
Chapter 9

Fragment Processing
and the Framebuffer

WHAT YOU’LL LEARN IN THIS CHAPTER

• How data is passed into fragment shaders, how to control the way it’s
sent there, and what to do with it once it gets there

• How to create your own framebuffers and control the format of data
that they store

• How to produce more than just one output from a single fragment
shader

• How to get data out of your framebuffer and into textures, buffers,
and your application’s memory

This chapter is all about the back end — everything that happens after
rasterization. We will take an in-depth look at some of the interesting
things you can do with a fragment shader, what happens to your data
once it leaves the fragment shader, and how to get it back into your
application. We’re also going to look at ways to improve the quality of the
images that your applications produce, from rendering in high dynamic
range, to antialiasing techniques (compensating from the pixelating effect
of the display) and alternative color spaces that you can render into.
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Fragment Shaders

You have already been introduced to the fragment shader stage. It is the
stage in the pipeline where your shader code determines the color of each
fragment before it is sent for composition into the framebuffer. The
fragment shader runs once per fragment, where a fragment is a virtual
element of processing that might end up contributing to the final color of
a pixel. Its inputs are generated by the fixed-function interpolation phase
that executes as part of rasterization. By default, all members of the input
blocks to the fragment shader are smoothly interpolated across the
primitive being rasterized, with the endpoints of that interpolation being
fed by the last stage in the front end (which may be the vertex, tessellation
evaluation, or geometry shader stages). However, you have quite a bit of
control over how that interpolation is performed and even whether
interpolation is performed at all.

Interpolation and Storage Qualifiers

You already read about some of the storage qualifiers supported by GLSL in
earlier chapters. There are a few storage qualifiers that can be used to
control interpolation that you can use for advanced rendering. They
include the flat and noperspective, and we quickly go over each of these
here.

Disabling Interpolation

When you declare an input to your fragment shader, that input is
generated, or interpolated, across the primitive being rendered. However,
whenever you pass an integer from the front end to the back end,
interpolation must be disabled — this is done automatically for you
because OpenGL isn’t capable of smoothly interpolating integers. It is also
possible to explicitly disable interpolation for floating-point fragment
shader inputs. Fragment shader inputs for which interpolation has been
disabled are known as flat inputs (in contrast to smooth inputs, referring to
the smooth interpolation normally performed by OpenGL). To create a flat
input to the fragment shader for which interpolation is not performed,
declare it using the flat storage1 qualifier, as in

1. It’s actually legal to explicitly declare floating-point fragment shader inputs with the smooth
storage qualifier, although this is normally redundant as this is the default.
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flat in vec4 foo;
flat in int bar;
flat in mat3 baz;

You can also apply interpolation qualifiers to input blocks, which is where
the smooth qualifier comes in handy. Interpolation qualifiers applied to
blocks are inherited by its members — that is, they are applied
automatically to all members of the block. However, it’s possible to apply
a different qualifier to individual members of the block. Thus, consider
this snippet:

flat in INPUT_BLOCK
{

vec4 foo;
int bar;
smooth mat3 baz;

};

Here, foo has interpolation disabled because it inherits flat qualification
from the parent block. bar is automatically flat because it is an integer.
However, even though baz is a member of a block that has the flat
interpolation qualifier, it is smoothly interpolated because it has the
smooth interpolation qualifier applied at the member level.

Don’t forget that while we are describing this in terms of fragment shader
inputs, storage and interpolation qualifiers used on the corresponding
outputs in the front end must match those used at the input of the
fragment shader. This means that whatever the last stage in your front
end, whether it’s a vertex, tessellation evaluation, or geometry shader, you
should also declare the matching output with the flat qualifier.

When flat inputs to a fragment are in use, their value comes from only
one of the vertices in a primitive. When the primitives being rendered are
single points, then there is only one choice as to where to get the data.
However, when the primitives being rendered are lines or triangles, either
the first or last vertex in the primitive is used. The vertex from which the
values for flat fragment shader inputs are taken is known as the provoking
vertex, and you can decide whether that should be the first or last vertex
by calling

void glProvokingVertex(GLenum provokeMode);

Here, provokeMode indicates which vertex should be used, and valid values
are GL_FIRST_VERTEX_CONVENTION and GL_LAST_VERTEX_CONVENTION. The
default is GL_LAST_VERTEX_CONVENTION.
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Interpolating without Perspective Correction

As you have learned, OpenGL interpolates the values of fragment shader
inputs across the face of primitives, such as triangles, and presents a new
value to each invocation of the fragment shader. By default, the
interpolation is performed smoothly in the space of the primitive being
rendered. That means that if you were to look at the triangle flat on, the
steps that the shader inputs take across its surface would be equal.
However, OpenGL performs interpolation in screen space as it steps from
pixel to pixel. Very rarely is a triangle seen directly face on, and so
perspective foreshortening means that the step in each varying from pixel
to pixel is not constant — that is, they are not linear in screen space.
OpenGL corrects for this by using perspective-correct interpolation. To
implement this, it interpolates values that are linear in screen space and
uses those to derive the actual values of the shader inputs at each pixel.

Consider a texture coordinate, uv, that is to be interpolated across a
triangle. Neither u nor v is linear in screen space. However (due to some
math that is beyond the scope of this section), u

w and v
w are linear in

screen space, as is 1
w (the fourth component of the fragment’s coordinate).

So, what OpenGL actually interpolates is

u

w
,

v

w
, and

1
w

At each pixel, it reciprocates 1
w to find w and then multiplies u

w and v
w by w

to find u and v. This provides perspective-correct values of the
interpolants to each instance of the fragment shader.

Normally, this is what you want. However, there may be times when you
don’t want this. If you actually want interpolation to be carried out in
screen space regardless of the orientation of the primitive, you can use the
noperspective storage qualifier, like this:

noperspective out vec2 texcoord;

in the vertex shader (or whatever shader is last in the front end of your
pipeline), and

noperspective in vec2 texcoord;

in the fragment shader, for example. The results of using perspective-
correct and screen-space linear (noperspective) rendering are shown in
Figure 9.1.
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Figure 9.1: Contrasting perspective-correct and linear interpolation

The top image of Figure 9.1 shows perspective-correct interpolation
applied to a pair of triangles as its angle to the viewer changes.
Meanwhile, the bottom image of Figure 9.1 shows how the noperspective
storage qualifier has affected the interpolation of texture coordinates. As
the pair of triangles moves to a more and more oblique angle relative to
the viewer, the texture becomes more and more skewed.

Per-Fragment Tests

Once the fragment shader has run, OpenGL needs to figure what do to
with the fragments that are generated. Geometry has been clipped and
transformed into normalized device space, and so all of the fragments that
are produced by rasterization are known to be on the screen (or inside the
window). However, OpenGL then performs a number of other tests on the
fragment to determine if and how it should be written to the framebuffer.
These tests (in logical order) are the scissor test, the stencil test, and the
depth test. These are covered in pipeline order in the following section.

Scissor Testing

The scissor rectangle is an arbitrary rectangle that you can specify in screen
coordinates that allows you to further clip rendering to a particular region.
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Unlike the viewport, geometry is not clipped directly against the scissor
rectangle, but rather individual fragments are tested against the rectangle
as part of post-rasterization2 processing. As with viewport rectangles,
OpenGL supports an array of scissor rectangles. To set them up, you can
call glScissorIndexed() or glScissorIndexedv(), whose prototypes are

void glScissorIndexed(GLuint index,
GLint left,
GLint bottom,
GLsizei width,
GLsizei height);

void glScissorIndexedv(GLuint index,
const GLint * v);

For both functions, the index parameter specifies which scissor rectangle
you want to change. The left, bottom, width, and height parameters
describe a region in window coordinates that defines the scissor rectangle.
For glScissorIndexedv(), the left, bottom, width, and height parameters
are stored (in that order) in an array whose address is passed in v.

To select a scissor rectangle, the gl_ViewportIndex built-in output from
the geometry shader is used (yes, the same one that selects the viewport).
That means that given an array of viewports and an array of scissor
rectangles, the same index is used for both arrays. To enable scissor
testing, call

glEnable(GL_SCISSOR_TEST);

To disable it, call

glDisable(GL_SCISSOR_TEST);

The scissor test starts off disabled, so unless you need to use it, you don’t
need to do anything. If we again use the shader of Listing 8.36, which
employs an instanced geometry shader to write to gl_ViewportIndex,
enable the scissor test, and set some scissor rectangles, we can mask off
sections of rendering. Listing 9.1 shows part of the code from the
multiscissor, which is to set up our scissor rectangles, and Figure 9.2
shows the result of rendering with this code.

// Turn on scissor testing
glEnable(GL_SCISSOR_TEST);

// Each rectangle will be 7/16 of the screen

2. It may be the case that some OpenGL implementations either apply scissoring at the end
of the geometry stage, or in an early part of rasterization. Here, we are describing the logical
OpenGL pipeline, though.
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int scissor_width = (7 * info.windowWidth) / 16;
int scissor_height = (7 * info.windowHeight) / 16;

// Four rectangles - lower left first...
glScissorIndexed(0, 0, 0, scissor_width, scissor_height);

// Lower right...
glScissorIndexed(1,

info.windowWidth - scissor_width, 0,
info.windowWidth - scissor_width, scissor_height);

// Upper left...
glScissorIndexed(2,

0, info.windowHeight - scissor_height,
scissor_width, scissor_height);

// Upper right...
glScissorIndexed(3,

info.windowWidth - scissor_width,
info.windowHeight - scissor_height,
scissor_width, scissor_height);

Listing 9.1: Setting up scissor rectangle arrays

Figure 9.2: Rendering with four different scissor rectangles

An important point to remember about the scissor test is that when you
clear the framebuffer using glClear() or glClearBufferfv(), the first
scissor rectangle is applied as well. This means that you can clear an
arbitrary rectangle of the framebuffer using the scissor rectangle, but it can
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also lead to errors if you leave the scissor test enabled at the end of a frame
and then try to clear the framebuffer ready for the next frame.

Stencil Testing

The next step in the fragment pipeline is the stencil test. Think of the
stencil test as cutting out a shape in cardboard and then using that cutout
to spray-paint the shape on a mural. The spray paint only hits the wall in
places where the cardboard is cut out (just like a real stencil). If pixel
format of the framebuffer includes a stencil buffer, you can similarly mask
your draws to the framebuffer. You can enable stenciling by calling
glEnable() and passing GL_STENCIL_TEST in the cap parameter. Most
implementations only support stencil buffers that contain 8 bits, but some
configurations may support fewer bits (or more, but this is extremely
uncommon).

Your drawing commands can have a direct effect on the stencil buffer, and
the value of the stencil buffer can have a direct effect on the pixels you
draw. To control interactions with the stencil buffer, OpenGL provides two
commands: glStencilFuncSeparate() and glStencilOpSeparate().
OpenGL lets you set both of these separately for front- and back-facing
geometry. The prototypes of glStencilFuncSeparate() and
glStencilOpSeparate() are

void glStencilFuncSeparate(GLenum face,
GLenum func,
GLint ref,
GLuint mask);

void glStencilOpSeparate(GLenum face,
GLenum sfail,
GLenum dpfail,
GLenum dppass);

First let’s look at glStencilFuncSeparate(), which controls the conditions
under which the stencil test passes or fails. The test is applied separately
for front-facing and back-facing primitives, each has its own state, and you
can pass GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK for face, signifying
which geometry will be affected. The value of func can be any of the
values in Table 9.1. These specify under what conditions geometry will
pass the stencil test.

The ref value is the reference used to compute the pass or fail result, and
the mask parameter lets you control which bits of the reference and the
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buffer are compared. In pseudo-code, the operation of the stencil test is
effectively implemented as

GLuint current = GetCurrentStencilContent(x, y);
if (compare(current & mask,

ref & mask,
front_facing ? front_op : back_op))

{
passed = true;

}
else
{

passed = false;
}

Table 9.1: Stencil Functions

Function Pass Condition

GL_NEVER Never pass test.
GL_ALWAYS Always pass test.
GL_LESS Reference value is less than buffer value.
GL_LEQUAL Reference value is less than or equal to

buffer value.
GL_EQUAL Reference value is equal to buffer value.
GL_GEQUAL Reference value is greater than or equal to

buffer value.
GL_GREATER Reference value is greater than buffer value.
GL_NOTEQUAL Reference value is not equal to buffer value.

The next step is to tell OpenGL what to do when the stencil test passes or
fails by using glStencilOpSeparate(). This function takes four parameters,
with the first specifying which faces will be affected. The next three
parameters control what happens after the stencil test is performed and
can be any of the values in Table 9.2. The second parameter, sfail, is the
action taken if the stencil test fails. The dpfail parameter specifies the
action taken if the depth buffer test fails, and the final parameter, dppass,
specifies what happens if the depth buffer test passes. Note that because
stencil testing comes before depth testing (which we’ll get to in a
moment), should the stencil test fail, the fragment is killed right there and
no further processing is performed — which explains why there are only
three operations here rather than four.

So how does this actually work out? Let’s look at a simple example of
typical usage shown in Listing 9.2. The first step is to clear the stencil
buffer to 0 by calling glClearBufferiv() with buffer set to GL_STENCIL,
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drawBuffer set to 0, and value pointing to a variable containing zero.
Next, a window border is drawn that may contain details such as a player’s
score and statistics. Set up the stencil test to always pass with the reference
value being 1 by calling glStencilFuncSeparate(). Next, tell OpenGL to
replace the value in the stencil buffer only when the depth test passes by
calling glStencilOpSeparate() followed by rendering the border geometry.
This turns the border area pixels to 1 while the rest of the framebuffer
remains at 0. Finally, set up the stencil state so that the stencil test will
only pass if the stencil buffer value is 0, and then render the rest of the
scene. This causes all pixels that would overwrite the border we just drew
to fail the stencil test and not be drawn to the framebuffer. Listing 9.2
shows an example of how stencil can be used.

Table 9.2: Stencil Operations

Function Result

GL_KEEP Do not modify the stencil buffer.
GL_ZERO Set stencil buffer value to 0.
GL_REPLACE Replace stencil value with reference value.
GL_INCR Increment stencil with saturation.
GL_DECR Decrement stencil with saturation.
GL_INVERT Bitwise invert stencil value.
GL_INCR_WRAP Increment stencil without saturation.
GL_DECR_WRAP Decrement stencil without saturation.

// Clear stencil buffer to 0
const GLint zero;
glClearBufferiv(GL_STENCIL, 0, &zero);

// Setup stencil state for border rendering
glStencilFuncSeparate(GL_FRONT, GL_ALWAYS, 1, 0xff);
glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_ZERO, GL_REPLACE);

// Render border decorations
. . .

// Now, border decoration pixels have a stencil value of 1
// All other pixels have a stencil value of 0.

// Setup stencil state for regular rendering,
// fail if pixel would overwrite border
glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_LESS, 1, 0xff);
glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_KEEP);

// Render the rest of the scene, will not render over stenciled
// border content
. . .

Listing 9.2: Example stencil buffer usage, border decorations
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There are also two other stencil functions: glStencilFunc() and
glStencilOp(). These behave just as glStencilFuncSeparate() and
glStencilOpSeparate() would if you were to set the face parameter to
GL_FRONT_AND_BACK.

Controlling Updates to the Stencil Buffer

By clever manipulation of the stencil operation modes (setting them all to
the same value, or judicious use of GL_KEEP, for example), you can perform
some pretty flexible operations on the stencil buffer. However, beyond
this, it’s possible to control updates to individual bits of the stencil buffer.
The glStencilMaskSeparate() function takes a bitfield of which bits in the
stencil buffer should be updated and which should be left alone. Its
prototype is

void glStencilMaskSeparate(GLenum face, GLuint mask);

As with the stencil test function, there are two sets of state — one for
front-facing and one for back-facing primitives. Just like
glStencilFuncSeparate(), the face parameter specifies which types of
primitives should be affected. The mask parameter is a bitfield that maps to
the bits in the stencil buffer — if the stencil buffer has less than 32 bits (8
is the maximum supported by most current OpenGL implementations),
only that many of the least significant bits of mask are used. If a mask bit is
set to 1, the corresponding bit in the stencil buffer can be updated. But if
the mask bit is 0, the corresponding stencil bit will not be written to. For
instance, consider the following code:

GLuint mask = 0x000F;
glStencilMaskSeparate(GL_FRONT, mask);
glStencilMaskSeparate(GL_BACK, ~mask);

In the preceding example, the first call to glStencilMaskSeparate() affects
front-facing primitives and enables the lower four bits of the stencil buffer
for writing while leaving the rest disabled. The second call to
glStencilMaskSeparate() sets the opposite mask for back-facing
primitives. This essentially allows you to pack two stencil values together
into an 8-bit stencil buffer — the lower four bits being used for front-facing
primitives, and the upper four bits being used for back-facing primitives.

Depth Testing

After stencil operations are complete and if depth testing is enabled,
OpenGL tests the depth value of a fragment against the existing content of
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the depth buffer. If depth writes are also enabled and the fragment has
passed the depth test, the depth buffer is updated with the depth value of
the fragment. If the depth test fails, the fragment is discarded and does
not pass to the following fragment operations.

The input to primitive assembly is a set of vertex positions that make up
primitives. Each has a z coordinate. This coordinate is scaled and biased
such that the normal3 visible range of values lies between zero and one.
This is the value that’s usually stored in the depth buffer. During depth
testing, OpenGL reads the depth value of the fragment from the depth
buffer at the current fragment’s coordinate and compares it to the
generated depth value for the fragment being processed.

You can choose what comparison operator is used to figure out if the
fragment “passed” the depth test. To set the depth comparison operator
(or depth function), call glDepthFunc(), whose prototype is

void glDepthFunc(GLenum func);

Here, func is one of the available depth comparison operators. The legal
values for func and what they mean are shown in Table 9.3.

If the depth test is disabled, it is as if the depth test always passes (i.e., the
depth function is set to GL_ALWAYS), with one exception: The depth buffer
is only updated when the depth test is enabled. If you want your geometry
to be written into the depth buffer unconditionally, you must enable the
depth test and set the depth function to GL_ALWAYS. By default, the depth
test is disabled. To turn it on, call

glEnable(GL_DEPTH_TEST);

To turn it off again, simply call glDisable() with the GL_DEPTH_TEST
parameter. It is a very common mistake to disable the depth test and
expect it to be updated. Again, the depth buffer is not updated unless the
depth test is also enabled.

Controlling Updates of the Depth Buffer

Writes to the depth buffer can be turned on and off, regardless of the result
of the depth test. Remember, the depth buffer is only updated if the depth
test is turned on (although the test function can be set to GL_ALWAYS if

3. It’s possible to turn off this visibility check and consider all fragments visible, even if they
lie outside the zero-to-one range that is stored in the depth buffer.
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you don’t actually need depth testing and only wish to update the depth
buffer). The glDepthMask() function takes a Boolean flag that turns writes
to the depth buffer on if it’s GL_TRUE and off if GL_FALSE. For example,

glDepthMask(GL_FALSE);

will turn writes to the depth buffer off, regardless of the result of the depth
test. You can use this, for example, to draw geometry that should be tested
against the depth buffer, but that shouldn’t update it. By default, the
depth mask is set to GL_TRUE, which means you won’t need to change it if
you want depth testing and writing to behave as normal.

Table 9.3: Depth Comparison Functions

Function Meaning

GL_ALWAYS The depth test always passes — all
fragments are considered to have
passed the depth test.

GL_NEVER The depth test never passes — all
fragments are considered to have
failed the depth test.

GL_LESS The depth test passes if the new
fragment’s depth value is less than
the old fragment’s depth value.

GL_LEQUAL The depth test passes if the new
fragment’s depth value is less than or
equal to the old fragment’s depth
value.

GL_EQUAL The depth test passes if the new
fragment’s depth value is equal to
the old fragment’s depth value.

GL_NOTEQUAL The depth test passes if the new
fragment’s depth value is not equal
the old fragment’s depth value.

GL_GREATER The depth test passes if the new
fragment’s depth value is greater
than the old fragment’s depth value.

GL_GEQUAL The depth test passes if the new
fragment’s depth value is greater
than or equal to the old fragment’s
depth value.
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Depth Clamping

OpenGL represents the depth of each fragment as a finite number, scaled
between zero and one. A fragment with a depth of zero is intersecting the
near plane (and would be jabbing you in the eye if it were real), and a
fragment with a depth of one is at the farthest representable depth but not
infinitely far away. To eliminate the far plane and draw things at any
arbitrary distance, we would need to store arbitrarily large numbers in the
depth buffer — something that’s not really possible. To get around this,
OpenGL has the option to turn off clipping against the near and far planes
and instead clamp the generated depth values to the range zero to one.
This means that any geometry that protrudes behind the near plane or
beyond the far plane will essentially be projected onto that plane.

To enable depth clamping (and simultaneously turn off clipping against
the near and far planes), call

glEnable(GL_DEPTH_CLAMP);

and to disable depth clamping, call

glDisable(GL_DEPTH_CLAMP);

Figure 9.3 illustrates the effect of enabling depth clamping and drawing a
primitive that intersects the near plane.

Figure 9.3: Effect of depth clamping at the near plane

It is simpler to demonstrate this in two dimensions, and so on the left of
Figure 9.3, the view frustum is displayed as if we were looking straight
down on it. The dark line represents the primitive that would have been
clipped against the near plane, and the dotted line represents the portion
of the primitive that was clipped away. When depth clamping is enabled,
rather than clipping the primitive, the depth values that would have been
generated outside the range zero to one are clamped into that range,
effectively projecting the primitive onto the near plane (or the far plane, if
the primitive would have clipped that). The center of Figure 9.3 shows this
projection. What actually gets rendered is shown on the right of
Figure 9.3. The dark line represents the values that eventually get written
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into the depth buffer. Figure 9.4 shows how this translates to a real
application.

Figure 9.4: A clipped object with and without depth clamping

In the left image of Figure 9.4, the geometry has become so close to the
viewer that it is partially clipped against the near plane. As a result, the
portions of the polygons that would have been behind the near plane are
simply not drawn, and so they leave a large hole in the model. You can see
right through to the other side of the object, and the image is quite visibly
incorrect. On the right of Figure 9.4, depth clamping has been enabled. As
you can see, the geometry that was lost in the left image is back and fills
the hole in the object. The values in the depth buffer aren’t technically
correct, but this hasn’t translated to visual anomalies, and the picture
produced looks better than that in the left image.

Early Testing

Logically, the depth and stencil tests occur after the fragment has been
shaded, but most graphics hardware is capable of performing the test
before your shader runs and avoiding the cost of executing that shader if
the ownership test would fail. However, if a shader has side effects (such as
directly writing to a texture) or would otherwise effect the outcome of the
test, OpenGL can’t perform the tests first, and must always run your
shader. Not only that, but it must always wait for the shader to finish
executing before it can perform depth testing or update the stencil buffer.

One particular example of something you can do in your shader that
would stop OpenGL from performing the depth test before executing it is
writing to the built-in gl_FragDepth output.

The special built-in variable gl_FragDepth is available for writing an
updated depth value to. If the fragment shader doesn’t write to this

Per-Fragment Tests 355



variable, the interpolated depth generated by OpenGL is used as the
fragment’s depth value. Your fragment shader can either calculate an
entirely new value for gl_FragDepth, or it can derive one from the value
gl_FragCoord.z. This new value is subsequently used by OpenGL both as
the reference for the depth test and as the value written to the depth
buffer should the depth test pass. You can use this functionality, for
example, to slightly perturb the values in the depth buffer and create
physically bumpy surfaces. Of course, you’d need to shade such surfaces
appropriately to make them appear bumpy, but when new objects were
tested against the content of the depth buffer, the result would match the
shading.

Because your shader changes the fragment’s depth value when you write
to gl_FragDepth, there’s no way that OpenGL can perform the depth test
before the shader runs because it doesn’t know what you’re going to put
there. For this scenario, OpenGL provides some layout qualifiers that let
you tell it what you plan to do with the depth value.

Now, remember that the range of values in the depth buffer is between 0.0
and 1.0, and that the depth test comparison operators include functions
such as GL_LESS and GL_GREATER. Now, if you set the depth test function
to GL_LESS, for example (which would pass for any fragment that is closer
to the viewer than what is currently in the framebuffer), then if you only
ever set gl_FragDepth to a value that is less than it would have been
otherwise, then the fragment will pass the depth test regardless of
whatever the shader does, and so the original test result remains valid. In
this case, OpenGL now knows that it can perform the depth test before
running your fragment shader, even though the logical pipeline has it
running afterwards.

The layout qualifier you use to tell OpenGL what you’re going to do to
depth is applied to a redeclaration of gl_FragDepth. The redeclaration of
gl_FragDepth can take the form of any of the following:

layout (depth_any) out float gl_FragDepth;
layout (depth_less) out float gl_FragDepth;
layout (depth_greater) out float gl_FragDepth;
layout (depth_unchanged) out float gl_FragDepth;

If you use the depth_any layout qualifier, you’re telling OpenGL that you
might write any value to gl_FragDepth. This is effectively the default — if
OpenGL sees that your shader writes to gl_FragDepth, it has no idea what
you did to it and assumes that the result could be anything. If you specify
depth_less, you’re effectively saying that whatever you write to
gl_FragDepth will result in the fragment’s depth value being less than it
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would have been otherwise. In this case, results from the GL_LESS and
GL_LEQUAL comparison functions remain valid. Similarly, using
depth_greater indicates that your shader will only make the fragment’s
depth greater than it would have been and, therefore, the result of the
GL_GREATER and GL_GEQUAL tests remain valid.

The final qualifier, depth_unchanged, is somewhat unique. This tells
OpenGL that whatever you do to gl_FragDepth, it’s free to assume you
haven’t written anything to it that would change the result of the depth
test. In the case of depth_any, depth_less, and depth_greater, although
OpenGL becomes free to perform depth testing before your shader
executes under certain circumstances, there are still times when it must
run your shader and wait for it to finish. With depth_unchanged you are
telling OpenGL that no matter what you do with the fragment’s depth
value, the original result of the test remains valid. You might choose to
use this if you plan to perturb the fragment’s depth slightly, but not in a
way that would make it intersect any other geometry in the scene (or if
you don’t care if it does).

Regardless of the layout qualifier you apply to a redeclaration of
gl_FragDepth and what OpenGL decides to do about it, the value you
write into gl_FragDepth will be clamped into the range 0.0 to 1.0 and then
written into the depth buffer.

Color Output

The color output stage is the last part of the OpenGL pipeline before
fragments are written to the framebuffer. It determines what happens to
your color data between when it leaves your fragment shader and when it
is finally displayed to the user.

Blending

For fragments that pass the per-fragment tests, blending is performed.
Blending allows you to combine the incoming source color with the color
already in the color buffer or with other constants using one of the many
supported blend equations. If the buffer you are drawing to is fixed point,
the incoming source colors will be clamped to 0.0 to 1.0 before any
blending operations occur. Blending is enabled by calling

glEnable(GL_BLEND);
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and disabled by calling

glDisable(GL_BLEND);

The blending functionality of OpenGL is powerful and highly
configurable. It works by multiplying the source color (the value produced
by your shader) by the source factor, then multiplying the color in the
framebuffer by the destination factor, and then combining the results of
these multiplications using an operation that you can choose called the
blend equation.

Blend Functions

To choose the source and destination factors by which OpenGL will
multiply the result of your shader and the value in the framebuffer,
respectively, you can call glBlendFunc() or glBlendFuncSeparate().
glBlendFunc() lets you set the source and destination factors for all four
channels of data (red, green, blue, and alpha). glBlendFuncSeparate(), on
the other hand, allows you to set a source and destination factor for the
red, green, and blue channels and another for the alpha channel.

glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB,
GLenum srcAlpha, GLenum dstaAlpha);

glBlendFunc(GLenum src, GLenum dst);

The possible values for these calls can be found in Table 9.4. There are four
sources of data that might be used in a blending function. These are the
first source color (Rs0, Gs0, Bs0, and As0), the second source color (Rs1,
Gs1, Bs1, and As1), the destination color (Rd, Gd, Bd, and Ad), and the
constant blending color (Rc, Gc, Bc, and Ac). The last value, the constant
blending color, can be set by calling glBlendColor():

glBlendColor(GLfloat red, GLfloat green,
GLfloat blue, GLfloat alpha);

In addition to all of these sources, the constant values zero and one can be
used as any of the product terms.

As a simple example, consider the code shown in Listing 9.3. This code
clears the framebuffer to a mid-orange color, turns on blending, sets the
blend color to a mid-blue color, and then draws a small cube with every
possible combination of source and destination blending function.

The result of rendering with the code shown in Listing 9.3 is shown in
Figure 9.5. This image is also shown in Color Plate 1 and was generated by
the blendmatrix sample application.
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Table 9.4: Blend Functions

Blend Function RGB Alpha

GL_ZERO (0, 0, 0) 0
GL_ONE (1, 1, 1) 1
GL_SRC_COLOR (Rs0, Gs0, Bs0) As0

GL_ONE_MINUS_SRC_COLOR (1, 1, 1) - (Rs0, Gs0, Bs0) 1 - As0

GL_DST_COLOR (Rd, Gd, Bd) Ad

GL_ONE_MINUS_DST_COLOR (1, 1, 1) - (Rd, Gd, Bd) 1−Ad

GL_SRC_ALPHA (As0, As0, As0) As0

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1) - (As0, As0, As0) 1−As0

GL_DST_ALPHA (Ad, Ad, Ad) Ad

GL_ONE_MINUS_DST_ALPHA (1, 1, 1) - (Ad, Ad, Ad) 1−Ad

GL_CONSTANT_COLOR (Rc, Gc, Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1, 1, 1) - (Rc, Gc, Bc) 1−Ac

GL_CONSTANT_ALPHA (Ac, Ac, Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1, 1, 1) - (Ac, Ac, Ac) 1−Ac

GL_ALPHA_SATURATE (f , f , f ) 1
f = min(As0, 1−Ad)

GL_SRC1_COLOR (Rs1, Gs1, Bs1) As1

GL_ONE_MINUS_SRC1_COLOR (1, 1, 1) - (Rs1, Gs1, Bs1) 1−As1

GL_SRC1_ALPHA (As1, As1, As1) As1

GL_ONE_MINUS_SRC1_ALPHA (1, 1, 1) - (As1, As1, As1) 1−As1

static const GLfloat orange[] = { 0.6f, 0.4f, 0.1f, 1.0f };
glClearBufferfv(GL_COLOR, 0, orange);

static const GLenum blend_func[] =
{

GL_ZERO,
GL_ONE,
GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR,
GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR,
GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA,
GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA,
GL_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA,
GL_ONE_MINUS_CONSTANT_ALPHA,
GL_SRC_ALPHA_SATURATE,
GL_SRC1_COLOR,
GL_ONE_MINUS_SRC1_COLOR,
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GL_SRC1_ALPHA,
GL_ONE_MINUS_SRC1_ALPHA

};
static const int num_blend_funcs = sizeof(blend_func) /

sizeof(blend_func[0]);
static const float x_scale = 20.0f / float(num_blend_funcs);
static const float y_scale = 16.0f / float(num_blend_funcs);
const float t = (float)currentTime;

glEnable(GL_BLEND);
glBlendColor(0.2f, 0.5f, 0.7f, 0.5f);
for (j = 0; j < num_blend_funcs; j++)
{

for (i = 0; i < num_blend_funcs; i++)
{

vmath::mat4 mv_matrix =
vmath::translate(9.5f - x_scale * float(i),

7.5f - y_scale * float(j),
-50.0f) *

vmath::rotate(t * -45.0f, 0.0f, 1.0f, 0.0f) *
vmath::rotate(t * -21.0f, 1.0f, 0.0f, 0.0f);

glUniformMatrix4fv(mv_location, 1, GL_FALSE, mv_matrix);

glBlendFunc(blend_func[i], blend_func[j]);

glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_SHORT, 0);
}

}

Listing 9.3: Rendering with all blending functions

Figure 9.5: All possible combinations of blending functions
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Dual-Source Blending

You may have noticed that some of the factors in Table 9.4 use source 0
colors (Rs0, Gs0, Bs0, and As0), and others use source 1 colors (Rs1, Gs1,
Bs1, and As1). Your shaders can export more than one final color for a
given color buffer by setting up the outputs used in your shader by
assigning them indices using the index layout qualifier. An example is
shown below:

layout (location = 0, index = 0) out vec4 color0;
layout (location = 0, index = 1) out vec4 color1;

Here, color0_0 will be used for the GL_SRC_COLOR factor, and color0_1
will be used for the GL_SRC1_COLOR. When you use dual source blending
functions, the number of separate color buffers that you can use might be
limited. You can find out how many dual output buffers are supported by
querying the value of GL_MAX_DUAL_SOURCE_DRAW_BUFFERS.

Blend Equation

Once the source and destination factors have been multiplied by the
source and destination colors, the two products need to be combined
together. This is done using an equation that you can set by calling
glBlendEquation() or glBlendEquationSeparate(). As with the blend
functions, you can choose one blend equation for the red, green,
and blue channels and another for the alpha channel — use
glBlendEquationSeparate() to do this. If you want both equations to be
the same, you can call glBlendEquation():

glBlendEquation(GLenum mode);

glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha);

For glBlendEquation(), the one parameter, mode, selects the same
mode for all of the red, green, blue, and alpha channels. For
glBlendEquationSeparate(), an equation can be chosen for the red, green,
and blue channels (specified in modeRGB) and another for the alpha
channel (specified in modeAlpha). The values you pass to the two functions
are shown in Table 9.5.

In Table 9.5, RGBs represents the source red, green, and blue values; RGBd

represents the destination red, green, and blue values; As and Ad represent
the source and destination alpha values; Srgb and Drgb represent the source
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Table 9.5: Blend Equations

Equation RGB Alpha

GL_FUNC_ADD Srgb ∗RGBs+ Sa ∗As+
Drgb ∗RGBd Da ∗Ad

GL_FUNC_SUBTRACT Srgb ∗RGBs− Sa ∗As−
Drgb ∗RGBd Da ∗Ad

GL_FUNC_REVERSE_ Drgb ∗RGBd− Da ∗Ad−
SUBTRACT Srgb ∗RGBs Sa ∗As

GL_MIN min(RGBs, RGBd) min(As, Ad)

GL_MAX max(RGBs, RGBd) min(As, Ad)

and destination blend factors; and Sa and Da represent the source and
destination alpha factors (chosen by glBlendFunc() or
glBlendFuncSeparate()).

Logical Operations

Once the pixel color is in the same format and bit depth as the
framebuffer, there are two more steps that can affect the final result. The
first allows you to apply a logical operation to the pixel color before it is
passed on. When enabled, the effects of blending are ignored. Logic
operations do not affect floating-point buffers. You can enable logic ops by
calling

glEnable(GL_COLOR_LOGIC_OP);

and disable it by calling

glDisable(GL_COLOR_LOGIC_OP);

Logic operations use the values of the incoming pixel and the existing
framebuffer to compute a final value. You can pick the operation that
computes the final value by calling glLogicOp(). The possible options are
listed in Table 9.6. The prototype of glLogicOp() is

glLogicOp(GLenum op);

where op is one of the values from Table 9.6.
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Table 9.6: Logic Operations

Operation Result

GL_CLEAR Set all values to 0
GL_AND Source & Destination
GL_AND_REVERSE Source & ~Destination
GL_COPY Source
GL_AND_INVERTED ~Source & Destination
GL_NOOP Destination
GL_XOR Source ^Destination
GL_OR Source | Destination
GL_NOR ~(Source | Destination)
GL_EQUIV ~(Source ^Destination)
GL_INVERT ~Destination
GL_OR_REVERSE Source | ~Destination
GL_COPY_INVERTED ~Source
GL_OR_INVERTED ~Source | Destination
GL_NAND ~(Source & Destination)
GL_SET Set all values to 1

Logic operations are applied separately to each color channel, and
operations that combine source and destination are performed bitwise on
the color values. Logic ops are not commonly used in today’s graphics
applications but still remain part of OpenGL because the functionality is
still supported on common GPUs.

Color Masking

One of the last modifications that can be made to a fragment before it is
written is masking. By now you recognize that three different types of data
can be written by a fragment shader: color, depth, and stencil data. Just as
you can mask off updates to the stencil and depth buffers, you can also
apply a mask to the updates of the color buffer.

To mask color writes or prevent color writes from happening, you can use
glColorMask() and glColorMaski(). We briefly introduced glColorMask()
back in Chapter 5 where we turned on and off writing to the framebuffer.
However, you don’t have to mask all color channels at once; for instance,
you can choose to mask the red and green channels while permitting
writes to the blue channel. Each function takes four Boolean parameters
that control updates to each of the red, green, blue, and alpha channels of
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the color buffer. You can pass in GL_TRUE to one of these parameters to
allow writes for the corresponding channel to occur, or GL_FALSE to mask
these writes off. The first function, glColorMask(), allows you to mask all
buffers currently enabled for rendering, while the second function,
glColorMaski(), allows you to set the mask for a specific color buffer (there
can be many if you’re rendering off screen). The prototypes of these two
functions are

glColorMask(GLboolean red,
GLboolean green,
GLboolean blue,
GLboolean alpha);

glColorMaski(GLuint index,
GLboolean red,
GLboolean green,
GLboolean blue,
GLboolean alpha);

For both functions, red, green, blue, and alpha can be set to either
GL_TRUE or GL_FALSE to determine whether the red, green, blue, or alpha
channels should be written to the framebuffer. For glColorMaski(), index
is the index of the color attachment to which masking should apply. Each
color attachment can have its own color mask settings. So, for example,
you could write only the red channel to attachment 0, only the green
channel to attachment 1, and so on.

Mask Usage

Write masks can be useful for many operations. For instance, if you want
to fill a shadow volume with depth information, you can mask off all
color writes because only the depth information is important. Or if you
want to draw a decal directly to screen space, you can disable depth writes
to prevent the depth data from being polluted. The key point about masks
is you can set them and immediately call your normal rendering paths,
which may set up necessary buffer state and output all color, depth, and
stencil data you would normally use without needing any knowledge of
the mask state. You don’t have to alter your shaders to not write some
value, detach some set of buffers, or change the enabled draw buffers. The
rest of your rendering paths can be completely oblivious and still generate
the right results.

Off-Screen Rendering

Until now, all of the rendering your programs have performed has been
directed into a window, or perhaps the computer’s main display. The
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output of your fragment shader goes into the back buffer, which is
normally owned by the operating system or window system that your
application is running on, and is eventually displayed to the user. Its
parameters are set when you choose a format for the rendering context. As
a platform-specific operation, this means that you have little control over
what the underlying storage format really is. Also, in order for the samples
in this book to run on many platforms, the book’s application framework
takes care of setting this up for you, hiding many of the details.

However, OpenGL includes features that allow you to set up your own
framebuffer and use it to draw directly into textures. You can then use
these textures later for further rendering or processing. You also have a lot
of control over the format and layout of the framebuffer. For example,
when you use the default framebuffer, it is implicitly sized to the size of
the window or display, and rendering outside the display (if the window is
obscured or dragged off the side of the screen, for example) is undefined as
the corresponding pixels’ fragment shaders might not run. However, with
user-supplied framebuffers, the maximum size of the textures you render
to is only limited by the maximums supported by the implementation of
OpenGL you’re running on, and rendering to any location in it is always
defined.

User-supplied framebuffers are represented by OpenGL as framebuffer
objects. As with most objects in OpenGL, each framebuffer object has a
name that must be reserved before it is created — the actual object is
initialized when it is first bound. So, the first thing to do is to reserve a
name for a framebuffer object and bind it to the context to initialize it. To
generate names for framebuffer objects, call glGenFramebuffers(), and to
bind a framebuffer to the context, call glBindFramebuffer(). The
prototypes of these functions are

void glGenFramebuffers(GLsizei n,
GLuint * ids);

void glBindFramebuffer(GLenum target,
GLuint framebuffer);

The glGenFramebuffers() function takes a count in n and hands you back
a list of names in ids that you are able to use as framebuffer objects. The
glBindFramebuffer() function makes your application-supplied
framebuffer object the current framebuffer (instead of the default one).
The framebuffer is one of the names that you got from a call to
glGenFramebuffers(), and target parameter will normally be
GL_FRAMEBUFFER. However, it’s possible to bind two framebuffers at the
same time — one for reading and one for writing.
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To bind a framebuffer for reading only, set target to
GL_READ_FRAMEBUFFER. Likewise, to bind a framebuffer just for rendering
to, set target to GL_DRAW_FRAMEBUFFER. The framebuffer bound for
drawing will be the destination for all of your rendering (including stencil
and depth values used during their respective tests and colors read during
blending). The framebuffer bound for reading will be the source of data if
you want to read back pixel data or copy data from the framebuffer into
textures, as we’ll explain shortly. Setting target to just GL_FRAMEBUFFER
actually binds the object to both the read and draw framebuffer targets,
and this is normally what you want.

Once you have created a framebuffer object and bound it, you can attach
textures to it to serve as the storage for the rendering you’re going to do.
There are three types of attachment supported by the framebuffer — the
depth, stencil, and color attachments, which serve as the depth, stencil,
and color buffers. To attach a texture to a framebuffer, we can call
glFramebufferTexture(), whose prototype is

void glFramebufferTexture(GLenum target,
GLenum attachment,
GLuint texture,
GLint level);

For glFramebufferTexture(), target is the binding point where the
framebuffer object you want to attach a texture to is bound. This should
be GL_READ_FRAMEBUFFER, GL_DRAW_FRAMEBUFFER, or just GL_FRAMEBUFFER.
In this case, GL_FRAMEBUFFER is considered to be equivalent to
GL_DRAW_FRAMEBUFFER, and so if you use this token, OpenGL will attach
the texture to the framebuffer object bound the GL_DRAW_FRAMEBUFFER
target.

attachment tells OpenGL which attachment you want to attach the
texture to. It can be GL_DEPTH_ATTACHMENT to attach the texture to the
depth buffer attachment, or GL_STENCIL_ATTACHMENT to attach it to the
stencil buffer attachment. Because there are several texture formats that
include depth and stencil values packed together, OpenGL also allows you
to set attachment to GL_DEPTH_STENCIL_ATTACHMENT to indicate that you
want to use the same texture for both the depth and stencil buffers.

To attach a texture as the color buffer, set attachment to
GL_COLOR_ATTACHMENT0. In fact, you can set attachment to
GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, and so on to attach
multiple textures for rendering to. We’ll get to that momentarily, but first,
we’ll look at an example of how to set up a framebuffer object for
rendering to. Lastly, texture is the name of the texture you want to attach
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to the framebuffer, and level is the mipmap level of the texture you want
to render into. Listing 9.4 shows a complete example of setting up a
framebuffer object with a depth buffer and a texture to render into.

// Create a framebuffer object and bind it
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

// Create a texture for our color buffer
glGenTextures(1, &color_texture);
glBindTexture(GL_TEXTURE_2D, color_texture);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA8, 512, 512);

// We’re going to read from this, but it won’t have mipmaps,
// so turn off mipmaps for this texture.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// Create a texture that will be our FBO’s depth buffer
glGenTextures(1, &depth_texture);
glBindTexture(GL_TEXTURE_2D, depth_texture);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_DEPTH_COMPONENT32F, 512, 512);

// Now, attach the color and depth textures to the FBO
glFramebufferTexture(GL_FRAMEBUFFER,

GL_COLOR_ATTACHMENT0,
color_texture, 0);

glFramebufferTexture(GL_FRAMEBUFFER,
GL_DEPTH_ATTACHMENT,
depth_texture, 0);

// Tell OpenGL that we want to draw into the framebuffer’s color
// attachment
static const GLenum draw_buffers[] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, draw_buffers);

Listing 9.4: Setting up a simple framebuffer object

After this code has executed, all we need to do is call glBindFramebuffer()
again and pass our newly created framebuffer object, and all rendering will
be directed into the depth and color textures. Once we’re done rendering
into our own framebuffer, we can use the resulting texture as a regular
texture and read from it in our shaders. Listing 9.5 shows an example of
doing this.

// Bind our off-screen FBO
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

// Set the viewport and clear the depth and color buffers
glViewport(0, 0, 512, 512);
glClearBufferfv(GL_COLOR, 0, green);
glClearBufferfv(GL_DEPTH, 0, &one);

// Activate our first, non-textured program
glUseProgram(program1);
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// Set our uniforms and draw the cube.
glUniformMatrix4fv(proj_location, 1, GL_FALSE, proj_matrix);
glUniformMatrix4fv(mv_location, 1, GL_FALSE, mv_matrix);
glDrawArrays(GL_TRIANGLES, 0, 36);

// Now return to the default framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);

// Reset our viewport to the window width and height, clear the
// depth and color buffers.
glViewport(0, 0, info.windowWidth, info.windowHeight);
glClearBufferfv(GL_COLOR, 0, blue);
glClearBufferfv(GL_DEPTH, 0, &one);

// Bind the texture we just rendered to for reading
glBindTexture(GL_TEXTURE_2D, color_texture);

// Activate a program that will read from the texture
glUseProgram(program2);

// Set uniforms and draw
glUniformMatrix4fv(proj_location2, 1, GL_FALSE, proj_matrix);
glUniformMatrix4fv(mv_location2, 1, GL_FALSE, mv_matrix);
glDrawArrays(GL_TRIANGLES, 0, 36);

// Unbind the texture and we’re done.
glBindTexture(GL_TEXTURE_2D, 0);

Listing 9.5: Rendering to a texture

The code shown in Listing 9.5 is taken from the basicfbo sample and first
binds our user-defined framebuffer, sets the viewport to the dimensions
of the framebuffer, and clears the color buffer with a dark green color. It
then proceeds to draw our simple cube model. This results in the cube
being rendered into the texture we previously attached to the
GL_COLOR_ATTACHMENT0 attachment point on the framebuffer. Next, we
unbind our FBO, returning to the default framebuffer that represents our
window. We render the cube again, this time with a shader that uses the
texture we just rendered to. The result is that an image of the first cube we
rendered is shown on each face of the second cube. Output of the
program is shown in Figure 9.6.

Multiple Framebuffer Attachments

In the last section, we introduced the concept of user-defined
framebuffers, which are also known as FBOs. An FBO allows you to render
into textures that you create in your application. Because the textures are
owned and allocated by OpenGL, they are decoupled from the operating
or window system and so can be extremely flexible. The upper limit on
their size depends only on OpenGL and not on the attached displays, for
example. You also have full control over their format.
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Figure 9.6: Result of rendering into a texture

Another extremely useful feature of user-defined framebuffers is that they
support multiple attachments. That is, you can attach multiple textures to
a single framebuffer and render into them simultaneously with a single
fragment shader. Recall that to attach your texture to your FBO, you called
glFramebufferTexture() and passed GL_COLOR_ATTACHMENT0 as the
attachment parameter, but we mentioned that you can also pass
GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, and so on. In fact,
OpenGL supports attaching at least eight textures to a single FBO.
Listing 9.6 shows an example of setting up an FBO with three color
attachments.

static const GLenum draw_buffers[] =
{

GL_COLOR_ATTACHMENT0,
GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2

};

// First, generate and bind our framebuffer object
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

// Generate three texture names
glGenTextures(3, &color_texture[0]);

// For each one...
for (int i = 0; i < 3; i++)
{

// Bind and allocate storage for it
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glBindTexture(GL_TEXTURE_2D, color_texture[i]);
glTexStorage2D(GL_TEXTURE_2D, 9, GL_RGBA8, 512, 512);

// Set its default filter parameters
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// Attach it to our framebuffer object as color attachments
glFramebufferTexture(GL_FRAMEBUFFER,

draw_buffers[i], color_texture[i], 0);
}

// Now create a depth texture
glGenTextures(1, &depth_texture);
glBindTexture(GL_TEXTURE_2D, depth_texture);
glTexStorage2D(GL_TEXTURE_2D, 9, GL_DEPTH_COMPONENT32F, 512, 512);

// Attach the depth texture to the framebuffer
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

depth_texture, 0);

// Set the draw buffers for the FBO to point to the color attachments
glDrawBuffers(3, draw_buffers);

Listing 9.6: Setting up an FBO with multiple attachments

To render into multiple attachments from a single fragment shader, we
must declare multiple outputs in the shader and associate them with the
attachment points. To do this, we use a layout qualifier to specify each
output’s location, which is a term used to refer to the index of the
attachment to which that output will be sent. Listing 9.7 shows an
example of this.

layout (location = 0) out vec4 color0;
layout (location = 1) out vec4 color1;
layout (location = 2) out vec4 color2;

Listing 9.7: Declaring multiple outputs in a fragment shader

Once you have declared multiple outputs in your fragment shader, you
can write different data into each of them and that data will be directed
into the framebuffer color attachment indexed by the output’s location.
Remember, the fragment shader still only executes once for each fragment
produced during rasterization, and the data written to each of the shader’s
outputs will be written at the same position within each of the
corresponding framebuffer attachments.

Layered Rendering

In “Array Textures” in Chapter 5, we described a form of texture called the
array texture, which represents a stack of 2D textures arranged as an array
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of layers that you can index into in a shader. It’s also possible to render
into array textures by attaching them to a framebuffer object and using a
geometry shader to specify which layer you want the resulting primitives
to be rendered into. Listing 9.8 is taken from the gslayered sample and
illustrates how to set up a framebuffer object that uses a 2D array texture
as a color attachment. Such a framebuffer is known as a layered framebuffer.
In addition to creating an array texture to use as a color attachment, you
can create an array texture with a depth or stencil format and attach that
to the depth or stencil attachment points of the framebuffer object. That
texture will then become your depth or stencil buffer, allowing you to
perform depth and stencil testing in a layered framebuffer.

// Create a texture for our color attachment, bind it, and allocate
// storage for it. This will be 512 x 512 with 16 layers.
GLuint color_attachment;
glGenTextures(1, &color_attachment);

glBindTexture(GL_TEXTURE_2D_ARRAY, color_attachment);
glTexStorage3D(GL_TEXTURE_2D_ARRAY, 1, GL_RGBA8, 512, 512, 16);

// Do the same thing with a depth buffer attachment.
GLuint depth_attachment;
glGenTextures(1, &depth_attachment);

glBindTexture(GL_TEXTURE_2D_ARRAY, depth_attachment);
glTexStorage3D(GL_TEXTURE_2D_ARRAY, 1, GL_DEPTH_COMPONENT, 512, 512, 16);

// Now create a framebuffer object, and bind our textures to it
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
color_attachment, 0);

glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
depth_attachment, 0);

// Finally, tell OpenGL that we plan to render to the color
// attachment
static const GLuint draw_buffers[] = { GL_COLOR_ATTACHMENT0 };

glDrawBuffers(1, draw_buffers);

Listing 9.8: Setting up a layered framebuffer

Once you have created an array texture and attached it to a framebuffer
object, you can then render into it as normal. If you don’t use a geometry
shader, all rendering goes into the first layer of the array — the slice at
index zero. However, if you wish to render into a different layer, you will
need to write a geometry shader. In the geometry shader, the built-in
variable gl_Layer is available as an output. When you write a value into
gl_Layer, that value will be used to index into the layered framebuffer to
select the layer of the attachments to render into. Listing 9.9 shows a
simple geometry shader that renders 16 copies of the incoming geometry,
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each with a different model-view matrix, into an array texture and passes a
per-invocation color along to the fragment shader.

#version 430 core

// 16 invocations of the geometry shader, triangles in
// and triangles out
layout (invocations = 16, triangles) in;
layout (triangle_strip, max_vertices = 3) out;

in VS_OUT
{

vec4 color;
vec3 normal;

} gs_in[];

out GS_OUT
{

vec4 color;
vec3 normal;

} gs_out;

// Declare a uniform block with one projection matrix and
// 16 model-view matrices
layout (binding = 0) uniform BLOCK
{

mat4 proj_matrix;
mat4 mv_matrix[16];

};

void main(void)
{

int i;

// 16 colors to render our geometry
const vec4 colors[16] = vec4[16](

vec4(0.0, 0.0, 1.0, 1.0), vec4(0.0, 1.0, 0.0, 1.0),
vec4(0.0, 1.0, 1.0, 1.0), vec4(1.0, 0.0, 1.0, 1.0),
vec4(1.0, 1.0, 0.0, 1.0), vec4(1.0, 1.0, 1.0, 1.0),
vec4(0.0, 0.0, 0.5, 1.0), vec4(0.0, 0.5, 0.0, 1.0),
vec4(0.0, 0.5, 0.5, 1.0), vec4(0.5, 0.0, 0.0, 1.0),
vec4(0.5, 0.0, 0.5, 1.0), vec4(0.5, 0.5, 0.0, 1.0),
vec4(0.5, 0.5, 0.5, 1.0), vec4(1.0, 0.5, 0.5, 1.0),
vec4(0.5, 1.0, 0.5, 1.0), vec4(0.5, 0.5, 1.0, 1.0)

);

for (i = 0; i < gl_in.length(); i++)
{

// Pass through all the geometry
gs_out.color = colors[gl_InvocationID];
gs_out.normal = mat3(mv_matrix[gl_InvocationID]) * gs_in[i].normal;
gl_Position = proj_matrix *

mv_matrix[gl_InvocationID] *
gl_in[i].gl_Position;

// Assign gl_InvocationID to gl_Layer to direct rendering
// to the appropriate layer
gl_Layer = gl_InvocationID;
EmitVertex();

}

EndPrimitive();
}

Listing 9.9: Layered rendering using a geometry shader

372 Chapter 9: Fragment Processing and the Framebuffer



The result of running the geometry shader shown in Listing 9.9 is that we
have an array texture with a different view of a model in each slice.
Obviously, we can’t directly display the contents of an array texture, so we
must now use our texture as the source of data in another shader. The
vertex shader in Listing 9.10, along with the corresponding fragment
shader in Listing 9.11, displays the contents of an array texture.

#version 430 core

out VS_OUT
{

vec3 tc;
} vs_out;

void main(void)
{

int vid = gl_VertexID;
int iid = gl_InstanceID;
float inst_x = float(iid % 4) / 2.0;
float inst_y = float(iid >> 2) / 2.0;

const vec4 vertices[] = vec4[](vec4(-0.5, -0.5, 0.0, 1.0),
vec4( 0.5, -0.5, 0.0, 1.0),
vec4( 0.5, 0.5, 0.0, 1.0),
vec4(-0.5, 0.5, 0.0, 1.0));

vec4 offs = vec4(inst_x - 0.75, inst_y - 0.75, 0.0, 0.0);

gl_Position = vertices[vid] *
vec4(0.25, 0.25, 1.0, 1.0) + offs;

vs_out.tc = vec3(vertices[vid].xy + vec2(0.5), float(iid));
}

Listing 9.10: Displaying an array texture — vertex shader

#version 430 core

layout (binding = 0) uniform sampler2DArray tex_array;

layout (location = 0) out vec4 color;

in VS_OUT
{

vec3 tc;
} fs_in;

void main(void)
{

color = texture(tex_array, fs_in.tc);
}

Listing 9.11: Displaying an array texture — fragment shader

The vertex shader in Listing 9.10 simply produces a quad based on the
vertex index. In addition, it offsets the quad using a function of the
instance index such that rendering 16 instances will produce a 4 × 4 grid
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of quads. Finally, it also produces a texture coordinate using the x and y
components of the vertex along with the instance index as the third
component. Because we will use this to fetch from an array texture, this
third component will select the layer. The fragment shader in Listing 9.11
simply reads from the array texture using the supplied texture coordinates
and sends the result to the color buffer.

The result of the program is shown in Figure 9.7. As you can see, 16 copies
of the torus have been rendered, each with a different color and
orientation. Each of the 16 copies is then drawn into the window by
reading from a separate layer of the array texture.

Figure 9.7: Result of the layered rendering example

Rendering into a 3D texture works in almost exactly the same way. You
simply attach the whole 3D texture to a framebuffer object as one of its
color attachments and then set the gl_Layer output as normal. The value
written to gl_Layer becomes the z coordinate of the slice within the 3D
texture where data produced by the fragment shader will be written. It’s
even possible to render into multiple slices of the same texture (array or
3D) at the same. To do this, call glFramebufferTextureLayer(), whose
prototype is

void glFramebufferTextureLayer(GLenum target,
GLenum attachment,
GLuint texture,
GLint level,
GLint layer);
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The glFramebufferTextureLayer() function works just like
glFramebufferTexture(), except that it takes one additional parameter,
layer, which specifies the layer of the texture that you wish to attach to
the framebuffer. For instance, the code in Listing 9.12 creates a 2D array
texture with eight layers and attaches each of the layers to the
corresponding color attachment of a framebuffer object.

GLuint tex;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D_ARRAY, tex);
glTexStorage3D(GL_TEXTURE_2D_ARRAY, 1, GL_RGBA8, 256, 256, 8);

GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

int i;
for (i = 0; i < 8; i++)
{

glFramebufferTextureLayer(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0 + i,
tex,
0,
i);

}

static const GLenum draw_buffers[] =
{

GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3,
GL_COLOR_ATTACHMENT4, GL_COLOR_ATTACHMENT5,
GL_COLOR_ATTACHMENT6, GL_COLOR_ATTACHMENT7

};
glDrawBuffers(8, &draw_buffers[0]);

Listing 9.12: Attaching texture layers to a framebuffer

Now, when you render into the framebuffer created in Listing 9.12, your
fragment shader can have up to eight outputs, and each will be written to
a different layer of the texture.

Rendering to Cube Maps

As far as OpenGL is concerned, a cube map is really a special case of an
array texture. A single cube map is just an array of six slices, and a cube
map array texture is an array of an integer multiple of six slices. You attach
a cube map texture to a framebuffer object in exactly the same way as
shown in Listing 9.8, except that rather than creating a 2D array texture,
you create a cube map texture. The cube map has six faces, which are
known as positive and negative x, positive and negative y, and positive
and negative z, and they appear in that order in the array texture. When
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you write 0 into gl_Layer in your geometry shader, rendering will go to
the positive x face of the cube map. Writing 1 into gl_Layer sends output
to the negative x face, writing 2 sends output to the positive y face, and so
on, until eventually, writing 5 sends output to the negative z face.

If you create a cube map array texture and attach it to a framebuffer
object, writing to the first six layers will render into the first cube, writing
the next six layers will write into the second cube, and so on. So, if you set
gl_Layer to 6, you will write to the positive x face of the second cube in
the array. If you set gl_Layer to 1234, you will render into the positive z
face of the 205th face.

Just as with 2D array textures, it’s also possible to attach individual faces of
a cube map to the various attachment points of a single framebuffer
object. In this case, we use the glFramebufferTexture2D() function, whose
prototype is

void glFramebufferTexture2D(GLenum target,
GLenum attachment,
GLenum textarget,
GLuint texture,
GLint level);

Again, this function works just like glFramebufferTexture(), except that it
has one additional parameter, textarget. This can be set to specify which
face of the cube map you want to attach to the attachment. To attach the
cube map’s positive x face, set this to GL_CUBE_MAP_POSITIVE_X; for the
negative x face, set it to GL_CUBE_MAP_NEGATIVE_X. Similar tokens are
available for the y and z faces, too. Using this, you could bind all of the
faces of a single cube map4 to the attachment points on a single
framebuffer and render into all of them at the same time.

Framebuffer Completeness

Before we can finish up with framebuffer objects, there is one last
important topic. Just because you are happy with the way you set up your
FBO doesn’t mean your OpenGL implementation is ready to render. The
only way to find out if your FBO is set up correctly and in a way that the
implementation can use it is to check for framebuffer completeness.
Framebuffer completeness is similar in concept to texture completeness. If
a texture doesn’t have all required mipmap levels specified with the right
sizes, formats, and so on, that texture is incomplete and can’t be used.

4. While this is certainly possible, rendering the same thing to all faces of a cube map has
limited utility.
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There are two categories of completeness: attachment completeness and
whole framebuffer completeness.

Attachment Completeness

Each attachment point of an FBO must meet certain criteria to be
considered complete. If any attachment point is incomplete, the whole
framebuffer will also be incomplete. Some of the cases that cause an
attachment to be incomplete are

• No image is associated with the attached object.

• Width or height of zero for attached image.

• A non-color renderable format is attached to a color attachment.

• A non-depth renderable format is attached to a depth attachment.

• A non-stencil renderable format is attached to a stencil attachment.

Whole Framebuffer Completeness

Not only does each attachment point have to be valid and meet certain
criteria, but the framebuffer object as a whole must also be complete. The
default framebuffer, if one exists, will always be complete. Common cases
for the whole framebuffer being incomplete are

• glDrawBuffers() has mapped an output to an FBO attachment where
no image is attached.

• The combination of internal formats is not supported by the
OpenGL driver.

Checking the Framebuffer

When you think you are finished setting up an FBO, you can check to see
whether it is complete by calling

GLenum fboStatus = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);

If glCheckFramebufferStatus() returns GL_FRAMEBUFFER_COMPLETE, all is
well, and you may use the FBO. The return value of
glCheckFramebufferStatus() provides clues to what might be wrong if the
framebuffer is not complete. Table 9.7 describes all possible return
conditions and what they mean.
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Many of these return values are helpful when debugging an application
but are less useful after an application has shipped. Nonetheless, the first
sample application checks to make sure none of these conditions
occurred. It pays to do this check in applications that use FBOs, making
sure your use case hasn’t hit some implementation-dependent limitation.
An example of how this might look is shown in Listing 9.13.

Table 9.7: Framebuffer Completeness Return Values

Return Value
(GL_FRAMEBUFFER_*)

Description

UNDEFINED The current FBO binding is 0, but
no default framebuffer exists.

COMPLETE A user-defined FBO is bound and
is complete. OK to render.

INCOMPLETE_ATTACHMENT One of the buffers enabled for
rendering is incomplete.

INCOMPLETE_MISSING_

ATTACHMENT
No buffers are attached to the
FBO and it is not configured for
rendering without attachments.

UNSUPPORTED The combination of internal
buffer formats is not supported.

INCOMPLETE_LAYER_TARGETS Not all color attachments are
layered textures or bound to the
same target.

GLenum fboStatus = glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER);
if(fboStatus != GL_FRAMEBUFFER_COMPLETE)
{

switch (fboStatus)
{
case GL_FRAMEBUFFER_UNDEFINED:

// Oops, no window exists?
break;

case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
// Check the status of each attachment
break;

case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
// Attach at least one buffer to the FBO
break;

case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER:
// Check that all attachments enabled via
// glDrawBuffers exist in FBO

case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER:
// Check that the buffer specified via
// glReadBuffer exists in FBO
break;
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case GL_FRAMEBUFFER_UNSUPPORTED:
// Reconsider formats used for attached buffers
break;

case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE:
// Make sure the number of samples for each
// attachment is the same
break;

case GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS:
// Make sure the number of layers for each
// attachment is the same
break;

}
}

Listing 9.13: Checking completeness of a framebuffer object

If you attempt to perform any command that reads from or writes to the
framebuffer while an incomplete FBO is bound, the command simply
returns after throwing the error GL_INVALID_FRAMEBUFFER_OPERATION,
retrievable by calling glGetError().

Read Framebuffers Need to Be Complete, Too!

In the previous examples, we test the FBO attached to the draw buffer
binding point, GL_DRAW_FRAMEBUFFER. But a framebuffer attached to
GL_READ_FRAMEBUFFER also has to be attachment complete and whole
framebuffer complete for reads to work. Because only one read buffer can
be enabled at a time, making sure an FBO is complete for reading is a little
easier.

Rendering in Stereo

Most5 human beings have two eyes. We use these two eyes to help us
judge distance by providing parallax shift — a slight difference between
the images our two eyes see. There are many depth queues, including
depth from focus, from differences in lighting and the relative movement
of objects as we move our point of view. OpenGL is able to produce pairs
of images that, depending on the display device used, can be presented
separately to your two eyes and increase the sense of depth of the image.
There are plenty of display devices available including binocular displays
(devices with a separate physical display for each eye), shutter and
polarized displays that require glasses to view, and autostereoscopic
displays that don’t require that you put anything on your face. OpenGL

5. Those readers with less than two eyes may wish to skip to the next section.
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doesn’t really care about how the image is displayed, only that you wish to
render two views of the scene — one for the left eye and one for the right.

To display images in stereo requires some cooperation from the
windowing or operating system, and therefore the mechanism to create a
stereo display is platform specific. The gory details of this are covered for a
number of platforms in Chapter 14. For now, we can use the facilities
provided by the sb6 application framework to create our stereo window
for us. In your application, you can override sb6::application::init,
call the base class function, and then set info.flags.stereo to 1 as
shown in Listing 9.14. Because some OpenGL implementations may
require your application to cover the whole display (which is known as
full-screen rendering), you can also set the info.flags.fullscreen flag in
your init function to make the application use a full-screen window.

void my_application::init()
{

info.flags.stereo = 1;
info.flags.fullscreen = 1; // Set this if your OpenGL

// implementation requires
// fullscreen for stereo rendering.

}

Listing 9.14: Creating a stereo window

Remember, not all displays support stereo output, and not all OpenGL
implementations will allow you to create a stereo window. However, if you
have access to the necessary display and OpenGL implementation, you
should have a window that runs in stereo. Now we need to render into it.
The simplest way to render in stereo is to simply draw the entire scene
twice. Before rendering into the left eye image, call

glDrawBuffer(GL_BACK_LEFT);

When you want to render into the right eye image, call

glDrawBuffer(GL_BACK_RIGHT);

In order to produce a pair of images with a compelling depth effect, you
need to construct transformation matrices representing the views observed
by the left and right eyes. Remember, our model matrix transforms our
model into world space, and world space is global, applying the same way
regardless of the viewer. However, the view matrix essentially transforms
the world into the frame of the viewer. As the viewer is in a different
location for each of the eyes, the view matrix must be different for each of
the two eyes. Therefore, when we render to the left view, we use the left
view matrix, and when we’re rendering to the right view, we use the right
view matrix.
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The simplest form of stereo view matrix pairs simply translates the left and
right views away from each other on the horizontal axis. Optionally, you
can also rotate the view matrices inwards towards the center of view.
Alternatively, you can use the vmath::lookat function to generate your
view matrices for you. Simply place your eye at the left eye location
(slightly left of the viewer position) and the center of the object of interest
to create the left view matrix, and then do the same with the right eye
position to create the right view matrix. Listing 9.15 shows how this is
done.

void my_application::render(double currentTime)
{

static const vmath::vec3 origin(0.0f);
static const vmath::vec3 up_vector(0.0f, 1.0f, 0.0f);
static const vmath::vec3 eye_separation(0.01f, 0.0f, 0.0f);

vmath::mat4 left_view_matrix =
vmath::lookat(eye_location - eye_separation,

origin,
up_vector);

vmath::mat4 right_view_matrix =
vmath::lookat(eye_location + eye_separation,

origin,
up_vector);

static const GLfloat black[] = { 0.0f, 0.0f ,0.0f, 0.0f };
static const GLfloat one = 1.0f;

// Setting the draw buffer to GL_BACK ends up drawing in
// both the back left and back right buffers. Clear both
glDrawBuffer(GL_BACK);
glClearBufferfv(GL_COLOR, 0, black);
glClearBufferfv(GL_DEPTH, 0, &one);

// Now, set the draw buffer to back left
glDrawBuffer(GL_BACK_LEFT);

// Set our left model-view matrix product
glUniformMatrix4fv(model_view_loc, 1,

left_view_matrix * model_matrix);

// Draw the scene
draw_scene();

// Set the draw buffer to back right
glDrawBuffer(GL_BACK_RIGHT);

// Set the right model-view matrix product
glUniformMatrix4fv(model_view_loc, 1,

right_view_matrix * model_matrix);

// Draw the scene... again.
draw_scene();

}

Listing 9.15: Drawing into a stereo window
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Clearly, the code in Listing 9.15 renders the entire scene twice. Depending
on the complexity of your scene, that could be very, very expensive —
literally doubling the cost of rendering the scene. One possible tactic is to
switch between the GL_BACK_LEFT and GL_BACK_RIGHT draw buffers
between each and every object in your scene. This can mean that updates
to state (such as binding textures or changing the current program) can be
performed only once, but changing the draw buffer can be as expensive as
any other state-changing function. As we learned earlier in the chapter,
though, it’s possible to render into more than one buffer at a time by
outputting two vectors from your fragment shader. In fact, consider what
would happen if you used a fragment shader with two outputs and
then call

static const GLenum buffers[] = { GL_BACK_LEFT, GL_BACK_RIGHT }
glDrawBuffers(2, buffers);

After this, the first output of your fragment shader will be written to the
left eye buffer, and the second will be written to the right eye buffer. This
is great! Now we can render both eyes at the same time! Well, not so fast.
Remember, even though the fragment shader can output to a number of
different draw buffers, the location within each of those buffers will be the
same. How do we draw a different image into each of the buffers?

What we can do is use a geometry shader to render into a layered
framebuffer with two layers, one for the left eye and one for the right eye.
We will use geometry shader instancing to run the geometry shader twice,
and write the invocation index into the layer to direct the two copies of
the data into the two layers of the framebuffer. In each invocation of the
geometry shader, we can select one of two model-view matrices and
essentially perform all of the work of the vertex shader in the geometry
shader. Once we’re done rendering the whole scene, the framebuffer’s two
layers will contain the left and right eye images. All that is needed now is
to render a full-screen quad with a fragment shader that reads from the
two layers of the array texture and writes the result into its two outputs,
which are directed into the left and right eye views.

Listing 9.16 shows the simple geometry shader that we’ll use in our
application to render both views of our stereo scene in a single pass.

#version 430 core

layout (triangles, invocations = 2) in;
layout (triangle_strip, max_vertices = 3) out;

uniform matrices
{
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mat4 model_matrix;
mat4 view_matrix[2];
mat4 projection_matrix;

};

in VS_OUT
{

vec4 color;
vec3 normal;
vec2 texture_coord;

} gs_in[];

out GS_OUT
{

vec4 color;
vec3 normal;
vec2 texture_coord;

} gs_out;

void main(void)
{

// Calculate a model-view matrix for the current eye
mat4 model_view_matrix = view_matrix[gl_InvocationID] *

model_matrix;

for (int i = 0; i < gl_in.length(); i++)
{

// Output layer is invocation ID
gl_Layer = gl_InvocationID;
// Multiply by the model matrix, view matrix for the
// appropriate eye and then the projection matrix.
gl_Position = projection_matrix *

model_view_matrix *
gl_in[i].gl_Position;

gs_out.color = gs_in[i].color;
// Don’t forget to transform the normals...
gs_out.normal = mat3(model_view_matrix) * gs_in[i].normal;
gs_out.texcoord = gs_in[i].texcoord;
EmitVertex();

}

EndPrimitive();
}

Listing 9.16: Rendering to two layers with a geometry shader

Now that we’ve rendered our scene into our layered framebuffer, we can
attach the underlying array texture and draw a full-screen quad to copy
the result into the left and right back buffers with a single shader. Such a
shader is shown in Listing 9.17.

#version 430 core

layout (location = 0) out vec4 color_left;
layout (location = 1) out vec4 color_right;

in vec2 tex_coord;

uniform sampler2DArray back_buffer;
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void main(void)
{

color_left = texture(back_buffer, vec3(tex_coord, 0.0));
color_right = texture(back_buffer, vec3(tex_coord, 1.0));

}

Listing 9.17: Copying from an array texture to a stereo back buffer

A photograph running this application is shown in Figure 9.8. A
photograph is necessary here as a screenshot would not show both of the
images in the stereo pair. However, the double image produced by stereo
rendering is clearly visible in the photograph.

Figure 9.8: Result of stereo rendering to a stereo display

Antialiasing

Aliasing is an artifact of under-sampling data. It is a term commonly used
in signal processing fields. When aliasing occurs in an audio signal, it can
be heard as a high-pitched whining or crunching sound. You may have
noticed this in old video games, musical greeting cards, or children’s toys
that often include low-cost playback devices. Aliasing occurs when the rate
at which a signal is sampled (the sampling rate) is too low for the content
of that signal. The rate at which a sample must be sampled in order to
preserve (most of) its content is known as the Nyquist rate, and is twice
the frequency of the highest frequency component present in the signal to
be captured. In image terms, aliasing manifests as jagged edges wherever
there is sharp contrast. These edges are sometimes referred to as jaggies.
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There are two main approaches to deal with aliasing. The first is filtering,
which removes high-frequency content from the signal before or during
sampling. The second is increasing the sampling rate, which allows the
higher frequency content to be recorded. The additional samples captured
can then be processed for storage or reproduction. Methods for reducing
or eliminating aliasing are known as antialiasing techniques. OpenGL
includes a number of ways to apply antialiasing to your scene. These
include filtering geometry as it is rendered, and various forms of
over-sampling.

Antialiasing by Filtering

The first and simplest way to deal with the aliasing problem is to filter
primitives as they are drawn. To do this, OpenGL calculates the amount of
a pixel that is covered by a primitive (point, line, or triangle) and uses it to
generate an alpha value for each fragment. This alpha value is multiplied
by the alpha value of the fragment produced by your shader and so has an
effect on blending when either the source or destination blend factor
includes the source alpha term. Now, as fragments are drawn to the
screen, they are blended with its existing content using a function of the
pixel coverage.

To turn on this form of antialiasing, we need to do two things. First, we
need to enable blending and choose an appropriate blending function.
Second, we need to enable GL_LINE_SMOOTH to apply antialiasing to lines
and GL_POLYGON_SMOOTH to apply antialiasing to triangles. Figure 9.9
shows the result of doing this.

Figure 9.9: Antialiasing using line smoothing

On the left of Figure 9.9, we have drawn our spinning cube in line mode
and zoomed in on a section of the image where a number of edges join
each other. In the inset, the aliasing artifacts are clearly visible — notice
the jagged edges. In the image on the right of Figure 9.9, line smoothing
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and blending are enabled, but the scene is otherwise unchanged. Notice
how the lines appear much smoother and the jagged edges are much
reduced. Zooming into the inset, we see that the lines have been blurred
slightly. This is the effect of filtering that is produced by calculating the
coverage of the lines and using it to blend them with the background
color. The code to set up antialiasing and blending in order to render the
image is shown in Listing 9.18.

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);

Listing 9.18: Turning on line smoothing

Listing 9.18 seems pretty simple, doesn’t it? Surely, if it’s that simple, we
should be able to turn this on for any geometry we like and everything
will just look better. Well, no, that’s not really true. This form of
antialiasing only works in limited cases like the one shown in Figure 9.9.
Take a look at the images in Figure 9.10.

Figure 9.10: Antialiasing using polygon smoothing

The left image in Figure 9.10 shows our cube rendered in solid white. You
can see that the jaggies in the middle where the individual triangles abut
aren’t visible, but on the edges of the cube, we can see the aliasing effect
quite clearly. In the image on the right of Figure 9.10, we have turned on
polygon smoothing using code almost identical to that of Listing 9.18,
only substituting GL_POLYGON_SMOOTH for GL_LINE_SMOOTH. Now, although
the edges of the cube are smoothed and the jaggies are mostly gone, what
happened to the interior edges? They have become visible!

Consider what happens when the edge between two adjoining triangles
cuts exactly halfway through the middle of a pixel. First, our application
clears the framebuffer to black, and then our first white triangle hits that
pixel. OpenGL calculates that half the pixel is covered by the triangle, and
uses an alpha value of 0.5 in the blending equation. This mixes half and
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half white and black, producing a mid-gray pixel. Next, our second,
adjacent triangle comes along and covers the other half of the pixel.
Again, OpenGL figures that half the pixel is covered by the new triangle
and mixes the white of the triangle with the existing framebuffer
content... except now the framebuffer is 50% gray! Mixing white and 50%
gray produces 75% gray, which is the color we see in the lines between the
triangles.

Ultimately, whenever a polygon edge cuts part of the way through a pixel
and is written to the screen, OpenGL has no way to know which part is
already covered and which part is not. This leads to artifacts like those
seen in Figure 9.10. Another significant issue with this method is that
there is only one depth value for each pixel, which means that if a triangle
pokes into a not-yet-covered part of a pixel, it may still fail the depth test
and not contribute at all if there’s already a closer triangle covering a
different part of that same pixel.

To circumvent these problems, we need more advanced antialiasing
methods, all of which include increasing the sample count.

Multi-sample Antialiasing

To increase the sample rate of the image, OpenGL supports storing
multiple samples for every pixel on the screen. This technique is known as
multi-sample antialiasing or MSAA. Rather than sampling each primitive
only once, OpenGL will sample the primitive at multiple locations within
the pixel and, if any are hit, run your shader. Whatever color your shader
produces is written into all of the hit samples. The actual location of the
samples within each pixel might be different on different OpenGL
implementations. Figure 9.11 shows an example arrangement of the
sample positions for 1, 2, 4, and 8 sample arrangements.

Figure 9.11: Antialiasing sample positions

Turning on MSAA for the default framebuffer is somewhat platform
specific. In most cases, you need to specify a multi-sampled format for
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the default framebuffer when you set up your rendering window. In
the sample programs included with this book, the application
framework takes care of this for you. To enable multi-sampling
with the sb6::application framework, simply override the
sb6::application::init() function, call the base class method, and then
set the samples member of the info structure to the desired sample count.
Listing 9.19 shows an example of this.

virtual void init()
{

sb6::application::init();

info.samples = 8;
}

Listing 9.19: Choosing 8-sample antialiasing

After choosing 8-sample antialiasing and rendering our trusty spinning
cube, we are presented with the images shown in Figure 9.12.

Figure 9.12: No antialiasing (left) and 8-sample antialiasing (center and
right)

In the leftmost image of Figure 9.12, no antialiasing is applied and we are
given jaggies as normal. In the center image, we can see that antialiasing
has been applied to the lines, but the result doesn’t look that dissimilar to
the image produced by enabling GL_LINE_SMOOTH, as shown in Figure 9.9.
However, the real difference is shown in the rightmost image of
Figure 9.11. Here, we will have good quality antialiasing along the edges
of our polygons, but the inner abutting edges of the triangles no longer
show gray artifacts.

If you create a multi-sampled framebuffer, then multi-sampling is enabled
by default. However, if you wish to render without multi-sampling even
though the current framebuffer has a multi-sampled format, you can turn
multi-sampling off by calling

glDisable(GL_MULTISAMPLE);
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and of course, you can turn it back on again by calling

glEnable(GL_MULTISAMPLE);

When multi-sampling is disabled, OpenGL proceeds as if the framebuffer
were a normal single-sample framebuffer and samples each fragment once.
The only difference being that the shading results are written to every
sample in the pixel.

Multi-sample Textures

You have already learned about how to render into off-screen textures
using a framebuffer object, and you have learned about how to perform
antialiasing using multi-sampling. However, the multi-sampled color
buffer has been owned by the window system. It’s possible to combine
both of these features and create an off-screen multi-sampled color buffer
to render into. To do this, we can create a multi-sampled texture and attach
it to a framebuffer object for rendering into.

To create a multi-sampled texture, create a texture name as normal and
bind it to one of the multi-sampled texture targets such as
GL_TEXTURE_2D_MULTISAMPLE or GL_TEXTURE_2D_MULTISAMPLE_ARRAY.
Then, allocate storage for it using glTexStorage2DMultisample() or
glTexStorage3DMultisample() (for array textures), whose prototypes are

void glTexStorage2DMultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLboolean fixedsamplelocations);

void glTexStorage3DMultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLboolean fixedsamplelocations);

These two functions behave pretty much like glTexStorage2D() and
glTexStorage3D(), but with a couple of extra parameter. The first, samples,
tells OpenGL how many samples should be in the texture. The second,
fixedsamplelocations, tells OpenGL whether you want it to use standard
sample locations for all texels in the texture or whether it is allowed to
vary sample locations spatially within the texture. In general, allowing
OpenGL to do this can improve image quality, but it may reduce
consistency and even cause artifacts if your application relies on the same
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object being rendered in exactly the same way regardless of where it is in
the framebuffer.

Once you have allocated storage for your texture, you can attach it to a
framebuffer with glFramebufferTexture() as normal. An example of
creating a depth and a color multi-sample texture is shown in Listing 9.20.

GLuint color_ms_tex;
GLuint depth_ms_tex;

glGenTextures(1, &color_ms_tex);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, color_ms_tex);
glTexStorage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE,

8, GL_RGBA8, 1024, 1024, GL_TRUE);
glGenTextures(1, &depth_ms_tex);
glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, depth_ms_tex);
glTexStorage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE,

8, GL_DEPTH_COMPONENT, 1024, 1024, GL_TRUE);

GLuint fbo;

glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER);
glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

color_ms_tex, 0);
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

depth_ms_tex, 0);

Listing 9.20: Setting up a multi-sample framebuffer attachment

Multi-sample textures have several restrictions. First, there are no 1D or
3D multi-sample textures, and second, multi-sample textures cannot have
mipmaps. The glTexStorage3DMultisample() function is only for
allocating storage for 2D multi-sample array textures, and neither it nor
glTexStorage2DMultisample() accept a levels parameter. As a result, you
may only pass 0 as the level parameter to glFramebufferTexture().
Furthermore, you can’t just use a multi-sample texture like any other
texture, and they don’t support filtering. Rather, you must explicitly read
texels from the multi-sample texture in your shader by declaring a special
multi-sampled sampler type. The multi-sample sampler types in GLSL are
sampler2DMS and sampler2DMSArray, which represent 2D multi-sample
and multi-sample array textures, respectively. Additionally, there are
isampler2DMS and usampler2DMS types, which represent signed and
unsigned integer multi-sample textures, and isampler2DMSArray and
usampler2DMSArray, which represent the array forms.

A typical use for sampling from multi-sample textures in a shader is to
perform custom resolve operations. When you render into a
window-system-owned multi-sampled back buffer, you don’t have a whole
lot of control over how OpenGL will combine the color values of the
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samples contributing to a pixel to produce its final color. However, if you
render into a multi-sample texture and then draw a full-screen quad using
a fragment shader that samples from that texture and combines its
samples with code you supply, then you can implement any algorithm
you wish. The example shown in Listing 9.21 demonstrates taking the
brightest sample of those contained in each pixel.

#version 430 core

uniform sampler2DMS input_image;

out vec4 color;

void main(void)
{

ivec2 coord = ivec2(gl_FragCoord.xy);
vec4 result = vec4(0.0);
int i;

for (i = 0; i < 8; i++)
{

result = max(result, texelFetch(input_image, coord, i));
}

color = result;
}

Listing 9.21: Simple multi-sample “maximum” resolve

Sample Coverage

Coverage refers to how much of a pixel a fragment “covers.” The coverage
of a fragment is normally calculated by OpenGL as part of the rasterization
process. However, you have some control over this and can actually
generate new coverage information in your fragment shader. There are
three ways to do this.

First, you can have OpenGL convert the alpha value of a fragment directly
to a coverage value to determine how many samples of the framebuffer
will be updated by the fragment. To do this, pass the
GL_SAMPLE_ALPHA_TO_COVERAGE parameter to glEnable(). The coverage
value for a fragment is used to determine how many subsamples will be
written. For instance, a fragment with an alpha of 0.4 would generate a
coverage value of 40%. When you use this method, OpenGL will first
calculate the coverage for each of the samples in each pixel, producing a
sample mask. It then calculates a second mask using the alpha value that
your shader produces and then logically ANDs it with the incoming
sample mask. For example, if OpenGL determines that 66% the pixel is
originally covered by the primitive, and then you produce an alpha value

Antialiasing 391



of 40%, then it will produce an output sample mask of 40% × 66%, which
is roughly 25%. Thus, for an 8-sample MSAA buffer, two of that pixel’s
samples would be written to.

Because the alpha value was already used to decide how many subsamples
should be written, it wouldn’t make sense to then blend those subsamples
with the same alpha value. To help prevent these subpixels from also
being blended when blending is enabled, you can force the alpha values
for those samples to 1 by calling glEnable() (GL_SAMPLE_ALPHA_TO_ONE).

Using alpha-to-coverage has several advantages over simple blending.
When rendering to a multi-sampled buffer, the alpha blend would
normally be applied equally to the entire pixel. With alpha-to-coverage,
alpha masked edges are antialiased, producing a much more natural and
smooth result. This is particularly useful when drawing bushes, trees, or
dense foliage where parts of the brush are alpha transparent.

Next, OpenGL also allows you to set the sample coverage manually by
calling glSampleCoverage(), whose prototype is

void glSampleCoverage(GLfloat value,
GLboolean invert);

Manually applying a coverage value for a pixel occurs after the mask for
alpha-to-coverage is applied. For this step to take effect, sample coverage
must be enabled by calling

glEnable(GL_SAMPLE_COVERAGE);
glSampleCoverage(value, invert);

The coverage value passed into the value parameter can be between 0 and
1. The invert parameter signals to OpenGL if the resulting mask should
be inverted. For instance, if you were drawing two overlapping trees, one
with a coverage of 60% and the other with 40%, you would want to invert
one of the coverage values to make sure the same mask was not used for
both draw calls.

glSampleCoverage(0.5, GL_FALSE);
// Draw first geometry set
. . .
glSampleCoverage(0.5, GL_TRUE);
// Draw second geometry set
. . .

The third way that you can generate coverage information is to explicitly
set it right in your fragment shader. To facilitate this, you can use two
built-in variables, gl_SampleMaskIn[] and gl_SampleMask[], that are
available to fragment shaders. The first is an input and contains the
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coverage information generated by OpenGL during rasterization. The
second variable is an output that you can write to in the shader to update
coverage. Each bit of each element of the arrays corresponds to a single
sample (starting from the least significant bit). If the OpenGL
implementation supports more than 32 samples in a single framebuffer,
then the first element of the array contains coverage information for the
first 32 samples, the second element contains information about the next
32, and so on.

The bits in gl_SampleMaskIn[] are set if OpenGL considered that
particular sample covered. You can copy this array directly into
gl_SampleMask[] and pass the information straight through without
having any effect on coverage. If, however, you turn samples off during
this process, they will effectively be discarded. While you can turn bits on
in gl_SampleMask[] that weren’t on in gl_SampleMaskIn[], this will have
no effect as OpenGL will just turn them off again for you. There’s a simple
work-around for this. Just disable multi-sampling by calling glDisable()
and passing GL_MULTISAMPLE as described earlier. Now, when your shader
runs, gl_SampleMaskIn[] will indicate that all samples are covered and
you can turn bits off at your leisure.

Sample Rate Shading

Multi-sample antialiasing solves a number of issues related to
under-sampling geometry. In particular, it captures fine geometric details
and correctly handles partially covered pixels, overlapping primitives, and
other sources of artifacts at the boundaries of lines and triangles. However,
it cannot cope with whatever your shader throws at it elegantly.
Remember, under normal circumstances, once OpenGL determines that a
triangle hits a pixel, it will run your shader once and broadcast the
resulting output to each sample that was covered by the triangle. This
cannot accurately capture the result of a shader that itself produces high-
frequency output. For example, consider the fragment shader shown in
Listing 9.22.

#version 430 core

out vec4 color;

in VS_OUT
{

vec2 tc;
} fs_in;

void main(void)
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{
float val = abs(fs_in.tc.x + fs_in.tc.y) * 20.0f;
color = vec4(fract(val) >= 0.5 ? 1.0 : 0.25);

}

Listing 9.22: Fragment shader producing high-frequency output

This extremely simple shader produces stripes with hard edges (which
produce a high-frequency signal). For any given invocation of the shader,
the output will either be bright white or dark gray, depending on the
incoming texture coordinates. If you look at the image on the left of
Figure 9.13, you will see that the jaggies have returned. The outline of the
cube is still nicely smoothed, but inside the triangles, the stripes produced
by our shader are jagged and badly aliased.

Figure 9.13: Antialiasing of high-frequency shader output

To produce the image on the right of Figure 9.13, we enabled sample-rate
shading. In this mode, OpenGL will run your shader for each and every
sample that a primitive hits. Be careful, though, as for 8-sample buffers,
your shader will become 8 times more expensive! To enable sample rate
shading, call

glEnable(GL_SAMPLE_SHADING);

and to disable sample rate shading, call

glDisable(GL_SAMPLE_SHADING);

Once you have enabled sample shading, you also need to let OpenGL
know what portion of the samples it should run your shader for. By
default, simply enabling sample shading won’t do anything, and OpenGL
will still run your shader once for each pixel. To tell OpenGL what fraction
of the samples you want to shade independently, call
glMinSampleShading(), whose prototype is

void glMinSampleShading(GLfloat value);
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For example, if you want OpenGL to run your shader for at least half of
the samples in the framebuffer, set the value parameter set to 0.5f. To
uniquely shade every sample hit by the geometry, set value to 1.0f. As
you can see from the right image of Figure 9.13, the jaggies on the interior
of the cube have been eliminated. We set the minimum sampling fraction
to 1.0 to create this image.

Centroid Sampling

The centroid storage qualifier controls where in a pixel OpenGL
interpolates the inputs to the fragment shader to. It only applies to
situations where you’re rendering into a multi-sampled framebuffer. You
specify the centroid storage qualifier just like any other storage qualifier
that is applied to an input or output variable. To create a varying that has
the centroid storage qualifier, first, in the vertex, tessellation control, or
geometry shader, declare the output with the centroid keyword:

centroid out vec2 tex_coord;

And then in the fragment shader, declare the same input with the
centroid keyword:

centroid in vec2 tex_coord;

You can also apply the centroid qualifier to an interface block to cause all
of the members of the block to be interpolated to the fragment’s centroid:

centroid out VS_OUT
{

vec2 tex_coord;
} vs_out;

Now tex_coord (or vs_out.tex_coord) is defined to use the centroid
storage qualifier. If you have a single-sampled draw buffer, this makes no
difference, and the inputs that reach the fragment shader are interpolated
to the pixel’s center. Where centroid sampling becomes useful is when you
are rendering to a multi-sampled draw buffer. According to the OpenGL
Specification, when centroid sampling is not specified (the default),
fragment shader varyings will be interpolated to “the pixel’s center, or
anywhere within the pixel, or to one of the pixel’s samples” — which
basically means anywhere within the pixel. When you’re in the middle of
a large triangle, this doesn’t really matter. Where it becomes important is
when you’re shading a pixel that lies right on the edge of the triangle —
where an edge of the triangle cuts through the pixel. Figure 9.14 shows an
example of how OpenGL might sample from a triangle.
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Figure 9.14: Partially covered multi-sampled pixels

Take a look at the left of Figure 9.14. It shows the edge of a triangle
passing through several pixels. The solid dots represent samples that are
covered by the triangle, and the clear dots represent those that are not.
OpenGL has chosen to interpolate the fragment shader inputs to the
sample closest to the pixel’s center. Those samples are indicated by a small
downwards-pointing arrow.

For the pixels in the upper left, this is fine — they are entirely uncovered
and the fragment shader will not run for those pixels. Likewise, the pixels
in the lower right are fully covered. The fragment shader will run, but it
doesn’t really matter which sample it runs for. The pixels along the edge
of the triangle, however, present a problem. Because OpenGL has chosen
the sample closest to the pixel center as its interpolation point, your
fragment shader inputs could actually be interpolated to a point that lies
outside the triangle! Those samples are marked with an X. Imagine what
would happen if you used the input, say, to sample from a texture. If the
texture was aligned such that its edge was supposed to match the edge of
the triangle, the texture coordinates would lie outside the texture. At best,
you would get a slightly incorrect image. At worst, it would produce
noticeable artifacts.

If we declare our inputs with the centroid storage qualifier, the OpenGL
Specification says that “the value must be interpolated to a point that lies
in both the pixel and in the primitive being rendered, or to one of the
pixel’s samples that falls within the primitive.” That means that OpenGL
chooses, for each pixel, a sample that is certainly within the triangle to
which to interpolate all varyings. You are safe to use the inputs to the
fragment shader for any purpose, and you know that they are valid and
have not been interpolated to a point outside the triangle.
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Now look at the right side of Figure 9.14. OpenGL has still chosen to
interpolate the fragment shader inputs to the samples closest to the pixel
centers for fully covered pixels. However, for those pixels that are partially
covered, it has instead chosen another sample that lies within the triangle
(marked with larger arrows). This means that the inputs presented to the
fragment shader are valid and refer to points that are inside the triangle.
You can use them for sampling from a texture or use them in a function
whose result is only defined within a certain range and know that you will
get meaningful results.

You may be wondering whether using the centroid storage qualifier
guarantees that you’re going to get valid results in your fragment shader
and not using it may mean that the inputs are interpolated outside the
primitive, why not turn on centroid sampling all the time? Well, there are
some drawbacks to using centroid sampling.

The most significant is that OpenGL can provide the gradients (or
differentials) of inputs to the fragment shader. Implementations may
differ, but most use discrete differentials, taking deltas between the values
of the same inputs from adjacent pixels. This works well when the inputs
are interpolated to the same position within each pixel. In this case, it
doesn’t matter which sample position is chosen; the samples will always
be exactly one pixel apart. However, when centroid sampling is enabled
for an input, the values for adjacent pixels may actually be interpolated to
different positions within those pixels. That means that the samples are
not exactly one pixel apart, and the discrete differentials presented to the
fragment shader could be inaccurate. If accurate gradients are required in
the fragment shader, it is probably best not to use centroid sampling.
Don’t forget, the calculations that OpenGL performs during mipmapping
depend on gradients of texture coordinates, and so using a centroid
qualified input as the source of texture coordinates to a mipmapped
texture could lead to inaccurate results.

Using Centroid Sampling to Perform Edge Detection

An interesting use case for centroid sampling is hardware-accelerated edge
detection. You just learned that using the centroid storage qualifier
ensures that your inputs are interpolated to a point that definitely lies
within the primitive being rendered. To do this, OpenGL chooses a sample
that it knows lies inside the triangle at which to evaluate those inputs, and
that sample may be different from the one that it would have chosen if
the pixel was fully covered or the one that it would choose if the centroid
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storage qualifier was not used. You can use this knowledge to your
advantage.

To extract edge information from this, declare two inputs to your
fragment shader, one with and one without the centroid storage qualifier,
and assign the same value to each of them in the vertex shader. It doesn’t
matter what the values are, so long as they are different for each vertex.
The x and y components of the transformed vertex position are probably a
good choice because you know that they will be different for each vertex
of any triangle that is actually visible.

out vec2 maybe_outside;

gives us our non-centroid input that may be interpolated to a point
outside the triangle, and

centroid out vec2 certainly_inside;

gives us our centroid sampled input that we know is inside the triangle.
Inside the fragment shader, we can compare the values of the two
varyings. If the pixel is entirely covered by the triangle, OpenGL uses the
same value for both input. However, if the pixel is only partially covered
by the triangle, OpenGL uses its normal choice of sample for
maybe_outside and picks a sample that is certain to be inside the triangle
for certainly_inside. This could be a different sample than was chosen
for maybe_outside, and that means that the two inputs may have different
values. Now you can compare them to determine that you are on the edge
of a primitive:

bool may_be_on_edge = any(notEqual(maybe_outside,
certainly_inside));

This method is not foolproof. Even if a pixel is on the edge of a triangle, it
is possible that it covers OpenGL’s original sample of choice, and therefore
you still get the same values for maybe_outside and certainly_inside.
However, this marks most edge pixels.

To use this information, you can write the value to a texture attached to
the framebuffer and subsequently use that texture for further processing
later. Another option is to draw only to the stencil buffer. Set your stencil
reference to one, disable stencil testing, and set your stencil operation to
GL_REPLACE. When you encounter an edge, let the fragment shader
continue running. When you encounter a pixel that’s not on an edge, use
the discard keyword in your shader to prevent the pixel from being
written to the stencil buffer. The result is that your stencil buffer contains
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ones wherever there was an edge in the scene and zeros wherever there
was no edge. Later, you can render a full-screen quad with an expensive
fragment shader that only runs for pixels that represent the edges of
geometry where a sample would have been chosen that was outside the
triangle by enabling the stencil test, setting the stencil function to
GL_EQUAL, and leaving the reference value at one. The shader could
implement image processing operations at each pixel, for instance.
Applying Gaussian blur using a convolution operation can smooth the
edges of polygons in the scene, allowing the application to perform its
own antialiasing.

Advanced Framebuffer Formats

Until now, you have been using either the window-system-supplied
framebuffer (i.e., the default framebuffer), or you have rendered into
textures using your own framebuffer. However, the textures you attached
to the framebuffer have been of the format GL_RGBA8, which is an 8-bit
unsigned normalized format. This means that it can only represent values
between 0.0 and 1.0, in 256 steps. However, the output of your fragment
shaders has been declared as vec4 — a vector of four floating-point
elements. OpenGL can actually render into almost any format you can
imagine, and framebuffer attachments can have one, two, three, or four
components, can be floating-point or integer formats, can store negative
numbers, and can be wider than 8 bits, providing much more definition.

In this section, we explore a few of the more advanced formats that can be
used for framebuffer attachments and that allow you to capture more of
the information that might be produced by your shaders.

Rendering with No Attachments

Just as you can attach multiple textures to a single framebuffer and render
into all of them with a single shader, it’s also possible to create a
framebuffer and not attach any textures to it at all. This may seem like a
strange thing to do. You may ask where your data goes. Well, any outputs
declared in the fragment shader have no effect, and data written to them
will be discarded. However, fragment shaders can have a number of side
effects besides writing to their outputs. For example, they can write into
memory using the imageStore function, and they can also increment and
decrement atomic counters using the atomicCounterIncrement and
atomicCounterDecrement functions.
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Normally, when a framebuffer object has one or more attachments, it
derives its maximum width and height, layer count, and sample count
from those attachments. These properties define the size to which the
viewport will be clamped and so on. When a framebuffer object has no
attachments, limits imposed by the amount of memory available for
textures, for example, are removed. However, the framebuffer must derive
this information from another source. Each framebuffer object therefore
has a set of parameters that are used in place of those derived from its
attachments when no attachments are present. To modify these
parameters, call glFramebufferParameteri(), whose prototype is

void glFramebufferParameteri(GLenum target,
GLenum pname,
GLint param);

target specifies the target where the framebuffer object is bound, and may
be GL_DRAW_FRAMEBUFFER, GL_READ_FRAMEBUFFER, or simply
GL_FRAMEBUFFER. Again, If you specify GL_FRAMEBUFFER, then it is
considered equivalent to GL_DRAW_FRAMEBUFFER, and the framebuffer
object bound to the GL_DRAW_FRAMEBUFFER binding point will be modified.
pname specifies which parameter you want to modify, and param is the
value you want to change it to. pname can be one of the following:

• GL_FRAMEBUFFER_DEFAULT_WIDTH indicates that param contains the
width of the framebuffer when it has no attachments.

• GL_FRAMEBUFFER_DEFAULT_HEIGHT indicates that param contains the
height of the framebuffer when it has no attachments.

• GL_FRAMEBUFFER_DEFAULT_LAYERS indicates that param contains the
layer count of the framebuffer when it has no attachments.

• GL_FRAMEBUFFER_DEFAULT_SAMPLES indicates that param contains the
number of samples in the framebuffer when it has no attachments.

• GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS indicates that
param specifies whether the framebuffer uses the fixed default sample
locations. If param is non-zero, then OpenGL’s default sample
pattern will be used; otherwise, OpenGL might choose a more
advanced arrangement of samples for you.

The maximum dimensions of a framebuffer without any attachments can
be extremely large because no real storage for the attachments is required.
Listing 9.23 demonstrates how to initialize a virtual framebuffer that is
10,000 pixels wide and 10,000 pixels high.
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// Generate a framebuffer name and bind it.
Gluint fbo;

glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

// Set the default width and height to 10000
glFramebufferParameteri(GL_FRAMEBUFFER_DEFAULT_WIDTH, 10000);
glFramebufferParameteri(GL_FRAMEBUFFER_DEFAULT_HEIGHT, 10000);

Listing 9.23: A 100-megapixel virtual framebuffer

If you render with the framebuffer object created in Listing 9.23 bound,
you will be able to use glViewport() to set the viewport size to 10,000
pixels wide and high. Although there are no attachments on the
framebuffer, OpenGL will rasterize primitives as if the framebuffer were
really that size, and your fragment shader will run. The values of the x and
y components of gl_FragCoord variable will range from 0 to 9,999.

Floating-Point Framebuffers

One of the most useful framebuffer features is the ability to use
attachments with floating-point formats. Although internally the OpenGL
pipeline usually works with floating-point data, the sources (textures) and
targets (framebuffer attachments) have often been fixed point and of
significantly less precision. As a result, many portions of the pipeline used
to clamp all values between 0 and 1 so they could be stored in a
fixed-point format in the end.

The data type passed into your vertex shader is up to you but is typically
declared as vec4, or a vector of four floats. Similarly, you decide what
outputs your vertex shader should write when you declare variables as out
in a vertex shader. These outputs are then interpolated across your
geometry and passed into your fragment shader. You have complete
control of the type of data you decide to use for color throughout the
whole pipeline, although it’s most common to just use floats. You now
have complete control over how and in what format your data is in as it
travels from vertex arrays all the way to the final output.

Now instead of 256 values, you can color and shade using values from
1.18× 10−38 all the way to 3.4× 1038! You may wonder what happens if
you are drawing to a window or monitor that only supports 8 bits per
color. Unfortunately, the output is clamped to the range of 0 to 1 and
then mapped to a fixed-point value. That’s no fun! Until someone invents
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monitors or displays6 that can understand and display floating-point data,
you are still limited by the final output device.

That doesn’t mean floating-point rendering isn’t useful though. Quite the
contrary! You can still render to textures in full floating-point precision.
Not only that, but you have complete control over how floating-point data
gets mapped to a fixed output format. This can have a huge impact on the
final result and is commonly referred to high dynamic range, or HDR.

Using Floating-Point Formats

Upgrading your applications to use floating-point buffers is easier than
you may think. In fact, you don’t even have to call any new functions.
Instead, there are two new tokens you can use when creating buffers,
GL_RGBA16F and GL_RGBA32F. These can be used when creating storage for
textures:

glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA16F, width, height);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA32F, width, height);

In addition to the more traditional RGBA formats, Table 9.8 lists other
formats allowed for creating floating-point textures. Having so many
floating-point formats available allows applications to use the format that
most suits the data that they will produce directly.

Table 9.8: Floating-Point Texture Formats

Format Content

GL_RGBA32F Four 32-bit floating-point components
GL_RGBA16F Four 16-bit floating-point components
GL_RGB32F Three 32-bit floating-point components
GL_RGB16F Three 16-bit floating-point components
GL_RG32F Two 32-bit floating-point components
GL_RG16F Two 16-bit floating-point components
GL_R32F One 32-bit floating-point component
GL_R16F One 16-bit floating-point component
GL_R11F_G11F_B10F Two 11-bit floating-point components and

one 10-bit floating-point component

6. Some very high-end monitors are available today that can interpret 10 or even 12 bits of
data in each channel. However, they’re often prohibitively expensive, and there aren’t any
displays that accept floating-point data outside of the lab.
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As you can see, there are 16- and 32-bit floating-point formats with one,
two, three, and four channels. There is also a special format,
GL_R11F_G11F_B10F, that contains two 11-bit floating-point components
and one 10-bit component, packed together in a single 32-bit word. These
are special, unsigned floating-point formats7 with a 5-bit exponent and a
6-bit mantissa in the 11-bit components, and a 5-bit exponent and
mantissa for the 10-bit component.

In addition to the formats shown in Table 9.8, you can also create
textures that have the GL_DEPTH_COMPONENT32F or
GL_DEPTH_COMPONENT32F_STENCIL8 formats. The first is used to store depth
information and such textures can be used as depth attachments on a
framebuffer. The second represents both depth and stencil information
stored in a single texture. This can be used for both the depth attachment
and the stencil attachment of a framebuffer object.

High Dynamic Range

Many modern game applications use floating-point rendering to generate
all of the great eye candy we now expect. The level of realism possible
when generating lighting effects such as light bloom, lens flare, light
reflections, light refractions, crepuscular rays, and the effects of
participating media such as dust or clouds are often not possible without
floating-point buffers. High dynamic range (HDR) rendering into
floating-point buffers can make the bright areas of a scene really bright,
keep shadow areas very dark, and still allow you to see detail in both. After
all, the human eye has an incredible ability to perceive very high contrast
levels well beyond the capabilities of today’s displays.

Instead of drawing a complex scene with a lot of geometry and lighting in
our sample programs to show how effective HDR can be, we use images
already generated in HDR for simplicity. The first sample program,
hdr_imaging, loads HDR (floating-point) images from .KTX files that store
the original, floating-point data in its raw form. These images are
generated by taking a series of aligned images of a scene with different
exposures and then combining them together to produce an HDR result.

The low exposures capture detail in the bright areas of the scene while the
high exposures capture detail in the dark areas of the scene. Figure 9.15
shows four views of a scene of a tree lit by bright decorative lights (these

7. Floating-point data is almost always signed, but it is possible to sacrifice the sign bit if only
positive numbers will ever be stored.
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images are also shown in Color Plate 2). The top left image is rendered at a
very low exposure and shows all of the detail of lights even though they
are very bright. The top right image increases the exposure such that you
start to see details in the ribbon. On the bottom left, the exposure is
increased to the level that you can see details in the pine cones, and
finally, on the bottom right, the exposure has increased such that the
branches in the foreground become very clear. The four images show the
incredible amount of detail and range that are stored in a single image.

Figure 9.15: Different views of an HDR image

The only way possible to store so much detail in a single image is to use
floating-point data. Any scene you render in OpenGL, especially if it has
very bright or dark areas, can look more realistic when the true color
output can be preserved instead of clamped between 0.0 and 1.0, and then
divided into only 256 possible values.

Tone Mapping

Now that you’ve seen some of the benefits of using floating-point
rendering, how do you use that data to generate a dynamic image that still
has to be displayed using values from 0 to 255? Tone mapping is the
action of mapping color data from one set of colors to another or from
one color space to another. Because we can’t directly display floating-point
data, it has to be tone mapped into a color space that can be displayed.
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The first sample program, hdrtonemap, uses three approaches to map the
high-definition output to the low-definition screen. The first method,
enabled by pressing the 1 key, is a simple and naïve direct texturing of the
floating-point image to the screen. The histogram of the HDR image in
Figure 9.15 is shown in Figure 9.16. From the graph, it is clear while that
most of the image data has values between 0.0 and 1.0, many of the
important highlights are well beyond 1.0. In fact, the highest luminance
level for this image is almost 5.5!
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Figure 9.16: Histogram of levels for treelights.ktx

If we send this image directly to our regular 8-bit normalized back buffer,
the result is that the image is clamped and all of the bright areas look
white. Additionally, because the majority of the data is in the first quarter
of the range, or between 0 and 63 when mapped directly to 8 bits, it all
blends together to look black. Figure 9.17 shows the result; the bright
areas such as the lamps are practically white, and the dark areas such as
the pine cones the are nearly black.

The second approach in the sample program is to vary the “exposure” of
the image, similar to how a camera can vary exposure to the environment.
Each exposure level provides a slightly different window into the texture
data. Low exposures show the detail in the very bright sections of the
scene; high exposures allow you to see detail in the dark areas but wash
out the bright parts. This is similar to the images in Figure 9.15 with the
low exposure on the upper left and the high exposure on the lower right.
For our tone mapping pass, the hdrtonemap sample program reads from a
floating-point texture and writes to the default framebuffer with an 8-bit
back buffer. This allows the conversion from HDR to LDR (low dynamic
range) to be on a pixel-by-pixel basis, which reduces artifacts that occur
when a texel is interpolated between bright and dark areas. Once the LDR
image has been generated, it can be displayed to the user. Listing 9.24
shows the simple exposure shader used in the example.
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Figure 9.17: Naïve tone mapping by clamping

#version 430 core

layout (binding = 0) uniform sampler2D hdr_image;

uniform float exposure = 1.0;

out vec4 color;

void main(void)
{

vec4 c = texelFetch(hdr_image, ivec2(gl_FragCoord.xy), 0);
c.rgb = vec3(1.0) - exp(-c.rgb * exposure);
color = c;

}

Listing 9.24: Applying simple exposure coefficient to an HDR image

In the sample application, you can use the plus and minus keys on the
numeric keypad to adjust the exposure. The range of exposures for this
program goes from 0.01 to 20.0. Notice how the level of detail in different
locations in the image changes with the exposure level. In fact, the images
shown in Figure 9.15 were generated with this sample program by setting
the exposure to different levels.

The last tone mapping shader used in the first sample program performs
dynamic adjustments to the exposure level based on the relative
brightness of different portions of the scene. First, the shader needs to
know the relative luminance of the area near the current texel being tone
mapped. The shader does this by sampling 25 texels centered around the
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current texel. All of the surrounding samples are then converted to
luminance values, which are then weighted and added together. The
sample program uses a non-linear function to convert the luminance
to an exposure. In this example, the default curve is defined by the
function

y =
�

8.0(x + 0.25)

The shape of the curve is shown in Figure 9.18.
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Figure 9.18: Transfer curve for adaptive tone mapping

The exposure is then used to convert the HDR texel to an LDR value using
the same expression as in Listing 9.24. Listing 9.25 shows the adaptive
HDR shader.

#version 430 core
// hdr_adaptive.fs
//
//

in vec2 vTex;

layout (binding = 0) uniform sampler2D hdr_image;

out vec4 oColor;

void main(void)
{

int i;
float lum[25];
vec2 tex_scale = vec2(1.0) / textureSize(hdr_image, 0);
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for (i = 0; i < 25; i++)
{

vec2 tc = (2.0 * gl_FragCoord.xy +
3.5 * vec2(i % 5 - 2, i / 5 - 2));

vec3 col = texture(hdr_image, tc * tex_scale).rgb;
lum[i] = dot(col, vec3(0.3, 0.59, 0.11));

}

// Calculate weighted color of region
vec3 vColor = texelFetch(hdr_image,

2 * ivec2(gl_FragCoord.xy), 0).rgb;

float kernelLuminance = (
(1.0 * (lum[0] + lum[4] + lum[20] + lum[24])) +
(4.0 * (lum[1] + lum[3] + lum[5] + lum[9] +

lum[15] + lum[19] + lum[21] + lum[23])) +
(7.0 * (lum[2] + lum[10] + lum[14] + lum[22])) +
(16.0 * (lum[6] + lum[8] + lum[16] + lum[18])) +
(26.0 * (lum[7] + lum[11] + lum[13] + lum[17])) +
(41.0 * lum[12])
) / 273.0;

// Compute the corresponding exposure
float exposure = sqrt(8.0 / (kernelLuminance + 0.25));

// Apply the exposure to this texel
oColor.rgb = 1.0 - exp2(-vColor * exposure);
oColor.a = 1.0f;

}

Listing 9.25: Adaptive HDR to LDR conversion fragment shader

When using one exposure for an image, you can adjust for the best results
by taking the range for the whole and using an average. Considerable
detail is still lost with this approach in the bright and dim areas. The
non-linear transfer function used with the adaptive fragment shader
brings out the detail in both the bright and dim areas of the image; take a
look at Figure 9.19. The transfer function uses a logarithmic-like scale to
map luminance values to exposure levels. You can change this function to
increase or decrease the range of exposures used and the resulting amount
of detail in different dynamic ranges.

Figure 9.19 is also shown in Color Plate 3. Great, so now you know how to
image process an HDR file, but what good is that in a typical OpenGL
program? Lots! The HDR image is only a stand-in for any lit OpenGL
scene. Many OpenGL games and applications now render HDR scenes and
other content to floating-point framebuffer attachments and then display
the result by doing a final pass using a technique such as one discussed
above. You can use the same methods you just learned to render in HDR,
generating much more realistic lighting environments and showing the
dynamic range and detail of each frame.
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Figure 9.19: Result of adaptive tone mapping program

Making Your Scene Bloom

One of the effects that works very well with high dynamic range images is
the bloom effect. Have you ever noticed how the sun or a bright light can
sometimes engulf tree branches or other objects between you and the light
source? That’s called light bloom. Figure 9.20 shows how light bloom can
affect an indoor scene.

Figure 9.20: The effect of light bloom on an image
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Notice how you can see all the detail in the lower exposure of the left side
of Figure 9.20. The right side is a much higher exposure, and the grid in
the stained glass is covered by the light bloom. Even the wooden post on
the bottom right looks smaller as it gets covered by bloom. By adding
bloom to a scene you can enhance the sense of brightness in certain areas.
We can simulate this bloom effect caused by bright light sources.
Although you could also perform this effect using 8-bit precision buffers,
it’s much more effective when used with floating-point buffers on a high
dynamic range scene.

The first step is to draw your scene in with high dynamic range. For the
hdrbloom sample program, an framebuffer is set up with two
floating-point textures bound as color attachments. The scene is rendered
as normal to the first bound texture. But the second bound texture gets
only the bright areas of the field. The hdrbloom sample program fills both
textures in one pass from one shader (see Listing 9.26). The output color is
computed as normal and sent to the color0 output. Then, the luminance
(brightness) value of the color is calculated and used to threshold the data.
Only the brightest data is used to generate the bloom effect and is written
to the second output, color1. The threshold levels used are adjustable via
a pair of uniforms, bloom_thresh_min and bloom_thresh_max. To filter for
the bright areas, we use the smoothstep function to smoothly force any
fragments whose brightness is less than bloom_thresh_min to zero, and
any fragments whose brightness is greater than bloom_thresh_max to four
times the original color output.

#version 430 core

layout (location = 0) out vec4 color0;
layout (location = 1) out vec4 color1;

in VS_OUT
{

vec3 N;
vec3 L;
vec3 V;
flat int material_index;

} fs_in;

// Material properties
uniform float bloom_thresh_min = 0.8;
uniform float bloom_thresh_max = 1.2;

struct material_t
{

vec3 diffuse_color;
vec3 specular_color;
float specular_power;
vec3 ambient_color;

};
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layout (binding = 1, std140) uniform MATERIAL_BLOCK
{

material_t material[32];
} materials;

void main(void)
{

// Normalize the incoming N, L, and V vectors
vec3 N = normalize(fs_in.N);
vec3 L = normalize(fs_in.L);
vec3 V = normalize(fs_in.V);

// Calculate R locally
vec3 R = reflect(-L, N);

material_t m = materials.material[fs_in.material_index];

// Compute the diffuse and specular components for each fragment
vec3 diffuse = max(dot(N, L), 0.0) * m.diffuse_color;
vec3 specular = pow(max(dot(R, V), 0.0), m.specular_power)

* m.specular_color;
vec3 ambient = m.ambient_color;

// Add ambient, diffuse, and specular to find final color
vec3 color = ambient + diffuse + specular;

// Write final color to the framebuffer
color0 = vec4(color, 1.0);

// Calculate luminance
float Y = dot(color, vec3(0.299, 0.587, 0.144));

// Threshold color based on its luminance, and write it to
// the second output
color = color * 4.0 * smoothstep(bloom_thresh_min, bloom_thresh_max, Y);
color1 = vec4(color, 1.0);

}

Listing 9.26: Bloom fragment shader; output bright data to a separate buffer

After the first shader has run, we obtain the two images shown in
Figure 9.21. The scene we rendered is just a large collection of spheres
with varying material properties. Some of them are configured to actually
emit light as they have properties that will produce values in the
framebuffer greater than one no matter what the lighting effects are. The
image on the left is the scene rendered with no bloom. You will notice
that it is sharp in all areas, regardless of brightness. The image on the right
is the thresholded version of the image, which will be used as input to the
bloom filters.

Now, after the scene has been rendered, there is still some work to do to
finish the bright pass. The bright data must be blurred for the bloom effect
to work. To implement this, we use a separable Gaussian filter. A separable
filter is a filter that can be separated into two passes — generally one in the
horizontal axis and one in the vertical. In this example, we use 25 taps in
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Figure 9.21: Original and thresholded output for bloom example

each dimension, sampling from the 25 samples around the center of the
filter and multiplying each texel by a fixed set of weights. To apply a
separable filter, we make two passes. In the first pass, we filter in the
horizontal dimension. However, you may notice that we use
gl_FragCoord.yx to determine the center of our filter kernel. This means
that we will transpose the image during filtering. However, on the second
pass, we apply the same filter again. This means that filtering in the
horizontal axis is equivalent to filtering in the vertical axis of the original
image, and the output image is transposed again, returning it to its
original orientation. In effect, we have performed a 2D Gaussian filter
with a diameter of 25 samples and a total sample count of 625. The shader
that implements this is shown in Listing 9.27.

#version 430 core

layout (binding = 0) uniform sampler2D hdr_image;

out vec4 color;

const float weights[] = float[](0.0024499299678342,
0.0043538453346397,
0.0073599963704157,
0.0118349786570722,
0.0181026699707781,
0.0263392293891488,
0.0364543006660986,
0.0479932050577658,
0.0601029809166942,
0.0715974486241365,
0.0811305381519717,
0.0874493212267511,
0.0896631113333857,
0.0874493212267511,
0.0811305381519717,
0.0715974486241365,
0.0601029809166942,
0.0479932050577658,
0.0364543006660986,
0.0263392293891488,
0.0181026699707781,
0.0118349786570722,
0.0073599963704157,
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0.0043538453346397,
0.0024499299678342);

void main(void)
{

vec4 c = vec4(0.0);
ivec2 P = ivec2(gl_FragCoord.yx) - ivec2(0, weights.length() >> 1);
int i;

for (i = 0; i < weights.length(); i++)
{

c += texelFetch(hdr_image, P + ivec2(0, i), 0) * weights[i];
}

color = c;
}

Listing 9.27: Blur fragment shader

The result of applying blur to the thresholded image shown on the right of
Figure 9.21 is shown in Figure 9.22.

Figure 9.22: Blurred thresholded bloom colors

After the blurring passes are complete, the blur results are combined with
the full color texture of the scene to produce the final results. In
Listing 9.28 you can see how the final shader samples from two textures:
the original full color texture and the blurred version of the bright pass.
The original colors and the blurred results are added together to form the
bloom effect, which is multiplied by a user-controlled uniform. The final
high dynamic range color result is then put through exposure calculations,
which you should be familiar with from the last sample program.
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The exposure shader shown in Listing 9.28 is used to draw a screen-sized
textured quad to the window. That’s it! Dial up and down the bloom
effect to your heart’s content. Figure 9.23 shows the hdrbloom sample
program with a high bloom level.

#version 430 core

layout (binding = 0) uniform sampler2D hdr_image;
layout (binding = 1) uniform sampler2D bloom_image;

uniform float exposure = 0.9;
uniform float bloom_factor = 1.0;
uniform float scene_factor = 1.0;

out vec4 color;

void main(void)
{

vec4 c = vec4(0.0);

c += texelFetch(hdr_image, ivec2(gl_FragCoord.xy), 0) * scene_factor;
c += texelFetch(bloom_image, ivec2(gl_FragCoord.xy), 0) * bloom_factor;

c.rgb = vec3(1.0) - exp(-c.rgb * exposure);
color = c;

}

Listing 9.28: Adding bloom effect to scene

Figure 9.23: Result of the bloom program

A comparison of the output of this program with and without bloom is
shown in Color Plate 4.
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Integer Framebuffers

By default, the window system will provide your application with a
fixed-point back buffer. When you declare a floating-point output from
your fragment shader (such as a vec4), OpenGL will convert the data you
write into it into a fixed-point representation suitable for storage in that
framebuffer. In the previous section we covered floating-point framebuffer
attachments, which provide the capability of storing an arbitrary
floating-point value in the framebuffer. It’s also possible to create an
integer framebuffer attachment by creating a texture with an integer
internal format and attaching it to a framebuffer object. When you do
this, it’s possible to use an output with an integer component type such as
ivec4 or uvec4. With an integer framebuffer attachment, the bit pattern
contained in your output variables will be written verbatim into the
texture. You don’t need to worry about denormals, negative zero,
infinities, or any other special bit patterns that might be a concern with
floating-point buffers.

To create an integer framebuffer attachment, simply create a texture with
an internal format made up an integer components and attach it to a
framebuffer object. Internal formats that are made up of integers generally
end in I or UI — for example, GL_RGBA32UI represents a format made up of
four unsigned 32-bit integers per texel, and GL_R16I is a format made up
of a single signed 16-bit component per texel. Code to create a
framebuffer attachment with an internal format of GL_RGBA32UI is shown
in Listing 9.29.

// Variables for the texture and FBO
GLuint tex;
GLuint fbo;

// Create the texture object
glGenTextures(1, &tex);

// Bind it to the 2D target and allocate storage for it
glBindTexture(GL_TEXTURE_2D, tex);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_RGBA32UI, 1024, 1024);

// Now create an FBO and attach the texure as normal
glGenFrambuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture(GL_FRAMEBFUFFER,
GL_COLOR_ATTACHMENT0,
tex,
0);

Listing 9.29: Creating integer framebuffer attachments

You can determine the component type of a framebuffer attachment by
calling glGetFramebufferAttachmentParameteriv() with pname set to
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GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE. The value returned in
params will be GL_FLOAT, GL_INT, GL_UNSIGNED_INT,
GL_SIGNED_NORMALIZED, or GL_UNSIGNED_NORMALIZED depending on the
internal format of the color attachments. There is no requirement that the
attachments to a framebuffer object all be of the same type. This means
that you can have a combination of attachments, some of which are
floating point or fixed point and others that are integer formats.

When you render to an integer framebuffer attachment, the output
declared in your fragment shader should match that of the attachment in
component type. For example, if your framebuffer attachment is an
unsigned integer format such as GL_RGBA32UI, then your shader’s output
variable corresponding to that color attachment should be an unsigned
integer format such as unsigned int, uvec2, uvec3, or uvec4. Likewise, for
signed integer formats, your output should be int, ivec2, ivec3, or ivec4.
Although the component formats should match, there is no requirement
that the number of components match.

If the component width of the framebuffer attachment is less than 32 bits,
then the additional most significant bits will be thrown away when you
render to it. You can even write floating-point data directly into an integer
color buffer by using the GLSL functions floatBitsToInt (or
floatBitsToUint) or the packing functions such as packUnorm2x16.

While it may seem that integer framebuffer attachments offer some level
of flexibility over traditional fixed- or floating-point framebuffers —
especially in light of being able to write floating-point data into them,—
there are some trade-offs that must be considered. The first and most
glaring is that blending is not available for integer framebuffers. The other
is that having an integer internal format means that the resulting texture
into which you rendered your image cannot be filtered.

The sRGB Color Space

Eons ago, computer users had large, clunky monitors made from glass
vacuum bottles called cathode ray tubes (CRTs). These devices worked by
shooting electrons at a fluorescent screen to make it glow. Unfortunately,
the amount of light emitted by the screen was not linear in the voltage
used to drive it. In fact, the relationship between light output and driving
voltage was highly nonlinear. The amount of light output was a power
function of the form

Lout = Vin
γ
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To make matters worse, γ didn’t always take the same value. For NTSC
systems (the television standard used in North America, much of South
America, and parts of Asia), γ was about 2.2. However, with SECAM and
PAL systems (the standards used in Europe, Australia, Africa, and other
parts of Asia) used a γ value of 2.8. That means that if you put a voltage of
half the maximum into a CRT-based display, you’d get a little less than
one quarter of the maximum possible light output!

To compensate for this, in computer graphics we apply gamma correction
(after the γ term in the power function) by raising linear values by a small
power, scaling the result, and offsetting it. The resulting color space is
known as sRGB, and the pseudo-code to translate from a linear value to an
sRGB value is as follows:

if (cl >= 1.0)
{

cs = 1.0;
}
else if (cl <= 0.0)
{

cs = 0.0;
}
else if (cl < 0.0031308)
{

cs = 12.92 * cl;
}
else
{

cs = 1.055 * pow(cl, 0.41666) - 0.055;
}

Further, to go from sRGB to linear color space, we apply the
transformation illustrated by the following pseudo-code:

if (cs >= 1.0)
{

cl = 1.0;
}
else if (cs <= 0.0)
{

cl = 0.0;
}
else if (cs <= 0.04045)
{

cl = cs / 12.92;
}
else
{

cl = pow((cs + 0.0555) / 1.055), 2.4)
}

In both cases, cs is the sRGB color space value, and cl is the linear value.
Notice that the transformation has a short linear section and a small bias.
In practice, this is so close to raising our linear color values to the powers
2.2 (for sRGB to linear) and 0.454545, which is 1

2.2 (for linear to sRGB),
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that some implementations will do this. Figure 9.24 shows the transfer
functions of linear to sRGB and sRGB back to linear on the left, and a pair
of simple power curves using the powers 2.2 and 0.45454 on the right.
You should notice that the shapes of these curves are so close as to be
almost indistinguishable.
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Figure 9.24: Gamma curves for sRGB and simple powers

To use the sRGB color space in OpenGL, we create textures with SRGB
internal formats. For example, the GL_SRGB8_ALPHA8 represents the red,
green, and blue components with an sRGB gamma ramp (the alpha
component) is linear. We can load data into the texture as usual. When
you read from an sRGB texture in your shader, the sRGB format is
converted to RGB when the texture is sampled but before it is filtered.
That is, when bilinear filtering is turned on, the incoming texels are
converted from sRGB to linear, and then the linear samples are blended
together to form the final value returned to the shader. Also, only the RGB
components are converted separately, and the alpha is left as is.

Framebuffers also support storage formats that are sRGB; specifically, the
format GL_SRGB8_ALPHA8 must be supported. That means you can attach
textures that have an internal sRGB format to a framebuffer object and
then render to it. Because we just talked about how sRGB formats are not
linear, you probably don’t want your writes to sRGB framebuffer
attachments to be linear either; that would defeat the whole purpose! The
good news is OpenGL can convert the linear color values your shader
outputs into sRGB values automatically. However, this isn’t performed by
default. To turn this feature on, you need to call glEnable() with the
GL_FRAMEBUFFER_SRGB token. Remember, this only works for color
attachments that contain an sRGB surface. You can call
glGetFramebufferAttachmentParameteriv() with the value
GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING to find out if the attached
surface is sRGB. sRGB surfaces return GL_SRGB, while other surfaces return
GL_LINEAR.
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Point Sprites

The term point sprites is usually used to refer to textured points. OpenGL
represents each point by a single vertex, and so there is no opportunity to
specify texture coordinates that can be interpolated as there is with the
other primitive types. To get around this, OpenGL will generate an
interpolated texture coordinate for you with which you can do anything
you like. With point sprites, you can place a 2D textured image anywhere
on-screen by drawing a single 3D point.

One of the most common applications of point sprites is for particle
systems. A large number of particles moving on-screen can be represented
as points to produce a number of visual effects. However, representing
these points as small overlapped 2D images can produce dramatic
streaming animated filaments. For example, Figure 9.25 shows a
well-known screen saver on the Macintosh powered by just such a particle
effect.

Figure 9.25: A particle effect in the flurry screen saver

Without point sprites, achieving this type of effect would be a matter of
drawing a large number of textured quads (or triangle fans) on-screen.
This could be accomplished either by performing a costly rotation to each
individual face to make sure that it faced the camera, or by drawing all
particles in a 2D orthographic projection. Point sprites allow you to render
a perfectly aligned textured 2D square by sending down a single 3D vertex.
At one-quarter the bandwidth of sending down four vertices for a quad
and no matrix math to keep the 3D quad aligned with the camera, point
sprites are a potent and efficient feature of OpenGL.
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Texturing Points

Point sprites are easy to use. On the application side, the only thing you
have to do is simply bind a 2D texture and read from it in your fragment
shader using a built-in variable called gl_PointCoord, which is a
two-component vector that interpolates the texture coordinates across the
point. Listing 9.30 shows the fragment shader for the PointSprites
example program.

#version 430 core

out vec4 vFragColor;

in vec4 vStarColor;

layout (binding = 0) uniform sampler2D starImage;

void main(void)
{

vFragColor = texture(starImage, gl_PointCoord) * vStarColor;
}

Listing 9.30: Texturing a point sprite in the fragment shader

Again, for a point sprite, you do not need to send down texture
coordinates as an attribute as OpenGL will produce gl_PointCoord
automatically. Since a point is a single vertex, you wouldn’t have the
ability to interpolate across the points surface any other way. Of course,
there is nothing preventing you from providing a texture coordinate
anyway or deriving your own customized interpolation scheme.

Rendering a Star Field

Let’s now take a look at an example program that makes use of the point
sprite features discussed so far. The starfield example program creates an
animated star field that appears as if you were flying forward through it.
This is accomplished by placing random points out in front of your field
of view and then passing a time value into the vertex shader as a uniform.
This time value is used to move the point positions so that over time they
move closer to you and then recycle when they get to the near clipping
plane to the back of the frustum. In addition, we scale the size of the stars
so that they start off very small but get larger as they get closer to your
point of view. The result is a nice realistic effect... all we need is some
planetarium or space movie music!

Figure 9.26 shows our star texture map that is applied to the points. It is
simply a .KTX file that we load in the same manner we loaded any other
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2D texture so far. Points can also be mipmapped, and because they can
range from very small to very large, it’s probably a good idea to do so.

Figure 9.26: The star texture map

We are not going to cover all of the details of setting up the star field
effect, as it’s pretty routine and you can check the source yourself if you
want to see how we pick random numbers. Of more importance is the
actual rendering of code in the RenderScene function:

void render(double currentTime)
{

static const GLfloat black[] = { 0.0f, 0.0f, 0.0f, 0.0f };
static const GLfloat one[] = { 1.0f };
float t = (float)currentTime;
float aspect = (float)info.windowWidth /

(float)info.windowHeight;
vmath::mat4 proj_matrix = vmath::perspective(50.0f,

aspect,
0.1f,
1000.0f);

t *= 0.1f;
t -= floor(t);

glViewport(0, 0, info.windowWidth, info.windowHeight);
glClearBufferfv(GL_COLOR, 0, black);
glClearBufferfv(GL_DEPTH, 0, one);

glEnable(GL_PROGRAM_POINT_SIZE);
glUseProgram(render_prog);

glUniform1f(uniforms.time, t);
glUniformMatrix4fv(uniforms.proj_matrix, 1, GL_FALSE, proj_matrix);

glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);

glBindVertexArray(star_vao);

glDrawArrays(GL_POINTS, 0, NUM_STARS);
}
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We are going to use additive blending to blend our stars with the
background. Because the dark area of our texture is black (zero in color
space), we can get away with just adding the colors together as we draw.
Transparency with alpha would require that we depth-sort our stars, and
that is an expense we certainly can do without. After turning on point
size program mode, we bind our shader and set up the uniforms. Of
interest here is that we use the current time, which drives what will end
up being the z position of our stars, that recycles so that it just counts
smoothly from 0 to 1. Listing 9.31 provides the source code to the vertex
shader.

#version 430 core

layout (location = 0) in vec4 position;
layout (location = 1) in vec4 color;

uniform float time;
uniform mat4 proj_matrix;

flat out vec4 starColor;

void main(void)
{

vec4 newVertex = position;

newVertex.z += time;
newVertex.z = fract(newVertex.z);

float size = (20.0 * newVertex.z * newVertex.z);

starColor = smoothstep(1.0, 7.0, size) * color;

newVertex.z = (999.9 * newVertex.z) - 1000.0;
gl_Position = proj_matrix * newVertex;
gl_PointSize = size;

}

Listing 9.31: Vertex shader for the star field effect

The vertex z component is offset by the time uniform. This is what causes
the animation where the stars move closer to you. We only use the
fractional part of this sum so that their position loops back to the far
clipping plane as they get closer to the viewer. At this point in the shader,
vertices with a z coordinate of 0.0 are at the far plane and vertices with a z
coordinate of 1.0 are at the near plane. We can use the square of the
vertex’s z coordinate to make the stars grow ever larger as they get nearer
and set the final size in the gl_PointSize variable. If the star sizes are too
small, you will get flickering sometimes, so we dim the color progressively
using the smoothstep function so that any points with a size less than 1.0
will be black, fading to full intensity as they reach 7 pixels in size. This
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way, they fade into view instead of just popping up near the far clipping
plane. The star color is passed to the fragment shader shown in
Listing 9.32, which simply fetches from our star texture and multiplies the
result by the computed star color.

#version 430 core

layout (location = 0) out vec4 color;

uniform sampler2D tex_star;
flat in vec4 starColor;

void main(void)
{

color = starColor * texture(tex_star, gl_PointCoord);
}

Listing 9.32: Fragment shader for the star field effect

The final output of the starfield program is shown in Figure 9.27.

Figure 9.27: Flying through space with point sprites

Point Parameters

A couple of features of point sprites (and points in general, actually) can
be fine-tuned with the function glPointParameteri(). Figure 9.28 shows
the two possible locations of the origin (0,0) of the texture applied to a
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point sprite. On the left, we see the origin on the upper left of the point
sprite, and on the right, we see the origin as the lower left.

Figure 9.28: Two potential orientations of textures on a point sprite

The default orientation for point sprites is GL_UPPER_LEFT. Setting the
GL_POINT_SPRITE_COORD_ORIGIN parameter to GL_LOWER_LEFT places the
origin of the texture coordinate system at the lower-left corner of the
point:

glPointParameteri(GL_POINT_SPRITE_COORD_ORIGIN, GL_LOWER_LEFT);

When the point sprite origin is set to its default of GL_UPPER_LEFT,
gl_PointCoord will be 0.0, 0.0 at the top left of the point as it is viewed on
the screen. However, in OpenGL, window coordinates are considered to
start at the lower left of the window (which is the convention that
gl_FragCoord adheres to, for example). Therefore, to get our point sprite
coordinates to follow the window coordinate conventions and align with
gl_FragCoord, we set the point sprite coordinate origin to GL_LOWER_LEFT.

Shaped Points

There is more you can do with point sprites besides apply a texture using
gl_PointCoord for texture coordinates. You can use gl_PointCoord to
derive a number of things other than just texture coordinates. For
example, you can make non-square points by using the discard keyword
in your fragment shader to throw away fragments that lie outside your
desired point shape. The following fragment shader code produces round
points:

vec2 p = gl_PointCoord * 2.0 - vec2(1.0);
if (dot(p, p) > 1.0)

discard;
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Or perhaps an interesting flower shape:

vec2 temp = gl_PointCoord * 2.0 - vec2(1.0);
if (dot(temp, temp) > sin(atan(temp.y, temp.x) * 5.0))

discard;

These are simple code snippets that allow arbitrary shaped points to be
rendered. Figure 9.29 shows a few more examples of interesting shapes
that can be generated this way.

Figure 9.29: Analytically generated point sprite shapes

To create Figure 9.29, we used the fragment shader shown in Listing 9.33.

#version 430 core

layout (location = 0) out vec4 color;

flat in int shape;

void main(void)
{

color = vec4(1.0);
vec2 p = gl_PointCoord * 2.0 - vec2(1.0);

if (shape == 0)
{

// Simple disc shape
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if (dot(p, p) > 1.0)
discard;

}
else if (shape == 1)
{

// Hollow circle
if (abs(0.8 - dot(p, p)) > 0.2)

discard;
}
else if (shape == 2)
{

// Flower shape
if (dot(p, p) > sin(atan(p.y, p.x) * 5.0))

discard;
}
else if (shape == 3)
{

// Bowtie
if (abs(p.x) < abs(p.y))

discard;
}

}

Listing 9.33: Fragment shader for generating shaped points

The advantage of calculating the shape of your points analytically in the
fragment shader rather than using a texture is that the shapes are exact
and stand up well to scaling and rotation, as you will see in the next
section.

Rotating Points

Because points in OpenGL are rendered as axis-aligned squares, rotating
the point sprite must be done by modifying the texture coordinates used
to read the sprite’s texture or to analytically calculate its shape. To do this,
you can simply create a 2D rotation matrix in the fragment shader and
multiply it by gl_PointCoord to rotate it around the z axis. The angle of
rotation could be passed from the vertex or geometry shader to the
fragment shader as an interpolated variable. The value of the variable can,
in turn, be calculated in the vertex or geometry shader or can be supplied
through a vertex attribute. Listing 9.34 shows a slightly more complex
point sprite fragment shader that allows the point to be rotated around its
center.

This example allows you to generate rotated point sprites. However, the
value of angle will not change from one fragment to another within the
point sprite. That means that sin_theta and cos_theta will be constant,
and the resulting rotation matrix constructed from them will also be the
same for every fragment in the point. It is therefore much more efficient
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#version 430

uniform sampler2D sprite_texture;

in float angle;

out vec4 color;

void main(void)
{

const float sin_theta = sin(angle);
const float cos_theta = cos(angle);
const mat2 rotation_matrix = mat2(cos_theta, sin_theta,

-sin_theta, cos_theta);
const vec2 pt = gl_PointCoord - vec2(0.5);
color = texture(sprite_texture, rotation_matrix * pt + vec2(0.5));

}

Listing 9.34: Naïve rotated point sprite fragment shader

to calculate sin_theta and cos_theta in the vertex shader and pass them
as a pair of variables into the fragment shader rather than calculating
them at every fragment. Here’s an updated vertex and fragment shader
that allows you to draw rotated point sprites. First, the vertex shader is
shown in Listing 9.35.

#version 430 core

uniform matrix mvp;

in vec4 position;
in float angle;

flat out float sin_theta;
flat out float cos_theta;

void main(void)
{

sin_theta = sin(angle);
cos_theta = cos(angle);

gl_Position = mvp * position;
}

Listing 9.35: Rotated point sprite vertex shader

And second, the fragment shader is shown in Listing 9.36.

#version 430 core

uniform sampler2D sprite_texture;

flat in float sin_theta;
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flat in float cos_theta;

out vec4 color;

void main(void)
{

mat2 m = mat2(cos_theta, sin_theta,
-sin_theta, cos_theta);

const vec2 pt = gl_PointCoord - vec2(0.5);
color = texture(sprite_texture, rotation_matrix * pt + vec2(0.5));

}

Listing 9.36: Rotated point sprite fragment shader

As you can see, the potentially expensive sin and cos functions have been
moved out of the fragment shader and into the vertex shader. If the point
size is large, this pair of shaders performs much better than the earlier,
brute force approach of calculating the rotation matrix in the fragment
shader.

Remember that even though you are rotating the coordinates you derived
from gl_PointCoord, the point itself is still square. If your texture or
analytic shape spills outside the unit-diameter circle inside the point, you
will need to make your point sprite larger and scale your texture
coordinate down accordingly to get the shape to fit within the point
under all angles of rotation. Of course, if your texture is essentially round,
you don’t need to worry about this at all.

Getting at Your Image

Once everything’s rendered, your application will usually show the result
to the user. The mechanism to do this is platform specific,8 and so the
book’s application framework normally takes care of this for you.
However, showing the result to the user might not always be what you
want to do. There are many reasons why you might want to gain access to
the rendered image directly from your application. For example, perhaps
you want to print the image, save a screenshot, or even process it further
with an offline process.

8. To read the details about how this works on several popular platforms, refer to Chapter 14.
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Reading from a Framebuffer

To allow you to read pixel data from the framebuffer, OpenGL includes the
glReadPixels() function, whose prototype is

void glReadPixels(GLint x,
GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLvoid * data);

The glReadPixels() function will read the data from a region of the
framebuffer currently bound to the GL_READ_FRAMEBUFFER target, or from
the default framebuffer should no user-generated framebuffer object be
bound, and write it into your application’s memory or into a buffer object.
The x and y parameters specify the offset in window coordinates of the
lower-left corner of the region, and width and height specify the width
and height of the region to be read — remember, the origin of the window
(which is at 0,0) is the lower-left corner. The format and type parameters
tell OpenGL what format you want the data to be read back in. These
parameters work similarly to the format and type parameters that you
might pass to glTexSubImage2D(), for example. For instance, format might
be GL_RED or GL_RGBA, and type might be GL_UNSIGNED_BYTE or GL_FLOAT.
The resulting pixel data is written into the region specified by data.

If no buffer object is bound to the GL_PIXEL_PACK_BUFFER target, then
data is interpreted as a raw pointer into your application’s memory.
However, if a buffer is bound to the GL_PIXEL_PACK_BUFFER target, then
data is treated as an offset into that buffer’s data store, and the image data
is written there. If you want to get at that data, you can then map the
buffer for reading by calling glMapBufferRange() with the
GL_MAP_READ_BIT set and access the data. Otherwise, you could use the
buffer for any other purpose.

To specify where the color data comes from, you can call glReadBuffer(),
passing GL_BACK or GL_COLOR_ATTACHMENTi, where i indicates which color
attachment you want to read from. The prototype of glReadBuffer() is

void glReadBuffer(GLenum mode);

If you are using the default framebuffer rather than your own framebuffer
object, then mode should be GL_BACK. This is the default, so if you never
use framebuffer objects in your application (or if you only ever read from
the default framebuffer), you can get away without calling glReadBuffer()
at all. However, since user-supplied framebuffer objects can have multiple

Getting at Your Image 429



attachments, you need to specify which attachment you want to read
from, and so you must call glReadBuffer() if you are using your own
framebuffer object.

When you call glReadPixels() with the format parameter set to
GL_DEPTH_COMPONENT, the data read will come from the depth buffer.
Likewise, if format is GL_STENCIL_INDEX, then the data comes from the
stencil buffer. The special GL_DEPTH_STENCIL token allows you to read
both the depth and stencil buffers at the same time. However, if you take
this route, then the type parameter must be either GL_UNSIGNED_INT_24_8
or GL_FLOAT_32_UNSIGNED_INT_24_8_REV, which produces packed data
that you would need to interpret to get at the depth and stencil
information.

When OpenGL writes the data either into your application’s memory or
into the buffer object bound to the GL_PIXEL_PACK_BUFFER target (if there
is one bound), it writes it from left to right in order of ascending y
coordinate, which, remember, has its origin at the bottom of the window
and increases in an upward direction. By default, each row of the image
starts at an offset from the previous, which is a multiple of four bytes. If
the product of the width of the region to be read and the number of bytes
per pixel is a multiple of four, then everything works out and the resulting
data will be tightly packed. However, if things don’t add up, then you
could be left with gaps in the output. You can change this by calling
glPixelStorei(), whose prototype is

void glPixelStorei(GLenum pname,
GLint param);

When you pass GL_PACK_ALIGNMENT in pname, the value you pass in param
is used to round the distance in bytes between each row of the image. You
can pass 1 in param to set the rounding to a single byte, effectively
disabling the rounding. The other values you can pass are 2, 4, and 8.

Taking a Screenshot

Listing 9.37 demonstrates how to take a screenshot of a running
application and save it as a .TGA file, which is a relatively simple image file
format that is easy to generate.

int row_size = ((info.windowWidth * 3 + 3) & ~3);
int data_size = row_size * info.windowHeight;
unsigned char * data = new unsigned char [data_size];
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#pragma pack (push, 1)
struct
{

unsigned char identsize; // Size of following ID field
unsigned char cmaptype; // Color map type 0 = none
unsigned char imagetype; // Image type 2 = rgb
short cmapstart; // First entry in palette
short cmapsize; // Number of entries in palette
unsigned char cmapbpp; // Number of bits per palette entry
short xorigin; // X origin
short yorigin; // Y origin
short width; // Width in pixels
short height; // Height in pixels
unsigned char bpp; // Bits per pixel
unsigned char descriptor; // Descriptor bits

} tga_header;
#pragma pack (pop)

glReadPixels(0, 0, // Origin
info.windowWidth, info.windowHeight, // Size
GL_BGR, GL_UNSIGNED_BYTE, // Format, type
data); // Data

memset(&tga_header, 0, sizeof(tga_header));
tga_header.imagetype = 2;
tga_header.width = (short)info.windowWidth;
tga_header.height = (short)info.windowHeight;
tga_header.bpp = 24;

FILE * f_out = fopen("screenshot.tga", "wb");
fwrite(&tga_header, sizeof(tga_header), 1, f_out);
fwrite(data, data_size, 1, f_out);
fclose(f_out);

delete [] data;

Listing 9.37: Taking a screenshot with glReadPixels()

The .TGA file format simply consists of a header (which is defined by
tga_header) followed by raw pixel data. The example of Listing 9.37 fills
in the header and then immediately writes the raw data into the file
immediately following it.

Copying Data between Framebuffers

Rendering to these off-screen framebuffers is fine and dandy, but
ultimately you have to do something useful with the result. Traditionally,
graphics APIs allowed an application to read pixel or buffer data back to
system memory and also provided ways to draw it back to the screen.
While these methods are functional, they required copying data from the
GPU into CPU memory and then turning right around and copying it
back. Very inefficient! We now have a way to quickly move pixel data
from one spot to another using a blit command. Blit is a term that refers
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to direct, efficient bit-level data/memory copies. There are many theories
of the origin of this term, but the most likely candidates are
Bit-Level-Image-Transfer or Block-Transfer. Whatever the etymology of blit
may be, the action is the same. Performing these copies is simple; the
function looks like this:

void glBlitFramebuffer(GLint srcX0, Glint srcY0,
GLint srcX1, Glint srcY1,
GLint dstX0, Glint dstY0,
GLint dstX1, Glint dstY1,
GLbitfield mask, GLenum filter);

Even though this function has “blit” in the name, it does much more than
a simple bitwise copy. In fact, it’s more like an automated texturing
operation. The source of the copy is the read framebuffer’s read buffer
specified by calling glReadBuffer(), and the area copied is the region
defined by the rectangle with corners at (srcX0, srcY0) and (srcX1, srcY1).
Likewise, the target of the copy is the current draw framebuffer’s draw
buffer specified by calling glDrawBuffer(), and the area copied to is the
region defined by the rectangle with corners at (dstX0, dstY0) and (dstX1,
dstY1). Because the rectangles for the source and destination do not have
to be of equal size, you can use this function to scale the pixels being
copied. If you have set the read and draw buffers to the same FBO and
have bound the same FBO to the GL_DRAW_FRAMEBUFFER and
GL_READ_FRAMEBUFFER bindings, you can even copy data from one portion
of a framebuffer to another (so long as you’re careful that the regions
don’t overlap).

The mask argument can be any or all of GL_DEPTH_BUFFER_BIT,
GL_STENCIL_BUFFER_BIT, or GL_COLOR_BUFFER_BIT. The filter can be either
GL_LINEAR or GL_NEAREST, but it must be GL_NEAREST if you are copying
depth or stencil data or color data with an integer format. These filters
behave the same as they would for texturing. For our example, we are only
copying non-integer color data and can use a linear filter.

GLint width = 800;
GLint height = 600;

GLenum fboBuffs[] = { GL_COLOR_ATTACHMENT0 };

glBindFramebuffer(GL_DRAW_FRAMEBUFFER, readFBO);
glBindFramebuffer(GL_READ_FRAMEBUFFER, drawFBO);

glDrawBuffers(1, fboBuffs);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, width, height,

(width *0.8), (height*0.8),
width, height,
GL_COLOR_BUFFER_BIT, GL_LINEAR );
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Assume the width and height of the attachments of the FBO bound in the
preceding code is 800 and 600. This code creates a copy of the whole of
the first color attachment of readFBO, scales it down to 80% of the total
size, and places it in the upper-left corner of the first color attachment of
drawFBO.

Copying Data into a Texture

As you read in the last section, you can read data from the framebuffer
into your application’s memory (or into a buffer object) by calling
glReadPixels(), or from one framebuffer into another using
glBlitFramebuffer(). If you intend to use this data as a texture, it
may be more straightforward to simply copy the data directly from
the framebuffer into the texture. The function to do this is
glCopyTexSubImage2D(), and it is similar to glTexSubImage2D(), except that
rather than taking source data from application memory or a buffer object,
it takes its source data from the framebuffer. Its prototype is

void glCopyTexSubImage2D(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint x,
GLint y,
GLsizei width,
GLsizei height);

The target parameter is the texture target to which the destination
texture is bound. For regular 2D textures, this will be GL_TEXTURE_2D, but
you can also copy from the framebuffer into one of the faces of a cube
map by specifying GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, or
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z. width and height represent the size of
the region to be copied. x and y are the coordinates of the lower-left
corner of the rectangle in the framebuffer, and xoffset and yoffset are
the texel coordinates of the rectangle in the destination texture.

If your application renders directly into a texture (by attaching it to a
framebuffer object), then this function might not be that useful to you.
However if your application renders to the default framebuffer most of the
time, you can use this function to move parts of the output into textures.
If, on the other hand, you have data in a texture that you want to copy
into another texture, you can achieve this by calling
glCopyImageSubData(), which has a monstrous prototype:
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void glCopyImageSubData(GLuint srcName,
GLenum srcTarget,
GLint srcLevel,
GLint srcX,
GLint srcY,
GLint srcZ,
GLuint dstName,
GLenum dstTarget,
GLint dstLevel,
GLint dstX,
GLint dstY,
GLint dstZ,
GLsizei srcWidth,
GLsizei srcHeight,
GLsizei srcDepth);

Unlike many of the other functions in OpenGL, this function operates
directly on the texture objects you specify by name, rather than on objects
bound to targets. srcName and srcTarget are the name and type of the
source texture, and dstName and dstTarget are the name and type of the
destination texture. You can pass pretty much any type of texture here,
and so you have x, y, and z coordinates for the source and destination
regions, and a width, height, and depth for each, too. srcX, srcY, and
srcZ are the coordinates of the source region, and dstX, dstY, and dstZ are
the coordinates of the destination region. The width, height, and depth of
the region to copy is specified in srcWidth, srcHeight, and srcDepth.

If the textures you’re copying between don’t have a particular dimension
(e.g., the z dimension for 2D textures doesn’t exist), you should set the
corresponding coordinate to zero, and size to one.

If your textures have mipmaps, you can set the source and destination
mipmap levels in srcLevel and dstLevel, respectively. Otherwise, set
these to zero. Note that there is no destination width, height, or depth —
the destination region is the same size as the source region, and no
stretching or shrinking is possible. If you want to resize part of a texture
and write the result into another texture, you’ll need to attach both to
framebuffer objects and use glBlitFramebuffer().

Reading Back Texture Data

In addition to being able to read data from the framebuffer, you can also
read image data from a texture by binding it to the appropriate texture
target and then calling

void glGetTexImage(GLenum target,
GLint level,
GLenum format,
GLenum type,
GLvoid * img);
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The glGetTexImage() function works similarly to glReadPixels(), except
that it does not allow a small region of a texture level to be read — instead,
it only allows the entire level to be retrieved in one go. The format and
type parameters have the same meanings as in glReadPixels(), and the
img parameter is equivalent to the data parameter to glReadPixels(),
including its dual use as either a client memory pointer or an offset into
the buffer bound to the GL_PIXEL_PACK_BUFFER target, if there is one.
Although only being able to read a whole level of a texture back seems to
be a disadvantage, glGetTexImage() does possess a couple of pluses. First,
you have direct access to all of the mipmap levels of the texture. Second, if
you have a texture object from which you need to read data, you don’t
need to create a framebuffer object and attach the texture to it as you
would if you were to use glReadPixels().

In most cases, you would have put the data in the texture using a function
such as glTexSubImage2D() in the first place. However, there are several
ways to get data into a texture without putting it there explicitly or
drawing into it with a framebuffer. For example, you can call
glGenerateMipmap(), which will populate lower resolution mips from the
higher resolution mip, or you could write directly to the image from
a shader, as explained in “Writing to Textures in Shaders” back in
Chapter 5.

Summary

This chapter explained a lot about the back end of OpenGL. First, we
covered fragment shaders, interpolation, and a number of the built-in
variables that are available to fragment shaders. We also looked into the
fixed-function testing operations that are performed using the depth and
stencil buffers. Next, we proceeded to color output — color masking,
blending, and logical operations, which all effect how the data your
fragment shader produces is written into the framebuffer.

Once we were done with the functions that you can apply to the default
framebuffer, we proceeded to advanced framebuffer formats. The key
advantages of user-specified framebuffers (or framebuffer objects) are that
they can have multiple attachments and those attachments can be in
advanced formats and color spaces such as floating point, sRGB, and pure
integers. We also explored various ways to deal with resolution limits
through antialiasing — antialiasing through blending, alpha to coverage,
MSAA, and supersampling, and we covered the advantages and
disadvantages of each.
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Finally, we covered ways to get at the data you have rendered. Putting data
into textures falls out naturally from attaching them to framebuffers and
rendering directly to them. However, we also showed how you can copy
data from a framebuffer into a texture, from framebuffer to framebuffer,
from texture to texture, and from the framebuffer to your application’s
own memory or into buffer objects.
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