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Abstract – Tractography is one of the most valuable tools for neurosurgeons in preoperative planning since it
allows the visualization of both white matter structures and the fibers' distribution in a patient's brain. The
best-known classical techniques are either deterministic or probabilistic in providing fiber orientations in voxel
resolution. With advances in machine learning, particularly deep learning, a series of elements and new ways of
obtaining the fiber structures have been introduced, making tractography a promising, handy, and reliable tool for
doctors in their daily diagnostic process. A typical consistent tractography pipeline comprises two stages: diffusion
directionality modeling and diffusion-oriented tracking. This paper reviews deep learning-based estimations of
local fiber orientations representable by either diffusion tensors or  diffusion orientation distribution functions.
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1. Introduction
Neural fibers are responsible for highly complex brain
connections. Diffusion Magnetic Resonance Images
have been used in clinical and research applications to
infer white matter structures and brain fiber
interconnections, far beyond the resolutions of current
images [1] [2]. The process is called tractography.
Magnetic resonance imaging has also seen the
development of artificial intelligence algorithms. More
recently, deep learning-based techniques have been
perfecting the levels of reliable neural pathways for
making diagnoses and providing a new perspective and
interpretation of the information and the results
obtained [3]. Algorithms based on deep learning are
data driven, so the selection of datasets, input data,
pre-processing stages and the associated labels for
training imply the elaboration of a training paradigm
that guarantees the robustness of the model developed.
Despite the progress made so far, there is still a long
way to walk to predict tracking directions and stopping
within diffusion magnetic resonance imaging because
of the complexity of neural pathways [12].

2. Proposal
As deep learning techniques depend on the input data
and the manipulation and pre-processing of these data,
we proposed a bibliographic survey of the latest deep
learning based estimations of fiber orientations
algorithms, emphasizing the training datasets capable
of deriving the mapping rules from the raw diffusion
data to the neural pathways and the applied deep
learning algorithms for conducting such derivations.

Diffusion-Weighted magnetic resonance Imaging
(DWI) and High Angular Resolution Diffusion Imaging
(HARDI) are the most known techniques for sampling
the raw diffusion signals of water molecules within a
voxel of brain tissue. Most applied ways to synthesize
from these raw datasets diffusion directionality in the
brain are Diffusion Tensor Imaging (DTI) and
Orientation Distribution Function (ODF). From the
estimated local diffusion directionality and start seed
points, plausible white matter streamlines are expected
to be tracked. Although we are looking for a learning
algorithm that can derive mapping rules between DWI
scans and neural fibers directly from DWI scans and
reference streamlines, we chose to first deal with the
problem in two stages like Benou and Raviv [11].

There are four major groups of deep learning
algorithms: (1) supervised (Convolutional Neural
Networks, Long Short Term Memory Networks,
Recurrent Neural Networks), (2) semi-supervised
(Generative Adversarial Networks), (3) unsupervised
(Autoencoders-Autodecoders, Support Vector
Machine), and (4) reinforcement (Deep Reinforcement
Learning).

2.1 Article Review
In this section, we briefly describe the articles analyzed
so far, highlighting the training data used and the deep
learning algorithms applied for estimating the diffusion
orientations in each brain voxel.

DeepDTI [4] is an algorithm that minimizes the data
requirements for its operation. It uses as input an image
with b=0 (non-diffusion weighted scan) and 6 DWIs
together with the synthesized DTI and T1 and
T2-weighted volumes from the WU-Minn Human
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Connectome Project (HCP) databases. Data from 70
unrelated subjects were used, with 40 subjects for
training, 10 for validation, and 20 for evaluation or
testing. The learning algorithm is a deep convolutional
network or CNN with 10 layers of 3 dimensions each.
The output of this CNN also corresponds to a
high-quality volume with b = 0 and 6 volumes of DWIs
optimized by the diffusion encoded directions. The
authors quantify the performance of the learning
algorithm using the quality of the output images, DTI
metrics, DTI-based tractography of the reconstruction,
and analysis of specific tracts.

In the same direction, SuperDTI [5] is a method also
based on CNN, aiming to take advantage of the
elements of DTI-based methods. The data are from the
databases of the international HCP, consisting of DWIs
of 50 subjects divided into 40 for training and
validation and 10 for tests. Although the authors also
use non-diffusion-weighted and 6 DWI volume,
SuperDTI differs from DeepDTI in training CNN
parameters. They are trained separately by the FA and
MD maps and the eigenvectors, pairwisely. This
method eliminates the noise-sensitive tensor fitting
process and has quantification errors close to 5% in the
regions of interest that contain target white matter and
fibers.

Karimi and Gholipour [6] also estimated a diffusion
tensor image using six diffusion-weighted scans. They
further proposed exploiting the relationships between
diffusion signals and tensors in neighboring voxels to
improve the tensor estimation accuracy. They applied
two-stage transformer neural networks as a learning
algorithm. The first estimates the diffusion tensors
according to the diffusion signals in a neighborhood of
voxels The second refines the estimation of the tensors
by learning the relationships between the diffusion
signals and the tensors estimated by the first network.
They evaluated the proposed method with HCP, scans
from the Pediatric Imaging, Neurocognition, and
Genetics (PING) dataset, and Vein of Galen
Malformation (VOGM) scans.

The diffusion orientation distribution functions head
another way to determine the fiber spatial orientations.
As they require higher angular resolution diffusion
signals, it has driven work related to training algorithms
for increasing angular resolution while keeping
acquisition time low. Jha, R. R. et al. proposed a
machine based on generative adversarial networks
(GAN) [7] to obtain more gradient directions for
under-sampled DWI volumes with reduced number of
directions in q-space.

In [8], Jha, R. R. et al. designed a GAN-based model
for synthesizing multi-shell multi-tissue fiber

orientation distribution function from the spherical
harmonic coefficients of a single-shell HARDI volume
at a b-value of 1000. The HARDI signals are
transformed into the spherical harmonic coefficients to
train the neural network. The performance of the
learning capability was evaluated with the HARDI
multi-shell dataset from the HCP: 100 randomly
selected subjects having volumes acquired with
different gradients: b = 0, b = 1000, b = 2000, b = 3000.

On the one hand, the fiber orientation distribution
function is better estimated from high angular
resolution diffusion imaging. On the other hand, signal
acquisition is much more time-consuming. Rui Zeng et
al. [9] devised a 3D convolutional neural network to
enhance the angular resolution of low-quality
single-shell low angular resolution diffusion image
(LARDI) data, making them equivalent to those derived
from high-quality multi-shell HARDI acquisition. The
machine also learns to remove false fibers and recover
some fibers present in the original volume, thus
allowing a more reliable tract reconstruction in
practical clinical situations. The authors randomly
selected 110 subjects from HCP, 50 for training, 50 for
validation, and 10 for testing.

Lyon, M et al. [10] also investigated a way to overcome
a long time in scanning diffusion signals if high angular
resolution. They proposed a recurrent CNN
autoencoder architecture to infer higher angular
resolution diffusion signals without spherical harmonic
coefficients. A 3D convolutional long short term
memory (ConvLSTM) cell is applied to model the
relationship of q-space cells. The authors used HCP
datasets for training and evaluating the performance of
the proposed model by measuring the deviation of
estimated diffusion signals from the ground truth across
multiple diffusion directions.

2.2 Training Datasets and Deep Learning
Algorithms for Diffusion Orientation
Estimation
Table 1 summarizes the learning algorithms used in
reviewed articles and the type of data used for training.
Supervised learning is the most used, followed by the
semi-supervised and one unsupervised learning.

None of the proposals use the raw data directly from
the diffusion signals (see Table 1). Instead, the authors
preprocessed the data to make them fittable to the
learning architecture. Among the papers studied, the
combination of DTI model and deep convolutional
neural networks seems the one that presents fewer
pre-processing stages.
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Table 1. Summary of learning algorithms and data type
used.

3. Discussions
All the works analyzed implemented a methodology to
obtain the fiber reconstruction with the best possible
performance using deep learning and the facilities this
technology provides. In general, the data used in each
algorithm are from healthy subjects, and the results are
compared with the known ground truth, lacking
extensive tests in DWI volumes for patients with
anatomical malformation. .

As machines learn with data from healthy people, we
expect their performance with dMRI of non-healthy
people to be inferior to that obtained with healthy
people. It would be interesting to train these machines
with data of non-healthy people and fine-tuning the
training parameters to try to make them appropriate for
clinical reality, gain insight into the problems, and look
for novel solutions.

The datasets of the Human Connectome Project are
used in all the works studied. In some cases, the authors
specify the dataset used within the Human Connectome
Project: in SuperDTI the HCP Young Adult dataset, in
DeepDTI the Human Connectome Project (HCP)
WU-Minn-Ox Consortium, Jha, R.R. et al. used the
multi-shell HARDI from the WU-Minn Human
Connectome Project (HCP) dataset.

The input data for each model varies depending on the
type of application to be used, although in general the
pre-processing stage largely determines the dimensions
and the type of data to be used and introduced into the
deep neural networks as inputs. The models based on
diffusion tensors require fewer data pre-processing
steps than the ones based on orientation distribution

functions. Nevertheless, diffusion orientation
distribution functions are much more information
concerning neural pathways.

4. Conclusions
Deep learning techniques are promising for developing
the estimation of local fiber orientation. However, the
correct selection of the data to obtain the desired model
with good performance is still challenging due to the
difficulty involved in making a good selection. In
addition, both the choice of the data and its
pre-processing stages will affect the degree of
complexity of the model developed, an element that
affects the further practical implementation of the
model obtained. This review improved our
understanding of the potential challenges in elaborating
a learning algorithm that maps the DWI scans in
diffusion direction models (DTI or ODF), their training,
validation, and testing. To achieve our goal, we must
study alternatives for fiber tracking and analyze a better
paradigm to map DWI in tracts. Directly from DWI
scans to tractography or in two steps?
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