8-connected circle. However, if the viewer enters the circle by
a not 4-connected path, the TBV can be erroneously ignored. To
solve this problem we modify the Bresenham’s algorithm to raster-
ize a 4-connected circle.2 Therefore, for a viewpoint outside the
TBVs’ circles, all TBVs are correctly detected. For a viewpoint

2In practice, these non-detections of TBVs rarely produce non-
conservative results. Although trivial, the suggested solution was not imple-
mented here in order to maintain the number of TBV cells at a minimum.

inside a TBV circle, if the discretization of the circumference arc
contained in the view-frustum is fully hidden by an occluder,i.e.,
each TBV’s cell coincide with occluded cells, the TBV is wrongly
ignored (see Figure 5). A simple solution for these cases is to ensure
that the validity period of each TBV is chosen such that the implied
radius of the bounding circle is not greater than the distance of the
cell containing the center of the circle to the cell containing the
viewpoint. Thus, TBVs never enclose the viewer, and since we al-
ready showed that the viewer could not enter a TBV without being
detected, the correctness of the algorithm holds.

4.2 View-Frustum Traversal

The visibility determination is actually done in the view-frustum
traversal. It comprehends the traversal of grid’s cells that span the
view-frustum in order to identify occluders and potentially visible
objects. Both are found as non-occluded cells. The former corre-
sponds to opaque cells, and the latter to cells containing non-empty
ID lists of I or T .

The traversal of view-frustum cells is performed in a front-to-
back order from the viewer. Therefore, the number of occluders
found is equal to the number of potentially visible occluders, and
the algorithm does not waste time handling hidden occluders. In ad-
dition, the PVS can be determined incrementally in only one traver-
sal.

In order to compute efficiently the distance from the viewer to
the cells, and hence perform a front-to-back traversal, we have used
the chess metric.3 While avoiding expensive square root operations
of the Euclidian metric, the chess metric induces a fast traversal
in axis-aligned directions only. Since the line-of-sight is always
within the view-frustum, it is possible to discretize it incremen-
tally from the viewer using the Bresenham’s line algorithm [12]
and, from each cell that contains the discretized line-of-sight (called
seed-cell), traverse adjacent cells that have the same chess distance
from the viewer. Starting from any seed-cell, the traversal in the
2D case is always performed in two axis-aligned directions easily
determined by the signal of the coordinates of the seed-cell relative
to the viewer. For instance, let(x, y) be the position of a seed-cell
given in coordinates relative to the cell containing the viewer, the
traversal directions can be: (1)+y and−y if |x| > |y|; (2) +x and
−x if |y| > |x|; (3)−x and−y if (|x| = |y|)∧ (x > 0)∧ (y > 0);
(4) +x and +y if (|x| = |y|) ∧ (x < 0) ∧ (y < 0); (5) +x
and−y if (|x| = |y|) ∧ (x < 0) ∧ (y > 0); (6) −x and+y if
(|x| = |y|) ∧ (x > 0) ∧ (y < 0). Moreover, these directions are
changed only when a cell with equal absolute value coordinates is
reached. If this happens, the direction proceeds in a perpendicu-
lar direction to the original one, and the traversal ends when a cell
completely outside the view-frustum is reached. Figure 6 shows
this traversal procedure from the seed-cells.

During the traversal, if a non-occluded cell is reached, all ob-
jects contained in its ID list ofI are added to the PVS of the cur-
rent frame. Opaque non-occluded cells are considered as occlud-
ers. Such occluders should determine the hidden cells with respect
to the viewer (this step comprehends the processes of occluder ex-
tension and occlusion computation, detailed in the next sections).
Non-occluded cells that contains TBVs according toT , indicate
that the objects which own these TBVs may be visible. Therefore,
their TBVs are removed ofT and dissociated of the assigned ob-
jects. In addition, these objects are immediately discretized inI
andO, so the algorithm can further determine, during the rest of
the traversal, whether these objects are in fact potentially visible.

When the traversal finishes, the PVS was determined completely.
For the start of the next frame, each cell ofO andH is classified as
non-opaque and non-occluded, respectively.

3In the chess metric, the distance between two points(x1, y1) and
(x2, y2) is given bymax(|x2 − x1|, |y2 − y1|).
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seed-cells

view-frustum
spanning cells

|x|=|y|

viewpoint

Figure 6: View-frustum traversal. Seed-cells are shown in dark
gray. The arrows indicate the traversal directions from each seed-
cell according to the chess metric. Note that the traversal directions
changes only when|x| = |y| for a cell with coordinates(x, y)
relative to the cell containing the viewer.

The view-frustum traversal can be finished early if, during the
traversal in the two directions determined by a seed-cell, only oc-
cluded cells had been detected. This event means that the remaining
cells of the scene are hidden and the PVS surely will not be changed
at least until the next frame.

4.3 Occluder Extension

The process of occluder extension described here is an adaptation
of the blocker extension technique used by Schaufleret al. [22]
originally for octrees. The idea consists in aggregating opaque and
occluded cells to the initial opaque cell in order to maximize the
angle between the viewer and occluder, thus increasing occlusion
effectiveness.

Each opaque cell found during the view-frustum traversal can
be extended by aggregating adjacent opaque and occluded cells to
the initial opaque cell. Occluded cells can be handled as opaque
cells according to the argument that the viewer is incapable of
distinguishing whether a hidden cell is opaque or not. However,
when considering occluded cells as opaque cells it is possible to ex-
tend occluders into hidden space and increase their occlusion size,
thus realizing theoccluder fusion. Starting from this set of aggre-
gated cells, calledextended occluder, a shadow volume is com-
puted in order to determine the occluded cells with respect to the
viewer, which are the cells fully inside the shadow volume. In 2D,
the shadow volume is a semi-infinite convex polygon whose semi-
infinite edges are collinear to the support lines of the viewer and
the occluder, and the finite edges are the edges of the occluder that
are visible to the viewer. The occlusion caused by only one shadow
volume from a extended occluder is, in general, more effective than
the union of the occlusion caused by the shadow volumes individu-
ally built for each cell that form this same extended occluder. This
happens because there are regions in the scene that are not being en-
tirely hidden by only one cell, but by the combination of occlusion
caused by two or more cells, as shown in Figure 7.

Extended occluders should have a shape from which the result-
ing shadow volume can classify interior cells as fast as possible. We
decided to use convex shadow volumes only, and so the edges of the
extended occluder which are visible to the viewer must be convex
too. Therefore, occluders are extended by searching for opaque
cells in axis-aligned directions only. This heuristic is analogous to
the method used by Schaufleret al. [22] where the aggregation of
cells subtends a L-shaped occluder. Figure 8 shows an example of

occluders

viewpoint

occluded cellsoccluded cells

extended
occluder

viewpoint

shadow
volume

shadow
volumes

Figure 7: Occlusion effectiveness. Left: with occluder extension.
Right: without occluder extension. The additional non-occluded
cells are being blocked by the aggregation of the first two left oc-
cluder cells.

extended
occluder

viewpoint

opaque
cells

initial
cell

(1st) left
extension

(2nd) bottom
extension

(3rd) top extension in
case there was not

left extension

(4th) right
extension

shadow
volume

Figure 8: Left: occluder extended by the fusion of opaque cells in
axis-aligned directions. The initial extension cell is shown in black.
Right: extension heuristic used.

occluder extension composed of the following steps: (1st) left ex-
tension from the initial cell; (2nd) bottom extension from the left-
most cell determined by the first step; (3rd) top extension from the
initial cell; (4th) right extension from the topmost cell determined
by the third step. Since our occluder should be convex, the third
step is only executed if the first step did not extend any cell. In the
more general case, the directions of each step will depend on the
relative position of the cell containing the viewer to the initial cell
of the occluder extension, as shown in Figure 9.

The occlusion computation performed just after the occluder ex-
tension (see next Section) is an expensive process since it involves
updating a large number of cells inH. Thus, it is desirable to ac-
complish this step for few occluders, possibly with big size and
near the viewer, which encloses most of the scene geometry. We
have used a scheme to determine good occluders based on the fol-
lowing formula of solid angle estimation proposed by Coorg and
Teller [9]: −a(�n · �v)/‖�d‖2, wherea is the occluder area (squared
number of occluder cells),�n the occluder normal,�v the direction
of view and �d the vector from the viewer to the center of the oc-
cluder. Since the occluder is always facing the viewer, we take
(�n ·�v) = 1. Only extended occluders that exceed a minimum value
of solid angle (we have empirically tuned this value) are considered
for occlusion computation.

4.4 Occlusion Computation

Occlusion computation is the process of determining which cells
are being hidden by a given occluder with respect to the viewpoint.

Subsequent to each occluder extension, we perform the occlu-
sion computation by building a shadow volume of the occluder and
testing the grid’s cells against it. In the 2D case, the shadow volume
is a polygon; more precisely, a convex polygon due to our occluder
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(x, y)

(A)
Ox < x
Oy > y

(C)
Ox > x
Oy > y

(B)
Ox = x
Oy > y

(D)
Ox < x
Oy = y

(F)
Ox < x
Oy < y

(H)
Ox > x
Oy < y

(G)
Ox = x
Oy < y

(A): left, bottom, top, right

(B): left, right

(C): top, left, right, bottom

(D): top, bottom

(E): top, bottom

(F): bottom, right, left, top

(G): left, right

(H): right, top, bottom, left

(E)
Ox > x
Oy = y

Extension directions:

Figure 9: Partition of extension directions according to the position
of the initial cell(x, y) relative to the cell(Ox, Oy) containing the
viewer. The directions shown in Figure 8 correspond to those of
partition (A).

extended
occluder

viewcell

occluded cells

conservative
shadow
volume

from-region
shadow
volumel

Figure 10: Efficient determination of a conservative shadow poly-
gon. The cells classified as occluded are entirely contained in the
from-region shadow polygon (sampling is taken at the center of the
cell).

extension heuristic. Hence, we can discretize shadow polygons in
the data structure by just adapting a convex polygon rasterization
algorithm to change tooccluded the cells coincident with the raster-
ized polygon. However, in order to maintain conservativeness, we
must ensure that only fully hidden cells are classified as occluded.

The exact determination of the cells inside a shadow volume can
be an expensive task even if spatial coherence is used to test few
cells per sweep-line of rasterization. A more efficient approach, but
that underestimates the number of occluded cells, consists in using
the strategy of polygon shrinking along its normals as proposed by
Wonka et al. [30]. We have adapted this idea to an even more
simple algorithm that abstracts the use of normal vectors but gener-
ates more conservative results. We consider that the center of each
cell is given in integer coordinates, and use them as vertices of the
shadow edges coincident with the occluder edges. The slope of the
semi-infinite edges is then calculated considering that the viewer
is centered in its cell. Finally, we discretize the shadow polygon
with an ordinary convex polygon rasterization algorithm, doing the
sampling at the center of the cells. The effect we achieve is the
same of shrinking the edges of afrom-region shadow polygon (i.e.,
a shadow polygon valid for each possible point-of-view inside the
cell containing the viewer) by(|nx| + |ny |)/‖�n‖ · d/2, whered
is the width of a cell and�n is the normal vector of the edge taken.
This term describe the greatest normal distance of a line from the
center of a cell to the cell’s boundary. A direct consequence of this
fact is that the shadow polygon becomes valid for any viewpoint
contained in the cell with the viewer – theviewcell – as illustrated
in Figure 10.

4.5 Adaptation for Static Scenes

So far, we have discussed handling scenes where all objects, with-
out exception, move arbitrarily. However, the applications we often
found in practice handle most objects as static entities. For instance,
in a urban environment, only cars are dynamic objects; buildings,
walls and all remaining objects are static.

Although static objects could be merely considered as dynamic
objects of null motion, it is possible to handle these objects more
efficiently taking into account the following observations: (1) in-
visible static objects do not need TBVs at all; the TBVs are their
geometries themselves. (2) visible static objects do not need to be
discretized in the data structure for each frame, since we already
know they are always at the same place. To handle these objects
properly, we have introduced a new occluders matrix, thestatic oc-
cluders matrixOs that contains opaque cells of static objects only.
Each static object is discretized inOs and I as a preprocessing
stage. In runtime, the contents ofOs are transferred toO before
starting the visibility determination for the current frame (this is
required becauseO is cleared at the end of the view-frustum traver-
sal). Finally, we do not designate TBVs to static objects found in
I.

5 Implementation and Results

The 2D version of the algorithm has been implemented in OpenGL
and tested on a PC with a 966Mhz Pentium III processor and graph-
ics accelerator using a GeForce2 GTS chipset. We have used filled
circles to represent the dynamic objects. Such objects were ren-
dered as cylinders, that is how they would be seen by aflatland
spectator (the height of the cylinders is immaterial), each cylinder
composed by 1,040 triangles. The size, speed and position of the
objects were determined at random. More specifically, the diameter
of the circles were chosen within the range of 6 to 12 cells for a data
structure of resolution 256x256, and the speed was chosen between
0.01 to 1.96 cells per frame.

On the tested scenes, the viewpoint was always located in the
“corner” of the grid, looking along the greatest diagonal of the grid.
For this configuration, the view-frustum traversal comprises a large
number of spanning cells and the shadow polygons must set a great
number of cells ofH. As a result, the visibility determination is
somewhat slower than it would be for general viewpoints, and acts
as a unfavorable case of the algorithm in practice.

On the first measurement we tested the behavior of the algorithm
during the addition of dynamic and static objects for a grid resolu-
tion of 256x256 cells, as shown in Figure 11. The result is com-
pared with traditional hardware Z-buffering (ZB) and three varia-
tions of input data for our regular grid visibility culling approach
(RGVC), given as follows: (1) dynamic objects only; (2) mixed
approach with a fixed number of 500 dynamic objects and an in-
creasing number of static objects; (3) static objects only.

The results in Figure 11 show that the Z-buffering technique has
a linear behavior, as we already expected. In contrast, the RGVC
technique reveals a nearly constant increasing of processing time,
proportional to the number of visible objects even handling dy-
namic objects only. The output-sensitivity is due to the use of the
temporal bounding volumes. The RGVC for static scenes is faster
because it does not need to handle cases of TBV expiration and dis-
cretization of objects for each frame. Curiously, the algorithm is
slow for few objects, let they be dynamic or static. For instance,
for 100 objects (104,000 triangles), the Z-buffering technique alone
is still more efficient. This occurs because the scene is not densely
occluded, and the algorithm needs to traverse more view-frustum
cells, build more shadow polygons (see Figure 12) and take more
potentially visible objects into account (see Figure 13). We note
that this behavior is expected for an algorithm with runtime pro-
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Figure 11: Time measurement for scenes with different number
of dynamic and static objects. Above: comparison between three
variations of regular grid visibility culling (RGVC) and Z-buffering
(ZB). Below: the same graphic, but without comparison with ZB.

portional to the number of visible objects. On the other hand, the
algorithm may be eventually better than Z-buffering if the cost to
render these few objects is higher than the runtime overhead of the
occlusion culling algorithm.

We have also examined the behavior of the algorithm using data
structures of different resolutions. In practice, the choice of the grid
resolution depends on the volumetric nature of the scene. In gen-
eral, the bigger the solid volumes of the objects in the scene, the
smaller the resolution needed to obtain satisfactory results. This
choice also respects a trade-off between accuracy and efficiency.
The increase of the resolution implies accurate results, but aug-
ments the memory usage and the algorithm’s time consumption as
well. Figure 14 shows the timing results of executing the algo-
rithm for a scene of 500 dynamic objects and 1,000 static objects
for an increasing number of grid resolutions. The best performance
is obtained with a resolution of2562 cells. For resolutions below
2002 cells the algorithm tends to decrease efficiency. This occurs
because the objects start to become proportionally too small to con-
tain several cells in their interiors,i.e., few cells are being classified
as opaque and most objects are considered as potentially visible.
For instance, in the extreme case of using a resolution of12 cell, all
scene objects would be reported as potentially visible. In order to
consolidate this behavior, we also tested the “tightness” of aprox-
imation to the visible set of the conservative solution reported by
the algorithm in the handling of a same scene for different resolu-
tions. As shown in Figure 15, the PVS reaches a nearly constant
approximation average of 99% of the exact visible set4 for resolu-
tions above2002 cells. For greater resolutions, the gain of accuracy

4An exact visible set is one that contains all objects at least partially
visible to the viewer, and only these objects. The worst solution of a conser-
vative algorithm (0% of the exact visible set) is one that reports each object
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Figure 12: Average number of shadow polygons.
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Figure 13: Average number of potentially visible objects.

is negligible. This result also shows that the algorithm is effective
despite the optimizations that underestimate the number of opaque
and occluded cells.

6 Extension for 3D Case

For the handling of a 3D scene, the data structuresO, H, I, T and
Os are three-dimensional matrices, and the visibility determination
can be performed according to the following changes of the 2D
algorithm:

• Scene discretization: The discretization of objects inO and
I can done by rasterizing the orthographic projection of the
objects on the three coordinate planes,XY , XZ and Y Z,
such that a given(x, y, z) cell of O is considered opaque iff
the corresponding pixels(x, y) in XY , (x, z) in XZ and
(y, z) in Y Z are mutually identified as opaque. Unfortu-
nately, this discretization scheme works for convex objects
only. Concave objects must be decomposed in convex com-
ponents to be discretized separately. For a conservative raster-
ization, the strategy of using thick outlines or edges shrinking
can be employed in much the same way as in the 2D case.

For the discretization of TBVs, considering that in 2D we
have used empty circles instead filled circles, in 3D we can
use spheres instead of balls to reduce the number of changed
cells in T . The discretization of a sphere can be done with
the Bresenham’s algorithm for the rasterization of circles as
cross-sections of the sphere. For instance, in order to raster-
ize a sphere with radius ofr cells, we discretize2r circles of

as potentially visible, although none is really visible.
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Figure 14: Average performance of a scene for different grid reso-
lutions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640

grid resolution (cells squared)

a
p
p
ro

x
im

a
tio

n
to

th
e

e
x
a
c
t
v
is

ib
le

s
e
t

Figure 15: Tightness of approximation of the PVS to the exact re-
sult, for different grid resolutions.

diameterd =
√
−x2 + r2, wherex is the cross-section of the

sphere andx ∈ [−r, r].

• View-frustum traversal: The view-frustum traversal is per-
formed by following the light-of-sight discretized in seed-
cells by a Bresenham’s algorithm for 3D lines. Similar to the
2D case, the traversal is conducted in layers of cells that have
the same chess distance to the viewpoint as the seed-cell. This
includes more traversal directions than the two directions used
for the 2D case.

• Occluder extension: When an opaque cell is reached, the
occluder extension is used exactly as in the 2D case, with the
only difference of using more extension directions. A simple
heuristic is proposed by Schaufleret al. [22].

• Occlusion computation: Since the shadow volumes created
are always convex, we can use an occlusion computation
scheme similar to that used to discretize objects in the 3D
grid. The shadow volume is orthographically projected onto
the three coordinate planes such that the cells ofH are classi-
fied as occluded only if their projections in each of the planes
coincide with pixels of the shadow volume.

Since these extensions were not implemented yet, we need to con-
duct further research on this topic in order to verify the effectiveness
of the proposed suggestions.

7 Conclusion and Future Work

We have introduced an occlusion culling algorithm for densely oc-
cluded dynamic scenes based on a regular volumetric grid that rep-
resents a discretization of the space and uses opaque regions of the
scene as occluders. The benefit of this regular database includes
efficient updates of multiple dynamic objects, but also visibility
queries at interactive rates due to the optimizations in the stages
of discretization of objects and traversal of view-frustum cells.

The proposed algorithm is developed only for scenes that con-
tains closed objects (polyhedra) and it is not appropriate for “polyg-
onal soup” scenes such as forests and particles’ compositions. Its
runtime is proportional to the number of visible objects – both dy-
namic and static – and does not depend on the number of polygons
that compose them. Hence, it can be applied in scenes of finely-
tessellated geometry and even in non-polygonal scenes.

We have made an implementation of the algorithm for the 2D
case and tested it with a mid-range equipment. The timing tests
have shown real-time frame rates for most scenes tested (average of
100 fps). For future work, we plan to extend the algorithm to 3D
scenes.
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