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Abstract – Autonomous vehicles are becoming a reality in ground transportation. Computational advancement has enabled powerful methods
to sense, map, locate, and process large amounts of data required to drive on urban streets safely. The fusion of multiple sensors allows for
building accurate world models to improve autonomous vehicles’ navigation and behavior. Among the current techniques, the fusion of LIDAR,
RADAR, and Camera data have shown significant improvement in perception tasks. Current methods use parallel networks to explore each
sensor separately. Despite its significant accuracy, its response time and high demand for computational resources are still limitations for a
real-world self-driving application. Fusing these sensors using a single network is still an open question and a promising candidate to avoid
these problems. The paper presents a Ph.D. project under development. It presents a preliminary approach for early sensor fusion and its
performance with one sensor to detect 3D objects.
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1. Introduction

Autonomous vehicles have been the target of great inter-
est in universities, research centers, and industry. With
the advance of computer technology and computational
techniques, autonomous cars’ implementation became
increasingly viable. However, implementing autonomous
vehicles on urban streets requires a thorough perception
of the environment, including detecting objects and their
movements. These tasks require exteroceptive sensors to
measure the car’s surroundings. Sensors in this category
include Cameras, Radio Detection and Ranging sensors
(RADAR), and Light Detection and Ranging sensors (LI-
DAR).

Currently, LIDARs are widely used to detect ob-
jects around the vehicle. LIDAR data can be used to pre-
cisely estimate an object’s geometry [11]. However, this
type of sensor presents significant limitations in estimat-
ing motion. In contrast, RADARs allow robust motion
estimation, providing accurate object velocity and direc-
tion measurements. Additionally, RADARs support re-
liable detection despite adverse weather conditions [12].
LIDARs and RADARs have significant limitations con-
cerning recognizing objects despite their reliable perfor-
mance in the situations mentioned. Object recognition
using Cameras is an improving research area [1]. The
state-of-art object recognition approaches using cameras
deliver accurate real-time recognition (under 0.04 sec-
onds) of several objects simultaneously observed in an
image [2].

In general, the environment perception has been per-

formed using a combination of two sensors: LIDAR-
Camera, LIDAR-RADAR, or RADAR-Camera. Meth-
ods based on LIDAR-Camera have shown convincing re-
sults concerning visual detection, distance, and geome-
try estimation of objects [3]. However, the methods are
not adequate to estimate objects’ velocities [13]. Ve-
locity estimation is better tackled by LIDAR-RADAR
fusion methods [9]. However, the absence of cam-
eras in LIDAR-RADAR approaches precludes objects’
visual identification, impacting autonomous decision-
making. Finally, the RADAR-Camera detection shows
gains in performance for detecting objects in low light
and rainy/cloudy weather [4]. Although RADARs are re-
liable all-weather sensors, they can not provide a dense
environment sampling as LIDARs. Consequently, the
combination RADAR-Camera does not support a high-
quality geometry estimation of the detected objects.

At the end of 2020, the first LIDAR-RADAR-
Camera fusion Deep Learning-based for 3D object detec-
tion in a real-world scene was proposed. Based on Frus-
tum PointNet (F-PointNet) [8], the method uses the Fast
R-CNN object detector to estimate a Region of Interest
(RoI) of the camera view. This output is combined with
the LIDAR measurements to estimate and classify the 3D
object model. Simultaneously, the RADAR sensor pro-
vides the detections’ velocity estimation with a different
neural network. As a result, the model achieved high ac-
curacy and small velocity error compared to the current
methods that used only a two sensors fusion [10].

The mentioned approaches and main 3D object de-
tection models use a Late Fusion of the sensors. Based
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on parallel networks, each sensor passes through a differ-
ent neural network, and in the end or in the middle, the
results are combined. This method provides a precise re-
sult. However, it requires a high demand for computing
resources, including footprint and energy consumption.
On the other hand, the Early Fusion fuses the sensors’ in-
formation before the network, implementing a single ar-
chitecture for the prediction. This process has low com-
putation requirements and a low memory budget. Never-
theless, the learning process of mixed features of multiple
different sensors increases the prediction challenge.

Although Early Fusion approaches for 3D object
detection are still challenging, their low computational
demand is of great relevance for application in an au-
tonomous vehicle with limited resources. Therefore, our
project aims to reduce computational demand with a new
competitive fusion approach based on a single Neural
Network. This network will combine and analyze the
information acquired by LIDAR, RADAR, and Camera
sensors to detect vehicles on the street.

The remaining paper is organized as follows. We
first review the related work in section 2. Then in sec-
tion 3, we present some experiments based on a known
dataset. Next, we show some preliminary results and
analysis in section 4. Finally, in section 5, we conclude
the paper and present the remaining approaches in the
project.

2. Related work

The main challenge for implementing an Early Fusion is
effectively merging data from different types of sensors.
For this, it is necessary to represent all the data in a single
reference.

Image-based Object Detection research has been
fast developed in recent years. Furthermore, current
methods present a high accuracy and fast response in de-
tecting multiple objects presented in the same image. In
this way, this project aims to use the Camera sensor as a
reference for other sensors and build our model based on
the state-of-art 2D Object Detection models.

In the 2D Object Detection field, among the state-
of-art models, the "You Only Look Once", namely
YOLO, has been standing out in 2D object detection
models in the last years. Its ability to recognize objects’
bounding boxes and classify them quickly makes it an
excellent candidate for many tasks. Consequently, vari-
ations of YOLO have surged in different fields, such as
Object Detection, Object Tracking, Image Segmentation,
and Landmark Detection. Due to this versatility and its
remarkable performance in different fields, the YOLO

approach is a promising initial candidate to use as inspi-
ration to develop our 3D detection model.

Our approach converts the labels of the cars’ posi-
tion into a three-dimensional grid, a spatial representation
of the environment. The grid is divided into a Sx×Sy×Sz
grid, where Sx, Sy, and Sz represents the division in each
X, Y, and Z axis, respectively. As a result, our model
uses Sx = 13, Sy = 5, and Sz = 13. The Figure 1
shows the grid representation, where each grid cell stores
an 9 length array prediction: class, P, x, y, z, w, h, l, θ.
The first value represents the object class, followed by a
confidence of the grid cell estimation, then the six values
representing the 3D bounding box (center of the object
and its dimensions (width, height, length)), and the last,
the rotation angle in Y axis of the object.

Figure 1. Three-dimensional grid of features.

Based on Supervised Learning, the network was
trained to return a similar three-dimensional grid as pro-
vided by the label. In other words, the network output a
tensor of predictions accommodated in a 13× 5× 13× 9
tensor.

For the input of our network, the point cloud sen-
sors (LIDAR and RADAR) are converted to the cam-
era reference and are concatenated into an input tensor
width× height× 8, where 8 represents the channels of
each sensor: R, G, B, X, Y, Z, Vx, Vz. Furthermore, each
channel is normalized individually.

2.1. Network

The proposed network is based on a Multi-Task Learning
approach with hard parameter sharing. In other words,
the architecture presents a sequence of convolutional lay-
ers and in the end, the last layer is branched into five out-
put tasks.

The network combines two types of convolutional
layers, 2D and 3D. First, it is used a known backbone as
a 2D feature extractor. We choose the ResNet50, aiming
for a combination of good performance in a fast response.
It receives the input tensor (W×H×channels) and out-
puts a 15×15×2048 shape. This output pass trough
one convolutional layer with 625 filters kernel_size =
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1, strides = 1, and leakyReLU activation function.
Next, to introduce one dimension to the architecture, it
is passed by a reshape layer (25×17×25×17). This
new shape passes by a sequence of 3D convolutional
and residual layers, representing a ResNet approach with
3D convolutions. Finally, the output is branched by
five 3D convolutional layers. Each branch will predict
each characteristic (class, confidence, position, dimen-
sion, and rotation angle) separately and be concatenated
into a Sx×Sy×Sz×9 tensor of predictions.

2.2. Loss

loss = lossconf + lossclass + lossbox (1)

To calculate the error, we consider the L2 loss of all pre-
diction features. The loss equation (Equation 1) is di-
vided by 3 losses: Confidence loss (lossconf ), Class loss
(lossclass), Box loss (lossbox).

The Confidence loss is represented by the reliance
on each model prediction. It is represented by cor-
rect cell prediction (lossobj) and incorrect cell predic-
tion (lossnoobj). The Classification loss is represented
by the error in the prediction of the object’s classification
(lossclass). Finally, the Box loss is defined by the errors
of the Intersection over Union score (lossIoU ) and the y-
axis rotational estimation (lossθ). Furthermore, each er-
ror has a weight parameter (λ) to balance the relevance of
each feature in the total loss value. Currently, the weight
values is defined as follows: λobj = 20; λnoobj = 1;
λclass = 1; λIoU = 10; λθ = 10.

3. Experiments
Our project starts exploring its performance using only
the Camera as input. With a good candidate for 3D object
detections, the model will be tested with LIDAR data.
Finally, the RADAR sensor will be linked to the tensor to
predict objects’ velocity at a later phase.

Our model performance has been tested in the
KITTI dataset. However, as the KITTI test dataset is
closed and has a limited number of submissions, for ex-
perimental studies, we divided the open content (7581
images) into train and test sets for our model. The train-
ing step was done with 80% to train and 10% for vali-
dation. The last 10% was used for the testing step. The
model was trained in a GPU: RTX2080ti and CPU: i7
9700KF with 200 epochs and used the Adam optimizer
with a learning rate = 0.003.

4. Preliminary Results
In the Object Detection field, the Intersection over Union
(IoU) score is a particular evaluation metric used to repre-

sent the matching percent between the predicted bound-
ing box and the ground truth. Then, to evaluate the mean
Average Precision (mAP), we considered a correct detec-
tion if the prediction presents an IoU > 0.7 and an object
recognized if it presents an IoU > 0.1.

Table 1. Model’s Performance.
mAP Mean IoU Max IoU Average Recognition

3D 25.34 % 0.3636 0.9119 79.81 %
2D 25.38 % 0.3667 0.9537 79.02 %

As a result, our proposed model using only the cam-
era sensor achieve great precision and recognized most of
the vehicles presented in the scene. In Table 1, the results
considering the 3D and 2D (Bird Eye View) IoU scores
are shown. The mAP, mean IoU, and Max IoU repre-
sent the mean Average Precision, the mean Intersection
over Union, and the maximum Intersection over Union,
respectively.

Figure 2. Example of model detection. The top im-
age is the camera input. On a), we have an overview
and on b), a bird-eye-view perspective.

The Figure 2 shows the model performance detect-
ing 3 vehicles correctly. There are two vehicles fully vis-
ible and one partially occluded in this view. The ground
truth is represented by the green box and the prediction
with a blue box.

Table 2. Monocular Detection on KITTI dataset.
Methods with * trained/tested with a small dataset.

Methods mAP3D mAP2D

Ground-Aware [6] 14.94% 20.29%
MonoEF [15] 15.62% 22.00%
MonoFlex [14] 15.30% 21.62%
GUPNet [7] 16.80% 23.23%
MonoCon [5] 17.64% 24.07%
Ours* 25.34% 25.38%

The state-of-art models presented in Table 2 were
trained using all training set (open content) and were
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tested in the closed test set. The KITTI test set presents
similar images, in the same environments, from the open
content. Although our model was trained and tested in a
small dataset, its results showed a good candidate for 3D
object detection.

5. Conclusions and Remaining Work
This study presents a beginning approach to fuse sen-
sors’ data. It shows the use of a single network to predict
the 3D bounding box of objects for autonomous vehicles.
The initial results, using a single sensor, showed itself a
good candidate for 3D object detection. Using a small
dataset to train and test, the model showed a competitive
result against state-of-art models.

For the remaining work, LIDAR data will be imple-
mented in the input of the network aiming to enhance the
prediction precision. Next, the RADAR data will be im-
plemented to estimate the velocity of the objects.

The detection model proposed by this research has
applications that are not limited to autonomous cars.
With technical improvement, the model can be used in
different areas that need an autonomous perception of the
environment.
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