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Abstract – Despite playing an essential role in the Brazilian economy, traditional agriculture usually leads to several environmental 
issues. As an alternative to traditional agriculture, agroecology studies how poly-culture creates beneficial interactions with the 
environment that can reduce the ecological impact of agriculture. In this paper we propose the Species Distribution Modeling 
(SDM) algorithms to identify regions in which species from the MILPA agroecological consortium can grow in Brazil. We use a 
pipeline composed by a One Class Support Vector Machine (OCSVM) combined with multiple ensemble classifiers and neural 
networks to generate adaptability maps. We also propose the creation of a common database of environmental variables regard-
ing the Brazilian territory which we call br-env. 
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1. Introdução 
Technological advances aimed at the monocultures 
cultivation have fulfilled the social role of meeting the 
food sufficiency of the world population through the 
development of more efficient irrigation techniques, the 
mechanization of processes, the use of fertilizers, the 
application of pesticides, and the creation of transgenics. 
(more productive hybrid varieties) [1]. However, the 
high density of a single species (low genetic variability) 
promotes unstable systems to climate changes, requires 
constant management due to the depletion of soil 
nutrients (generating the need to use fertilizers), and 
provides a high density of pests (requiring the use of 
pesticides) [2] . In other words, monocultures can be 
held responsible for important environmental impacts 
such as contamination of soils, rivers, and air [2].  

In the Brazilian context, other problems directly 
related to monoculture are also identified, such as the 
deforestation of Brazilian biomes (Amazon, Cerrado, 
Pantanal), often resulting from the land grabbing 
process. Also, it promotes the rural exodus and the 
increase in social inequalities since small farmers do not 
have the power to compete in the market with large 
farmers [3].  

To face problems related to monoculture, 
sustainable strategies gained strength, such as 
agroecological crops, polycultures, and Agroforestry 
Systems (SAF). Those techniques use the understanding 
of ecological processes in favor of agricultural 
production, intending to mitigate the socio-
environmental impacts related to monocultures and also 
increase output by raising the Land Equivalent Ratio 
Land Equivalent Ratio (LER) [4]–[6]. In these 

alternatives, each plant plays one or more roles within 
the system, such as, for example, the functions of 
retaining nitrogen, producing litter, protecting the 
system as a live fence for animals or as a barrier against 
winds, and acting as a ground cover, among others [2]. 
Past experiences of farmers and indigenous peoples 
discovered species that can grow together since they 
play complementary roles, which is defined by the 
theory of agroecological consortiums [7], [8].   

However, agroecology faces the challenge of 
scale. Replacing the intensive use of agricultural 
techniques with agroecological consortiums required the 
understating of how well they can suit to environmental 
conditions of a region as granular as possible. In this 
context, the ecological niche theory establishes the 
relevance of studying relationships between species and 
the specific requirements of an area as crucial 
mechanisms for the survival of species and the 
maintenance of biodiversity [9], [10].  

Therefore, the present work aims to explore a 
machine learning approach called Species Distribution 
Modeling (SDM) as a tool for identifying ecological 
niches of agroecological consortium. SDM techniques 
seek to model their suitability to a proposed region based 
on environmental data in coordinates of species 
occurrences. The model predicts how the same species 
could develop without major environmental 
interventions in inference time [11]. In this way, SDM 
techniques can help identify territory regions where an 
agroecological consortium shows potential for 
agricultural production.  

In particular, this work focuses on the Brazilian 
territory. It will have as the object of study thw 
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species of the MILPA consortium, an agroecological 
consortium initially cultivated by the Mayans, which 
integrates variations of species of corn, beans, squash, 
and pepper [12]. We also highlight that MILPA species 
are relevant to the food security objective from Food and 
Agriculture Organization of the United Nations [13]. 

 
2. Proposal 
The general objective of this work is to study, apply and 
evaluate computational techniques for modeling the 
distribution of species from the MILPA consortium to 
identify regions from Brazil suitable for the 
establishment of agroecological crops and understand, in 
more detail, the potentials and limitations of SDMs. We 
describe the criteria to decided which species from 
MILPA consortium we decided to study, resulting in the 
following species: Zea mays, Cucurbita pepo, Cajanus 
cajan and Capsicum annuum.  

The first step to applying SDMs focus in Brazil 
was having data representing the country’s environment. 
For this reason we propose br-env, a standardized 
ensemble of environmental information from multiple 
sources framed in the Brazilian territory. Next, we 
explore SDMs as a binary classification problem from a 
two steps algorithm. First, we generate pseudo-absence 
species using a OCSVM once this data is not naturally 
available. Next, we evaluated different classifiers that 
calculate the probability of a coordinate being present or 
absent. In addition, once br-env is composed of 99 
environmental variables, we assessed the dimension 
reduction algorithm VIF to verify if a reduced 
environment space could be sufficient to classify the 
species well. 

The output of our experiments consists of 32 
distribution maps for each considered species, classifier, 
and environment size. We evaluated experiments 
according to the performance metrics AUC and TSS and 
qualitative aspects of the generated maps. The results of 
this project are accessible in https://github.com/AI-Uni-
camp/easy-sdm 

 
2.1 br-env 
A crucial part of this work consisted of preparing the 
data before applying machine learning models. The data 
engineering phase started by downloading the raw 
environmental databases and species occurrence to 
create a 3D array with 99 environment variables 
composed from Bioclim, Envirem, and Soilgrids 
databases for the Brazilian territory coordinate limits. 
This step is species independent and resulted in br-env, 
a database of aggregated environmental data for Brazil 
that is used in this study and can be used for further 
studies on any specie. From a practical point of view, the 
br-env consists of a Numpy array with metadata 
information to reference each column to an environment 
variable. 
 

 
 Figure 1. The figure represents the br-env creation 
process. First we download data from Bioclim, 
Envirem and Soilgrids. Next we standardize the data 
from each source to common specifications. Finally 
we describe the aggregation process to a unique 
array, which we call br-env. 
 
2.2 Pseudo-absences generation 
We built dataset rows corresponding to presences 
according to the species GBIF occurrence (OCC) 
coordinates. However, absent species data are not 
available. For this reason, we generated pseudo-absence 
(PSA) coordinates representing regions where the plant 
species could not grow.  

Among the techniques mapped from the 
literature in we applied Random Selection with 
Environmental Profiling (RSEP) considering the best 
trade-off between simplicity and performance. To 
extract environmental profiling, we applied OCSVM, 
once we can use a semi-supervised approach, in which 
the algorithm is trained only with presence data and the 
resulting model, at inference time, labels coordinates as 
presence or absence [14].  

We randomly generated the same number of 
pseudo-absences as the number of available occurrences 
to keep a balanced dataset and to attenuate the effects of 
prevalence in the classification models performance 
[15]. 

 
Figure 2. Example result of pseudo species genera-

tion for Zea mays. 
 

2.3 The Variance Inflation Factor (VIF)  
In the dataset construction, 99 features were present. 
Many of the environment variables have colinear 
dependencies with each other. Therefore, to evaluate 
behave of a reduced number of components and keep the 
performance metrics, we applied the VIF algorithm in 
parallel for the whole data before the cross-validation.  

VIF is calculated by the VIF = 1/(1 − R2). This 
formula measures if one variable can be predicted based 
on the features. If R2 is small, a specific variable can not 
be predicted from the information from other variables, 
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showing a small colinearity with them, offering evidence 
that an algorithm could use this variable as an 
information source to determine the target label.  

We decided to keep a group of features with the 
constraint VIF<10 for each part compared to the others 
as explained in [16] when VIF>10, two variables are 
highly correlated, and can one of them can be discarded. 
Hence, we developed an iterative process that calculates 
the VIF factor for each feature and removed the biggest 
one until all of them respect the constrain. 

 
2.4 The classifiers 
In this section, we describe the proposed classifiers. We 
focused on comparing the performance of popular 
ensemble techniques (GB, XGB and RF) with a MLP. 
The tree ensemble algorithms are built with multiple 
decision trees, but they differ on how to integrate them. 
Decision trees learn data through an architecture 
represented by branch nodes and leaf nodes, the former 
contains a condition to split the data, and the latter helps 
to decide a class to a new data point [17].  

GB and XGB represent the boosting ensemble 
technique that combines many weak decision tree 
classifiers to build a robust classifier. The observation 
weights are adjusted based on the previous 
classification, which replaces the approach of creating 
only one predictive solid model. Like ANN, boosting 
techniques are nonparametric machine learning, so the 
models can be adjusted according to the observed data, 
being adequate for the domain-specific tasks, as SDMs. 
The main difference between GB and XGB is that the 
last one used advanced regularization techniques like L1 
and L2, which are expected to improve model 
generalization capabilities [18].  

RF is also an ensemble technique that produces 
each decision tree independently and combines the 
results at the end of the process by the majority votes of 
each tree. Algorithm that follow this procedure are 
classified as a bagging algorithms. The literature shows 
that this approach has good performances in problems 
which the number of variables are much larger than the 
number of observations, which is also true for SDMs 
[19].  
MLP is a conventional neural network approach in 
which neurons with nonlinear activation functions are 
structured as a network with multiple layers. The first 
one has the number of neurons equal to the number of 
features. The last one has the number of neurons 
dependent on the loss function and the problem 
objective. ANN learns through the back-propagation 
process in which the neuron’s weights are updated with 
the error between a predicted target data and the labeled 
one [20], [21]. For our SDM approach, the number of 
neurons in the first layer is the number of environment 
variables. As we modeled it as a binary classification 
problem, we used a sigmoid function in the last neuron 

that calculates the prediction errors through a log-loss 
function [16]. 
 
3. Results 
The experiments results we present in this chapter 
correspond to distribution models that are obtained 
varying three different aspects of the modeling process: 

• species modeled: Zea mays, Cucurbita pepo, 
Cajanus cajan or Capsicum annuum; 

• training data: with complete set of 
environmental variables available or VIF-
reduced number of variables;  

• binary classifier: Random Forest, Gradient 
Boosting, XGBoost or Multilayer Perceptron). 
 

In summary, we conducted 32 experiments (4 
species × 2 dataset configurations × 4 binary classifiers). 
For each experiment, we evaluated the measured 
performance of the classifier (AUC and TSS metrics), 
and the resulting distribution map characteristics. 

In Figure 3 we show an example distribution map. 
In Tables 1-4 we expose the results of the proposed ex-
periments for each of the studies species. 

 

 
Figure 3. Example distribution for Zea mays using 

XGB as classifier. 
 

 
Table1. Zea mays experiments results 

 

  
Table 2. Cucurbita pepo experiments results 
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Table 3. Cajanus cajan experiments results 

 

 
Table 4. Capsicum annuum experiments results 

 
4. Conclusions 
Despite being the Brazilian economy flagship, 
traditional agriculture has several problems regarding 
environmental degradation and efficiency in production 
by area. Understanding the regions in Brazil where 
producers can grow agroecological consortiums is a 
starting point to increase the adoption of sustainable 
crops in the place of monoculture and reduces it negative 
impact on natural resources. For this reason, this work 
aimed to explore how Species Distribution Modeling 
(SDM) can suggest regions for the MILPA consortium 
to grow in Brazil. According to ecological concepts, this 
consortium considers species from big groups (corn, 
squash, bean, and pepper) to create positive interactions 
between them and the environment to amplify food 
production without requiring pesticides and fertilizers.   

We presented br-env, a standardized three-
dimensional array that uses raster image data from 
Bioclim, Envirem and Soilgrids to represent the 
Brazilian environment conditions. Br env could be used 
in further research to create SDM independent of species 
and modeling choices. Besides, we detail how we used a 
pipeline of a OCSVM plus an ensemble classifier to 
generate distribution maps based on species occurrences 
and pseudo-absences. According to several experiments, 
we compare the proposed ensemble classifiers (XGB, 
GB, RF, and MLP) applied to the MILPA species we 
selected (Zea mays, Cucurbita pepo, Cajanus cajan and 
Capsicum annuum) to evaluate the classification 
algorithms according to the AUC and TSS metrics and 
the VIF algorithm.  

Based on the performed experiments, we 
concluded this work by answering the research 
questions. The algorithms had similar performances 
according to the performance metrics for each species. 
They show that using and OCSVM to generate pseudo 
absences had a more significant impact independent of 
the classification algorithm in terms of metrics. Still, 
those classifiers were relevant in the style of distribution, 

with RF being granular in its decisions and XGB, GB 
and MLP being more decisive. AUC and TSS metrics 
should be analyzed as a pair once they evaluate the 
predicted habitats according to different perspectives. 
Also, we can notice that apply VIF variables. Besides, 
we identify species with fewer occurrences as Cucurbita 
pepo, which tend to perform worse in the metrics, and 
species with concentrated occurrences as Capsicum 
annuum tend to perform well. Finally, we can conclude 
that species to compose the MILPA consortium could 
grow together in a coastal part of the Northeast region of 
Brazil. We could join part of the Southeast region if we 
remove the optional species Capsicum annuum.  

Finally, we highlight the importance of 
considering statistical, computational, and ecological 
knowledge to evaluate the generated habitat 
distributions. Understanding specific properties of a 
target species, is substantial to make a crop succeed 
when using the distribution’s manual. 
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