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Shadows

In this chapter, we will cover:

 f Rendering shadows with shadow maps

 f Anti-aliasing shadow edges with PCF

 f Creating soft shadow edges with random sampling

 f Creating shadows using shadow volumes and the geometry shader

Introduction
Shadows add a great deal of realism to a scene. Without shadows, it can be easy to misjudge 
the relative location of objects, and the lighting can appear unrealistic, as light rays seem to 
pass right through objects.

Shadows are important visual cues for realistic scenes, but can be challenging to produce 
in an efficient manner in interactive applications. One of the most popular techniques for 
creating shadows in real-time graphics is the shadow mapping algorithm (also called depth 
shadows). In this chapter, we'll look at several recipes surrounding the shadow mapping 
algorithm. We'll start with the basic algorithm, and discuss it in detail in the first recipe. Then 
we'll look at a couple of techniques for improving the look of the shadows produced by the 
basic algorithm.

We'll also look at an alternative technique for shadows called shadow volumes. Shadow 
volumes produce near perfect hard-edged shadows, but are not well suited for creating 
shadows with soft edges.
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Rendering shadows with shadow maps
One of the most common and popular techniques for producing shadows is called shadow 
mapping. In its basic form, the algorithm involves two passes. In the first pass, the scene is 
rendered from the point of view of the light source. The depth information from this pass is 
saved into a texture called the shadow map. This map will help provide information about the 
visibility of objects from the light's perspective. In other words, the shadow map stores the 
distance (actually the pseudo-depth) from the light to whatever the light can "see". Anything 
that is closer to the light than the corresponding depth stored in the map is lit; anything else 
must be in shadow.

In the second pass, the scene is rendered normally, but each fragment's depth (from the 
light's perspective) is first tested against the shadow map to determine whether or not the 
fragment is in shadow. The fragment is then shaded differently depending on the result of 
this test. If the fragment is in shadow, it is shaded with ambient lighting only; otherwise, it is 
shaded normally.

The following figure shows an example of shadows produced by the basic shadow  
mapping technique:

Let's look at each step of the algorithm in detail.

The first step is the creation of the shadow map. We set up our view matrix so that we are 
rendering the scene as if the camera is located at the position of the light source, and is 
oriented towards the shadow-casting objects. We set up a projection matrix such that the view 
frustum encloses all objects that may cast shadows as well as the area where the shadows 
will appear. We then render the scene normally and store the information from the depth 
buffer in a texture. This texture is called the shadow map (or simply depth map). We can think 
of it (roughly) as a set of distances from the light source to various surface locations.
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Technically, these are depth values, not distances. A depth 
value is not a true distance (from the origin), but can be 
roughly treated as such for the purposes of depth testing.

The following figures represent an example of the basic shadow mapping setup. The left figure 
shows the light's position and its associated perspective frustum. The right-hand figure shows 
the corresponding shadow map. The grey scale intensities in the shadow map correspond to 
the depth values (darker is closer).

Once we have created the shadow map and stored the map to a texture, we render the scene 
again from the point of view of the camera. This time, we use a fragment shader that shades 
each fragment based on the result of a depth test with the shadow map. The position of the 
fragment is first converted into the coordinate system of the light source and projected using 
the light source's projection matrix. The result is then biased (in order to get valid texture 
coordinates) and tested against the shadow map. If the depth of the fragment is greater than 
the depth stored in the shadow map, then there must be some surface that is between the 
fragment and the light source. Therefore, the fragment is in shadow and is shaded using 
ambient lighting only. Otherwise, the fragment must have a clear view to the light source, and 
so it is shaded normally.

The key aspect here is the conversion of the fragment's 3D coordinates to the coordinates 
appropriate for a lookup into the shadow map. As the shadow map is just a 2D texture, we 
need coordinates that range from zero to one for points that lie within the light's frustum. 
The light's view matrix will transform points in world coordinates to points within the light's 
coordinate system. The light's projection matrix will transform points that are within the light's 
frustum to homogeneous clip coordinates.
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These are called clip coordinates because the built-in 
clipping functionality takes place when the position 
is defined in these coordinates. Points within the 
perspective (or orthographic) frustum are transformed 
by the projection matrix to the (homogeneous) space 
that is contained within a cube centered at the origin, 
with each side of length two. This space is called the 
canonical viewing volume. The term "homogeneous" 
means that these coordinates should not necessarily 
be considered to be true Cartesian positions until they 
are divided by their fourth coordinate. For full details 
about homogeneous coordinates, refer to your favorite 
textbook on computer graphics.

The x and y components of the position in clip coordinates are roughly what we need to 
access the shadow map. The z coordinate contains the depth information that we can use to 
compare with the shadow map. However, before we can use these values we need to do two 
things. First, we need to bias them so that they range from zero to one (instead of -1 to 1), and 
second, we need to apply perspective division (more on this later).

To convert the value from clip coordinates to a range appropriate for use with a shadow map, 
we need the x, y, and z coordinates to range from zero to one (for points within the light's 
view frustum). The depth that is stored in an OpenGL depth buffer (and also our shadow 
map) is simply a fixed or floating-point value between zero and one (typically). A value of zero 
corresponds to the near plane of the perspective frustum, and a value of one corresponds to 
points on the far plane. Therefore, if we are to use our z coordinate to accurately compare with 
this depth buffer, we need to scale and translate it appropriately.

In clip coordinates (after perspective division) the z coordinate 
ranges from -1 to 1. It is the viewport transformation that (among 
other things) converts the depth to a range between zero and 
one. Incidentally, if so desired, we can configure the viewport 
transformation to use some other range for the depth values (say 
between 0 and 100) via the glDepthRange function.

Of course, the x and y components also need to be biased between zero and one because 
that is the appropriate range for texture access.

We can use the following "bias" matrix to alter our clip coordinates.
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This matrix will scale and translate our coordinates such that the x, y, and z components range 
from 0 to 1 (after perspective division) for points within the light's frustum. Now, combining 
the bias matrix with the light's view (V

l
) and projection (P

l
) matrices, we have the following 

equation for converting positions in world coordinates (W) to homogeneous positions that can 
be used for shadow map access (Q).

Finally, before we can use the value of Q directly, we need to divide by the fourth (w) 
component. This step is sometimes called "perspective division". This converts the position 
from a homogeneous value to a true Cartesian position, and is always required when using  
a perspective projection matrix.

In the following equation, we'll define a shadow matrix (S) that also includes the model matrix 
(M), so that we can convert directly from the modeling coordinates (C). (Note that W = MC, 
because the model matrix takes modeling coordinates to world coordinates.)

Here, S is the shadow matrix, the product of the model matrix with all of the  
preceding matrices.

In this recipe, in order to keep things simple and clear, we'll cover only the basic shadow 
mapping algorithm, without any of the usual improvements. We'll build upon this basic 
algorithm in the following recipes. Before we get into the code, we should note that the 
results will likely be less than satisfying. This is because the basic shadow mapping algorithm 
suffers from significant aliasing artifacts. Nevertheless, it is still an effective technique 
when combined with one of many techniques for anti-aliasing. We'll look at some of those 
techniques in the recipes that follow.

Getting ready
The position should be supplied in vertex attribute zero and the normal in vertex attribute one. 
Uniform variables for the ADS shading model should be declared and assigned, as well as 
uniforms for the standard transformation matrices. The ShadowMatrix variable should be 
set to the matrix for converting from modeling coordinates to shadow map coordinates (S in 
the preceding equation).

The uniform variable ShadowMap is a handle to the shadow map texture, and should be 
assigned to texture unit zero.
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How to do it...
To create an OpenGL application that creates shadows using the shadow mapping technique, 
use the following steps. We'll start by setting up a Framebuffer Object (FBO) to contain the 
shadow map texture, and then move on to the required shader code:

1. In the main OpenGL program, set up a FBO with a depth buffer only. Declare a 
GLuint variable named shadowFBO to store the handle to this framebuffer. The 
depth buffer storage should be a texture object. You can use something similar to the 
following code to accomplish this:

GLfloat border[]={1.0f,0.0f,0.0f,0.0f};

//The shadowmap texture
GLuint depthTex;
glGenTextures(1,&depthTex);
glBindTexture(GL_TEXTURE_2D,depthTex);
glTexStorage2D(GL_TEXTURE_2D, 1, GL_DEPTH_COMPONENT24,
               shadowMapWidth, shadowMapHeight);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,
                GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,
                GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,
                GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,
                GL_CLAMP_TO_BORDER);
glTexParameterfv(GL_TEXTURE_2D,GL_TEXTURE_BORDER_COLOR,
                 border);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_COMPARE_MODE,
                GL_COMPARE_REF_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_COMPARE_FUNC,
                GL_LESS);

//Assign the shadow map to texture unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D,depthTex);

//Create and set up the FBO
glGenFramebuffers(1,&shadowFBO);
glBindFramebuffer(GL_FRAMEBUFFER,shadowFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER,GL_DEPTH_ATTACHMENT,
                       GL_TEXTURE_2D,depthTex,0);
GLenum drawBuffers[]={GL_NONE};
glDrawBuffers(1,drawBuffers);
// Revert to the default framebuffer for now
glBindFramebuffer(GL_FRAMEBUFFER,0);
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2. Use the following code for the vertex shader:

layout (location=0) in vec3 VertexPosition;
layout (location=1) in vec3 VertexNormal;

out vec3 Normal;    
out vec3 Position;   

// Coordinate to be used for shadow map lookup
out vec4 ShadowCoord;

uniform mat4 ModelViewMatrix;
uniform mat3 NormalMatrix;
uniform mat4 MVP;
uniform mat4 ShadowMatrix;

void main()
{
    Position = (ModelViewMatrix * 
                vec4(VertexPosition,1.0)).xyz;
    Normal = normalize( NormalMatrix * VertexNormal );

    // ShadowMatrix converts from modeling coordinates
    // to shadow map coordinates.
    ShadowCoord =ShadowMatrix * vec4(VertexPosition,1.0);

    gl_Position = MVP * vec4(VertexPosition,1.0);
}

3. Use the following code for the fragment shader:

// Declare any uniforms needed for your shading model
uniform sampler2DShadow ShadowMap;

in vec3 Position;
in vec3 Normal;
in vec4 ShadowCoord;

layout (location = 0) out vec4 FragColor;

vec3 diffAndSpec()
{
   // Compute only the diffuse and specular components of
   // the shading model.
}
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subroutine void RenderPassType();
subroutine uniform RenderPassType RenderPass;

subroutine (RenderPassType)
void shadeWithShadow()
{
  vec3 ambient = …;// compute ambient component here
  vec3 diffSpec = diffAndSpec();

  // Do the shadow-map look-up
  float shadow = textureProj(ShadowMap, ShadowCoord);

  // If the fragment is in shadow, use ambient light only.
  FragColor = vec4(diffSpec * shadow + ambient, 1.0);
}
subroutine (RenderPassType)
void recordDepth()
{
    // Do nothing, depth will be written automatically
}

void main() {
  // This will call either shadeWithShadow or recordDepth
  RenderPass();
}

Within the main OpenGL program, perform the following steps when rendering:

Pass 1

1. Set the viewport, view, and projection matrices to those that are appropriate for the 
light source.

2. Bind to the framebuffer containing the shadow map (shadowFBO).

3. Clear the depth buffer.

4. Select the subroutine function recordDepth.

5. Enable front-face culling.

6. Draw the scene.

Pass 2

1. Select the viewport, view, and projection matrices appropriate for the scene.

2. Bind to the default framebuffer.

3. Disable culling (or switch to back-face culling).

4. Select the subroutine function shadeWithShadow.

5. Draw the scene.
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How it works...
The first block of the preceding code demonstrates how to create a FBO for our shadow map 
texture. The FBO contains only a single texture connected to its depth buffer attachment. 
The first few lines of code create the shadow map texture. The texture is allocated using the 
glTexStorage2D function with an internal format of GL_DEPTH_COMPONENT24.

We use GL_NEAREST for GL_TEXTURE_MAG_FILTER and GL_TEXTURE_MIN_FILTER here, 
although GL_LINEAR could also be used, and might provide slightly better-looking results. We 
use GL_NEAREST here so that we can see the aliasing artifacts clearly, and the performance 
will be slightly better.

Next, the GL_TEXTURE_WRAP_* modes are set to GL_CLAMP_TO_BORDER. When a fragment 
is found to lie completely outside of the shadow map (outside of the light's frustum), then 
the texture coordinates for that fragment will be greater than one or less than zero. When 
that happens, we need to make sure that those points are not treated as being in shadow. 
When GL_CLAMP_TO_BORDER is used, the value that is returned from a texture lookup 
(for coordinates outside the 0..1 range) will be the border value. The default border value 
is (0,0,0,0). When the texture contains depth components, the first component is 
treated as the depth value. A value of zero will not work for us here because a depth of zero 
corresponds to points on the near plane. Therefore all points outside of the light's frustum 
will be treated as being in shadow! Instead, we set the border color to (1,0,0,0) using the 
glTexParameterfv function, which corresponds to the maximum possible depth.

The next two calls to glTexParameteri affect settings that are specific to depth textures. 
The first call sets GL_TEXTURE_COMPARE_MODE to GL_COMPARE_REF_TO_TEXTURE. When 
this setting is enabled, the result of a texture access is the result of a comparison, rather than 
a color value retrieved from the texture. The third component of the texture coordinate (the 
p component) is compared against the value in the texture at location (s,t). The result of the 
comparison is returned as a single floating-point value. The comparison function that is used 
is determined by the value of GL_TEXTURE_COMPARE_FUNC, which is set on the next line. In 
this case, we set it to GL_LESS, which means that the result will be 1.0 if the p value of the 
texture coordinate is less than the value stored at (s,t). (Other options include GL_LEQUAL, 
GL_ALWAYS, GL_GEQUAL, and so on.)

The next few lines create and set up the FBO. The shadow map texture is attached to the FBO 
as the depth attachment with the glFramebufferTexture2D function. For more details 
about FBOs, check out the Rendering to a texture recipe in Chapter 4, Using Textures.

The vertex shader is fairly simple. It converts the vertex position and normal to camera 
coordinates and passes them along to the fragment shader via the output variables 
Position and Normal. The vertex position is also converted into shadow map coordinates 
using ShadowMatrix. This is the matrix S that we referred to in the previous section. It 
converts a position from modeling coordinates to shadow coordinates. The result is sent to the 
fragment shader via the output variable ShadowCoord.
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As usual, the position is also converted to clip coordinates and assigned to the built-in output 
variable gl_Position.

In the fragment shader, we provide different functionality for each pass. In the main function, 
we call RenderPass, which is a subroutine uniform that will call either recordDepth or 
shadeWithShadow. For the first pass (shadow map generation), the subroutine function 
recordDepth is executed. This function does nothing at all! This is because we only need  
to write the depth to the depth buffer. OpenGL will do this automatically (assuming that  
gl_Position was set correctly by the vertex shader), so there is nothing for the fragment 
shader to do.

During the second pass, the shadeWithShadow function is executed. We compute the 
ambient component of the shading model and store the result in the ambient variable.  
We then compute the diffuse and specular components and store those in the 
diffuseAndSpec variable.

The next step is the key to the shadow mapping algorithm. We use the built-in texture  
access function textureProj, to access the shadow map texture ShadowMap. Before using 
the texture coordinate to access the texture, the textureProj function will divide the first 
three components of the texture coordinate by the fourth component. Remember that this 
is exactly what is needed to convert the homogeneous position (ShadowCoord) to a true 
Cartesian position.

After this perspective division, the textureProj function will use the result to access 
the texture. As this texture's sampler type is sampler2DShadow, it is treated as texture 
containing depth values, and rather than returning a value from the texture, it returns the 
result of a comparison. The first two components of ShadowCoord are used to access a 
depth value within the texture. That value is then compared against the value of the third 
component of ShadowCoord. When GL_NEAREST is the interpolation mode (as it is in our 
case) the result will be 1.0 or 0.0. As we set the comparison function to GL_LESS, this will 
return 1.0, if the value of the third component of ShadowCoord is less than the value within 
the depth texture at the sampled location. This result is then stored in the variable shadow. 
Finally, we assign a value to the output variable FragColor. The result of the shadow map 
comparison (shadow) is multiplied by the diffuse and specular components, and the result is 
added to the ambient component. If shadow is 0.0, that means that the comparison failed, 
meaning that there is something between the fragment and the light source. Therefore, the 
fragment is only shaded with ambient light. Otherwise, shadow is 1.0, and the fragment is 
shaded with all three shading components.

When rendering the shadow map, note that we culled the front faces. This is to avoid the 
z-fighting that can occur when front faces are included in the shadow map. Note that this 
only works if our mesh is completely closed. If back faces are exposed, you may need to use 
another technique (that uses glPolygonOffset) to avoid this. I'll talk a bit more about this 
in the next section.
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There's more...
There's a number of challenging issues with the shadow mapping technique. Let's look at just 
a few of the most immediate ones.

Aliasing
As mentioned earlier, this algorithm often suffers from severe aliasing artifacts at the 
shadow's edges. This is due to the fact that the shadow map is essentially projected onto the 
scene when the depth comparison is made. If the projection causes the map to be magnified, 
aliasing artifacts appear.

The following figure shows the aliasing of the shadow's edges:

The easiest solution is to simply increase the size of the shadow map. However, that may 
not be possible due to memory, CPU speed, or other constraints. There is a large number 
of techniques for improving the quality of the shadows produced by the shadow mapping 
algorithm such as resolution-matched shadow maps, cascaded shadow maps, variance 
shadow maps, perspective shadow maps and many others. In the following recipes, we'll look 
at some ways to help soften and anti-alias the edges of the shadows.
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Rendering back faces only for the shadow map
When creating the shadow map, we only rendered back faces. This is because of the fact that 
if we were to render front faces, points on certain faces would have nearly the same depth 
as the shadow map's depth, which can cause fluctuations between light and shadow across 
faces that should be completely lit. The following figure shows an example of this effect:

Since the majority of faces that cause this issue are those that are facing the light source, 
we avoid much of the problem by only rendering back faces during the shadow map pass. 
This of course will only work correctly if your meshes are completely closed. If that is not the 
case, glPolygonOffset can be used to help the situation by offsetting the depth of the 
geometry from that in the shadow map. In fact, even when back faces are only rendered when 
generating the shadow map, similar artifacts can appear on faces that are facing away from 
the light (back faces in the shadow map, but front from the camera's perspective). Therefore, 
it is quite often the case that a combination of front-face culling and glPolygonOffset is 
used when generating the shadow map.

See also
 f The Rendering to a texture recipe in Chapter 4, Using Textures

 f The Anti-aliasing shadow edges with PCF recipe

 f The Creating soft shadow edges with random sampling recipe

Anti-aliasing shadow edges with PCF
One of the simplest and most common techniques for dealing with the aliasing of shadow 
edges is called percentage-closer filtering (PCF). The name comes from the concept of 
sampling the area around the fragment and determining the percentage of the area that is 
closer to the light source (in shadow). The percentage is then used to scale the amount of 
(diffuse and specular) shading that the fragment receives. The overall effect is a blurring of 
the shadow's edges.
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The basic technique was first published by Reeves et al in a 1987 paper (SIGGRAPH 
Proceedings, Volume 21, Number 4, July 1987). The concept involved transforming the 
fragment's extents into shadow space, sampling several locations within that region, and 
computing the percent that is closer than the depth of the fragment. The result is then used 
to attenuate the shading. If the size of this filter region is increased, it can have the effect of 
blurring the shadow's edges.

A common variant of the PCF algorithm involves just sampling a constant number of nearby 
texels within the shadow map. The percent of those texels that are closer to the light is used 
to attenuate the shading. This has the effect of blurring the shadow's edges. While the result 
may not be physically accurate, the result is not objectionable to the eye.

The following figures show shadows rendered with PCF (right) and without PCF (left). Note that 
the shadows in the right-hand image have fuzzier edges and the aliasing is less visible.

In this recipe, we'll use the latter technique, and sample a constant number of texels around 
the fragment's position in the shadow map. We'll calculate an average of the resulting 
comparisons and use that result to scale the diffuse and specular components.

We'll make use of OpenGL's built-in support for PCF, by using linear filtering on the depth 
texture. When linear filtering is used with this kind of texture, the hardware can automatically 
sample four nearby texels (execute four depth comparisons) and average the results (the 
details of this are implementation dependent). Therefore, when linear filtering is enabled, the 
result of the textureProj function can be somewhere between 0.0 and 1.0.

We'll also make use of the built-in functions for texture accesses with offsets. OpenGL 
provides the texture access function textureProjOffset, which has a third parameter  
(the offset) that is added to the texel coordinates before the lookup/comparison.
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Getting ready
Start with the shaders and FBO presented in the previous recipe, Rendering shadows with 
shadow maps. We'll just make a few minor changes to the code presented there.

How to do it...
To add the PCF technique to the shadow mapping algorithm, use the following steps:

1. When setting up the FBO for the shadow map, make sure to use linear filtering on the 
depth texture. Replace the corresponding lines with the following code:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, 
                GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,     
                GL_LINEAR);

2. Use the following code for the shadeWithShadow function within the  
fragment shader:

subroutine (RenderPassType)
void shadeWithShadow()
{
  vec3 ambient = vec3(0.2);
  vec3 diffSpec = diffAndSpec();

  // The sum of the comparisons with nearby texels
  float sum = 0;

  // Sum contributions from texels around ShadowCoord
  sum += textureProjOffset(ShadowMap, ShadowCoord, 
                           ivec2(-1,-1));
  sum += textureProjOffset(ShadowMap, ShadowCoord, 
                           ivec2(-1,1));
  sum += textureProjOffset(ShadowMap, ShadowCoord, 
                           ivec2(1,1));
  sum += textureProjOffset(ShadowMap, ShadowCoord, 
                           ivec2(1,-1));
  float shadow = sum * 0.25;

  FragColor = vec4(ambient + diffSpec * shadow,1.0);
}
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How it works...
The first step enables linear filtering on the shadow map texture. When this is enabled, the 
OpenGL driver can repeat the depth comparison on the four nearby texels within the texture. 
The results of the four comparisons will be averaged and returned.

Within the fragment shader, we use the textureProjOffset function to sample the four 
texels (diagonally) surrounding the texel nearest to ShadowCoord. The third argument is the 
offset. It is added to the texel's coordinates (not the texture coordinates) before the lookup 
takes place.

As linear filtering is enabled, each lookup will sample an additional four texels, for a total of 16 
texels. The results are then averaged together and stored within the variable shadow.

As before, the value of shadow is used to attenuate the diffuse and specular components of 
the lighting model.

There's more...
An excellent survey of the PCF technique was written by Fabio Pellacini of Pixar, and can be 
found in Chapter 11, Shadow Map Anti-aliasing of GPU Gems, edited by Randima Fernando, 
Addison-Wesley Professional, 2004. If more details are desired, I highly recommend reading 
this short, but informative, chapter.

Because of its simplicity and efficiency, the PCF technique is an extremely common method 
for anti-aliasing the edges of shadows produced by shadow mapping. Since it has the effect 
of blurring the edges, it can also be used to simulate soft shadows. However, the number of 
samples must be increased with the size of the blurred edge (the penumbra) to avoid certain 
artifacts. This can, of course, be a computational roadblock. In the next recipe, we'll look at a 
technique for producing soft shadows by randomly sampling a larger region.

The penumbra is the region of a shadow where only a portion 
of the light source is obscured.

See also
 f The Rendering shadows with shadow maps recipe
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Creating soft shadow edges with  
random sampling

The basic shadow mapping algorithm combined with PCF can produce shadows with soft 
edges. However, if we desire blurred edges that are substantially wide (to approximate true 
soft shadows) then a large number of samples is required. Additionally, there is a good deal of 
wasted effort when shading fragments that are in the center of large shadows, or completely 
outside of the shadow. For those fragments, all of the nearby shadow map texels will evaluate 
to the same value. Therefore, the work of accessing and averaging those texels is essentially a 
wasted effort.

The technique presented in this recipe is based on a chapter published in GPU Gems 2, edited 
by Matt Pharr and Randima Fernando, Addison-Wesley Professional, 2005. (Chapter 17 by 
Yury Uralsky). It provides an approach that can address both of the preceding issues to create 
shadows with soft edges of various widths, while avoiding unnecessary texture accesses in 
areas inside and outside of the shadow.

The basic idea is as follows:

 f Instead of sampling texels around the fragment's position (in shadow map space) 
using a constant set of offsets, we use a random, circular pattern of offsets

 f In addition, we sample only the outer edges of the circle first in order to determine 
whether or not the fragment is in an area that is completely inside or outside of  
the shadow

The following figure is a visualization of a possible set of shadow map samples. The center 
of the cross-hairs is the fragment's location in the shadow map, and each x is a sample. The 
samples are distributed randomly within a circular grid around the fragment's location (one 
sample per grid cell).

x x x
xxx

x x
x xx

x x

x x
x
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Additionally, we vary the sample locations through a set of precomputed sample patterns. We 
compute random sample offsets and store them in a texture prior to rendering. Then, in the 
fragment shader, the samples are determined by first accessing the offset texture to grab a 
set of offsets and use them to vary the fragment's position in the shadow map. The results are 
then averaged together in a similar manner to the basic PCF algorithm.

The following figures show the difference between shadows using the PCF algorithm (left), and 
the random sampling technique described in this recipe (right).

We'll store the offsets in a three-dimensional texture (n x n x d). The first two dimensions are 
of arbitrary size, and the third dimension contains the offsets. Each (s,t) location contains 
a list (size d) of random offsets packed into an RGBA color. Each RGBA color in the texture 
contains two 2D offsets. The R and G channels contain the first offset, and the B and A 
channels contain the second. Therefore, each (s,t) location contains a total of 2*d offsets.  
For example, location (1, 1, 3) contains the sixth and seventh offset at location (1,1). The 
entire set of values at a given (s,t) comprise a full set of offsets.

We'll rotate through the texture based on the fragment's screen coordinates. The location within 
the offset texture will be determined by taking the remainder of the screen coordinates divided 
by the texture's size. For example, if the fragment's coordinates are (10.0,10.0) and the texture's 
size is (4,4), then we use the set of offsets located in the offset texture at location (2,2).

Getting ready
Start with the code presented in the Rendering shadows with shadow maps recipe.

There are three additional uniforms that need to be set. They are as follows:

 f OffsetTexSize: This gives the width, height, and depth of the offset texture. Note 
that the depth is same as the number of samples per fragment divided by two.

 f OffsetTex: This is a handle to the texture unit containing the offset texture.
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 f Radius: This is the blur radius in pixels divided by the size of the shadow map 
texture (assuming a square shadow map). This could be considered as the softness 
of the shadow.

How to do it...
To modify the shadow mapping algorithm and to use this random sampling technique, use the 
following steps. We'll build the offset texture within the main OpenGL program, and make use 
of it within the fragment shader:

1. Use the following code within the main OpenGL program to create the offset texture. 
This only needs to be executed once during the program initialization:

void buildOffsetTex(int size, int samplesU, int samplesV)
{
  int samples = samplesU * samplesV;
  int bufSize = size * size * samples * 2;
  float *data = new float[bufSize];

  for( int i = 0; i< size; i++ ) {
    for(int j = 0; j < size; j++ ) {
      for( int k = 0; k < samples; k += 2 ) {
        int x1,y1,x2,y2;
        x1 = k % (samplesU);
        y1 = (samples - 1 - k) / samplesU;
        x2 = (k+1) % samplesU;
        y2 = (samples - 1 - k - 1) / samplesU;

        vec4 v;
        // Center on grid and jitter
        v.x = (x1 + 0.5f) + jitter();
        v.y = (y1 + 0.5f) + jitter();
        v.z = (x2 + 0.5f) + jitter();
        v.w = (y2 + 0.5f) + jitter();
        // Scale between 0 and 1
        v.x /= samplesU;
        v.y /= samplesV;
        v.z /= samplesU;
        v.w /= samplesV;
        // Warp to disk
        int cell = ((k/2) * size * size + j * 
                    size + i) * 4;
        data[cell+0] = sqrtf(v.y) * cosf(TWOPI*v.x);
        data[cell+1] = sqrtf(v.y) * sinf(TWOPI*v.x);
        data[cell+2] = sqrtf(v.w) * cosf(TWOPI*v.z);
        data[cell+3] = sqrtf(v.w) * sinf(TWOPI*v.z);
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      }
    }
  }

  glActiveTexture(GL_TEXTURE1);
  GLuint texID;
  glGenTextures(1, &texID);

  glBindTexture(GL_TEXTURE_3D, texID);
  glTexStorage3D(GL_TEXTURE_3D, 1, GL_RGBA32F, size, size,
                 samples/2);
  glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, size, size, 
                 samples/2, GL_RGBA, GL_FLOAT, data);
  glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, 
                    GL_NEAREST);
  glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, 
                    GL_NEAREST);

  delete [] data;
}

// Return random float between -0.5 and 0.5
float jitter() {
  return ((float)rand() / RAND_MAX) - 0.5f;
}

2. Add the following uniform variables to the fragment shader:

uniform sampler3D OffsetTex;
uniform vec3 OffsetTexSize; // (width, height, depth)
uniform float Radius;

3. Use the following code for the shadeWithShadow function in the fragment shader:

subroutine (RenderPassType)
void shadeWithShadow()
{
  vec3 ambient = vec3(0.2);
  vec3 diffSpec = diffAndSpec();

  ivec3 offsetCoord;
  offsetCoord.xy = ivec2( mod( gl_FragCoord.xy, 
                         OffsetTexSize.xy ) );

  float sum = 0.0;
  int samplesDiv2 = int(OffsetTexSize.z);
  vec4 sc = ShadowCoord;

  for( int i = 0 ; i< 4; i++ ) {
    offsetCoord.z = i;
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    vec4 offsets = texelFetch(OffsetTex,offsetCoord,0) * 
                       Radius * ShadowCoord.w;

    sc.xy = ShadowCoord.xy + offsets.xy;
    sum += textureProj(ShadowMap, sc);
    sc.xy = ShadowCoord.xy + offsets.zw;
    sum += textureProj(ShadowMap, sc);
  }
  float shadow = sum / 8.0;

  if( shadow != 1.0 && shadow != 0.0 ) {
    for( int i = 4; i< samplesDiv2; i++ ) {
      offsetCoord.z = i;
      vec4 offsets = 
        texelFetch(OffsetTex, offsetCoord,0) *
                   Radius * ShadowCoord.w;

      sc.xy = ShadowCoord.xy + offsets.xy;
      sum += textureProj(ShadowMap, sc);
      sc.xy = ShadowCoord.xy + offsets.zw;
      sum += textureProj(ShadowMap, sc);
    }
    shadow = sum / float(samplesDiv2 * 2.0);
  }
  FragColor = vec4(diffSpec * shadow + ambient, 1.0);
}

How it works...
The buildOffsetTex function creates our three-dimensional texture of random offsets. 
The first parameter, texSize, defines the width and height of the texture. To create the 
preceding images, I used a value of 8. The second and third parameters, samplesU and 
samplesV, define the number of samples in the u and v directions. I used a value of 4 and 8, 
respectively, for a total of 32 samples. The u and v directions are arbitrary axes that are used 
to define a grid of offsets. To help understand this, take a look at the following figure:

Centered
offsets

Jittered offsets

v

u

Warped to
Circular Grid
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The offsets are initially defined to be centered on a grid of size samplesU x samplesV (4 x 
4 in the preceding figure). The coordinates of the offsets are scaled such that the entire grid 
fits in the unit cube (side length 1) with the origin in the lower left corner. Then each sample is 
randomly jittered from its position to a random location inside the grid cell. Finally, the jittered 
offsets are warped such that they surround the origin and lie within the circular grid shown on 
the right.

The last step can be accomplished by using the v coordinate as the distance from the origin 
and the u coordinate as the angle scaled from 0 to 360. The following equations should do 
the trick:

Here, w is the warped coordinate. What we are left with is a set of offsets around the origin 
that are a maximum distance of 1.0 from the origin. Additionally, we generate the data such 
that the first samples are the ones around the outer edge of the circle, moving inside towards 
the center. This will help us avoid taking too many samples when we are working completely 
inside or outside of the shadow.

Of course, we also pack the samples in such a way that a single texel contains two samples. 
This is not strictly necessary, but is done to conserve memory space. However, it does make 
the code a bit more complex.

Within the fragment shader, we start by computing the ambient component of the shading 
model separately from the diffuse and specular components. We access the offset texture at 
a location based on the fragment's screen coordinates (gl_FragCoord). We do so by taking 
the modulus of the fragment's position and the size of the offset texture. The result is stored 
in the first two components of offsetCoord. This will give us a different set of offsets for 
each nearby pixel. The third components of offsetCoord will be used to access a pair of 
samples. The number of samples is the depth of the texture divided by two. This is stored in 
samplesDiv2. We access the sample using the texelFetch function. This function allows 
us to access a texel using the integer texel coordinates rather than the usual normalized 
texture coordinates in the range 0…1.

The offset is retrieved and multiplied by Radius and the w component of ShadowCoord. 
Multiplying by Radius simply scales the offsets so that they range from 0.0 to Radius. We 
multiply by the w component because ShadowCoord is still a homogeneous coordinate, 
and our goal is to use offsets to translate the ShadowCoord. In order to do so properly, we 
need to multiply the offset by the w component. Another way of thinking of this is that the w 
component will be cancelled when perspective division takes place.
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Next, we use offsets to translate ShadowCoord and access the shadow map to do the depth 
comparison using textureProj. We do so for each of the two samples stored in the texel, 
once for the first two components of offsets and again for the last two. The result is added  
to sum.

The first loop repeats this for the first eight samples. If the first eight samples are all 0.0 or 
1.0, then we assume that all of the samples will be the same (the sample area is completely 
in or out of the shadow). In that case, we skip the evaluation of the rest of the samples. 
Otherwise, we evaluate the following samples and compute the overall average.

Finally the resulting average (shadow) is used to attenuate the diffuse and specular 
components of the lighting model.

There's more...
The use of a small texture containing a set of random offsets helps to blur the edges of the 
shadow better than what we might achieve with the standard PCF technique that uses a 
constant set of offsets. However, artifacts can still appear as repeated patterns within the 
shadow edges because the texture is finite and offsets are repeated every few pixels. We 
could improve this by also using a random rotation of the offsets within the fragment shader, 
or simply compute the offsets randomly within the shader.

It should also be noted that this blurring of the edges may not be desired for all shadow 
edges. For example, edges that are directly adjacent to the occluder, that is, creating the 
shadow, should not be blurred. These may not always be visible, but can become so in certain 
situations, such as when the occluder is a narrow object. The effect is to make the object 
appear as if it is hovering above the surface. Unfortunately, there isn't an easy fix for this one.

See also
 f The Rendering shadows with shadow maps recipe

Creating shadows using shadow volumes 
and the geometry shader

As we discovered in the previous recipes, one of the main problems with shadow maps is 
aliasing. The problem essentially boils down to the fact that we are sampling the shadow 
map(s) at a different frequency (resolution) than we are using when rendering the scene. 
To minimize the aliasing we can blur the shadow edges (as in the previous recipes), or try 
to sample the shadow map at a frequency that is closer to the corresponding resolution in 
projected screen space. There are many techniques that help with the latter; for more details, 
I recommend the book Real-Time Shadows.
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An alternate technique for shadow generation is called shadow volumes. The shadow volume 
method completely avoids the aliasing problem that plagues shadow maps. With shadow 
volumes, you get pixel-perfect hard shadows, without the aliasing artifacts of shadow maps. 
The following figure shows a scene with shadows that are produced using the shadow  
volume technique.

The shadow volume technique works by making use of the stencil buffer to mask out areas 
that are in shadow. We do this by drawing the boundaries of the actual shadow volumes (more 
on this below). A shadow volume is the region of space where the light source is occluded by 
an object. For example, the following figures show a representation of the shadow volumes of 
a triangle (left) and a sphere (right).

The boundaries of a shadow volume are made up of quads formed by extending the edges 
of the object away from the light source. For a single triangle, the boundaries would consist 
of three quads, extended from each edge, and triangular caps on each end. One cap is the 
triangle itself and the other is placed at some distance from the light source. For an object 
that consists of many triangles, such as the sphere above, the volume can be defined by the 
so-called silhouette edges. These are edges that are on or near the boundary between the 
shadow volume and the portion of the object that is lit. In general, a silhouette edge borders 
a triangle that faces the light and another triangle that faces away from the light. To draw the 
shadow volume, one would find all of the silhouette edges and draw extended quads for each 
edge. The caps of the volume could be determined by making a closed polygon (or triangle fan) 
that includes all the points on the silhouette edges, and similarly on the far end of the volume.



Shadows

286

The shadow volume technique works in the following way. Imagine a ray that originates at the 
camera position and extends through a pixel on the near plane. Suppose that we follow that 
ray and keep track of a counter that is incremented every time that it enters a shadow volume 
and decremented each time that it exits a shadow volume. If we stop counting when we hit a 
surface, that point on the surface is occluded (in shadow) if our count is non-zero, otherwise, 
the surface is lit by the light source.  The following figure shows an example of this idea:

0
+1 +2 +1 0

The roughly horizontal line represents a surface that is receiving a shadow. The numbers 
represent the counter for each camera ray. For example, the rightmost ray with value +1 
has that value because the ray entered two volumes and exited one along the way from the 
camera to the surface: 1 + 1 - 1 = 1. The rightmost ray has a value of zero at the surface 
because it entered and exited both shadow volumes: 1 + 1 - 1 - 1 = 0.

This all sounds fine in theory, but how can we trace rays in OpenGL? The good news is that 
we don't have to. The stencil buffer provides just what we need. With the stencil buffer, we 
can increment/decrement a counter for each pixel based on whether a front or back face is 
rendered into that pixel. So we can draw the boundaries of all of the shadow volumes, then for 
each pixel, increment the stencil buffer's counter when a front face is rendered to that pixel 
and decrement when it is a back face.

The key here is to realize that each pixel in the rendered figure represents an eye-ray (as in the 
above diagram). So for a given pixel, the value in the stencil buffer is the value that we would 
get if we actually traced a ray through that pixel. The depth test helps to stop tracing when we 
reach a surface.

The above is just a quick introduction to shadow volumes, a full 
discussion is beyond the scope of this book. For more detail, a 
great resource is Real Time Shadows by Eisemann et al.
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In this recipe, we'll draw our shadow volumes with the help of the geometry shader. Rather 
than computing the shadow volumes on the CPU side, we'll render the geometry normally, and 
have the geometry shader produce the shadow volumes. In the Drawing silhouette lines using 
the geometry shader recipe in Chapter 6, Using Geometry and Tessellation Shaders, we saw 
how the geometry shader can be provided with adjacency information for each triangle. With 
adjacency information, we can determine whether a triangle has a silhouette edge. If the triangle 
faces the light, and a neighboring triangle faces away from the light, then the shared edge can 
be considered a silhouette edge, and used to create a polygon for the shadow volume.

The entire process is done in three passes. They are as follows:

 f Render the scene normally, but write the shaded color to two separate buffers.  
We'll store the ambient component in one and the diffuse and specular components 
in another.

 f Set up the stencil buffer so that the stencil test always passes, and front faces cause 
an increment and back faces cause a decrement. Make the depth buffer read-only, 
and render only the shadow-casting objects. In this pass, the geometry shader will 
produce the shadow volumes, and only the shadow volumes will be rendered to the 
fragment shader.

 f Set up the stencil buffer so the test succeeds when the value is equal to zero. Draw 
a screen-filling quad, and combine the values of the two buffers from step one when 
the stencil test succeeds.

That's the high-level view, and there are many details. Let's go through them in the  
next sections.

Getting ready
We'll start by creating our buffers. We'll use a framebuffer object with a depth attachment 
and two color attachments. The ambient component can be stored in a renderbuffer (as 
opposed to a texture) because we'll blit (a fast copy) it over to the default framebuffer 
rather than reading from it as a texture. The diffuse + specular component will be stored in 
a texture. Create the ambient buffer (ambBuf), a depth buffer (depthBuf), and a texture 
(diffSpecTex), then set up the FBO.

glGenFramebuffers(1, &colorDepthFBO);
glBindFramebuffer(GL_FRAMEBUFFER, colorDepthFBO);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 
                          GL_RENDERBUFFER, depthBuf);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 
                          GL_RENDERBUFFER, ambBuf);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, 
                       GL_TEXTURE_2D, diffSpecTex, 0);
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Set up the draw buffers so that we can write to the color attachments.

GLenum drawBuffers[] = {GL_COLOR_ATTACHMENT0, 
                        GL_COLOR_ATTACHMENT1};
glDrawBuffers(2, drawBuffers);

How to do it...
For the first pass, enable the framebuffer object that we set up above, and render the scene 
normally. In the fragment shader, send the ambient component and the diffuse + specular 
component to separate outputs.

layout( location = 0 ) out vec4 Ambient;
layout( location = 1 ) out vec4 DiffSpec;

void shade( )
{
  // Compute the shading model, and separate out the ambient
  // component.
  Ambient = …;   // Ambient
  DiffSpec = …;  // Diffuse + specular
}
void main() { shade(); }

In the second pass, we'll render our shadow volumes. We want to set up the stencil buffer so 
that the test always succeeds, and that front faces cause an increment, and back faces cause 
a decrement.

glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0xffff);
glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR_WRAP);
glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR_WRAP);

Also in this pass, we want to use the depth buffer from the first pass, but we want to use the 
default frame buffer, so we need to copy the depth buffer over from the FBO used in the first 
pass. We'll also copy over the color data, which should contain the ambient component.

glBindFramebuffer(GL_READ_FRAMEBUFFER, colorDepthFBO); 
glBindFramebuffer(GL_DRAW_FRAMEBUFFER,0);
glBlitFramebuffer(0,0,width-1,height-1,0,0,width-1,height-1,
           GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT, GL_NEAREST);

We don't want to write to the depth buffer or the color buffer in this pass, since our only goal is 
to update the stencil buffer, so we'll disable writing for those buffers.

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); 
glDepthMask(GL_FALSE);
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Next, we render the shadow-casting objects with adjacency information. In the geometry 
shader, we determine the silhouette edges and output only quads that define the shadow 
volume boundaries.

layout( triangles_adjacency ) in;
layout( triangle_strip, max_vertices = 18 ) out;

in vec3 VPosition[];
in vec3 VNormal[];

uniform vec4 LightPosition;  // Light position (eye coords)
uniform mat4 ProjMatrix;     // Proj. matrix (infinite far plane)

bool facesLight( vec3 a, vec3 b, vec3 c )
{
  vec3 n = cross( b - a, c - a );
  vec3 da = LightPosition.xyz - a;
  vec3 db = LightPosition.xyz - b;
  vec3 dc = LightPosition.xyz - c;
  return dot(n, da) > 0 || dot(n, db) > 0 || dot(n, dc) > 0; 
}

void emitEdgeQuad( vec3 a, vec3 b ) {
  gl_Position = ProjMatrix * vec4(a, 1);
  EmitVertex();  
  gl_Position = ProjMatrix * vec4(a - LightPosition.xyz, 0);
  EmitVertex();
  gl_Position = ProjMatrix * vec4(b, 1);
  EmitVertex();
  gl_Position = ProjMatrix * vec4(b - LightPosition.xyz, 0);
  EmitVertex();
  EndPrimitive();
}

void main()
{
  if( facesLight(VPosition[0], VPosition[2], VPosition[4]) ) {
    if( ! facesLight(VPosition[0],VPosition[1],VPosition[2]) ) 
       emitEdgeQuad(VPosition[0],VPosition[2]);
    if( ! facesLight(VPosition[2],VPosition[3],VPosition[4]) ) 
       emitEdgeQuad(VPosition[2],VPosition[4]);
    if( ! facesLight(VPosition[4],VPosition[5],VPosition[0]) ) 
       emitEdgeQuad(VPosition[4],VPosition[0]);
  }
}
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In the third pass, we'll set up our stencil buffer so that the test passes only when the value in 
the buffer is equal to zero.

glStencilFunc(GL_EQUAL, 0, 0xffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

We want to enable blending so that our ambient component is combined with the diffuse  
+ specular when the stencil test succeeds.

glEnable(GL_BLEND);          
glBlendFunc(GL_ONE,GL_ONE);

In this pass, we just draw a screen-filling quad, and output the diffuse + specular value. If 
the stencil test succeeds, the value will be combined with the ambient component, which is 
already in the buffer (we copied it over earlier using glBlitFramebuffer).

layout(binding = 0) uniform sampler2D DiffSpecTex;
layout(location = 0) out vec4 FragColor;

void main() {
  vec4 diffSpec = texelFetch(DiffSpecTex, ivec2(gl_FragCoord), 0);
  FragColor = vec4(diffSpec.xyz, 1);
}

How it works...
The first pass is fairly straightforward. We draw the entire scene normally, except we  
separate the ambient color from the diffuse and specular color, and send the results to 
different buffers.

The second pass is the core of the algorithm. Here we render only the objects that cast 
shadows and let the geometry shader produce the shadow volumes. Thanks to the geometry 
shader, we don't actually end up rendering the shadow-casting objects at all, only the 
shadow volumes. However, before this pass, we need to do a bit of setup. We set up the 
stencil test so that it increments when a front face is rendered and decrements for back 
faces using glStencilOpSeparate, and the stencil test is configured to always succeed 
using glStencilFunc. We also use glBlitFramebuffer to copy over the depth buffer 
and (ambient) color buffer from the FBO used in the first pass. Since we want to only render 
shadow volumes that are not obscured by geometry, we make the depth buffer read-only using 
glDepthMask. Lastly, we disable writing to the color buffer using glColorMask because we 
don't want to mistakenly overwrite anything in this pass.
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The geometry shader does the work of producing the silhouette shadow volumes. Since 
we are rendering using adjacency information (see the Drawing silhouette lines using 
the geometry shader recipe in Chapter 6, Using Geometry and Tessellation Shaders), the 
geometry shader has access to six vertices that define the current triangle being rendered 
and the three neighboring triangles. The vertices are numbered from 0 to 5, and are available 
via the input array named VPosition in this example. Vertices 0, 2, and 4 define the current 
triangle and the others define the adjacent triangles as shown in the following figure:

0

1 2
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The geometry shader starts by testing the main triangle (0, 2, 4) to see if it faces the light 
source. We do so by computing the normal to the triangle (n) and the vector from each vertex 
to the light source. Then we compute the dot product of n and each of the three light source 
direction vectors (da, db, and dc). If any of the three are positive, then the triangle faces the 
light source. If we find that triangle (0, 2, 4) faces the light, then we test each neighboring 
triangle in the same way. If a neighboring triangle does not face the light source, then the edge 
between them is a silhouette edge and can be used as an edge of a face of the shadow volume.

We create a shadow volume face in the emitEdgeQuad function. The points a and b define 
the silhouette edge, one edge of the shadow volume face. The other two vertices of the face 
are determined by extending a and b away from the light source. Here, we use a mathematical 
trick that is enabled by homogeneous coordinates. We extend the face out to infinity by using 
a zero in the w coordinate of the extended vertices. This effectively defines a homogeneous 
vector, sometimes called a point at infinity. The x, y and z coordinates define a vector in the 
direction away from the light source, and the w value is set to zero. The end result is that we 
get a quad that extends out to infinity, away from the light source.

Note that this will only work properly if we use a modified 
projection matrix that can take into account points defined 
in this way. Essentially, we want a projection matrix with a 
far plane set at infinity. GLM provides just such a projection 
matrix via the function infinitePerspective.

We don't worry about drawing the caps of the shadow volume here. We don't need a cap at 
the far end, because we've used the homogeneous trick described above, and the object itself 
will serve as the cap on the near end.
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In the third and final pass, we reset our stencil test to pass when the value in the stencil buffer 
is equal to zero using glStencilFunc. Here we want to sum the ambient with the diffuse + 
specular color when the stencil test succeeds, so we enable blending, and set the source and 
destination blend functions to GL_ONE. We render just a single screen-filling quad, and output 
the value from the texture that contains our diffuse + specular color. The stencil test will take 
care of discarding fragments that are in shadow, and OpenGL's blending support will blend 
the output with the ambient color for fragments that pass the test. (Remember that we copied 
over the ambient color using glBlitFramebuffer earlier.)

There's more...
The technique described above is often referred to as the z-pass technique. It has one fatal 
flaw. If the camera is located within a shadow volume, this technique breaks down because 
the counts in the stencil buffer will be off by at least one. The common solution is to basically 
invert the problem and trace a ray from infinity towards the view point. This is called the z-fail 
technique or Carmack's reverse.

The "fail" and "pass" here refers to whether or not we are 
counting when the depth test passes or fails.

Care must be taken when using z-fail because it is important to draw the caps of the 
shadow volumes. However, the technique is very similar to z-pass. Instead of incrementing/
decrementing when the depth test passes, we do so when the depth test fails. This effectively 
"traces" a ray from infinity back towards the view point.

I should also note that the preceding code is not robust to degenerate triangles (triangles that 
have sides that are nearly parallel), or non-closed meshes. One might need to take care in 
such situations. For example, to better deal with degenerate triangles we could use another 
technique for determining the normal to the triangle. We could also add additional code to 
handle edges of meshes, or simply always use closed meshes.

See also
 f The Drawing silhouette lines using the geometry shader recipe in Chapter 6, Using 

Geometry and Tessellation Shaders


