
CodeWarrior Development Studio Common
Features Guide

Freescale Semiconductor, Inc. Document Number: CWCFUG
Reference Manual 10.x

Contents

Chapter 1 Introduction...11
1.1 Release notes...11
1.2 Documentation structure.. 11

1.2.1 Documentation formats...11
1.3 Manual conventions..12

1.3.1 Figure conventions... 12
1.3.2 Keyboard conventions.. 12

1.4 CodeWarrior IDE overview...12
1.4.1 Development cycle... 12
1.4.2 CodeWarrior IDE advantages...13

Chapter 2 IDE Extensions... 15
2.1 CodeWarrior Projects view...16

2.1.1 Active configuration.. 16
2.1.2 Tree and list view..17
2.1.3 Column headers... 18
2.1.4 Quick search...19
2.1.5 Filtering...20

2.2 Command line interface..21
2.2.1 build.. 22
2.2.2 getOptions.. 23
2.2.3 generateMakefiles.. 24
2.2.4 references...24
2.2.5 setOptions...25
2.2.6 updateWorkspace...27

2.3 Commander view..27
2.3.1 Customizing Commander view... 29
2.3.2 Pinning Commander view...30

2.4 Concurrent compilation...30
2.5 Console view.. 32
2.6 Shortcut menus.. 32
2.7 Diagnostic Information export...33

2.7.1 General settings for Diagnostic Information..33
2.7.2 Export Diagnostic Information...35

2.8 Extracting CodeWarrior configuration details... 39
2.9 Find and Open File...41
2.10 Importing files... 41

2.10.1 CodeWarrior drag and drop support... 42
2.10.2 Using Import wizard.. 42

2.10.2.1 Import existing project...42
2.10.2.2 Import example project... 45

2.11 Key mappings...47
2.12 Linker Command File navigation..48
2.13 Multiple compiler support..50
2.14 New External File... 51
2.15 Exporting and importing macros...52

2.15.1 Add macro to a project..53
2.15.2 Export macros for a project...53

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 3

2.15.3 Import macros into a new project..54
2.16 Problems view.. 54
2.17 Referenced projects... 55

2.17.1 Create Referenced project..55
2.17.2 Displaying referenced projects in CodeWarrior Projects view.. 57
2.17.3 Automatic linking with referenced project build artifact...58
2.17.4 Circular build dependencies... 59

2.18 Target management via Remote System Explorer...59
2.18.1 Creating remote system..59
2.18.2 Creating hardware or simulator connection configuration.. 62
2.18.3 Creating hardware or simulator target configuration...63
2.18.4 Creating TRK target configuration.. 67
2.18.5 Remote Systems view.. 68

2.18.5.1 Modifying target or connection configuration.. 68
2.18.5.2 Exporting target or connection configuration.. 69
2.18.5.3 Importing target or connection configuration...70
2.18.5.4 Apply to Project...70
2.18.5.5 Apply to Connection..71
2.18.5.6 Automatic removal of unreferenced remote system... 71

2.18.6 Automatic project remote system setting cache... 72
2.18.6.1 Remote System Missing... 73
2.18.6.2 Remote System Changed dialog.. 74

2.18.7 Compatibility with older products.. 75
2.18.7.1 Display of launch configurations needing migration..75
2.18.7.2 Migrating launch configurations.. 78

2.19 Viewing CodeWarrior plug-ins..85
2.20 Editing cwide-env file..88
2.21 Handling message alerts..89

Chapter 3 Debugger..91
3.1 About debugger..92
3.2 Breakpoints...92

3.2.1 Breakpoints view...93
3.2.2 Breakpoint annotations...94
3.2.3 Regular breakpoints..94

3.2.3.1 Setting line breakpoint.. 95
3.2.3.2 Setting method breakpoint.. 95

3.2.4 Special breakpoints.. 96
3.2.4.1 Setting special breakpoint using IDE.. 96

3.2.5 Breakpoint persistence... 97
3.2.6 Breakpoint preferences...97
3.2.7 Working with breakpoints..99

3.2.7.1 Modify breakpoint properties...99
3.2.7.2 Restricting breakpoints to selected targets and threads..................................... 101
3.2.7.3 Limiting new breakpoints to active debug context.. 102
3.2.7.4 Grouping breakpoints..103
3.2.7.5 Disabling breakpoints..103
3.2.7.6 Enabling breakpoints.. 104
3.2.7.7 Removing breakpoints.. 104
3.2.7.8 Removing all breakpoints..104
3.2.7.9 Undo delete breakpoint...104
3.2.7.10 Redo delete breakpoint...105
3.2.7.11 Skipping all breakpoints.. 105

3.2.8 Breakpoint actions.. 105

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
4 Freescale Semiconductor, Inc.

3.2.8.1 Breakpoint Actions preferences page... 106
3.2.8.2 Adding breakpoint action.. 107
3.2.8.3 Attaching breakpoint actions to breakpoints... 108

3.2.9 Selecting breakpoint template.. 109
3.3 Build while debugging...110
3.4 Cache view...111

3.4.1 Opening Cache view...112
3.4.2 Preserving sorting...113
3.4.3 Cache view pop-up menu...114

3.5 CodeWarrior debugger settings..116
3.5.1 Modifying debugger settings...116
3.5.2 Reverting debugger settings...117
3.5.3 Stopping debugger at program entry point... 117

3.6 Core index indicators in homogeneous multicore environment..118
3.6.1 System Browser view... 118

3.6.1.1 Kernel Awareness...118
3.6.1.2 OS application...119

3.6.2 Console View..119
3.7 Debug perspective..120
3.8 Debug view...121

3.8.1 Common debugging actions...122
3.8.1.1 Starting debugger... 123
3.8.1.2 Stepping into routine call...123
3.8.1.3 Stepping out of routine call... 123
3.8.1.4 Stepping over routine call... 123
3.8.1.5 Stopping program execution... 124
3.8.1.6 Resuming program execution... 124
3.8.1.7 Running program.. 124
3.8.1.8 Disconnecting core... 124
3.8.1.9 Restarting debugger... 124
3.8.1.10 Debugging in Instruction Stepping mode.. 125
3.8.1.11 Changing program counter value..125

3.9 Disassembly view...125
3.10 Environment variables in launch configuration...126
3.11 Flash programmer.. 127

3.11.1 Create a flash programmer target task... 128
3.11.2 Configure flash programmer target task... 130

3.11.2.1 Add flash device..130
3.11.2.2 Specify target RAM settings..130
3.11.2.3 Add flash programmer actions.. 131

3.11.3 Execute flash programmer target task..136
3.12 Flash File to Target...137

3.12.1 Erasing flash device..138
3.12.2 Programming a file..138

3.13 Hardware diagnostics...139
3.13.1 Creating hardware diagnostics task..139
3.13.2 Working with Hardware Diagnostic Action editor..140

3.13.2.1 Action Type... 140
3.13.2.2 Memory Access.. 141
3.13.2.3 Loop Speed...141
3.13.2.4 Memory Tests... 142

3.13.3 Memory test use cases...145
3.13.3.1 Use Case 1: Execute host-based Scope Loop on target.................................. 145
3.13.3.2 Use Case 2: Execute target-based Memory Tests on target............................ 146

3.14 Import/Export/Fill memory.. 146

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 5

3.14.1 Creating task for import/export/fill memory... 146
3.14.2 Importing data into memory.. 148
3.14.3 Exporting memory to file... 150
3.14.4 Fill memory... 152

3.15 Launch group..153
3.15.1 Creating launch group.. 153
3.15.2 Launching launch group... 156

3.16 Load multiple binaries...157
3.16.1 Viewing binaries..158

3.17 Memory view.. 159
3.17.1 Opening Memory view.. 160
3.17.2 Adding memory monitor..160
3.17.3 Adding memory renderings...162
3.17.4 Mixed source rendering.. 163
3.17.5 Setting memory access size... 164
3.17.6 Exporting memory...164
3.17.7 Importing memory...165
3.17.8 Setting watchpoint in Memory view.. 166
3.17.9 Clearing watchpoints from Memory view.. 166

3.18 Memory Browser view.. 167
3.19 Memory Management Unit configurator... 168

3.19.1 Creating MMU configuration... 168
3.19.2 Saving MMU Configurator settings... 171
3.19.3 MMU Configurator toolbar.. 171
3.19.4 MMU Configurator pages..172

3.19.4.1 General page.. 173
3.19.4.2 Program MATT page.. 174
3.19.4.3 Data MATT page...177
3.19.4.4 Saving MMU configurator generated code... 180

3.19.5 Opening MMU Configurator view..182
3.20 Multicore debugging... 183

3.20.1 Multicore Suspend..183
3.20.2 Multicore Resume...184
3.20.3 Multicore Terminate.. 184
3.20.4 Multicore Restart...184

3.21 Multicore Groups.. 185
3.21.1 Creating multicore group.. 185
3.21.2 Modifying multicore group...188
3.21.3 Editing multicore group...189
3.21.4 Using multicore group debugging commands.. 191
3.21.5 Multicore breakpoint halt groups...192

3.22 Multicore reset..192
3.22.1 On demand reset..195

3.23 Path mappings..195
3.23.1 Automatic path mappings... 195
3.23.2 Manual path mappings... 197

3.23.2.1 Adding path mapping to workspace..200
3.24 Redirecting standard output streams to socket.. 201
3.25 Refreshing data during runtime.. 203
3.26 Registers view.. 204

3.26.1 Opening Registers view..206
3.26.2 Viewing registers.. 206
3.26.3 Changing register values..206
3.26.4 Exporting registers..207
3.26.5 Importing registers..208

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
6 Freescale Semiconductor, Inc.

3.26.6 Changing register data display format.. 209
3.27 Register Details view..209

3.27.1 Viewing register details offline.. 210
3.27.2 Loading register dump file in offline Register Details view... 212
3.27.3 Customizing Register Details pane...213

3.28 Remote launch... 214
3.28.1 Remote Launch view.. 215

3.29 Stack crawls... 216
3.29.1 One Frame mode..216
3.29.2 Global preference... 217

3.30 Symbolics... 219
3.31 System Browser view... 220

3.31.1 Opening System Browser view...220
3.32 Target connection lost.. 222
3.33 Target initialization files.. 223

3.33.1 Selecting target initialization file..223
3.34 Target Tasks view.. 225

3.34.1 Exporting target tasks...225
3.34.2 Importing target tasks... 226

3.35 Variables...226
3.35.1 Opening Variables view..227
3.35.2 Adding variable location to view... 227
3.35.3 Manipulating variable values.. 228

3.35.3.1 Fractional variable formats..229
3.35.4 Adding global variables...229
3.35.5 Cast to Type... 230

3.36 Watchpoints..231
3.36.1 Setting watchpoint.. 232
3.36.2 Creating watchpoint..233
3.36.3 Viewing watchpoint properties..234
3.36.4 Modifying watchpoint properties... 235
3.36.5 Disabling watchpoint...236
3.36.6 Enabling watchpoint..236
3.36.7 Remove watchpoint.. 237
3.36.8 Remove all watchpoints..237

Chapter 4 Debugger Shell...239
4.1 Executing previously issued commands...241
4.2 Using code hints...241
4.3 Using auto-completion..241
4.4 Command-line debugger shell..242
4.5 Debugger Shell commands.. 242

4.5.1 about...244
4.5.2 alias.. 244
4.5.3 bp..245
4.5.4 cd..246
4.5.5 change..246
4.5.6 cls... 249
4.5.7 cmdwin::ca..249
4.5.8 cmdwin::caln...249
4.5.9 config.. 250
4.5.10 copy.. 254
4.5.11 debug..255
4.5.12 dir..255

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 7

4.5.13 disassemble..256
4.5.14 display...257
4.5.15 evaluate.. 260
4.5.16 finish... 261
4.5.17 fl::blankcheck..262
4.5.18 fl::checksum..262
4.5.19 fl::device..263
4.5.20 fl::diagnose... 264
4.5.21 fl::disconnect...265
4.5.22 fl::dump...265
4.5.23 fl::erase...266
4.5.24 fl::image.. 266
4.5.25 fl::protect...267
4.5.26 fl::secure... 267
4.5.27 fl::target...268
4.5.28 fl::verify... 269
4.5.29 fl::write.. 269
4.5.30 funcs... 269
4.5.31 getpid..269
4.5.32 go..269
4.5.33 help...270
4.5.34 history... 271
4.5.35 jtagclock..271
4.5.36 kill..271
4.5.37 launch... 272
4.5.38 linux::displaylinuxlist... 272
4.5.39 linux::loadsymbolics..273
4.5.40 linux::refreshmodules..273
4.5.41 linux::selectmodule... 273
4.5.42 linux::unloadsymbolics..273
4.5.43 loadsym.. 273
4.5.44 log...274
4.5.45 mc::config... 274
4.5.46 mc::go...275
4.5.47 mc::group..275
4.5.48 mc::kill...276
4.5.49 mc::reset...276
4.5.50 mc::restart...276
4.5.51 mc::stop.. 277
4.5.52 mc::type.. 277
4.5.53 mem..278
4.5.54 next...280
4.5.55 nexti.. 280
4.5.56 oneframe...280
4.5.57 pwd... 281
4.5.58 quitIDE..281
4.5.59 radix..281
4.5.60 redirect..282
4.5.61 refresh...283
4.5.62 reg...283
4.5.63 reset..286
4.5.64 restart..286
4.5.65 restore...287
4.5.66 run...288
4.5.67 save.. 288

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
8 Freescale Semiconductor, Inc.

4.5.68 setpc... 289
4.5.69 setpicloadaddr.. 290
4.5.70 stack... 290
4.5.71 status.. 291
4.5.72 step...291
4.5.73 stepi.. 292
4.5.74 stop...292
4.5.75 switchtarget...293
4.5.76 system.. 294
4.5.77 var...294
4.5.78 wait... 295
4.5.79 watchpoint...296

Chapter 5 Debugger Script Migration..297
5.1 Command-line syntax...297
5.2 Launching debug session...297
5.3 Stepping... 299
5.4 Settings of config command... 300

Index.. 301

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 9

Contents

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
10 Freescale Semiconductor, Inc.

Chapter 1
Introduction
This manual describes the CodeWarrior IDE and debugger features that are common across all the CodeWarrior
products. This chapter presents an overview of the manual and the CodeWarrior IDE.

The CodeWarrior Common Features Guide (document CWCFUG) may describe
features that are not available for your product. Further, the figures show a typical user
interface, which may differ slightly from your CodeWarrior product. See your product's
Targeting Manual for details of its product-specific features.

 NOTE

This chapter includes:

• Release notes on page 11

• Documentation structure on page 11

• Manual conventions on page 12

• CodeWarrior IDE overview on page 12

1.1 Release notes
These notes contain important information about the last-minute changes, bug fixes, incompatible elements,
or other sections that may not be included in this manual.

Before using the CodeWarrior IDE, read the release notes.

The release notes for specific components of the CodeWarrior IDE are located in the
Release_Notes folder in the CodeWarrior installation directory.

 NOTE

1.2 Documentation structure
CodeWarrior products include an extensive documentation library of user guides, targeting manuals, and
reference manuals.

Take advantage of the documentation library to learn how to efficiently develop software using the CodeWarrior
programming environment.

This section includes:

• Documentation formats on page 11

1.2.1 Documentation formats
This topic lists that the CodeWarrior documentation is provided in the PDF and HTML formats.

CodeWarrior documentation presents information in the following formats:

• PDF - Portable Document Format of the CodeWarrior manuals, such as the CodeWarrior Common
Features Guide (document CWCFUG) and the product-specific Targeting manuals.

• HTML (Hypertext Markup Language) - HTML versions of the CodeWarrior manuals. To access the HTML
version of CodeWarrior manuals, choose Help > Help Contents from the CodeWarrior IDE menu bar.

Introduction
Release notes

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 11

1.3 Manual conventions
This topic lists the different conventions used in the manual.

It explains conventions in the CodeWarrior Common Features Guide (document CWCFUG).

This section includes:

• Figure conventions on page 12

• Keyboard conventions on page 12

1.3.1 Figure conventions
The CodeWarrior IDE employs a virtually identical user interface across multiple hosts. For this reason,
illustrations of common interface elements use images from any host.

However, some interface elements are unique to a particular host. In such cases, clearly labeled images identify
the specific host.

1.3.2 Keyboard conventions
The CodeWarrior IDE accepts keyboard shortcuts, or key bindings , for frequently used operations. For each
operation, this manual lists corresponding key bindings by platform.

At any time, you can obtain a list of available key bindings using Key Assist (Help > Key Assist or Ctrl+Shift+L).

1.4 CodeWarrior IDE overview
The CodeWarrior IDE provides an efficient and flexible software-development tool suite. This topic explains
the the software development cycle and the advantages of using the CodeWarrior IDE for development.

This topic explains:

• Development cycle on page 12

• CodeWarrior IDE advantages on page 13

1.4.1 Development cycle
This topic explains the steps required to complete the development cycle a project.

A software developer follows a general process to develop a project:

1. Begin with an idea for a new software.

2. Implement the new idea in source code.

3. Compile the source code into machine code.

4. Link the machine code and create an executable file.

5. Correct errors (debug).

6. Compile, link, and release a final executable file. The following figure shows the development cycle as a
flowchart.

Introduction
Manual conventions

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
12 Freescale Semiconductor, Inc.

Figure 1: CodeWarrior Development Cycle

1.4.2 CodeWarrior IDE advantages
This topic lists the different advantages of Codewarrior IDE.

• Cross-platform development

Develop software to run on multiple operating systems, or use multiple hosts to develop the same software
project. The CodeWarrior IDE runs on popular operating systems, such as Windows, Solaris, and Linux. It
uses virtually the same graphical user interface (GUI) across all Freescale Eclipse-based products.

• Multiple-language support

Choose from multiple programming languages when developing software. The CodeWarrior IDE supports
high-level languages, such as C, C++, and Java, as well as in-line assemblers for most processors.

• Consistent development environment

Introduction
CodeWarrior IDE overview

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 13

Port software to new processors without having to learn new tools or lose an existing code base. The
CodeWarrior IDE supports many common desktop and embedded processor families, such as x86, PowerPC,
and MIPS.

• Plug-in tool support

Extend the capabilities of the CodeWarrior IDE by adding a plug-in tool that supports new features. The
CodeWarrior IDE currently supports plug-ins for compilers, linkers, pre-linkers, post-linkers, preference panels,
version controls, and other tools. Plug-ins make it possible for the CodeWarrior IDE to process different
languages and support different processor families.

Introduction
CodeWarrior IDE overview

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
14 Freescale Semiconductor, Inc.

Chapter 2
IDE Extensions
The CodeWarrior IDE is composed of various plug-ins, each of which provide a specific functionality to the IDE.
This chapter explains how to work with various extensions (plug-ins) in the Eclipse IDE.

This chapter explains:

• CodeWarrior Projects view on page 16

• Command line interface on page 21

• Commander view on page 27

• Concurrent compilation on page 30

• Console view on page 32

• Shortcut menus on page 32

• Diagnostic Information export on page 33

• Extracting CodeWarrior configuration details on page 39

• Find and Open File on page 41

• Importing files on page 41

• Key mappings on page 47

• Linker Command File navigation on page 48

• Multiple compiler support on page 50

• New External File on page 51

• Exporting and importing macros on page 52

• Problems view on page 54

• Referenced projects on page 55

• Target management via Remote System Explorer on page 59

• Viewing CodeWarrior plug-ins on page 85

• Editing cwide-env file on page 88

• Handling message alerts on page 89

IDE Extensions

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 15

2.1 CodeWarrior Projects view
The CodeWarrior Projects view displays all the resources in a workspace.

Figure 2: CodeWarrior Projects view

The CodeWarrior Projects view is an enhanced version of the C/C++ Projects view.

Improvements provided by the CodeWarrior Projects view are discussed in the following sections.

• Active configuration on page 16

• Tree and list view on page 17

• Column headers on page 18

• Quick search on page 19

• Filtering on page 20

2.1.1 Active configuration
The CodeWarrior Projects view displays the name of active configuration associated with a project.

Click the configuration name to view the shortcut menu that displays all the configurations available to the project.
You can switch to different configurations using this shortcut menu.

IDE Extensions
CodeWarrior Projects view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
16 Freescale Semiconductor, Inc.

Figure 3: CodeWarrior Projects view - Active configuration

2.1.2 Tree and list view
The CodeWarrior Projects view supports both hierarchal tree and flat list viewing of the resources in a
workspace.

The table below lists the toolbar icons that can be used to switch the viewing of resources.

Table 1: CodeWarrior Projects view toolbar

Icon Description

Click the Show files in a hierarchal view icon in the
CodeWarrior Projects view toolbar to display the
resources in hierarchal tree view.

Click the Show files in a flat view icon in the
CodeWarrior Projects view toolbar to display the
resources in flat list view.

IDE Extensions
CodeWarrior Projects view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 17

2.1.3 Column headers
The column headers in the CodeWarrior Projects view let you sort the list of files and folders based on the
column.

A small triangle in the column header indicates the active column and the sort order. If a column is active, clicking
on its header toggles between the descending and ascending order.

The files can be sorted in both hierarchal and flat list views. Sorting is not case-sensitive
for strings.

 NOTE

To add a column header in the CodeWarrior Projects view:

1. Choose Customize Column Headers from the CodeWarrior Projects view pop-up menu.

The Customize Column Headers dialog appears.

Figure 4: Customize Column Headers

2. Select a checkbox to display or hide the corresponding column in the CodeWarrior Projects view.
Alternatively, you can click Select All or Deselect All to display or hide all the columns listed in the dialog.

3. Click OK .

You cannot customize the FileName column using the Customize Column Headers
dialog.

 NOTE

The column header is added to the CodeWarrior Projects view.

IDE Extensions
CodeWarrior Projects view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
18 Freescale Semiconductor, Inc.

2.1.4 Quick search
The CodeWarrior Projects view provides quick search that lets you filter the files in the current view based on
the expression you enter.

Quick search provides the following features:

• Type Ahead - Type the first few letters of the file name and the CodeWarrior Projects view automatically
selects the appropriate file based on the string typed.

• Wildcard character support - You can also use basic wildcard characters, such as ? and *, to extend your
search.

The CodeWarrior Projects view automatically switches to the flat view when an
expression is entered in the Search Text textbox.

 NOTE

Figure 5: CodeWarrior Projects view - Quick search

Click the Popup icon in the CodeWarrior Projects view toolbar to specify the fields in which the Eclipse IDE
searches for the expression typed in the Search Text textbox.

When you click the Popup button, the fields appear depending on the headers enabled
in the view.

 NOTE

Click the Erase Text icon in the CodeWarrior Projects view toolbar to clear the Quick Search query. The
CodeWarrior Projects view reverts to the normal view displaying all the folders and files in the workspace.

IDE Extensions
CodeWarrior Projects view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 19

2.1.5 Filtering
The CodeWarrior Projects view lets you filter the elements being displayed.

The following four filters has been added to filter the content in the CodeWarrior Projects view.

• Generated Files - Filters the output directory associated with each build configuration. This contains all files
generated by a build including the executable files, object files, ephemeral makefiles, dependency files,
map files, and other such elements. Typically, these files are all contained within a directory named after the
build configuration. The entire directory is filtered.

• Includes - Filters out the Includes element, which shows the include paths the project is using and the
included files.

• Launch Configurations - Filters .launch files, which are the launch configurations stored with the project.
Typically, these files are stored in a Debug_Settings folder. In such case, the entire folder is filtered.

• Referenced Projects - Filters the Referenced Projects element that shows what other projects and build-
configurations are referenced by the project.

To filter the content of the CodeWarrior Projects view:

1. Click the inverted triangle icon in the CodeWarrior Projects view.

The shortcut menu appears.

2. Choose Filters.

The C Element Filters dialog appears.

IDE Extensions
CodeWarrior Projects view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
20 Freescale Semiconductor, Inc.

Figure 6: C Element Filters dialog

3. Select the filter element you want to exclude from the CodeWarrior Projects view.

4. Click OK.

2.2 Command line interface
A new command- line tool, ecd.exe, is installed along with the cwide.exe that allows you to run build
commands.

To create an Eclipse build from the ecd command line:

1. Click Start , click Run , type cmd to open Command Prompt .

2. Navigate to the <CWInstallDir> \eclipse\folder to invoke the ecd command line.

3. At the command prompt, type the following command:

ecd -build -data my_workspace_path -project my_project_path

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 21

Projects specified by the -project flag that are not present in the workspace (either
the default one or the one specified by the -data flag) are automatically imported in
the workspace as existing project in the file system, and recorded in the workspace
metadata.

 NOTE

The ecd commands are listed below.

• build on page 22

• getOptions on page 23

• generateMakefiles on page 24

• references on page 24

• setOptions on page 25

• updateWorkspace on page 27

2.2.1 build
Builds a set of C/C++ projects.

Multiple-project flags can be passed on the same command invocation. The build tool output is generated on
the command line, and the build result is returned by ecd.exe return code, as 0 for success, and -1 for failure.

Syntax

ecd.exe -build [-verbose] [-cleanAll] [-project path [- config name | -allConfigs] -
cleanBuild]

Parameters

-cleanBuild

The -cleanBuild command applies to the preceding -project only.

-cleanAll

The -cleanAll command applies to all -project flags.

-config

The build configuration name. If the -config flag isn't specified, the default build configuration is used.

Examples

ecd.exe -build -data c:\my_workspace -project c:\my_first_project –project c:
\my_second_project

Builds the active configuration of each of the two projects.

ecd.exe -build -data c:\my_workspace -project c:\my_first_project -config Debug –project
c:\my_second_project -config Release -cleanBuild

Builds the debug configuration of my_first_project, then cleans and builds the release configuration of
my_second_project.

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
22 Freescale Semiconductor, Inc.

2.2.2 getOptions
Prints to the standard output C/C++ managed build, launch configuration or RSE system settings.

Syntax

ecd.exe -getOptions -project path [-config name | -allConfigs] [- file path] [-option
option-name] [-launchConfig name | - allLaunchConfigs] [-rseSystem name | -allRseSystems]

Parameters

-config

The build configuration name. If the -config flag isn't specified, the default build configuration is used.

-allConfigs

Specifies that all build configurations will be edited or listed

-file

The file path of a file included in the project. If the -file flag is specified, a file-level setting is retrieved instead
of a build configuration level setting(s). The -file flag does not apply to the -launchConfig , -
allLaunchConfigs , -rseSystem , and -allRseSystems flags.

-option

If the option setting isn't specified, all options are printed in a key=value format instead of a single option value,
which could be used for discovering the list of option ids in a given build configuration, launch configuration or
RSE system.

-option-name

Specify the option name.

-launchConfig

The launch configuration name. Allows retrieving launch configuration settings.

-allLaunchConfigs

Allow retrieving all launch configuration settings.

-rseSystem

The RSE system name. Allow retrieving RSE system settings.

-allRseSystems

Lets you retrieve RSE targets and connections settings.

Examples

ecd.exe -getOptions -project c:\my_first_project -config Debug

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 23

Gets all the options for the debug configuration of my_first_project.

ecd.exe -getOptions -project c:\my_first_project -allConfigs -option
gnu.c.compiler.option.preprocessor.def.symbols

Gets the values of the specified option in each defined configuration.

ecd.exe -getOptions -project c:\my_first_project -rseSystem
"my_first_project_Debug_B4860_Download Target"

Gets the RSE options of the specified RSE system. The quotes are necessary for escaping the space in the
RSE system name.

ecd.exe -getOptions -project c:\my_first_project -allConfigs -allRseSystems

Displays all the RSE systems options in each defined configuration.

2.2.3 generateMakefiles
Creates the makefiles required to build a C/C++ project.

Syntax

ecd.exe -generateMakefiles [-verbose] [-project path [- config name] [-allConfigs]]
[-data workspace-path]

Parameters

-config

The build configuration name. If the -config flag isn't specified, the default build configuration is used.

-data workspace-path

The -data workspace-path flag can be used to specify a custom workspace.

Examples

ecd.exe -generateMakefiles -data c:\my_workspace -project c:\my_first_project –project c:
\my_second_project

Generates the makefiles for the active configuration of each of the two projects.

ecd.exe -build -data c:\my_workspace -project c:\my_first_project -config Debug –project c:
\my_second_project -config Release

Generates the makefiles for the debug configuration of my_first_project, then for the release configuration of
my_second_project.

2.2.4 references
Lists, adds or removes all the referenced project and build configurations in a project.

Syntax

ecd.exe -references -project path [-config name | -allConfigs] (- list | -add | -remove)
referencedProjectLocation [buildConfigurationName]

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
24 Freescale Semiconductor, Inc.

Parameters

-config name

The name of the build configuration to edit or list referenced project. If the -config flag is omitted, the active build
configuration will be used.

-allConfigs

Specifies that all build configurations will be edited or listed.

-list

List all the referenced projects and build configurations

-add referencedProjectLocation [buildConfigurationName]

Adds a new referenced project, specified by the 'referencedProjectLocation', which can be either an absolute
path, or a variable relative path (relative to the path variables defined in the project specified by the -project flag).
If the buildConfigurationName is specified, a specific build configuration rather than the active build
configuration will be referenced.

-remove referencedProjectLocation [buildConfigurationName]

Removes an existing referenced project, specified by the 'referencedProjectLocation', which can be either an
absolute path, or a variable relative path (relative to the path variables defined in the project specified by the -
project flag). If the buildConfigurationName is specified, only the specific referenced build configuration will
be removed, otherwise all references to the specified project will be removed.

Examples

ecd.exe -references -project c:\my_first_project

Lists the references of my_first_project; –list is the default command.

ecd.exe -references -project c:\my_first_project -add c:\my_second_project

Adds a reference of the active configuration of my_second_project to the active configuration of my_first_project.

ecd.exe -references -project c:\my_first_project -remove c:\my_second_project

Removes all the references of my_second_project from all configurations of my_first_project.

ecd.exe -references -project c:\my_first_project -config Debug -add c:\my_second_project
Release

Adds a reference of the release configuration of my_second_project to the debug configuration of
my_first_project.

2.2.5 setOptions
Modifies C/C++ managed build, launch configuration or RSE system settings.

Syntax

ecd.exe -setOptions -project path [-config name | -allConfigs | -rseSystem name | -
allRseSystems | -launchConfig name | -allLaunchConfigs] [-file path] (-set | -prepend |
-append | -insert) option-name option- value

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 25

Parameters

-config

The build configuration name. If the '-config' flag isn't specified, the default build configuration will be used.

-file

The path of a file included in the project. If the '-file' flag is specified, a file-level setting is changed instead of a
build configuration level setting. The -file flag does not apply to the -launchConfig, -allLaunchConfigs ,
-rseSystem, and -allRseSystems flags.

-set | -prepend | -append | -insert

A setting can be either changed by replacing its previous value by the new specified one, using the -set flag,
or prepended or appended to the existing value using the -prepend and -append flags respectively. The -
insert flag can be used for updating exist macros values in macro settings.

option-name

A complete option-name list can be obtained by using the -getOptions command documented above.

option-value

The new value of the setting to be changed.

-launchConfig

The launch configuration name. Allows modifying launch configuration settings.

-allLaunchConfigs

Allow modifying the values in all the launch configurations.

-rseSystem

The RSE system name. Allow modifying the value in the specific RSE systems.

Examples

ecd.exe -setOptions -project c:\my_first_project -allConfigs –set
gnu.c.compiler.option.preprocessor.def.symbols FOO=BAR

Sets FOO as a defined symbol with value BAR in the list of defined symbols for every configuration.

ecd.exe -setOptions -project c:\my_first_project –config Debug –append
gnu.c.compiler.option.preprocessor.def.symbols __SOME_MACRO_FOR_DEBUG__

Adds the macro in the list of defined symbols for the debug configuration. If this command is preceded by the
previous example, the list of defined symbols will contain FOO=BAR and __SOME_MACRO_FOR_DEBUG__ separated
by a line break.

ecd.exe -setOptions -project c:\my_first_project -allConfigs –set
gnu.c.compiler.option.preprocessor.def.symbols FOO=BAZ

IDE Extensions
Command line interface

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
26 Freescale Semiconductor, Inc.

Updates FOO as a defined symbol with value BAZ in the list of defined symbols for every configuration. If this
command is preceded by the first example, it will change BAR to BAZ.

ecd.exe -setOptions -project c:\my_first_project –file c:\my_first_project\Sources
\main.c –prepend gnu.c.compiler.option.preprocessor.def.symbols __SOME_MACRO_FOR_FILE__

Adds the macro in the list of defined symbols for this file for the active configuration. If this command is preceded
by the previous examples, the list of defined symbols for main.c will contain __SOME_MACRO_FOR_FILE__,
FOO=BAZ and __SOME_MACRO_FOR_DEBUG__ separated by a line break.

2.2.6 updateWorkspace
Updates a workspace .metadata by including any project already located in the workspace file system
directory.

Optionally, it supports redirecting the standard output to a logfile. It also supports leaving the Workbench UI
open with the -noclose flag.

Syntax

ecd.exe -updateWorkspace -data workspace-path [-logfile path] [-noclose]

Example

ecd.exe -updateWorkspace -data c:\my_workspace

2.3 Commander view
The Commander view provides quick access to some of the common and basic CodeWarrior operations.

This concept is similar to that of the Quick Launch Bar in Windows. The Commander view provides an icon and
a descriptive label for each action. The Commander view is optional and customizable.

IDE Extensions
Commander view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 27

Figure 7: Commander view

The Commander view is not only a new place for existing commands, but also for new commands which optimize
common user workflows. Some commands map directly to existing commands in the IDE. For example, the
Welcome screen command and the Build All command. These two commands behave identically to the
commands in the IDE menu and toolbar. However, most commands are either improvements on existing
commands or commands which reduce the number of steps to get to an existing user interface or functionality.

In the Commander view, some commands have variant commands that appear next to the root command. The
root command works for a single project; while the All variant works for all projects in the workspace. For example,
the All command next to the Build command. These are two independent commands on a single line. The All
variant is always available because it does not need a project context, while the Build command is available only
when there is a selection in the CodeWarrior Projects view or the view is pinned to a project (Pinning Commander
view on page 30). A variant action does not have an icon and is visible only if its base command is shown.

Commands in the Commander view, are grouped in the following four groups:

• Project Creation

• Build/Debug

• Settings

• Miscellaneous

Each group is a collapsible section and each command has a key binding, which appears in the tooltip of the
command. By default, the Commander view is docked under the CodeWarrior Projects view but like any other
view it can be moved to any location within the CodeWarrior IDE.

Commands displayed in the Commander view may vary from product to product.

 NOTE

IDE Extensions
Commander view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
28 Freescale Semiconductor, Inc.

This section includes the following topics:

• Customizing Commander view on page 29

• Pinning Commander view on page 30

2.3.1 Customizing Commander view
You can customize the content of the Commander view by choosing the commands to be displayed in the
Commander view.

To customize the Commander view:

1. Choose Customize from the pop-up menu in the Commander view.

The Commander View Customization dialog appears.

Figure 8: Customizing Commander view

2. Expand a command group.

3. Select/deselect the command you want to hide/display.

4. Click OK.

The selected commands appear in the Commander view.

IDE Extensions
Commander view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 29

Clicking the Restore Default button sets the command set choices to the default
combination.

 NOTE

2.3.2 Pinning Commander view
Pinning the Commander view allows you to set the context to a particular project.

If you have multiple projects in your workspace but work mostly on a particular project, then you are allowed to
pin the Commander view to a specific project. So whenever you perform another task from the Commander
view, it uses the pinned project for its context regardless of the project selected in the CodeWarrior Projects
view.

Click the Pin to Project button in the Commander view to set the context to a particular project. A label also
appears in the top-right corner to the Commander view specifying the project the view is pinned to.

The following figure shows the pinned Commander view:

Figure 9: Pinning Commander view

2.4 Concurrent compilation
The concurrent compilation feature allows you to specify number of processes to compile a CodeWarrior
project.

To enable the concurrent compilation for a project:

1. In the CodeWarrior Projects view, right-click the project folder.

IDE Extensions
Concurrent compilation

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
30 Freescale Semiconductor, Inc.

A shortcut menu appears.

2. Choose Properties from the shortcut menu.

The Properties for <project> dialog appears.

3. Select C/C++ Build from left pane of the Properties for <project> dialog.

The C/C++ build properties appear in the right pane of the Properties for <project> dialog.

4. Click the Behaviour tab.

The C/C++ build behavior properties appear under the Behaviour pane in the Properties for <project> dialog.

Figure 10: Properties for <Project> dialog

5. Select the Enable project specific settings checkbox.

The Enable parallel build checkbox is available.

6. Select any one of the following options.

• Use optimal number of jobs

• Use parallel jobs

• Use unlimited lobs

CodeWarrior Power Architecture does not support using parallel jobs. For this reason,
the Use parallel jobs option is not available in the latest versions of the CodeWarrior
Development Studio for Power Architecture Processors.

 NOTE

7. Click Apply.

8. Click OK.

You have now specified number of processes to compile the project.

IDE Extensions
Concurrent compilation

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 31

2.5 Console view
The CodeWarrior Console view displays the output from the build (standard out and standard error) as it is
generated by the build process.

Double-clicking the error or warning message in the Console view moves the cursor to the error-source in the
Editor window.

Figure 11: Console view

2.6 Shortcut menus
Shortcut menus provide shortcuts to frequently used CodeWarrior menu commands.

The available menu commands change, based on the context of the selected item.

Use shortcut menus to apply context-specific commands to selected items. Right-click an item to open a shortcut
menu for that item. The shortcut menu appears, displaying menu commands applicable to the selected item.

Examples of situations in which the debugger displays a shortcut menu are:

• Changing the format of variables displayed in variable panes

• Manipulating breakpoints and the program counter in source code panes

• Viewing memory in separate views

To discover additional features, try right-clicking in each IDE view to see what
commands are presented in the shortcut menu that appears.

 TIP

The following figure shows the shortcut menu displayed in the Variables view.

IDE Extensions
Console view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
32 Freescale Semiconductor, Inc.

Figure 12: Shortcut menu in Variables view

2.7 Diagnostic Information export
The Diagnostic Information export feature allows you to export error log information to Freescale support
group to diagnose the issue you have encountered while working on the CodeWarrior product.

You can export diagnostic information in the following two ways:

• Whenever an error dialog invokes to inform some exception has occurred, the dialog displays an option to
open the Export wizard. You can then choose the files you want to send to Freescale support.

• You can manually open the Export wizard to generate an archive of logs and files to report any issue that
you have encountered.

This section includes:

• General settings for Diagnostic Information on page 33

• Export Diagnostic Information on page 35

2.7.1 General settings for Diagnostic Information
You can specify general settings for diagnostic information using the Preferences dialog.

To set general settings for diagnostic information, follow the steps given below:

1. Choose Windows > Preferences from the IDE menu bar.

The Preferences dialog appears.

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 33

Figure 13: Preferences dialog - Diagnostic Information

2. Expand the General group and choose Diagnostic Information .

The Diagnostic Information page appears.

3. Enter the number of days for which you want to display the diagnostic information details in the export
wizard.

4. Select the Privacy option by dragging the bar to low, medium and high.

Privacy level setting is used to filter the content of the logs.

• Low: The file is sent as is.

• Medium: The personal information is obfuscated. You can click on the customize option to view or modify
filter.

• High: The personal information is removed. Filters are used in the rest of the content.

• Click Customize to set privacy filters.

The Customize Filters dialog appears. You can add, remove, and modify filters.

• Click OK .

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
34 Freescale Semiconductor, Inc.

Figure 14: Diagnostic Information - Customize Filters

• Enter Contact Name and Contact Email in the contact information textbox. This information is optional
though Freescale will not share this information with anyone.

• Click Restore Defaults to apply default factory settings.

• Click OK .

2.7.2 Export Diagnostic Information
You can export diagnostic information into an archive file in workspace.

Follow the steps given below to export diagnostic information into an archive.

1. Choose File > Export from the IDE menu bar.

The Export dialog appears.

2. Expand the General group and choose Diagnostic Information option.

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 35

Figure 15: Export - Diagnostic Information dialog

3. Click Next.

The Diagnostic Information Export Wizard appears.

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
36 Freescale Semiconductor, Inc.

Figure 16: Diagnostic Information Export Wizard

4. Select the checkbox under the Source column to select the information that will be exported into the
archive file.

You must select at least one file for export.

 NOTE

5. Click Browse to select a different archive file location.

6. Select the Privacy option or click Customize to set your privacy level. The Customize Filters dialog
appears.

You can open the Customize Filters dialog through Customize button in the Diagnostic
Information Export Wizard (Figure 16. Diagnostic Information Export Wizard on page
37)or in the Preferences dialog (General settings for Diagnostic Information on page
33).

 NOTE

7. Click Preview to view the text that will be sent to Freescale from the wizard.

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 37

The Preview details dialog appears.

Figure 17: Preview details dialog

You can also check if more filters are needed to protect any sensitive information from leakage.

8. Click OK .

9. Click Next in the Diagnostic Information Export Wizard.

The Reproducible Details page appears.

IDE Extensions
Diagnostic Information export

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
38 Freescale Semiconductor, Inc.

Figure 18: Reproducible Details dialog

10.Enter the reproducible steps and any other relevant information in the Details to recreate the issue textbox.

11.Click Add to add additional files to the archive file for diagnosis.

12.Click Finish.

2.8 Extracting CodeWarrior configuration details
You can extract the configuration details of the currently installed CodeWarrior features and associated plug-
ins.

Following are the steps:

1. Choose Help > About CodeWarrior Development Studio from the IDE menu bar.

The About Freescale CodeWarrior dialog appears.

2. Click Installation Details.

The CodeWarrior Development Studio Installation Details dialog appears.

IDE Extensions
Extracting CodeWarrior configuration details

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 39

3. Click the Configuration tab.

The configuration data appears.

Figure 19: Configuration tab

4. Click the Copy to Clipboard button to copy the configuration data.

5. Paste the copied data in any text editor, such as notepad or winword and save the data.

6. Click Close.

IDE Extensions
Extracting CodeWarrior configuration details

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
40 Freescale Semiconductor, Inc.

2.9 Find and Open File
The Find and Open File dialog lets you open a selected path or file in the Editor area of the CodeWarrior IDE.

To open particular path or file in the Editor area:

1. Choose File > Open Path from the IDE menu bar.

The Find and Open File dialog appears.

Figure 20: Find and Open File dialog

2. Enter a file descriptor. The file descriptor can be a simple file name, a partial path or a full path. The path
delimiters can also be different from that of the native platform delimiters. For example, you can use "/" on
a Windows host instead of "\".

3. Click OK.

Eclipse IDE performs the following actions:

• Scans for a matching file descriptor in all the open editor windows. If a match is found, the IDE activates the
open editor window in the Editor area.

• If no open editor windows match the specified file descriptor, IDE searches for a matching file in the
accessible paths of the current project. If a match is found, IDE opens the file in a new editor window in the
Editor area. If the file is not found, IDE generate a beep sound.

The Open Path feature is also invoked when a file name is selected in an #include
directive in a source file. In such a case, the IDE opens the file in the Editor area without
displaying the Find and Open File dialog.

 NOTE

2.10 Importing files
You can import files into the workbench either by drag and drop or by using the Import wizard.

This section includes:

• CodeWarrior drag and drop support on page 42

• Using Import wizard on page 42

IDE Extensions
Find and Open File

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 41

2.10.1 CodeWarrior drag and drop support
This topic explains the advantages of CodeWarrior drag and drop support feature.

The CodeWarrior drag and drop support extends the following features to the CodeWarrior IDE.

• Allows user to drop different files and folders to the Workbench window.

• Allows user to drop multiple files and folders simultaneously and handle them properly in a sequence.

• Supports files and directories created by the earlier versions of CodeWarrior (.mcp files).

A classic project file has the .mcp extension.

 NOTE

• Resolves potential handling ownership conflict between different components over the dropped objects.

• Automatically imports all projects found in a folder and its subfolders into the workspace. The projects are
opened from their location, not copied into the workspace.

For example, to create a link to a project existing in a different workspace from the current workspace:

1. Open the workspace using Windows Explorer (In Linux, you can open the workspace using Shell).

2. Drag the project folder over the CodeWarrior IDE.

The CodeWarrior IDE effectively handles the files and folders dropped to the Workbench. A link to the existing
project is created in the CodeWarrior Projects view.

2.10.2 Using Import wizard
This topic explains the steps required to import an exisitng project into workspace using a sample project as
an example.

This section explains:

• Import existing project on page 42

• Import example project on page 45

2.10.2.1 Import existing project
The Import wizard lets you import existing project into the workspace.

To import existing project:

1. Choose File > Import from the IDE menu bar.

The Import wizard appears.

IDE Extensions
Importing files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
42 Freescale Semiconductor, Inc.

Figure 21: Import wizard

2. Choose General > Existing Project into Workspace.

3. Click Next.

The Import Project page appears.

IDE Extensions
Importing files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 43

Figure 22: Import Projects page

4. Select Select root directory or Select archive file option and click the associated Browse to locate the
directory or file containing the projects.

The list of existing projects appear under the Project group.

5. Under Projects , select the project or projects which you would like to import.

When there are projects with the same name in the list, only one of them is selected by
default and allow you to change the selections as needed. If any error occurs during the
import, the project list is updated and all the projects that were already imported are
disabled.

 NOTE

IDE Extensions
Importing files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
44 Freescale Semiconductor, Inc.

You may select Copy projects into workspace checkbox to copy the project into
workspace. You may also select Add Project to working sets checkbox to include the
project in working sets.

 NOTE

6. Click Finish.

2.10.2.2 Import example project
The Import wizard lets you import example project into the workspace.

To import an example project:

1. Choose File > Import from the IDE menu bar.

The Import wizard appears.

Figure 23: Import wizard

2. Choose CodeWarrior > Example Project.

3. Click Next.

IDE Extensions
Importing files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 45

The Import Projects page appears.

Figure 24: Import Projects page

4. Select the Select root directory or the Select archive file option and click the associated Browse to locate
the directory or file containing the projects.

The list of existing projects appear under the Projects group.

5. Under Projects, select the project or projects which you would like to import.

When there are projects with the same name in the list, only one of them is selected by
default and allow you to change the selections as needed. If any error occurs during the
import, the project list is updated and all the projects that were already imported are
disabled.

 NOTE

IDE Extensions
Importing files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
46 Freescale Semiconductor, Inc.

You may select Copy projects into workspace checkbox to copy the project into
workspace. You may also select Add Project to working sets checkbox to include the
project in working sets.

 NOTE

6. Click Finish.

2.11 Key mappings
CodeWarrior Eclipse IDE accepts keyboard shortcuts, or key bindings , for frequently used operations.

At any time, you can obtain a list of available key bindings using Key Assist. To open the Key Assist view, choose
Help > Key Assist.

Alternatively, press Ctrl+Shift+L keys to display a list of available key bindings in Eclipse.

Key bindings can vary based on the current context of Eclipse, platform and locale. The
current platform and locale is determined when Eclipse starts, and does not vary over
the course of an Eclipse instance.

 NOTE

The following table lists and defines the key mappings for Classic IDE and Eclipse IDE.

Table 2: Key Mappings - Classic IDE and Eclipse IDE

Behaviour Classic IDE Eclipse IDE

New Ctrl + Shift + N Ctrl + N

Open Open Path (Eclipse IDE) Ctrl + O Ctrl + Shift + A

Close Ctrl + W Ctrl + F4

Close All Ctrl + Shift + W Ctrl + Shift + W Ctrl + Shift + F4

Save Ctrl + S Ctrl + S

Save All Ctrl + Shift + S Ctrl + Shift + S

Print Ctrl + P Ctrl + P

Undo Ctrl + Z Alt + Backspace Ctrl + Z

Redo Ctrl + Shift + Z Ctrl + Y

Cut Ctrl + X Shift + Delete Ctrl + X Shift + Delete

Copy Ctrl + C Ctrl + Insert Ctrl + C Ctrl + Insert

Paste Ctrl + V Shift + Insert Ctrl + V Shift + Insert

Delete Del Del

Select All Ctrl + A Ctrl + A

Find Next F3 Ctrl + K

Find Previous Shift + F3 Ctrl + Shift + K

Table continues on the next page...

IDE Extensions
Key mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 47

Table 2: Key Mappings - Classic IDE and Eclipse IDE (continued)

Behaviour Classic IDE Eclipse IDE

Go to Line Ctrl + G Ctrl + L

Debug F5 F11

Run Ctrl + F5 Ctrl + F11

Step Over F10 F6

Step Into F11 F5

Step Out Step Return (Eclipse IDE) Shift + F11 F7

Enable/Disable Breakpoint Toggle
Breakpoint (Eclipse IDE)

Ctrl + F9 Ctrl + Shift + B

Make Build All (Eclipse IDE) F7 Ctrl + B

Move Line Up Up Alt + Up

Move Line Down Down Alt + Down

2.12 Linker Command File navigation
The linker command file (LCF) navigation feature allows you to click on strings containing path names in the
CodeWarrior Editor and navigate to the specified file.

The CodeWarrior Editor recognizes the files with .lcf , .cmd , and .l3k file
extensions as LCF files. A file with .txt file extension is not recognized as a LCF file.

 NOTE

To navigate to a LCF file:

1. Open the LCF file in the text editor.

IDE Extensions
Linker Command File navigation

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
48 Freescale Semiconductor, Inc.

Figure 25: LCF file

2. In the LCF file, right-click a line that refers to a text file.

The shortcut menu appears.

3. Choose Open Reference from the shortcut menu.

IDE Extensions
Linker Command File navigation

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 49

Figure 26: Open Reference

The referenced text file opens in the Editor window.

2.13 Multiple compiler support
This feature helps you switch between multiple versions of a toolchain.

When you acquire a new version of the command line tools associated with an integration plug-in, multiple
compiler feature allows you to add the new version into the list of available toolchain versions.

To switch between multiple versions of a toolchain:

1. In the CodeWarrior Projects view, right-click the project, and choose Properties from the shortcut menu.

The Properties for <project> dialog appears.

2. Choose C/C++ Build > Settings in the left pane of the Properties for <project> dialog.

The C/C++ build settings appear in the right pane of the Properties for <project> dialog.

3. Click the Build Tool Versions tab.

The build tool version settings appear in the Build Tool Versions pane.

IDE Extensions
Multiple compiler support

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
50 Freescale Semiconductor, Inc.

Figure 27: Properties for <Project> dialog

The following table lists and defines the Build Tool Versions pane controls.

Table 3: Build Tool Versions pane controls

Control Description

Build Tool Versions table Lists multiple toolchain versions.

Add button Adds a new toolchain version.

Edit button Edits the currently selected toolchain version.

Delete button Deletes a toolchain version.

Set as Default button Sets the currently selected toolchain versions as
default toolchain version for building projects.

Restore Defaults button Restores the default toolchain version.

The default toolchain version is highlighted in bold letters in the Build Tool Versions
table.

 NOTE

4. Click Apply.

5. Click OK.

2.14 New External File
The CodeWarrior Eclipse IDE supports creating, opening, and saving files that are located outside the current
workspace.

To create a non-project file:

1. Click File > New > Other .

IDE Extensions
New External File

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 51

The New wizard appears.

Figure 28: New wizard - Select a wizard page

2. Choose General > New External File.

3. Click Next.

The New External File page appears.

4. Specify the path and filename.

5. Click Finish.

IDE opens the file in a new editor window in the Editor view.

2.15 Exporting and importing macros
You can import and export specific macros defined for projects files from one project to another in the
CodeWarrior IDE.

This saves the efforts in defining macros for projects with a similar file system structure.

• Add macro to a project on page 53

IDE Extensions
Exporting and importing macros

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
52 Freescale Semiconductor, Inc.

• Export macros for a project on page 53

• Import macros into a new project on page 54

2.15.1 Add macro to a project
This topic explains the steps required to add a macro to the project.

1. Right-click the project in the CodeWarrior Projects view.

The Properties for projectname dialog box appears.

2. Select C/C++ Build > Settings in the left panel.

3. Select target Compiler > Preprocessor > Macros.

4. Click Add in the Defined Preprocessor Macros field.

The Enter Value dialog box appears.

5. Define the required macro and click OK

Figure 29: Add macro to project file

2.15.2 Export macros for a project
This topic explains how to export a macro in a project.

1. Right-click the project in the CodeWarrior Projects view.

The Properties for projectname dialog box appears.

2. Select C/C++ Build > Settings in the left panel.

3. Select target Compiler > Preprocessor > Macros.

4. Click Export Settings.

The Export Settings dialog box appears.

5. Select the file where you want to export the defined macros and click OK

IDE Extensions
Exporting and importing macros

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 53

Figure 30: Export macro

2.15.3 Import macros into a new project
This topic explains how to import macros in a project.

1. Right-click the project in the CodeWarrior Projects view.

The Properties for projectname dialog box appears.

2. Select C/C++ Build > Settings in the left panel.

3. Select target Compiler > Preprocessor > Macros.

4. Click Import Settings.

The Import Settings dialog box appears.

5. Select the file storing the previously exported macros and click OK

2.16 Problems view
The Problems view displays build errors and warnings in a tree table control.

The Problems view also displays the information, such as description, resource, path, location, and type for build
errors and warnings. Double-click an error/warning to go to the location in the source from where the error/
warning was generated.

IDE Extensions
Problems view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
54 Freescale Semiconductor, Inc.

Figure 31: Problems view

Clicking the Toggle visibility of the details pane button in the Problems view displays the Details pane. The Details
pane displays full description of the selected error/warning.

Figure 32: Problems view - Details pane

2.17 Referenced projects
Referenced projects allow you to create build dependencies between CodeWarrior projects.

If project A is set up as a referenced project for project B, then project A will be built before each project B build.
Referenced projects are automatically imported and opened when a project is imported in the workspace, so
referenced projects can be used to automatically populate the workspace with a set of projects.

This topic explains:

• Create Referenced project on page 55

• Displaying referenced projects in CodeWarrior Projects view on page 57

• Automatic linking with referenced project build artifact on page 58

• Circular build dependencies on page 59

2.17.1 Create Referenced project
This section lists the steps required to create a referenced project.

To create a referenced project B in project A, follow the steps given below:

IDE Extensions
Referenced projects

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 55

1. Select and right-click the project in the CodeWarrior Projects view.

2. Choose Properties from the shortcut menu that appears.

The Properties dialog appears.

3. Select the C/C++ Build option on the left and click the References tab in the C/C++ Build properties page
on the right.

4. Select project B in the tree.
Figure 33: C/C++ Build properties > References pane

5. Click OK to include Project B in Project A.

You can also create a project reference by dragging Project B onto Project A in the
CodeWarrior Projects view.

 NOTE

The following table lists various options available in the C/C++ Build > References page.

Table 4: C/C++ Build > References options

Option Description

Build referenced projects and build
configurations when building this
project

If selected, enable building referenced projects and build
configurations while building project. This option is also available from
the CodeWarrior Projects view, by right-clicking on the `Referenced
Projects' element.

Expand All Click to expand all referenced projects in the tree.

Table continues on the next page...

IDE Extensions
Referenced projects

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
56 Freescale Semiconductor, Inc.

Table 4: C/C++ Build > References options (continued)

Option Description

Collapse All Click to collapse all the referenced projects in the tree.

Move Up/Move Down Changes the referenced project build order. The first project shown
will be built first.

Edit Location Allows you to change the location of referenced project. The project
location is recorded automatically as a project-relative path, and can
make use of the project path variables to be portable across machines

Build Projects referencing this build
configuration

Causes projects that include the current project as a referenced project
to be included in the current build dependency, and be built when the
current project is built.

Severity level for missing references
projects build error makers

Allows you to select Error or Warning to display severity level for
missing references.

Restore Defaults Restores default factory settings

Apply Saves your changes without closing the dialog.

OK Saves your changes and close the dialog.

Cancel Closes the dialog without saving.

2.17.2 Displaying referenced projects in CodeWarrior Projects view
The CodeWarrior Projects view displays the referenced projects and highlights which build configuration is
referenced.

The following figure shows the Referenced Project in the CodeWarrior Projects view.

Figure 34: CodeWarrior Projects view > Referenced project

All the project references appear under a Referenced Projects folder, which only shows
if the project contains at least one referenced project.

 NOTE

IDE Extensions
Referenced projects

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 57

The following table shows the shortcut menu commands available through the CodeWarrior Projects view:

Table 5: Referenced projects - Shortcut menu commands

Command Description

Include in Build It allows you to quickly toggle whether all referenced
projects and build configurations will be included in the
build or not.

Open/Import Project It is available when the referenced project element is
selected and is either closed or does not exist in the
workspace. The action imports and/or opens the
referenced project in the workspace.

Close Project It is available when the referenced project element is
selected and is opened in the workspace. It allows you
to close the referenced project in the workspace.

Edit Location Allows you to edit the location of the referenced
project.

Remove Referenced Project Allows you to delete the referenced project.

2.17.3 Automatic linking with referenced project build artifact
A project can automatically include the build artifact of its referenced project in its linker input settings.

You can use the '${ReferencedConfigurationsOutput}' build variable as shown in figure below to link projects
with build artifacts. The '${ReferencedConfigurationsOutput}' build variable contains automatically the list of the
referenced projects build artifacts paths.

Figure 35: Referenced project - Add file path dialog

IDE Extensions
Referenced projects

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
58 Freescale Semiconductor, Inc.

2.17.4 Circular build dependencies
If two projects depend on each other through referenced projects, a build error will be generated, since
circular build references is not permissible by design.

If multiple projects need to be built at the same time, a single referenced project can be used for the first
dependency, and the second project can set the 'Projects referencing this build configuration' flag, so that
building the first or second project will cause the other one to be built automatically. This also applies to
referenced build configuration for single or multiple projects.

For example, if two different build configurations (Debug and Release) of a single project need to be built no
matter which one of the two build configuration is active, the 'Debug' build configuration can reference the
'Release' build configuration in the 'References' tab, and the 'Release' build configuration can have its Projects
referencing this build configuration' flag set to 'true', so that both the 'Debug' and 'Release' build configurations
will be built together, no matter which one is active.

2.18 Target management via Remote System Explorer
The Remote System Explorer provides data models and frameworks to configure and manage both target
and connection configurations.

Remote System Explorer operates with remote system entities. The CodeWarrior uses two types of remote
systems, target configuration and connection configuration, for describing Freescale hardware with respect to
debug process. A target configuration defines initialization, and target parameters.

The configuration model for bareboard debug uses a target and a connection configuration that allows you to
define a single target configuration that can be referred by multiple connection configurations. Each such
configuration is implemented as Remote System host.

This section includes the following topics:

• Creating remote system on page 59

• Creating hardware or simulator connection configuration on page 62

• Creating hardware or simulator target configuration on page 63

• Creating TRK target configuration on page 67

• Remote Systems view on page 68

• Automatic project remote system setting cache on page 72

• Compatibility with older products on page 75

2.18.1 Creating remote system
You can create a new connection to a remote system using the New wizard.

To create a remote system:

1. Click File > New > Other.

The New wizard appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 59

Figure 36: New wizard - Select a wizard page

2. Choose Remote System Explorer > Connection.

3. Click Next .

The New Connection page appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
60 Freescale Semiconductor, Inc.

Figure 37: New Connection page

4. Expand CodeWarrior Bareboard Debugging and choose a remote target type.

A remote target type represents a particular type of remote system. The supported remote target types are:

• Hardware or Simulator Connection - Connection configuration for a hardware-based or simulated
system. For more information, see Creating hardware or simulator connection configuration on page
62.

• Hardware or Simulator Target - Target configuration for a hardware-based or simulated target. For more
information, see Creating hardware or simulator target configuration on page 63.

• TRK Target - System configuration for a system running the TRK debug agent. For more information,
see Creating TRK target configuration on page 67.

5. Click Next.

The new configuration settings appear. You need to specify configuration settings depending upon the remote
target type chosen in the New Connection page.

6. Click Finish.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 61

2.18.2 Creating hardware or simulator connection configuration
A hardware or simulator connection configuration helps you create a connection configuration for a hardware-
based or simulated target.

To create a hardware or simulator connection configuration:

1. Click File > New > Other.

The New wizard appears.

2. Choose Remote System Explorer > Connection.

3. Click Next.

The New Connection page appears.

4. Choose CodeWarrior Bareboard Debugging > Hardware or Simulator Connection.

The New Connection - Hardware or Simulator Connection page appears.

Figure 38: New Connection - Hardware or Simulator Connection page

5. Choose a parent profile from the Parent Profile pop-up menu.

6. Type a configuration name in the Name textbox.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
62 Freescale Semiconductor, Inc.

7. Type connection description in the Description textbox.

8. Choose a remote system template from the Template pop-up menu. The remote system template is a
predefined configuration fully supported by CodeWarrior debugger.

9. Choose None from the Template pop-up menu when the current remote system configuration does not use
any reference template.

10.Click Apply Defaults to load settings from reference template in the current configuration.

11.Choose a target from the Target pop-up menu.

A target type is a CodeWarrior abstraction that represents the users target processor layout. This can be a
simple processor or a set of processors as defined by a JTAG configuration file or a Power Architecture®
device tree blob file.

12.Click Edit to add or remove target types.

13.Click New to create a new target configuration.

14.Choose a connection type from the Connection type pop-up menu.

• Choose CCSSIM2 ISS to specify setting for CodeWarrior Connection Server (CCS).

• Choose Ethernet TAP to specify settings for ethernet TAP connection.

• Choose USB TAP to specify settings for USB TAP connection.

15.Click Finish.

The hardware or simulator connection configuration appears in the Remote Systems view on page 68.

2.18.3 Creating hardware or simulator target configuration
A hardware or simulator target configuration enables you to connect to your target via a direct hardware
connection or simulate your target.

To create a bareboard or simulator remote system:

1. Click File > New > Other.

The New wizard appears.

2. Choose Remote System Explorer > Connection.

3. Click Next .

The New Connection page appears.

4. Choose CodeWarrior Bareboard Debugging > Hardware or Simulator Target.

The New Connection - Hardware or Simulator Target page appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 63

Figure 39: New Connection - Hardware or Simulator Target page

5. Choose a parent profile from the Parent Profile pop-up menu.

6. Type a configuration name in the Name textbox.

7. Type target description in the Description textbox.

8. Choose remote system template from the Template pop-up menu. The remote system template is a
predefined configuration fully supported by CodeWarrior debugger.

9. Choose None from the Template pop-up menu when the current remote system configuration does not use
any reference template.

10.Click Apply Defaults to load settings from reference template in the current configuration.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
64 Freescale Semiconductor, Inc.

The differences between reference template and current configuration is highlighted.
You can disable highlighting from Remote Systems view's pop-up menu. The color used
for highlighting can be changed from global preferences.

 NOTE

11.Choose a target configuration from the Target type pop-up menu.

A target type is a CodeWarrior abstraction that represents the user's target processor layout. This can be a
simple processor or a set of processors as defined by a JTAG configuration file or a Power Architecture®
device tree blob file.

12.Click Edit to edit the current target configuration.

13.Click New to create a new target configuration.

14.Click the Initialization tab.

The initialization settings page appears.

Figure 40: Hardware or Simulator Target page - Initialization pane

15.Specify the initialization settings to suit your needs.

16.Click the Memory tab.

The memory settings page appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 65

Figure 41: Hardware or Simulator Target page - Memory pane

17.Specify the target settings to suit your needs.

18.Click the I/O Model tab.

The I/O Model page appears.

Figure 42: Hardware or Simulator Target page - I/O Model pane

19.Specify the I/O model settings to suit your needs.

20.Click the Advanced tab.

The Advanced page appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
66 Freescale Semiconductor, Inc.

Figure 43: Hardware or Simulator Target page - Advanced pane

21.Select the Target is emulated by Palladium checkbox if required.

22.Click Finish.

The hardware or simulator target appears in the Remote Systems view on page 68.

2.18.4 Creating TRK target configuration
You can create a target configuration for a target running the TRK debug agent.

This feature is not available in StarCore.

 NOTE

To create a TRK target configuration:

1. Click File > New > Other.

The New wizard appears.

2. Choose Connection under the Remote System Explorer category.

3. Click Next.

The Select Remote System Type page appears.

4. Choose CodeWarrior Bareboard Debugging > TRK Target.

The TRK Target page appears.

5. Choose a parent profile from the Parent profile pop-up menu.

6. Type a configuration name in the Name textbox.

7. Type connection description in the Description textbox.

8. Choose a remote system template from the Template pop-up menu. The remote system template is a pre-
defined configuration fully supported by CodeWarrior debugger.

9. Choose None from the Template pop-up menu when the current remote system configuration does not use
any reference template.

10.Click Apply Defaults to load settings from reference template in the current configuration.

11.Choose a target type from the Target type pop-up menu or click Edit to import the target type.

12.Click the Initialization tab and specify the initialization settings to suit your needs.

13.Click the Memory tab and specify the memory configuration settings to suit your needs.

14.Click Finish.

The TRK target configuration appears in the Remote Systems view on page 68.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 67

2.18.5 Remote Systems view
The Remote Systems view helps you view and modify remote system settings.

It displays various target and connection configurations. To open the Remote Systems view, choose Window >
Show View > Remote Systems from the IDE menu bar.

Figure 44: Remote Systems view

2.18.5.1 Modifying target or connection configuration
The Remote System view allows you to modify settings for a target or connection.

To change target or connection settings:

1. Switch to the Remote Systems view.

2. Right-click a remote system name and choose Properties from the shortcut menu.

The Properties for <Remote System> dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
68 Freescale Semiconductor, Inc.

Figure 45: Properties for <target or connection> dialog

3. Change the settings in this page to suit your needs.

4. Click OK.

The changes are applied to the target.

2.18.5.2 Exporting target or connection configuration
The Remote Systems view allows you to export a target or connection to an external file.

To export a target or connection:

1. Switch to the Remote Systems view.

2. Right-click a remote system name and choose Export from the shortcut menu.

The Save As dialog appears.

3. Enter a file name in the File name textbox.

4. Click Save.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 69

2.18.5.3 Importing target or connection configuration
The Remote Systems view allows you to import a target or connection from an external file.

To import a target or connection:

1. Switch to the Remote Systems view.

2. Right-click in the view and choose Import from the shortcut menu.

The Open dialog appears.

3. Select a remote system file.

4. Click Open.

2.18.5.4 Apply to Project
The Apply to Project feature allows you to set the active target and component of a launch configuration.

To set the active target and component:

1. Switch to the Remote Systems view.

2. Right-click the host and choose Apply to Project from the shortcut menu.

A submenu with different projects and launch configurations appears.

Figure 46: Remote Systems - Apply to Project

3. Choose the item to apply the target selection in a project.

The projects items appear with a check mark to show if the item has the target selected.

4. Choose Apply To All to apply the target selection for all projects.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
70 Freescale Semiconductor, Inc.

2.18.5.5 Apply to Connection
The Apply to Connection feature allows you to set a target configuration to a connection, without having to
open the Debug Configurations dialog.

To set a target configuration:

1. Switch to the Remote Systems view.

2. Right-click the host and choose Apply to Connection from the shortcut menu.

A submenu with different target configurations appears.

Figure 47: Remote Systems - Apply to Connection

3. Choose the item to apply the target configuration to the connection configuration.

The connection is selected with a check mark displayed.

2.18.5.6 Automatic removal of unreferenced remote system
When a CodeWarrior Remote System is no longer referenced by an open project, you may delete it
automatically.

To remove unreferenced remote systems:

1. Choose Window > Preferences > C/C++->Debug > CodeWarrior Debugger.

The CodeWarrior Debugger dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 71

Figure 48: Preferences dialog - Remote System settings

2. Choose any one of the options available in the Remote System Settings pop-up menu.

• Do nothing

• Show a dialog; ask me what to do

• Delete the Remote System

3. Click OK.

The unreferenced remote systems are removed.

2.18.6 Automatic project remote system setting cache
The APSC feature automatically stores the settings of the Remote Systems referenced by a project's launch
configurations.

When the project is opened on a different machine or in a different workspace, the APSC feature automatically
re-creates the missing Remote Systems for the project. This feature will also update and merge any Remote
System setting that has changed between its project and workspace version.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
72 Freescale Semiconductor, Inc.

APSC feature allows you to update the Remote System tree when a project is open in the workspace and its
APSC cache doesn't match the current Remote System settings. APSC provides following two operations:

• Remote System Missing on page 73

• Remote System Changed dialog on page 74

2.18.6.1 Remote System Missing
The Remote System Missing dialog appears when a project is open in the workspace and its APSC cache
contains Remote Systems that do not exist. In such case, you will be asked to create missing objects.

The following figure shows the Remote System Missing dialog.

Figure 49: Remote System Missing dialog

By default, the Remote System Missing dialog does not appear unless the Remote
System Project Cache workspace preferences are changed. Any missing host will be
automatically re-created.

 NOTE

If you click Yes to create the missing Remote System, a new remote system will be created and initialized with
the cached settings.

If you click No, the Remote System Missing dialog will be closed.

You can click the Configure Project Cache Settings link to directly change the Remote System Project Cache
preferences to avoid automatically displaying this dialog in future.

This section includes the following topic:

• Remote system project cache preferences on page 73

2.18.6.1.1 Remote system project cache preferences
You can set preferences for Remote System to handle differing Remote Systems and missing Remote
System.

Projects that reference Remote Systems contain an internal cache of the referenced Remote Systems. When
such projects are imported in the workspace, the Remote Systems in the cache may differ from the actual
Remote Systems in the workspace or be missing entirely.

To configure merge settings:

1. Choose Window > Preferences.

The Preferences dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 73

Figure 50: Preferences dialog - Remote Systems Project Cache settings

2. Expand the Remote System tree control from the left-pane of the Preferences dialog.

You can configure the way the dialog appears by changing the Remote System Project Cache page as shown
in the above figure.

3. Select an option from how to handle differing RSE System.

4. Select an option from how to handle missing RSE Systems.

5. Choose an action from the When a RSE System is no longer referenced by an open project pop-up menu.

6. Click OK to apply changes.

You have set the preferences for Remote System to handle differing Remote Systems and missing Remote
Systems.

2.18.6.2 Remote System Changed dialog
The Remote System Changed dialog appears when a project is open in the workspace and its APSC cache
contains Remote Systems that have different settings to the ones in the existing Remote System tree. In such

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
74 Freescale Semiconductor, Inc.

case, you will be asked to update, discard or create a new set of objects for the cached Remote System
settings.

The Remote System Changed dialog provides following three options to resolve the version differences:

1. Replace the current version with the project version.

2. Discard the project version and update the project to use the current version.

3. Create a new Remote System for the project version.

4. Choose an appropriate option and click OK.

You can click the Configure Project Cache Settings link to directly change the Remote System Project Cache
preferences, to avoid automatically displaying this dialog in future. For details, see Remote system project cache
preferences on page 73.

You may keep the file containing the referenced remote systems available in the
<Project_name>/Referenced Systems folder in a version control system for
future use.

 NOTE

2.18.7 Compatibility with older products
The CodeWarrior connection configuration and target configuration have moved from the Launching
framework to the Remote System Explorer. This allows you to share the same connection and target
configuration among many launch configurations, and you can see all configurations for a Multicore system at
a glance.

The following sections will show the facilities for migrating older projects to use RSE.

• Display of launch configurations needing migration on page 75

• Migrating launch configurations on page 78

2.18.7.1 Display of launch configurations needing migration
CodeWarrior allows you to display migration candidates as information, warnings, or errors in the Problems
view.

You can also set preference to ignore or automatically migrate the migration candidates.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 75

Figure 51: Migration candidates in Problems view

To configure migration preference:

1. Choose Window > Preferences .

The Preferences dialog appears.

2. Choose Run/Debug > Launching > Launch Configurations in the left pane of the Preferences dialog.

The launch configuration preferences appear in the right pane of the Preferences dialog.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
76 Freescale Semiconductor, Inc.

Figure 52: Preferences dialog

3. Choose a value from the Available migrations can be shown in the workbench as problems or applied
automatically pop-up menu.

• Ignore - Ignores the migration candidates.

• Show as information - Displays migration candidates as information in the Problems view.

• Show as warning - Displays migration candidates as warnings in the Problems view.

• Show as error - Displays migration candidates as errors in the Problems view.

• Apply automatically - Automatically migrates all migration candidates.

4. Click Apply.

5. Click OK.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 77

For projects created using Launching framework, a migration facility is provided.

2.18.7.2 Migrating launch configurations
For projects created using Launching framework, a migration facility is provided. CodeWarrior allows you to
migrate launch configurations using two methods.

This section explains the following topics:

• Migration using Smart Migration on page 78

• Migration using Quick Fix on page 81

2.18.7.2.1 Migration using Smart Migration
This section explains how to configure CodeWarrior for Smart Migration.

Perform the following steps to migrate using Smart Migration:

1. Choose Window > Preferences.

The Preferences dialog appears.

2. Choose C/C++ > Debug > CodeWarrior Debugger in the left pane of the Preferences dialog.

The CodeWarrior debugger preferences appear in the right pane of the Preferences dialog.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
78 Freescale Semiconductor, Inc.

Figure 53: Configuring Smart Migration

3. Choose a migration option from the available pop-up menu.

• Do nothing - Launches configuration not migrated, and no warning is displayed.

• Show a dialog; ask me what to do - Displays a dialog to select a migration option.

• Perform Smart Migration, don't reuse existing systems - Automatically migrates launch configurations
without using existing Remote System.

• Perform Smart Migration, reuse existing system if possible - Automatically migrates launch
configurations using existing remote systems (if possible).

4. Click Apply.

5. Click OK.

Now, when you open a project that was created using Launching framework, the CodeWarrior launches the
Smart Migration utility (Figure 54. Launch Configuration Migration using Smart Migration on page 80) to
migrate all migration candidates.

To migrate using Smart Migration

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 79

1. Open the project in CodeWarrior.

The Launch Configuration Migration to RSE Required dialog appears.

Figure 54: Launch Configuration Migration using Smart Migration

2. Select the Yes, Perform a Smart Migration now option.

3. Select the Re-use existing RSE system configuration if possible checkbox to reuse existing Remote
System configurations. Otherwise, Smart Migration migrates launch configurations without re-using
existing Remote System configurations.

Selecting the No, ignore the problem for now option stops the migration process. You
can still migrate launch configuration using Quick Fix or by directly editing the launch
configurations.

 NOTE

4. Select the Do this every time; don't show this dialog again checkbox to save your selection as general
preference.

5. Click OK.

The Migrate Launch Configuration for RSE dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
80 Freescale Semiconductor, Inc.

Figure 55: Migrate Launch Configuration for RSE dialog

6. Specify a name for the launch configuration in the Create new RSE system named: textbox.

7. Click OK.

2.18.7.2.2 Migration using Quick Fix
This section explains how to migrate using Quick Fix.

To migrate a launch configuration using Quick Fix:

1. Select a migration candidate in the Problems view.

2. Right-click and choose Quick Fix from the shortcut menu.

The Quick Fix dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 81

Figure 56: Quick Fix dialog

3. Select a fix from the Select a Fix list box.

• Update launch configuration(s) in the same project to use a shared Remote System configuration -
Assigns the selected remote system to all launch configurations from a single project.

• Update launch configuration(s) to use a shared Remote System configuration - Assigns the selected
remote system to all launch configurations from workspace.

• Migrate the launch configuration to be compatible with current tooling - Lets you to choose remote
system for each selected launch configuration.

4. Select launch configurations to be migrated from the Problems table.

5. Click Finish.

The Migrate Launch Configuration for RSE dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
82 Freescale Semiconductor, Inc.

Figure 57: Migrate Launch Configuration for RSE dialog

6. Select a remote system setting.

• Select the Use existing RSE system option and choose an existing remote system from the pop-up
menu.

Remote systems compatible with the chosen launch configuration are only listed in the
pop-up menu.

 NOTE

• Select Create new RSE system named to create a new remote system by the specified name in the
textbox.

7. Click OK.

Alternatively, You can invoke the launch configuration migration dialog using the Preferences dialog:

1. Choose Window > Preferences .

The Preferences dialog appears.

2. Choose Run/Debug > Launching > Launch Configurations in the left pane of the Preferences dialog.

The launch configuration preferences appear in the right pane of the Preferences dialog.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 83

Figure 58: Preferences dialog

3. Click Migrate.

The Select Launch Configurations dialog appears.

IDE Extensions
Target management via Remote System Explorer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
84 Freescale Semiconductor, Inc.

Figure 59: Select Launch Configurations dialog

4. Select the launch configurations to migrate.

5. Click OK.

The Migrate Launch Configuration for RSE dialog (Figure 57. Migrate Launch Configuration for RSE dialog
on page 83) appears.

6. Select a remote system setting.

• Select the Use existing RSE system option to choose an existing remote system from the pop-up menu.

• Select Create new RSE system named to create a new remote system by the specified name in the
textbox.

7. Click OK.

2.19 Viewing CodeWarrior plug-ins
This topic explains how to view the currently installed CodeWarrior features and the associated plug-ins.

1. Choose Help > About Freescale CodeWarrior from the IDE menu bar.

The About CodeWarrior Development Studio dialog appears.

IDE Extensions
Viewing CodeWarrior plug-ins

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 85

Figure 60: About CodeWarrior Development Studio dialog

2. Click the Installation Details button.

The CodeWarrior Development Studio Installation Details dialog appears.

3. Click the Features tab.

IDE Extensions
Viewing CodeWarrior plug-ins

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
86 Freescale Semiconductor, Inc.

Figure 61: Features tab

4. Select a feature and click the Plug-in Details button to view the list of plug-ins associated with the selected
feature.

For example, if you select the Eclipse TM Project feature and click the Plug-in Details button, the Feature
Plug-ins dialog containing the list of plug-ins associated with the Eclipse TM Project feature appears.

IDE Extensions
Viewing CodeWarrior plug-ins

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 87

Figure 62: Feature Plug-ins dialog

2.20 Editing cwide-env file
The cwide-env file allows you to customize the list of environment variables of the java process that is created
by these tools to run the Eclipse IDE.

The cwide-env file is a file that is read by the cwide.exe, cwidec.exe, and ecd.exe tools.

The format of the cwide-env file follows the syntax as shown below.

<environment variable name>= <command> <value> ;

IDE Extensions
Editing cwide-env file

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
88 Freescale Semiconductor, Inc.

where

• <environment variable name> represents the name of the environment variable that you want to customize.

• <command> represents the command that you can use on the environment variable. Following options are
available:

• -add - Adds the environment variable to the list, or erase the value of an existing variable.

• -remove - Removes the environment variable from the list.

• -append - Appends the value to the existing environment variable content.

• -prepend - Prepends the value to the existing environment variable content.

• <value> represents the value of the environment variable.

The expression can contain macros of the syntax %VAR%, which will be expanded before the environment variable
is set.

The cwide-env file can also include other files to be passed as cwide-env files by adding a line with the following
syntax.

-include <file name>

The changes to the environment variable list only affect the java process created by the
cwide.exe, cwidec.exe, and ecd.exe tools.

 NOTE

The content of a sample cwide-env file is shown below.

PATH= -prepend %CD%../MCU/bin;
LM_LICENSE_FILE= -prepend %CD%../MCU/license.dat;
CW_DE_SWITCHES= -prepend -ORBthreadPerConnectionPolicy 0 -ORBconnectionWatchImmediate
1 -ORBthreadPoolWatchConnection 5
MCU_ProductDir= -add %CD%../MCU
MCU_TOOLS_HOME= -add %CD%../MCU
PA_TOOLS_HOME= -add %CD%../MCU
CW_SA_HOME= -add %CD%../MCU/morpho_sa/sasdk/data/fsl.configs.sa.searchpath
FLEXLM_BATCH= -add 1
CROSS_TOOLS_HOME= -add %CD%../Cross_Tools
ARM_GNU_TOOLS_HOME= -add %CD%../Cross_Tools/arm-none-eabi-gcc-4_7_3

2.21 Handling message alerts
This topic explains what are alert messages and how to handle them in CodeWarrior.

The message boxes with Yes/No or OK/Cancel buttons display the Do not Show this dialog again checkbox.
This checkbox if selected lets CodeWarrior automatically execute your saved choice, without displaying the
message box next time. If you do not select the checkbox, the message box appears again next time.

For example, if the processor is in the Secure Debug mode and if the unlock key is not provided, then a pop-up
message appears requesting the unlock key. If you enter the unlock key correctly, and select the Do not Show
this dialog again checkbox, the next time when unlock is needed, the key will be automatically provided without
displaying the pop-up message. This is also applicable for the message boxes which do not require user input.
For example, in the CodeWarrior Alert message box, if you select the Remember my choice and don't show this
dialog checkbox and click Yes, next time CodeWarrior will automatically take input as Yes, without displaying
the message box. And if you select the checkbox and click No, CodeWarrior will take input as No next time.

IDE Extensions
Handling message alerts

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 89

Figure 63: CodeWarrior Alert message box

To rest the settings of such message boxes, that is to display the previously hidden message boxes when
needed, perform the following steps.

1. Choose Window> Preferences to open the Preferences dialog.

2. Select C/C++ in the left pane.

3. Click the Clear button in the C/C++ dialogs group.
Figure 64: Preferences dialog

4. Click Apply to save the settings.

5. Click OK to close the Preferences dialog.

This will clear all 'do not show again' settings and display all hidden message or dialogs again.

IDE Extensions
Handling message alerts

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
90 Freescale Semiconductor, Inc.

Chapter 3
Debugger
This chapter explains how to work with the debugger to control program execution.

This chapter describes the following topics.

• About debugger on page 92

• Breakpoints on page 92

• Build while debugging on page 110

• Cache view on page 111

• CodeWarrior debugger settings on page 116

• Core index indicators in homogeneous multicore environment on page 118

• Debug perspective on page 120

• Debug view on page 121

• Disassembly view on page 125

• Environment variables in launch configuration on page 126

• Flash programmer on page 127

• Flash File to Target on page 137

• Hardware diagnostics on page 139

• Import/Export/Fill memory on page 146

• Launch group on page 153

• Load multiple binaries on page 157

• Memory view on page 159

• Memory Browser view on page 167

• Memory Management Unit configurator on page 168

• Multicore debugging on page 183

• Multicore Groups on page 185

• Multicore reset on page 192

• Path mappings on page 195

• Redirecting standard output streams to socket on page 201

• Refreshing data during runtime on page 203

• Registers view on page 204

• Register Details view on page 209

• Remote launch on page 214

• Stack crawls on page 216

• Symbolics on page 219

• System Browser view on page 220

Debugger

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 91

• Target connection lost on page 222

• Target initialization files on page 223

• Target Tasks view on page 225

• Variables on page 226

• Watchpoints on page 231

3.1 About debugger
A debugger controls program execution and shows the internal operation of a computer program.

You can use the debugger to find problems while the program executes and observe how a program uses
memory to complete tasks.

These tasks can be performed using the CodeWarrior debugger:

• attach to a running process,

• manipulate the contents of cache, registers, and memory,

• change the program-counter (PC) value,

• execute debugger commands from a command line interface,

• connect to target hardware or simulators,

• render the same data in different formats or byte ordering,

• perform hardware diagnostics,

• program the flash memory,

• manipulate target memory, and

• configure target-hardware subsystems.

3.2 Breakpoints
You use a breakpoint to halt program execution on a particular line of source code.

Once execution halts, you can examine your program's current state and check register and variable values.
You can also change these values and alter the flow of normal program execution. Setting breakpoints helps
you debug your program and verify its efficiency.

The types of breakpoints are:

• Regular - Halts the program execution.

• Conditional - Halts the program execution when a specified condition is met.

• Special - Halts the program execution and then removes the breakpoint that caused the halt.

Breakpoints have enabled and disabled states. The following table defines these states.

Debugger
About debugger

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
92 Freescale Semiconductor, Inc.

Table 6: Breakpoint states

State Icon Description

Enabled Indicates that the breakpoint is currently enabled. The debugger halts
the program execution at an enabled breakpoint. Click the icon to disable
the breakpoint.

Disabled Indicates that the breakpoint is currently disabled. The debugger does
not halt program execution at a disabled breakpoint. Click the icon to
enable the breakpoint.

This section explains:

• Breakpoints view on page 93

• Breakpoint annotations on page 94

• Regular breakpoints on page 94

• Special breakpoints on page 96

• Breakpoint persistence on page 97

• Breakpoint preferences on page 97

• Working with breakpoints on page 99

• Breakpoint actions on page 105

• Selecting breakpoint template on page 109

3.2.1 Breakpoints view
The Breakpoints view lists all the breakpoints set in the workbench projects.

This view also allows breakpoints to be grouped by type, project, file, or working sets, and supports nested
groupings. If you double-click a breakpoint displayed by this view, the source code editor displays the source
code statement on which this breakpoint is set.

Choose Window > Show View > Breakpoints from the IDE menu bar to open the Breakpoints view.

Alternatively, press the Alt+Shift+Q, B key combination to open the Breakpoints view.

 TIP

Figure 65: Breakpoints view

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 93

3.2.2 Breakpoint annotations
This CodeWarrior feature allows you to change editor breakpoint annotations.

To change breakpoint annotations:

1. Choose Window > Preferences .

The Preferences dialog appears.

2. Choose General > Editors > Text Editors > Annotations .

The annotations appear in the right pane of the Preferences dialog.

Figure 66: Breakpoint annotations

3. Select Breakpoints (org.eclipse.debug.core.breakpoint) from the Annotation types list box.

4. Specify settings for the selected annotation.

5. Click Apply.

6. Click OK.

You have changed editor breakpoint annotations.

3.2.3 Regular breakpoints
Regular breakpoints suspend the execution of a thread before a line of code or method is executed.

Regular breakpoints include:

• Line - Suspends the thread execution when the line of code it applies to is executed.

• Method - Suspends the thread execution when the method that it applies to, is entered or exited (or both).

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
94 Freescale Semiconductor, Inc.

The following figure shows an editor window and the marker bar to the left of the source code. Breakpoint icons
appear in this marker bar.

Figure 67: Setting regular breakpoints

You can add a breakpoint while debugging your project. Double-click the marker bar to
the left of a source code line to set a breakpoint at that line.

 NOTE

This topic explains:

• Setting line breakpoint on page 95

• Setting method breakpoint on page 95

3.2.3.1 Setting line breakpoint
Line breakpoints are set on an executable line of a program.

To set a line breakpoint at a line of source code:

1. Open the source code file in the editor and place the cursor on the line where you want to set the
breakpoint.

2. Choose Run > Toggle Line Breakpoint from the IDE menu bar. You can also double-click the marker bar
next to the source code line.

A breakpoint appears in the Breakpoints view. A breakpoint icon appears on the marker bar, directly to the
left of the line where you added the breakpoint. The line where the breakpoint is set is highlighted in the editor
area. The line appears highlighted in the C/C++ perspective also.

When the breakpoint is enabled, the thread execution suspends before that line of code executes. The debugger
selects the suspended thread and displays it's stack frames.

3.2.3.2 Setting method breakpoint
Method breakpoints are set on methods that do not have source code.

To set a method breakpoint on a line of source code:

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 95

1. Open the source code file in the editor.

2. Choose Window > Show View > Outline from the IDE menu bar.

The Outline view appears displaying an outline of the structured elements of the C/C++ file that is currently
open in the editor area.

3. Select the method where you want to add a breakpoint.

4. Choose Run > Toggle Breakpoint from the IDE menu bar. You can also choose Toggle Breakpoint from
the shortcut menu.

A breakpoint appears in the Breakpoints view. A breakpoint appears on the marker bar in the file's editor for
the method that was selected, if source code exists for the class.

When the breakpoint is enabled, thread execution suspends before the method enters or exits.

3.2.4 Special breakpoints
A special breakpoint is different from a regular breakpoint. A special breakpoint can be a hardware breakpoint
or a software breakpoint.

• Hardware - Hardware breakpoints are implemented by the processor hardware. The number of hardware
breakpoints available varies by processor type.

• Software - Software breakpoints are implemented by replacing some code in the target with special
opcodes. These opcodes stop the core as soon as they are executed. Software breakpoints only work if the
code is running out of RAM. There is no restriction on the number of software breakpoints in a project.

Special breakpoints have enabled and disabled states. The following table describes these states.

Table 7: Special breakpoint states

State Hardware Icon Software Icon Description

Enabled Indicates that the breakpoint is currently enabled.
The debugger halts program execution at an
enabled breakpoint. Click the icon to disable the
breakpoint.

Disabled Indicates that the breakpoint is currently disabled.
The debugger does not halt program execution at a
disabled breakpoint. Click the icon to enable the
breakpoint.

This topic explains:

• Setting special breakpoint using IDE on page 96

3.2.4.1 Setting special breakpoint using IDE
A special breakpoint is not a regular breakpoint and therefore, cannot be set by double-clicking. This section
explains how to set a special breakpoint on the source code.

To set a special breakpopint:

1. Choose Breakpoint Types > C/C++ Software Breakpoint or C/C++ Hardware Breakpoint from any of the
following views:

• Editor - From the shortcut menu that appears on right-clicking the marker bar.

• Disassembly - From the shortcut menu that appears on right-clicking the marker bar of the Disassembly
view.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
96 Freescale Semiconductor, Inc.

• Outline - From the shortut menu of the selected C++ class method.

• In the editor area, directly to the left of the line where you want to add the breakpoint, choose Toggle
Breakpoint from the shortcut menu. You can also double-click the marker bar next to the source code
line.

A new special breakpoint marker appears on the marker bar, directly to the left of the line, where you added
the breakpoint.

To add a special breakpoint while debugging your project, right-click the marker bar to
the left of a source code line and choose Breakpoint Types > C/C++ Software Breakpoint
or C/C++ Hardware Breakpoint from the shortcut menu.

 TIP

3.2.5 Breakpoint persistence
This CodeWarrior debugger feature allows you to preserve the enable/disable state of a breakpoint instance.

If you change the enabled/disable state of the breakpoint instances, the debugger serializes the breakpoint state
for all breakpoint instances. As a result, next time the user starts a new debug session, the breakpoint instances
are created as enabled/disabled according to the serialized state.

Figure 68: Breakpoints persistence

3.2.6 Breakpoint preferences
This topic explains the steps required to change the preferences when a breakpoint is hit.

When a breakpoint is hit, CodeWarrior shifts the focus to the workbench and the Debug view. This can be
annoying while working with long automated scripts. CodeWarrior can be configured to remain in background,
when a breakpoint is hit, by changing the breakpoint preferences.

To change the breakpoint preferences for a debug session:

1. Choose Window > Preferences.

The Preferences dialog appears.

2. Select Run/Debug.

The Run/Debug preference pane appears.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 97

Figure 69: Breakpoint preferences

3. Deselect the Activate the workbench when a breakpoint is hit checkbox and the Activate the debug view
when a breakpoint is hit checkbox.

4. Click Apply.

5. Click OK.

The breakpoint preferences are set to default after completion of the debug session.

 NOTE

Alternatively, to ensure that CodeWarrior remains in the background, every time a breakpoint is hit, add the
following lines of code at the end of the <CWInstall>\eclipse\cwide.properties file, where <CWInstall> is
the CodeWarrior installation path:

org.eclipse.debug.ui/org.eclipse.debug.ui.activate_debug_view=false
org.eclipse.debug.ui/org.eclipse.debug.ui.activate_workbench=false

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
98 Freescale Semiconductor, Inc.

3.2.7 Working with breakpoints
You can perform various actions on the breapoints such as modifying the breakpoints properties, restricting
the breakpoints to selected targets, and grouping them.

This topic describes the following sub-topics.

• Modify breakpoint properties on page 99

• Restricting breakpoints to selected targets and threads on page 101

• Limiting new breakpoints to active debug context on page 102

• Grouping breakpoints on page 103

• Disabling breakpoints on page 103

• Enabling breakpoints on page 104

• Removing breakpoints on page 104

• Removing All Breakpoints on page 104

• Undo delete breakpoint on page 104

• Redo delete breakpoint on page 105

• Skipping all breakpoints on page 105

3.2.7.1 Modify breakpoint properties
This section explains how to modify the breakpoint properties using CodeWarrior IDE.

To view or modify breakpoint properties for a breakpoint using the Properties for C/C++ breakpoint dialog. You
can open the Properties for C/C++ breakpoint dialog using one of the following methods:

• From the Breakpoint view - right-click and choose Breakpoint Properties from the shortcut menu.

• From the editor area - right-click on breakpoint and choose Breakpoint Properties from the shortcut menu.

The following figure shows the Properties for C/C++ breakpoint dialog. The following table describes each
breakpoint property.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 99

Figure 70: Properties for C/C++ breakpoint dialog

Table 8: Breakpoint properties

Option Description

Actions Allows you to attach one or more breakpoint actions to
a single breakpoint. For example, when a breakpoint
is encountered you could both log a message and play
a sound. Actions are executed in the order they appear
in the Actions for this breakpoint table.

Common Displays common properties of a breakpoint.
Additionally, you can define a condition that
determines when the breakpoint will be encountered.
A condition for a breakpoint can be any logical
expression that returns true or false value.

Table continues on the next page...

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
100 Freescale Semiconductor, Inc.

Table 8: Breakpoint properties (continued)

Option Description

Filtering Allows you to restrict the breakpoint to the selected
targets and threads. The Filtering option is available
during a debug session.

Instances Displays real-time breakpoint information that helps
identify the address and the way a breakpoint is
installed on a target.

3.2.7.2 Restricting breakpoints to selected targets and threads
You can restrict a breakpoint to one or more threads of a target. This process allows you to work on selected
threads of a target.

To restrict a breakpoint to one or more process threads:

1. Select the Breakpoints view.

2. Right-click on the breakpoint you want to restrict, and choose Breakpoint Properties from the shortcut
menu.

The Properties for C/C++ Breakpoint dialog appears.

3. In the left pane, select Filtering. The Filtering option is available during a debug session.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 101

Figure 71: Restrict breakpoint to selected targets and threads

4. From the Restrict to Selected Targets and Threads list, select the checkboxes adjacent to threads you
want to restrict the breakpoint.

5. Click OK.

The breakpoint is applied to the selected targets and threads.

3.2.7.3 Limiting new breakpoints to active debug context
This topic explains how to limit the new breakpoints to the active debug context.

If a breakpoint is set in a file shared by multiple cores; the breakpoint is set for all cores by default. To enable
limiting new breakpoints on an active debug context:

1. Debug your project.

2. Select the Breakpoints view.

3. Click the Limit New Breakpoints to Active Debug Context icon in the Breakpoints view.

4. Double-click the marker bar to the left of a source code line to set a breakpoint at that line.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
102 Freescale Semiconductor, Inc.

If no debug context exists, the breakpoint is installed in all contexts as normal.

 NOTE

Once set, the breakpoint filtering is maintained for the individual context during a Restart but is lost after a
Terminate. After a Terminate, the breakpoint is installed in all debug contexts.

3.2.7.4 Grouping breakpoints
Grouping breakpoints helps you view a list of breakpoints that match specified criteria.

To group breakpoints:

1. Click the pop-up menu in the Breakpointsview.
Figure 72: Grouping breakpoints

2. Choose Group By.

• Breakpoints - Displays a standard list of breakpoints.

• Breakpoint types - Groups all breakpoints by their types.

• Breakpoint Working Sets - Groups all breakpoints as user defined problem-specific sets that can be
quickly enabled and disabled.

• Files - Groups all breakpoints by the files they are set in.

• Projects - Groups all breakpoints by the project in which they are set.

• Resource Working Sets - Groups all breakpoints into resource-specific working sets that can be quickly
enabled and disabled.

• Advanced - Displays the Group Breakpoints dialog that helps you specify nested grouping for the
Breakpoints view. For example, you group breakpoints by Breakpoint Types and then group them by
Projects and Working Sets.

3.2.7.5 Disabling breakpoints
Disabling a breakpoint prevents it from affecting program execution and is easier than clearing or creating
new breakpoints.

To disable a breakpoint:

1. Right-click on an enabled breakpoint in the marker bar.

2. Choose Disable Breakpoint from the shortcut menu.

The breakpoint icon changes to . The disabled breakpoint icon indicates that the breakpoint does not halt
program execution.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 103

Disabled breakpoints can be enabled without losing any information. To know how to
enable breakpoints, see Enabling breakpoints on page 104.

 NOTE

3.2.7.6 Enabling breakpoints
The program execution suspends whenever an enabled breakpoint is encountered in the source code.
Enabling a breakpoint is easier than clearing or creating a new breakpoint.

To disable a breakpoint:

1. Right-click on a disabled breakpoint in the marker bar.

2. Choose Enable Breakpoint from the shortcut menu.

The breakpoint icon changes to . The enabled breakpoint icon indicates that it suspends the program
execution whenever encountered in the source code.

Enabled breakpoints can be disabled without losing any information. To know how to
disable breakpoints, see Disabling breakpoints on page 103.

 NOTE

3.2.7.7 Removing breakpoints
This topic explains how to remove a breakpoint.

To remove a breakpoint:

1. Right-click on a breakpoint in the Breakpoint view.

2. Choose Remove Selected Breakpoints from the shortcut menu.

The selected breakpoint is removed.

Alternatively, click the Remove Selected Breakpoints icon in the Breakpoints view.

 NOTE

3.2.7.8 Removing All Breakpoints
This topic explains how to remove all the breakpoints using context menu.

To remove all breakpoints:

1. Right-click in the Breakpoints view.

2. Choose Remove All Breakpoints from the shortcut menu.

Alternatively, click the Remove All Breakpoints icon in the Breakpoints view.

 NOTE

3.2.7.9 Undo delete breakpoint
This feature allows you to undo delete breakpoints from breakpoints view.

This feature is useful when by mistake you have deleted a breakpoint with some elaborated conditions. To undo
delete breakpoint:

1. Choose Edit > Undo Delete Breakpoint from the IDE menu bar.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
104 Freescale Semiconductor, Inc.

3.2.7.10 Redo delete breakpoint
This topic lists the steps required to redo delete breakpoint.

To redo delete breakpoint:

1. Choose Edit > Redo Delete Breakpoint from the IDE menu bar.

3.2.7.11 Skipping all breakpoints
All active breakpoints are skipped by the debugger during program/source code execution.

To ignore all active breakpoints, click the Skip All Breakpoints icon.

Skipped breakpoints do not suspend execution until they are turned on.

 NOTE

Click the Skip All Breakpoints icon again to turn on all breakpoints.

3.2.8 Breakpoint actions
You can use breakpoint actions to extend the breakpoint behavior and define other actions that occur when
program execution reaches the breakpoint.

This topic explains CodeWarrior enhancements to standard breakpoint behavior. The standard behavior of
breakpoints of a debugger is to stop execution at a specific spot.

Breakpoint actions let you:

• specify specific tasks to perform,

• manage a list of actions, where each action has specific properties,

• attach specific actions to individual breakpoints,

• control the order in which the breakpoint actions occur, and

• execute the Debugger Shell commands.

You can associate more than one action with a breakpoint. The debugger executes the associated breakpoint
actions when the program execution encounters the breakpoint. The following table lists and describes
breakpoint actions.

Table 9: Breakpoint actions

Action Description

Debugger Shell Action Executes Debugger Shell commands or a Debugger
Shell script.

Sound Action Plays the specified sound.

Log Action Logs messages to a console. The messages can be
literal strings or the result of an expression that the
debugger evaluates.

Resume Action Halt the program execution for a specified time and
then resumes the program execution.

External Tool Action Invokes a program, which is external to the debugger.

This section explains:

• Breakpoint Actions preferences page on page 106

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 105

• Adding breakpoint action on page 107

• Attaching breakpoint actions to breakpoints on page 108

3.2.8.1 Breakpoint Actions preferences page
Use the Breakpoint Actions preferences page to manage a global list of breakpoint actions available in a
workspace. Each action is an instance of a specific action type.

The Breakpoint Actions preferences page:

• shows a list of available actions,

• lets you create new actions for a selected action type, and

• lets you add, edit, and delete existing actions.

To open the Breakpoint Actions preferences page:

1. Choose Window > Preferences from the IDE menu bar.

The Preferences dialog appears.

2. Choose C/C++ > Debug > Breakpoint Actions.

The Breakpoint Actions preferences page appears.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
106 Freescale Semiconductor, Inc.

Figure 73: Preferences dialog - Breakpoint Actions page

3.2.8.2 Adding breakpoint action
This topic explains how to add a breakpoint action.

To add a breakpoint action:

1. Open the Breakpoint Actions preferences page.

2. Click New.

The New Breakpoint Action dialog appears.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 107

Figure 74: New Breakpoint Action dialog

3. In the Action name textbox, enter a name for the new action.

4. Use the Action type pop-up menu to choose the type of action you want to create.

5. Specify additional breakpoint-action properties, according to the action type that you specified.

For example, to display a specified log message when the debugger encounters a breakpoint, specify the
log message in the Log Action breakpoint action.

6. Click OK.

The New Breakpoint Action dialog closes. The new breakpoint action appears in the Breakpoint Actions
preferences page table.

3.2.8.3 Attaching breakpoint actions to breakpoints
This topic explains how to attach breakpoint actions to an existng breakpoint.

To use a breakpoint action, you must attach it to an existing breakpoint.

To attach breakpoint actions to a breakpoint, add the associated breakpoint actions in
the Breakpoint Actions preference page.

 NOTE

To attach breakpoint actions to a breakpoint:

1. Initiate a debugging session.

2. In the editor area of the Debug perspective, set a breakpoint.

3. Open the Breakpoints view.

a. From the IDE menu bar, choose Window > Show View.

The Show View dialog appears.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
108 Freescale Semiconductor, Inc.

b. Choose Debug > Breakpoints.

c. Click OK.

4. In the Breakpoints view, right-click a breakpoint.

5. Choose Properties from the shortcut menu.

The Properties for dialog appears.

6. Select Actions in the left pane of the Properties for dialog.

The Actions page appears.

7. Follow these sub-steps for each breakpoint action that you want to attach to the breakpoint:

a. Select the breakpoint action from the Available actions table.

b. Click Attach.

The selected breakpoint action moves from the Available actions table to the Actions for this breakpoint
table.

The debugger executes the breakpoint actions in the order shown in the Actions for this
breakpoint table.

 NOTE

8. To reorder the breakpoint actions in the Actions for this breakpoint table:

a. Select the action in the table.

b. Click Up to move the selected action up in the table.

c. Click Down to move the selected action down in the table.

During a debugging session, the debugger executes the breakpoint actions when the breakpoint is encountered.

3.2.9 Selecting breakpoint template
When you set a line or function breakpoint in the template code from the IDE, the breakpoint is set on all
template instances. This feature allows you to enable or disable a breakpoint for a particular core.

To disable breakpoint for a particular core:

1. Initiate a debugging session.

2. Open the Breakpoints view.

3. Click on the + sign to expand a breakpoint.

Debugger
Breakpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 109

Figure 75: Selecting breakpoint template

4. Deselect the checkbox for the core for which you do not want the breakpoint applied.

3.3 Build while debugging
CodeWarrior allows automatic termination of the debug sessions when initiating a build that produces
executables locked by those debug sessions.

The debug session locks the debugged elf when Create and Use Copy of Executable checkbox is not
selected, see Symbolics on page 219. If you make changes to the source files and rebuild the project while a
debug session is on, the build commands are invoked but the locked files are not overwritten and a link-time
error is generated.

To enable build while debugging:

1. Choose Window > Preferences from the IDE menu bar.

The Preferences dialog appears.

2. Choose C/C++ > Debug > CodeWarrior Debugger.

The CodeWarrior debugger preferences appears in the right pane of the Preferences dialog.

Debugger
Build while debugging

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
110 Freescale Semiconductor, Inc.

Figure 76: Preferences dialog

3. Select the Automatically terminate debug session on project rebuild, don't ask checkbox.

4. Click Apply.

5. Click OK.

Applying this setting immediately effects the project.

 NOTE

Now the debug session will automatically terminate while initiating a build that produces executables locked by
those debug sessions

3.4 Cache view
The Cache view helps you view, modify, and control a hardware cache.

Use the Cache view to examine instruction and data cache for L1 and L2 cache for the supported targets.

Debugger
Cache view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 111

This section explains:

• Opening Cache view on page 112

• Preserving sorting on page 113

• Cache view pop-up menu on page 114

3.4.1 Opening Cache view
This topic explains how to view the cache view in CodeWarrior.

To open the Cache view:

1. Start a debugging session.

2. From the CodeWarrior menu bar, choose Window > Show View > Other.

The Show View dialog appears.

Figure 77: Show View dialog

3. Expand the Debug group and select Cache.

4. Click OK.

The Cache view appears.

Debugger
Cache view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
112 Freescale Semiconductor, Inc.

Alternatively, start typing Cache in the type filter text textbox. The Show View dialog
filters the list of the views and displays only the views matching the characters typed in
the textbox. Select Cache from the filtered list and click OK.

 TIP

Figure 78: Cache view

If the Select Cache pop-up menu is dimmed in the Cache view then the current target
does not support viewing cache.

 NOTE

3.4.2 Preserving sorting
Preserve sorting of the cache when you update and refresh the cache.

To preserve sorting, perform the following steps:

1. Start a debugging session.

2. Open the Cache view. For more information about how to open the Cache view, see Opening Cache view
on page 112.

3. Choose the Preserve Sorting command from the pop-up menu of the Cache view.

Debugger
Cache view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 113

Figure 79: Cache view - Preserve sorting

The Preserve Sorting command is not available by default. If available, every operation
that triggers cache refresh, such as step, and run to breakpoint will have to wait for the
cache data loading and sorting.

 NOTE

3.4.3 Cache view pop-up menu
You can perform various actions on the cache using the pop-up menu in the Cache view.

Alternatively, you can use the Cache view toolbar that includes the same commands as the Cache view pop-up
menu. The following table lists the Cache view pop-up menu commands and their description.

Debugger
Cache view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
114 Freescale Semiconductor, Inc.

Table 10: Cache view pop-up menu commands

Command Description

Write Commits changes in the Cache view to the cache register of the target hardware, if
supported by the target hardware.

Refresh Reads data from the target hardware and updates the cache display.

Invalidate Invalidates the entire content of the cache.

Flush Flushes the entire content of the cache. Flushing the cache involves committing
uncommitted data to the next level of the memory hierarchy, and then invalidating
the data within the cache.

Lock Locks the cache. Locking cache prevents the cache from fetching the new lines or
discarding the current valid lines.

Synchronize Synchronize cache data with memory data.

Enable Turns on the cache.

Disable LRU Removes the Least Recently Used attribute from the existing display for each cache
line.

Inverse LRU Displays the inverse of the Least Recently Used attribute for each cache line.

Copy Cache Copies the cache contents to the system clipboard.

Export Cache Exports the cache contents to a file.

Search Finds an occurrence of a string in the cache lines.

Search Again Finds the next occurrence of a string in the cache lines.

Preserves sorting Preserves sorting of the cache when the cache data is updated and the cache is
refreshing. This option is not available by default. If available, every operation that
triggers cache refresh (like step, run to breakpoint) will have to wait for cache data
loading and sorting.

View Memory Views the corresponding memory for the selected cache lines.

Lock Line Locks the selected cache lines.

Invalidate Line Invalidates the selected cache lines.

Flush Line Flushes the entire contents of the selected cache lines.

Synchronize Line Synchronize selected cache data with memory data.

Lock Way Locks the cache ways specified with the Lock Ways menu command. Locking a
cache way means that the data contained in that way must not change. If the cache
needs to discard a line, it will not discard the locked lines, such as the lines explicitly
locked, or the lines belonging to locked ways.

Unlock Way Unlocks the cache ways specified with the Lock Ways command.

Lock Ways Specifies the cache ways on which the Lock Way and Unlock Way commands
operate.

Debugger
Cache view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 115

3.5 CodeWarrior debugger settings
You can configure debugger settings of a CodeWarrior project having multiple associated launch
configurations.

A launch configuration is a named collection of settings that the CodeWarrior tools use. For example, the project
you created in the tutorial chapter had two associated launch configurations.

The CodeWarrior project wizard generates launch configurations with names that follow the pattern projectname
- configtype - targettype, where:

• projectname represents the name of the project.

• configtype represents the type of launch configuration.

• targettype represents the type of target software or hardware on which the launch configuration acts.

Launch configurations for debugging code lets you specify settings such as:

• Files that belong to the launch configuration

• behavior of the debugger and related debugging tools

If you use the CodeWarrior wizard to create a new project, the IDE creates two debugger related launch
configurations:

• Debug configuration that produces unoptimized code for development purposes.

• Release configuration that produces code intended for production purposes.

This section includes:

• Modifying debugger settings on page 116

• Reverting debugger settings on page 117

• Stopping debugger at program entry point on page 117

3.5.1 Modifying debugger settings
This topic explains how to modify the debugger settings.

If you use the CodeWarrior wizard to create a new project, the IDE sets the debugger settings to default values.
You can modify these settings as per the requirement.

To change debugger settings:

1. In the CodeWarrior Projects view, right-click the project folder.

A shortcut menu appears.

2. Choose Debug As > Debug Configurations.

The Debug Configurations dialog appears.

The left pane of the Debug Configurations dialog lists the debug configurations that apply to the current
project.

3. Expand the CodeWarrior configuration.

4. From the expanded list, select the name of the debug configuration you want to modify.

The Debug Configurations dialog shows the settings for the selected configuration.

5. Click the Debugger tab.

The Debugger page appears.

Debugger
CodeWarrior debugger settings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
116 Freescale Semiconductor, Inc.

6. Change the settings in this page to suit your needs.

7. Click the Apply button.

The IDE saves your new settings.

You can select other pages and modify their settings. When you finish, you can click
the Debug button to start a new debugging session, or click the Close button to save
your changes and close the Debug Configuration dialog.

 NOTE

3.5.2 Reverting debugger settings
You can revert pending changes and restore last saved settings.

To undo pending changes, click the Revert button at the bottom of the Debug Configurations dialog.

The IDE restores the last set of saved settings to all pages of the Debug Configurations dialog. Also, the IDE
disables the Revert button until you make new changes.

3.5.3 Stopping debugger at program entry point
This feature helps you specify debugger settings for the CodeWarrior Debugger to remain stopped at program
entry point.

To specify debugger settings to stop debugger at program entry point:

1. In the CodeWarrior Projects view, right-click the project folder.

A shortcut menu appears.

2. Choose Debug As > Debug Configurations.

The Debug Configurations dialog appears. The left pane of the Debug Configurations dialog lists the debug
configurations that apply to the current project.

3. Expand the CodeWarrior configuration.

4. From the expanded list, select the name of the debug configuration you want to modify.

The Debug Configurations dialog shows the settings for the selected configuration.

5. Click the Debugger tab.

The Debugger pane appears.

6. Select the Stop on startup at checkbox.

The Program entry point and the User Specified options become available.

7. Select the Program entry point option.

To stop the debugger at a user-specified function, select the User specified option and
type the function name in the textbox.

 NOTE

8. Click Apply.

The IDE saves the settings for the debugger to remain stopped at program entry point.

Debugger
CodeWarrior debugger settings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 117

3.6 Core index indicators in homogeneous multicore
environment

You can identify the core(s) being debugged, when you debug a target with two or more cores of the same
architecture.

The core index is displayed in three views: Debug, System Browser, and Console.

• Debug view

For information on how the core index is displayed in the Debug view, see the product's Targeting Manual.
• System Browser view on page 118

• Console view on page 119

3.6.1 System Browser view
This section lists the debug session types available in CodeWarrior.

The System Browser serves two types of debug sessions: Kernel Awareness and OS application.

This section provides details on:

• Kernel Awareness on page 118

• OS application on page 119

3.6.1.1 Kernel Awareness
This topic explains about the kernel awareness debug session.

In a Kernel Awareness debug session, the core index is displayed under these scenarios:

• Multiple homogeneous cores, each running a single core Operating System (OS)

• Multicore OS

The System Browser view displays content for the a ctive debug context. For Kernel Awareness, the label of the
process object, as shown in the Debug view, is displayed at the top of the System Browser view's client area.
This label contains the index of the core the OS is running on, and is referred to as the context label.
For example, if the user is performing Kernel Awareness on a P4080 target, and the user is looking at Linux
running on the 5th e500 core, then the top of the System Browser client area shows a label that contains core
4.

In a multicore OS scenario, the system browser shows kernel threads for all cores being managed by the OS.
The System Browser view that displays kernel threads indicates the core index for each thread.

The following figure shows the core index information for kernel threads in a multicore environment.

Debugger
Core index indicators in homogeneous multicore environment

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
118 Freescale Semiconductor, Inc.

Figure 80: System Browser View - Kernel Awareness

3.6.1.2 OS application
OS Application debugging happens through a connection with an agent running on the OS.

The connection to the agent is through TCP/IP or COM port. In this scenario, the agent does not have information
about the core it is running on, nor does the user specify it when configuring the launch. The user simply specifies
the IP address or COM port where the agent is running.

The System Browser view shows the IP address or COM port in the context label.

Figure 81: System Browser view - OS application

3.6.2 Console view
The console associated with a process object displays the label of that process, as it appears in the Debug
view.

When debugging a homogeneous multicore target, this label contains the core index.

The following figure shows the core index in the Console view.

Debugger
Core index indicators in homogeneous multicore environment

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 119

Figure 82: Console view

3.7 Debug perspective
The Debug perspective lets you manage how the Workbench debugs and runs a program.

A perspective defines the initial set and layout of views in the Workbench window. Within the window, each
perspective shares the same set of editors. Each perspective provides a set of functionality aimed at
accomplishing a specific type of task or works with specific types of resources.

You can control your program's execution by setting breakpoints, suspending launched programs, stepping
through your code, and examining the values of variables.

The Debug perspective displays this information:

• The stack frame of the suspended threads of each target that you are debugging

• Each thread in your program represented as a node in the tree

• The process of each program that you are running

The Debug perspective also drives the Source view. As you step through your program, the Source view
highlights the location of the execution pointer.

The following figure shows a Debug perspective.

Debugger
Debug perspective

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
120 Freescale Semiconductor, Inc.

Figure 83: Debug perspective

3.8 Debug view
The Debug view shows the target debugging information in a tree hierarchy.

Views support editors and provide alternate presentations as well as ways to navigate the information in your
Workbench. For more information on the tree hierarchy and target debugging information, see the C/C++
Development User Guide.

Debugger
Debug view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 121

Figure 84: Debug view

Use the Debug view to perform these tasks:

• Clear all terminated processes.

• Start a new debug session for the selected process.

• Resume execution of the currently suspended debug target.

• Halt execution of the currently selected thread in a debug target.

• Terminate the selected debug session and/or process.

• Detach the debugger from the selected process.

• Execute the current line, including any routines, and proceed to the next statement.

• Execute the current line, following execution inside a routine.

• Re-enter the selected stack frame.

• Examine a program as it steps into disassembled code.

This section lists:

• Common debugging actions on page 122

3.8.1 Common debugging actions
This topic explains how to perform common debugging actions that correct source-code errors, control
program execution, and observe memory behavior.

Following are the common debugging actions.

• Starting debugger on page 123

• Stepping into routine call on page 123

• Stepping Out of Routine Call on page 123

• Stepping over routine call on page 123

• Stopping program execution on page 124

• Resuming program execution on page 124

• Running program on page 124

• Disconnecting core on page 124

Debugger
Debug view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
122 Freescale Semiconductor, Inc.

• Restarting debugger on page 124

• Debugging in Instruction Stepping mode on page 125

• Changing program counter value on page 125

3.8.1.1 Starting debugger
This section explains about how to start the debugging session.

Use the debug command in the Command-Line Debugger Shell to begin a debugging session. The debugger
then takes control of program execution, starting at the main entry point of the program.

Alternatively, choose Run > Debug or click the Debug button in the Debug view on page 121 toolbar to start the
debugger and launch a new Debug view.

Some projects require additional configuration before a debugging session can begin.
For more information, see the product's Targeting Manual.

 NOTE

3.8.1.2 Stepping into routine call
Use the step command in the Command-Line Debugger Shell to execute one source-code statement at a
time and follow execution in a routine call.>

Alternatively, choose Run > Step Into or click the Step Into button in the Debug view on page 121 toolbar to step
into a routine.

After the debugger executes the source code statement, the current statement arrow moves to the next
statement. The debugger uses these rules to find the next statement:

• If the executed statement did not call a routine, the current statement arrow moves to the next statement in
the source code.

• If the executed statement called a routine, the current statement arrow moves to the first statement in the
called routine.

• If the executed statement is the last statement in a called routine, the current statement arrow moves to the
statement in the calling routine.

3.8.1.3 Stepping Out of Routine Call
Use the Step Return command in the Command-Line Debugger Shell to execute the rest of the current
routine and stop program execution after the routine returns to its caller. This command causes execution to
return up the call chain.

Alternatively, choose Run > Step Return or click the Step Return button in the Debug view on page 121 toolbar
to step out of a routine.

The current routine executes and returns to its caller; then program execution stops.

3.8.1.4 Stepping over routine call
Use the next command in the Command-Line Debugger Shell to execute the current statement and advance
to the next statement in the source code.

If the current statement is a routine call, program execution continues until it reaches:

• end of the called routine,

• breakpoint,

• watchpoint,

• or an eventpoint that stops execution.

Debugger
Debug view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 123

Alternatively, choose Run > Step Over or click the Step Over button (shown at left) in the Debug view on page
121 toolbar to step over a routine. The current statement or routine executes; then program execution stops.

3.8.1.5 Stopping program execution
Use the kill command in the Command-Line Debugger Shell to stop program execution during a debugging
session.

Alternatively, choose Run > Terminate or click the Terminate button in the Debug view on page 121 toolbar to
stop program execution.

The operating system surrenders control to the debugger, which stops the program execution.

When working with a processor that has multiple cores, you can choose Run > Multicore
Terminate to stop selected group of cores.

 NOTE

3.8.1.6 Resuming program execution
Use the go command in the Command-Line Debugger Shell to resume execution of a suspended debugging
session.

Alternatively, choose Run > Resume or click the Debug button (shown at left) in the Debug view on page 121
toolbar to resume program execution.

The suspended session resumes.

3.8.1.7 Running program
Use the run command in the Command-Line Debugger Shell to execute a program outside of the debugger
control.

Alternatively, choose Run > Run or click the Run button (shown at left) in the Debug view on page 121 toolbar
to begin program execution.

The program runs outside of debugger control. Further, any watchpoints and breakpoints (special, hardware,
and software) are not hit.

The run command is shortcut for debug, go, and disconnect actions. The run command
downloads the code to the target, puts the core in running mode, and then disconnects
from the target.

 NOTE

3.8.1.8 Disconnecting core
This topic explains how to disconnect a core from a target.

Click the Disconnect button in the Debug view on page 121 toolbar to disconnect a core from the target.

The effect of the disconnect command is same as of the terminate command. The only difference between
the two commands is that the disconnect command turns on when a debug session is running.

3.8.1.9 Restarting debugger
This section explains how to restart a debug session.

You can restart debug session in following ways:

• Use the restart command in the Command-Line Debugger Shell, after stopping program execution. The
debugger goes back to the beginning of the program and begins execution again.

Debugger
Debug view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
124 Freescale Semiconductor, Inc.

• Right-click Thread in the Debug view and choose Restart from the shortcut menu.

• Click the Restart button in the Debug view toolbar to restart debug session.

Restart action is considerable faster to relaunch a debug session as it skips over loading
executable debug information and target register descriptors.

 NOTE

3.8.1.10 Debugging in Instruction Stepping mode
Use the stepi command in the Command-Line Debugger Shell to debug a program in instruction stepping
mode.

In this mode, you can debug the program in Disassembly view on page 125 instead of the source view.

You can also switch to instruction stepping mode by clicking the Instruction Stepping Mode button in the Debug
view on page 121 toolbar.

3.8.1.11 Changing program counter value
This topic explains how to change the counter value.

To change the program-counter value:

1. Initiate a debugging session.

2. In the editor view, place the cursor on the line you want the debugger to execute.

3. Right-click on the line and choose Move To Line from the shortcut menu.

The debugger moves the program counter to the location you specified. The editor view shows the new
location.

Changing the program-counter value because doing so can cause your program to
malfunction. For example, if you set the program counter outside the address range of
the current function, the processor will skip the instructions that clean up the stack and
return execution to the correct place in the calling function. Your program will then
behave in an unpredictable way.

 CAUTION

3.9 Disassembly view
The Disassembly view shows the loaded program as assembly language instructions mixed with source code
for comparison.

The next instruction to be executed is indicated by an arrow marker and highlighted in the view.

You can perform these tasks in the Disassembly view:

• Set breakpoints at the start of any assembly language instruction

• Enable and disable breakpoints and set their properties

• Step through the disassembled instructions of your program

• Jump to specific instructions in the program

Debugger
Disassembly view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 125

Figure 85: Disassembly view

3.10 Environment variables in launch configuration
CodeWarrior allows you to use environment or eclipse variables to specify the path of the launch executable.

To specify an environment or eclipse variable:

1. Choose Run > Debug Configurations.

The Debug Configurations dialog appears.

2. Select a launch configuration in the left pane of the Debug Configurations dialog.

3. Click Variables.

The Select build variable dialog appears.

Debugger
Environment variables in launch configuration

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
126 Freescale Semiconductor, Inc.

Figure 86: Select Build Variable dialog

4. Select a variable from the available list.

5. Click OK.

Now you can use environment or eclipse variables to specify the path of the launch executable.

3.11 Flash programmer
Flash programmer is a CodeWarrior plug-in that lets you program the flash memory of the supported target
boards from within the IDE.

The flash programmer can program the flash memory of the target board with code from a CodeWarrior IDE
project or a file. You can perform the following actions on a flash device using the flash programmer:

• Erase/Blank check actions on page 132

• Program/Verify actions on page 132

• Checksum actions on page 133

• Diagnostics actions on page 134

• Dump Flash actions on page 134

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 127

• Protect/Unprotect actions on page 135

• Secure/Unsecure actions on page 135

Click the Save button or press Ctrl+S to save task settings.

 NOTE

The flash programmer runs as a target task in the Eclipse IDE. To program the flash memory on a target board,
you need to perform the following tasks:

• Create a flash programmer target task on page 128

• Configure flash programmer target task on page 130

• Execute flash programmer target task on page 136

3.11.1 Create a flash programmer target task
You can create a flash programmer task using the Create New Target Task wizard.

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar.

The Show View dialog appears.

Figure 87: Show View dialog

2. Expand the Debug group and select Target Tasks.

3. Click OK.

The Target Tasks view appears.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
128 Freescale Semiconductor, Inc.

Figure 88: Target Tasks view

4. Click the Create a new Target Task button in the Target Tasks view toolbar.

The Create New Target Task wizard appears.

Figure 89: Create New Target Task window

5. In the Task Name textbox, enter a name for the new flash programming target task.

6. Choose a launch configuration from the Run Configuration pop-up menu.

• Choose Active Debug Context when flash programmer is used over an active debug session.

• Choose a project-specific debug context when flash programmer is used without an active debug
session.

7. Choose Flash Programmer from the Task Type pop-up menu.

8. Click Finish.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 129

The target task is created and the Flash Programmer Task editor window appears. You use this window to
configure the flash programmer target task.

• Flash Devices - Lists the devices added in the current task.

• Target RAM - Lets you specify the settings for Target RAM.

• Flash Program Actions - Displays the programmer actions to be performed on the flash devices.

3.11.2 Configure flash programmer target task
You can add flash devices, specify Target RAM settings, and add flash program actions to a flash
programmer task to configure it.

This topic contains the following sub-topics:

• Add flash device on page 130

• Specify target RAM settings on page 130

• Add flash programmer actions on page 131

3.11.2.1 Add flash device
This topic explain how to add a flash device.

To add a flash device to the Flash Devices table:

1. Click the Add Device button.

The Add Device dialog appears.

2. Select a flash device from the device list.

3. Click the Add Device button.

The flash device is added to the Flash Devices table in the Flash Programmer Task editor window.

You can select multiple flash devices to add to the Flash Devices table. To select
multiple devices, hold down the Control key while selecting the devices.

 NOTE

4. Click Done.

The Add Device dialog closes and the flash device appears in the Flash Devices table in the Flash
Programmer Task editor window.

For NOR flashes, the base address indicates the location where the flash is mapped in
the memory. For SPI and NAND flashes, the base address is usually 0x0.

 NOTE

3.11.2.2 Specify target RAM settings
The Target RAM is used by Flash Programmer to download its algorithms.

The Target RAM memory area is not restored by flash programmer. If you are using
flash programmer with Active Debug Context, it will impact your debug session.

 NOTE

The Target RAM (Add flash device on page 130) group contains fields to specify settings for the Target RAM.

• Address textbox: Use it to specify the address from the target memory. The Address textbox should contain
the first address from target memory used by the flash algorithm running on a target board.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
130 Freescale Semiconductor, Inc.

• Size textbox: Use it to specify the size of the target memory. The flash programmer does not modify any
memory location other than the target memory buffer and the flash memory.

• Verify Target Memory Writes checkbox: Select this checkbox to verify all write operations to the hardware
RAM during flash programming.

3.11.2.3 Add flash programmer actions
This section lists the various Flash Programmer actions avalable in the Flash Programmer Task editor
window.

In the Flash Programmer Actions group in the Flash Programmer Task editor window (Create a flash programmer
target task on page 128), you can add following actions on the flash device.

• Erase/Blank check actions on page 132

• Program/Verify actions on page 132

• Checksum actions on page 133

• Diagnostics actions on page 134

• Dump Flash actions on page 134

• Protect/Unprotect actions on page 135

• Secure/Unsecure actions on page 135

The Flash Programmer Actions group contains the following UI controls to work with flash programmer actions:

• Add Action pop-up menu

• Erase/Blank Check Action: Allows you to add erase or blank check actions for a flash device.

• Program/Verify Action: Allows you to add program or verify flash actions for a flash device.

• Checksum Action: Allows you to add checksum actions for a flash device.

• Diagnostics Action: Lets you add a diagnostics action.

• Dump Flash Action: Lets you add a dump flash action.

• Protect/Unprotect Action: Lets you add protect or unprotect action.

• Secure/Unsecure Action: Lets you add secure or unsecure action.

• Duplicate Action button: Allows you to duplicate a flash program action in the Flash Programmer Actions
table.

• Remove Action button: Allows you to remove a flash program action from the Flash Programmer Actions
table.

• Move Upbutton: Allows you to move up the selected flash action in the Flash Programmer Actions table.

• Move Down button: Allows you to move down the selected flash action in the Flash Programmer Actions
table.

Actions can also be enabled or disabled using the Enabled column. The Description
column contains the default description for the flash programmer actions. You can also
edit the default description.

 NOTE

This section includes:

• Erase/Blank check actions on page 132

• Program/Verify actions on page 132

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 131

• Checksum actions on page 133

• Diagnostics actions on page 134

• Dump Flash actions on page 134

• Protect/Unprotect actions on page 135

• Secure/Unsecure actions on page 135

• Duplicate action on page 135

• Remove action on page 136

3.11.2.3.1 Erase/Blank check actions
The Erase action erases sectors from the flash device.

You can also use the erase action to erase the entire flash memory without selecting sectors. The blank check
action verifies if the specified areas have been erased from the flash device.

Flash Programmer will not erase a bad sector in the NAND flash. After the erase action
a list of bad sectors is reported (if any).

 NOTE

To add an erase/blank check action:

1. Choose Erase/Blank Check Action from the Add Action pop-up menu.

The Add Erase/Blank Check Action dialog appears.

2. Select a sector from the Sectors table and click the Add Erase Action button to add an erase operation on
the selected sector.

Press the Control or the Shift key for selecting multiple sectors from the Sectors table.

 NOTE

3. Click the Add Blank Check button to add a blank check operation on the selected sector.

4. Select the Erase All Sectors Using Chip Erase Command checkbox to erase the entire flash memory.

After selecting the Erase All Sectors Using Chip Erase Command checkbox, you need
to add either erase or blank check action to erase all sectors.

 NOTE

5. Click Done.

The Add Erase/Blank Check Action dialog closes and the added erase/blank check actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

3.11.2.3.2 Program/Verify actions
The Program action allows you to program the flash device and the verify action verifies the programmed
flash device.

The program action will abort and fail if it is performed in a bad block for NAND flashes.

 NOTE

To add a program/verify action:

1. Choose Program/Verify Action from the Add Action pop-up menu.

The Add Program/Verify Action dialog appears.

2. Select the file to be written to the flash device.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
132 Freescale Semiconductor, Inc.

3. Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

4. Specify the file name in the File textbox. You can use Workspace, File System, or Variables buttons to
select the desired file.

5. Choose a file type from the File Type pop-up menu. You can select any one of the following file types:

• Auto - Detects the file type automatically.

• Elf - Specifies executable in ELF format.

• Srec - Specifies files in Motorola S-record format.

• Binary - Specifies binary files.

6. Select the Erase sectors before program checkbox to erase sectors before program.

7. [Optional] Select the Verify after program checkbox to verify after the program.

The Verify after program checkbox is available only with the processors supporting it.

 NOTE

8. Select the Restricted To Address in this Range checkbox to specify a memory range. The write action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

9. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

10.Click the Add Program Action button to add a program action on the flash device.

11.Click the Add Verify Action button to add a verify action on the flash device.

12.Click Done.

The Add Program/Verify Action dialog closes and the added program/verify actions appear in the Flash
Programmer Actions table in the Flash Programmer Task editor window.

3.11.2.3.3 Checksum actions
The checksum can be computed over host file, target file, memory range or entire flash memory.

To add a checksum action:

1. Choose Checksum Action from the Add Action pop-up menu.

The Add Checksum Action dialog appears.

2. Select the file for checksum action.

3. Select the Use File from Launch Configuration checkbox to use the file from the launch (run) configuration
associated with the task.

4. Specify the filename in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

5. Choose the file type from the File Type pop-up menu.

6. Select an option from the Compute Checksum Over options. The checksum can be computed over the
host file, the target file, the memory range, or the entire flash memory.

7. Specify the memory range in the Restricted To Addresses in this Range group. The checksum action is
permitted only in the specified address range. In the Start textbox, specify the start address of the memory
range sector and in the End textbox, specify the end address of the memory range.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 133

8. Select the Apply Address Offset checkbox and set the memory address in the Address textbox. Value is
added to the start address of the file to be programmed or verified.

9. Click the Add Checksum Action button.

10.Click Done.

The Add Checksum Action dialog closes and the added checksum actions appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

3.11.2.3.4 Diagnostics actions
The diagnostics action generates the diagnostic information for a selected flash device.

Flash Programmer will report bad blocks, if they are present in the NAND flash.

 NOTE

To add a diagnostics action:

1. Choose Diagnostics from the Add Action pop-up menu.

The Add Diagnostics Action dialog appears.

2. Select a device to perform the diagnostics action.

3. Click the Add Diagnostics Action button to add diagnostic action on the selected flash device.

Select the Perform Full Diagnostics checkbox to perform full diagnostics on a flash
device.

 NOTE

4. Click Done.

The Add Diagnostics Action dialog closes and the added diagnostics action appears in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

3.11.2.3.5 Dump Flash actions
The dump flash action allows you to dump selected sectors of a flash device or the entire flash device.

To add a dump flash action:

1. Choose Dump Flash Action from the Add Action pop-up menu.

The Add Dump Flash Action dialog appears.

2. Specify the file name in the File textbox. The flash is dumped in this selected file.

3. Choose the file type from the File Type pop-up menu. You can choose any one of the following file types:

• Srec: Saves files in Motorola S-record format.

• Binary: Saves files in binary file format.

4. Specify the memory range for which you want to add dump flash action.

• Enter the start address of the range in the Start textbox.

• Enter the end address of the range in the End textbox.

5. Click the Add Dump Flash Action button to add a dump flash action.

6. Click Done.

The Add Dump Flash Action dialog closes and the added dump flash action appear in the Flash Programmer
Actions table in the Flash Programmer Task editor window.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
134 Freescale Semiconductor, Inc.

3.11.2.3.6 Protect/Unprotect actions
The protect/unprotect actions allow you to change the protection of a sector in the flash device.

To add a protect/unprotect action:

1. Choose the Protect/Unprotect Action from the Add Action pop-up menu.

The Add Protect/Unprotect Action dialog appears.

2. Select a sector from the Sectors table and click the Add Protect Action button to add a protect operation on
the selected sector.

Press the Control or Shift key for selecting multiple sectors from the Sectors table.

 NOTE

3. Click the Add Unprotect Action button to add an unprotect action on the selected sector.

4. Select the All Device checkbox to add action on full device.

5. Click Done.

The Add Protect/Unprotect Action dialog closes and the added protect or unprotect actions appear in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

3.11.2.3.7 Secure/Unsecure actions
The secure/unsecure actions help you change the security of a flash device.

The Secure/Unsecure flash actions are not supported for StarCore devices.

 NOTE

To add a secure/unsecure action:

1. Choose the Secure/Unsecure Action from the Add Action pop-up menu.

The Add Secure/UnSecure Action dialog appears.

2. Select a device from the Flash Devices table.

3. Click the Add Secure Action button to add Secure action on the selected flash device.

a. Enter password in the Password textbox.

b. Choose the password format from the Format pop-up menu.

4. Click the Add Unsecure Action button to add an unprotect action on the selected sector.

5. Click Done.

The Add Secure/UnSecure Action dialog closes and the added secure or unsecure action appears in the
Flash Programmer Actions table in the Flash Programmer Task editor window.

3.11.2.3.8 Duplicate action
You can duplicate a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.

2. Click the Duplicate Action button.

The selected action is copied in the Flash Programmer Action table.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 135

3.11.2.3.9 Remove action
You can remove a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.

2. Click the Remove Action button.

The selected action is removed from the Flash Programmer Action table.

3.11.3 Execute flash programmer target task
You can execute the flash programmer tasks using the Target Tasks view.

To execute the configured flash programmer target task, select a target task and click the Execute button in the
Target Tasks view toolbar. Alternatively, right-click on a target task and choose Execute from the shortcut menu.

Figure 90: Execute target task

You can use predefined target tasks for supported boards. To load a predefined target
task, right-click in the Target Tasks view and choose Import Target Task from the
shortcut menu. To save your custom tasks, right-click in the Target Tasks view and then
choose Export Target Task from the shortcut menu.

 NOTE

You can check the results of flash batch actions in the Console view. The green color indicates the success and
the red color indicates the failure of the task.

Debugger
Flash programmer

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
136 Freescale Semiconductor, Inc.

Figure 91: Console view

3.12 Flash File to Target
You can use the Flash File to Target feature to perform flash operations such as erasing a flash device or
programming a file.

You do not need any project for using Flash File to Target feature, only a valid Remote System is required.

To open the Flash File to Target dialog, click the Flash Programmer button on the IDE toolbar.

• Connection pop-up menu- Lists all run configurations defined in Eclipse. If a connection to the target has
already been made the control becomes inactive and contains the text Active Debug Configuration.

• Flash Configuration File pop-up menu - Lists predefined target tasks for the processor selected in the
Launch Configuration and tasks added by user with the Browse button. The items in this pop-up menu are
updated based on the processor selected in the launch configuration. For more information on launch
configurations, see product's Targeting Manual.
• Unprotect flash memory before erase checkbox - Select to unprotect flash memory before erasing the

flash device. This feature allows you to unprotect the flash memory from Flash File To Target dialog.

• File to Flash group - Allows selecting the file to be programmed on the flash device and the location.

• File textbox - Used for specifying the filename. You can use the Workspace, File System, or Variables
buttons to select the desired file.

• Offset:0x textbox - Used for specifying offset location for a file. If no offset is specified the default value of
zero is used. The offset is always added to the start address of the file. If the file does not contain address
information then zero is considered as start address.

• Save as Target Task - Select to enable Task Name textbox.

• Task Name textbox - Lets you to save the specified settings as a Flash target task. Use the testbox to
specify the name of the target task.

• Erase Whole Device button - Erases the flash device. In case you have multiple flash blocks on the device,
all blocks are erased. If you want to selectively erase or program blocks, use the Flash programmer on
page 127 feature.

Debugger
Flash File to Target

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 137

• Erase and Program button - Erases the sectors that are occupied with data and then programs the file. If
the flash device can not be accessed at sector level then the flash device is completely erased.

This feature helps you perform these basic flash operations:

• Erasing flash device on page 138

• Programming a file on page 138

3.12.1 Erasing flash device
This topic explains how to erase a flash device.

To erase a flash device, follow these steps:

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

If a connection is already established with the target, this control is disabled.

 NOTE

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.

4. Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

5. Click the Erase Whole Device button.

3.12.2 Programming a file
This topic explains how to program a file using Falsh prgrammer.

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

If a connection is already established with the target, this control is disabled.

 NOTE

The Flash Configuration File pop-up menu is updated with the supported configurations for the processor
from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.

4. Select the Unprotect flash memory before erase checkbox to unprotect flash memory before erasing the
flash device.

5. Type the file name in the File textbox. You can use the Workspace, File System, or Variables buttons to
select the desired file.

6. Type the offset location in the Offset textbox.

7. Click the Erase and Program button.

Debugger
Flash File to Target

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
138 Freescale Semiconductor, Inc.

3.13 Hardware diagnostics
The Hardware Diagnostics utility lets you run a series of diagnostic tests that determine if the basic hardware
is functional.

These tests include:

• Memory read/write: This test only makes a read or write access to the memory to read or write a byte, word
(2 bytes) and long word (4 bytes) to or from the memory. For this task, the user needs to set the options in
the Memory Access group.

• Scope loop: This test makes read and write accesses to memory in a loop at the target address. The time
between accesses is given by the loop speed settings. The loop can only be stopped by the user, which
cancels the test. For this type of test, the user needs to set the memory access settings and the loop speed.

• Memory tests: This test requires the user to set the access size and target address from the access settings
group and the settings present in the Memory Tests group.

This topic contains the following sub-topics:

• Creating hardware diagnostics task on page 139

• Working with Hardware Diagnostic Action editor on page 140

• Memory test use cases on page 145

3.13.1 Creating hardware diagnostics task
You can create a hardware diagnostic task using the Create New Target Task wizard.

To create a task for hardware diagnostics:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group and select Target Tasks.

3. Click OK.

4. Click the Create a new Target Task button on the Target Tasks view toolbar. Alternatively, right-click in the
Target Tasks view and choose New Task from the shortcut menu.

The Create a New Target Task wizard appears.

5. Type name for the new task in the Task Name textbox.

6. Choose a launch configuration from the Run Configuration pop-up menu.

If the task does not successfully launch the configuration that you specify, the Execute
button on the Target Tasks view toolbar stays unavailable.

 NOTE

7. Choose Hardware Diagnostic from the Task Type pop-up menu.

8. Click Finish.

A new hardware diagnostic task is created in the Target Tasks view.

You can perform various actions on a hardware diagnostic task, such as renaming,
deleting, or executing the task, using the shortcut menu that appears on right-clicking
the task in the Target tasks view.

 NOTE

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 139

3.13.2 Working with Hardware Diagnostic Action editor
The Hardware Diagnostic Action editor is used to configure a hardware diagnostic task.

To open the Hardware Diagnostic Action editor for a particular task, double-click the task in the Target Tasks
view.

The following figure shows the Hardware Diagnostics Action editor.

Figure 92: Hardware Diagnostics Action editor

The Hardware Diagnostics Action editor window includes the following groups:

• Action Type on page 140

• Memory Access on page 141

• Loop Speed on page 141

• Memory Tests on page 142

3.13.2.1 Action Type
The Action Type group in the Hardware Diagnostics Action editor window is used for selecting the action type.

You can choose any one of the following actions:

• Memory read/write - Enables the options in the Memory Access group.

• Scope loop - Enables the options in the Memory Access and the Loop Speed groups.

• Memory test - Enables the access size and target address from the access settings group and the settings
present in the Memory Tests group.

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
140 Freescale Semiconductor, Inc.

3.13.2.2 Memory Access
The Memory Access pane configures diagnostic tests for performing memory reads and writes over the
remote connection interface.

The table below lists and describes the items in the pane.

Table 11: Memory Access Pane Items

Item Description

Read Select to have the hardware diagnostic tools perform read tests.

Write Select to have the hardware diagnostic tools perform write tests.

1 unit Select to have the hardware diagnostic tools perform one memory unit access size
operations.

2 units Select to have the hardware diagnostic tools perform two memory units access size
operations.

4 units Select to have the hardware diagnostic tools perform four memory units access size
operations.

Target Address Specify the address of an area in RAM that the hardware diagnostic tools should
analyze. The tools must be able to access this starting address through the remote
connection (after the hardware initializes).

Value Specify the value that the hardware diagnostic tools write during testing. Select the
Write option to enable this textbox.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

3.13.2.3 Loop Speed
The Loop Speed pane configures diagnostic tests for performing repeated memory reads and writes over the
remote connection interface.

The tests repeat until you stop them. By performing repeated read and write operations, you can use a scope
analyzer or logic analyzer to debug the hardware device. After the first 1000 operations, the Status shows the
estimated time between operations.

For all values of Speed, the time between operations depends heavily on the processing
speed of the host computer.

 NOTE

For Read operations, the Scope Loop test has an additional feature. During the first read operation, the hardware
diagnostic tools store the value read from the hardware. For all successive read operations, the hardware
diagnostic tools compare the read value to the stored value from the first read operation. If the Scope Loop test
determines that the value read from the hardware is not stable, the diagnostic tools report the number of times
that the read value differs from the first read value. Following table lists and describes the items in Loop Speed
pane.

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 141

Table 12: Loop Speed Pane Items

Item Description

Set Loop Speed Enter a numeric value between 0 to 1000 in the textbox to adjust the speed.
You can also move the slider to adjust the speed at which the hardware
diagnostic tools repeat successive read and write operations. Lower speeds
increase the delay between successive operations. Higher speeds decrease
the delay between successive operations.

3.13.2.4 Memory Tests
The Memory Tests pane lets you perform three hardware tests, Walking Ones, Bus Noise, and Address.

You can specify any combination of tests and number of passes to perform. For each pass, the hardware
diagnostic tools performs the tests in turn, until all passes are complete. The tools compare memory test failures
and display them in a log window after all passes are complete. Errors resulting from memory test failures do
not stop the testing process; however, fatal errors immediately stop the testing process.

The following table explains the items in the Memory Tests pane.

Table 13: Memory Tests pane items

Item Explanation

Walking 1's Select the checkbox to have the hardware diagnostic tools perform the Walking
Ones on page 143 test. Deselect to have the diagnostic tools skip the Walking
Ones on page 143 test.

Address Select to have the hardware diagnostic tools perform the Address on page 143
test. Deselect to have the diagnostic tools skip the Address on page 143 test.

Bus Noise Select to have the hardware diagnostic tools perform the Bus noise on page 144
test. Deselect to have the diagnostic tools skip the Bus noise on page 144 test.

Test Area Size Specify the size of memory to be tested. This setting along with Target Address
defines the memory range being tested.

Number of Passes Enter the number of times that you want to repeat the specified tests.

Use Target CPU Select to have the hardware diagnostic tools download the test code to the
hardware device. Deselect to have the hardware diagnostic tools execute the test
code through the remote connection interface. Execution performance improves
greatly if you execute the test code on the hardware CPU, but requires that the
hardware has enough stability and robustness to execute the test code.

The option is not applicable for CodeWarrior StarCore
devices.

 NOTE

Download Algorithm to
Address

Specify the address where the test driver is downloaded in case the Use target
CPU is selected.

The option is not applicable for CodeWarrior StarCore
devices.

 NOTE

This section includes:

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
142 Freescale Semiconductor, Inc.

• Walking Ones on page 143

• Address on page 143

• Bus noise on page 144

• Address lines on page 144

• Data lines on page 145

3.13.2.4.1 Walking Ones
This section provides details on the Walking Ones test.

This test detects these memory faults:

• Address Line: The board or chip address lines are shorting or stuck at 0 or 1. Either condition could result in
errors when the hardware reads and writes to the memory location. Because this error occurs on an
address line, the data may end up in the wrong location on a write operation, or the hardware may access
the wrong data on a read operation.

• Data Line: The board or chip data lines are shorting or stuck at 0 or 1. Either condition could result in
corrupted values as the hardware transfers data to or from memory.

• Retention: The contents of a memory location change over time. The effect is that the memory fails to retain
its contents over time.

The Walking Ones test includes four sub-tests:

• Walking Ones: This subtest first initializes memory to all zeros. Then the subtest writes, reads, and verifies
bits, with each bit successively set from the least significant bit (LSB) to the most significant bit (MSB). The
subtest configures bits such that by the time it sets the MSB, all bits are set to a value of 1. This pattern
repeats for each location within the memory range that you specify. For example, the values for a byte-
based Walking Ones subtest occur in this order:

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF

• Ones Retention: This subtest immediately follows the Walking Ones subtest. The Walking Ones subtest
should leave each memory location with all bits set to 1. The Ones Retention subtest verifies that each
location has all bits set to 1.

• Walking Zeros: This subtest first initializes memory to all ones. Then the subtest writes, reads, and verifies
bits, with each bit successively set from the LSB to the MSB. The subtest configures bits such that by the
time it sets the MSB, all bits are set to a value of 0. This pattern repeats for each location within the memory
range that you specify. For example, the values for a byte-based Walking Zeros subtest occur in this order:

0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00

• Zeros Retention: This subtest immediately follows the Walking Zeros subtest. The Walking Zeros subtest
should leave each memory location with all bits set to 0. The Zeros Retention subtest verifies that each
location has all bits set to 0.

3.13.2.4.2 Address
This section provides details on the Address test. This test detects memory aliasing.

Memory aliasing exists when a physical memory block repeats one or more times in a logical memory space.
Without knowing about this condition, you might conclude that there is much more physical memory than what
actually exists.

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 143

The address test uses a simplistic technique to detect memory aliasing. The test writes sequentially increasing
data values (starting at one and increasing by one) to each successive memory location. The maximum data
value is a prime number and its specific value depends on the addressing mode so as to not overflow the memory
location.

The test uses a prime number of elements to avoid coinciding with binary math boundaries:

• For byte mode, the maximum prime number is 28-5 or 251.

• For word mode, the maximum prime number is 216-15 or 65521.

• For long word mode, the maximum prime number is 232-5 or 4294967291.

If the test reaches the maximum value, the value rolls over to 1 and starts incrementing again. This sequential
pattern repeats throughout the memory under test. Then the test reads back the resulting memory and verifies
it against the written patterns. Any deviation from the written order could indicate a memory aliasing condition.

3.13.2.4.3 Bus noise
This test stresses on the memory system by causing many bits to flip from one memory access to the next
(both addresses and data values).

Bus noise occurs when many bits change consecutively from one memory access to another. This condition
can occur on both address and data lines.

3.13.2.4.4 Address lines
This section provides details on the Address lines test.

To force bit flips in address lines, the test uses three approaches:

• Sequential- This approach works sequentially through all of the memory under test, from lowest address to
highest address. This sequential approach results in an average number of bit flips from one access to the
next.

• Full Range Converging- This approach works from the fringes of the memory range toward the middle of the
memory range. Memory access proceeds in this pattern, where + number and - number indicate the next
item location (the specific increment or decrement depends on byte, word, or long word address mode):

• the lowest address

• the highest address

• (the lowest address) + 1

• (the highest address) - 1

• (the lowest address) + 2

• (the highest address) - 2

• Maximum Invert Convergence- This approach uses calculated end point addresses to maximize the number
of bits flipping from one access to the next. This approach involves identifying address end points such that
the values have the maximum inverted bits relative to one another. Specifically, the test identifies the lowest
address with all 0x5 values in the least significant nibbles and the highest address with all 0xA values in
the least significant nibbles. After the test identifies these end points, memory access alternates between
low address and high address, working towards the center of the memory under test. Accessing memory in
this manner, the test achieves the maximum number of bits flips from one access to the next.

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
144 Freescale Semiconductor, Inc.

3.13.2.4.5 Data lines
This section provides details on the Data Lines test.

To force bit flips in data lines, the test uses two sets of static data, a pseudo-random set and a fixed-pattern set.
Each set contains 31 elements-a prime number. The test uses a prime number of elements to avoid coinciding
with binary math boundaries. The sets are unique to each addressing mode so as to occupy the full range of
bits.

• The test uses the pseudo-random data set to stress the data lines in a repeatable but pattern-less fashion.

• The test uses the fixed-pattern set to force significant numbers of data bits to flip from one access to the
next.

The sub-tests execute similarly in that each subtest iterates through static data, writing values to memory. The
test combines the three address line approaches with the two data sets to produce six unique sub-tests:

• Sequential with Random Data

• Sequential with Fixed Pattern Data

• Full Range Converging with Random Data

• Full Range Converging with Fixed Pattern Data

• Maximum Invert Convergence with Random Data

• Maximum Invert Convergence with Fixed Pattern Data

3.13.3 Memory test use cases
Memory tests are the complex tests that can be executed in two modes: Host based and Target based
depending upon the selection made for the Use Target CPU checkbox.

The memory read /write and scope loop tests are host based tests. The host machine issues read and write
action to the memory through the connection protocol. For example CCS.

• Selected: Target Based

• Deselected: Host Based

The Host Based tests are slower than the Target Based tests.

This section explains the following use case scenerios:

• Use Case 1: Execute host-based Scope Loop on target on page 145

• Use Case 2: Execute target-based Memory Tests on target on page 146

3.13.3.1 Use Case 1: Execute host-based Scope Loop on target
This use case scenerio explains the steps required to execute the host based scope loop on the target.

Perform the following steps:

1. Select Scope loop in the Action Type.

2. Set Memory Access settings from the Memory Access section.

3. Set the speed used for the scope loop diagnostic from the Loop Speed section.

4. Save the settings.

5. Press Execute to execute the action.

Debugger
Hardware diagnostics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 145

3.13.3.2 Use Case 2: Execute target-based Memory Tests on target
This use case scenerio explains the steps required to execute the target based memory test on the target.

Perform the following steps:

1. Select Memory Test in the Action Type.

2. Specify Target Address and Access Size settings from the Memory Access section.

3. Specify the following settings for Memory Tests section:

• Test Area Size: The tested memory region is computed from Target Address until Target Address + Test
Area Size.

• Tests to Run: Select tests to run on the target.

• Number of passes: Specify number of times a test will be executed.

• Use Target CPU: set the Address to which the test driver (algorithm) is to be downloaded.

4. Save the settings.

5. Press Execute to execute the action.

3.14 Import/Export/Fill memory
The Import/Export/Fill Memory utility lets you export memory contents to a file and import data from a file into
memory.

The utility also supports filling memory with a user provided data pattern.

This section explain the following topics:

• Creating task for import/export/fill memory on page 146

• Importing data into memory on page 148

• Exporting memory to file on page 150

• Fill memory on page 152

3.14.1 Creating task for import/export/fill memory
You can use the Import/Export/Fill Memory utility to perform various tasks on memory.

The utility can be accessed from the Target Tasks view.

To open the Target Tasks view:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group.

3. Select Target Tasks.

4. Click OK.

The first time it opens, the Target Tasks view contains no tasks. You must create a task to use the Import/Export/
Fill Memory utility.

To create a task:

1. Click the Create a new Target Task button on the toolbar of the Target Tasks view. Alternatively, right-click
the left-hand list of tasks and choose New Task from the shortcut menu that appears.

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
146 Freescale Semiconductor, Inc.

The Create a New Target Task page appears.

Figure 93: Create New Target Task Window

2. In the Task Name textbox, enter a name for the new task.

3. Use the Run Configuration pop-up menu to specify the configuration that the task launches and uses to
connect to the target.

If the task does not successfully launch the configuration that you specify, the Execute
button of the Target Tasks view toolbar stays unavailable.

 NOTE

4. Use the Task Type pop-up menu to specify Import/Export/Fill Memory.

5. Click Finish.

The Import/Export/Fill Memory target task is created and it appears in the Import/Export/Fill Memory Action
editor.

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 147

Figure 94: Import/Export Memory Action editor

3.14.2 Importing data into memory
You can import the encoded data from a user specified file, decode it, and copy it into a user specified
memory range.

Select the Import memory option from the Import/Export/Fill Memory Action editor to import data into memory.

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
148 Freescale Semiconductor, Inc.

Figure 95: Import/Export Memory Action editor - Importing data into memory

The following table explains the import memory options.

Table 14: Controls used for importing data into memory

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is
performed. The Literal address field allows only decimal and hexadecimal
values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger
accesses in transferring one data element. The default values shown are 1,
2, and 4 units. When target information is available, this list shall be filtered
to display the access sizes that are supported by the target.

Select file Enter the path to the file that contains the data to be imported. Click the
Workspace button to select a file from the current project workspace. Click
the System button to select a file from the file system the standard File Open
dialog. Click the Variables button to select a build variable.

Table continues on the next page...

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 149

Table 14: Controls used for importing data into memory (continued)

Item Explanation

File Type Defines the format in which the imported data is encoded. By default, the
following file types are supported:

• Signed decimal Text

• Unsigned decimal Text

• Motorola S-Record format

• Hex Text

• Annotated Hex Text

• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

3.14.3 Exporting memory to file
You can read data from a user specified memory range, encode it in a user specified format, and store this
encoded data in a user specified output file.

Select the Export memory option from the Import/Export/Fill Memory Action editor to export memory to a file.

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
150 Freescale Semiconductor, Inc.

Figure 96: Exporting memory

The following table explains the export memory options.

Table 15: Controls used for exporting data from memory into file

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is
performed. The Literal address field allows only decimal and hexadecimal
values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger
accesses in transferring one data element. The default values shown are 1,
2, and 4 units. When target information is available, this list shall be filtered
to display the access sizes that are supported by the target.

Select file Enter the path of the file to write data. Click the Workspace button to select
a file from the current project workspace. Click the System button to select a
file from the file system the standard File Open dialog. Click the Variables
button to select a build variable.

Table continues on the next page...

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 151

Table 15: Controls used for exporting data from memory into file (continued)

Item Explanation

File Type Defines the format in which encoded data is exported. By default, the
following file types are supported:

• Signed decimal Text

• Unsigned decimal Text

• Motorola S-Record format

• Hex Text

• Annotated Hex Text

• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

3.14.4 Fill memory
You can fill a user specified memory range with a user specified data pattern.

Select the Fill memory option from the Import/Export/Fill Memory Action editor window to fill memory.

Figure 97: Fill memory

The following table explains the fill memory options.

Debugger
Import/Export/Fill memory

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
152 Freescale Semiconductor, Inc.

Table 16: Controls used for filling memory with data pattern

Item Explanation

Memory space and
address

Enter the literal address and memory space on which the fill operation is
performed. The Literal address field allows only decimal and hexadecimal values.

Expression Enter the memory address or expression at which the fill operation starts.

Access Size Denotes the number of addressable units of memory that the debugger accesses
in modifying one data element. The default values shown are 1, 2, and 4 units.
When target information is available, this list shall be filtered to display the access
sizes that are supported by the target.

Fill Pattern Denotes the sequence of bytes, ordered from low to high memory mirrored in the
target. The field accept only hexadecimal values. If the width of the pattern exceeds
the access size, an error message.

Number of Elements Enter the total number of elements to be modified.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

3.15 Launch group
A launch group is a launch configuration that contains other launch configurations. You can add any number
of existing launch configurations to the launch group and order them.

In addition, you can attach an action to each launch configuration. You can also specify the mode in which the
launch configuration should be launched. For example, run mode or debug mode.

This section explains the following topics:

• Creating launch group on page 153

• Launching launch group on page 156

3.15.1 Creating launch group
This section explains how to create a launch group.

To create a launch group:

1. Choose Run > Debug Configurations.

The Debug Configurations dialog appears.

2. Select Launch Group in the left pane.

3. Click the New launch configuration button available on the toolbar of the dialog.

A new launch configuration of launch group type is created and shown on the left pane of the Debug
Configurations dialog.

Debugger
Launch group

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 153

Figure 98: Launch Group Configuration pane controls

Table 17: Launch Group Configuration Pane Controls

Control Description

Name Specify a name for the launch group

Up button Click to move up the selected launch configuration

Down button Click to move down the selected launch configuration

Edit button Click to edit the selected entry in the launch group

Add button Click to add a launch configuration to the launch group

Remove button Click to remove a launch configuration from the launch group

4. Specify a name for the launch group configuration in the Name textbox.

5. Click Add.

The Add Launch Configuration dialog appears.

Debugger
Launch group

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
154 Freescale Semiconductor, Inc.

Figure 99: Add Launch Configuration dialog

Table 18: Add Launch Configuration dialog options

Option Description

Launch Mode Allows you to specify launch mode for the selected launch configuration. This
can also be used to filter launch configurations.

• debug - specifies that the launch configuration will be launched in debug
mode.

• run - specifies that the launch configuration will be launched in run mode.

• profile - specifies that the launch configuration will be launched in profile mode.

Use default mode when
launching

Selecting this checkbox indicates that the child launch configuration should be
launched in the mode used to initiate the launch group launch.

Post launch action Allows you to specify a post launch action for the selected launch configuration.

• None - the debugger immediately moves on to launch the next launch
configuration.

• Wait until terminated - the debugger waits indefinitely until the debug session
spawned by the last launch terminates and then it moves on to the next launch
configuration.

• Delay - the debugger waits for specified number of seconds before moving on
to the next launch configuration.

6. To add a launch configuration to the launch group:

Debugger
Launch group

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 155

a. Select one or more launch configurations from the tree control.

b. Select an action from the Post launch action list.

c. Click OK.

The launch configuration is added to the launch group and the Add Launch Configuration dialog closes.

7. Click Apply.

The launch configurations are added to the launch group.

3.15.2 Launching launch group
This section shows how a launch group is launched in the debug view of CodeWarrior.

When launched, the debugger iterates through the launch configurations contained in the launch group and
launches each enabled configuration sequentially, in the same order as they are configured in the launch group.

The following figure shows the result of a launch group launch in the Debug view.

Figure 100: Launch group in Debug view

Debugger
Launch group

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
156 Freescale Semiconductor, Inc.

3.16 Load multiple binaries
The CodeWarrior debugger supports loading multiple binaries(.elf) to make the symbols and source code of
other executable available within a debugging session.

To load multiple binary files within a debugging session:

1. Click Run > Debug Configurations.

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

2. Expand the CodeWarrior configuration and select the debug configuration that you want to modify.

The following figure shows the Debug Configurations dialog with the settings for the debug configuration you
selected.

Figure 101: Debug Configurations dialog

3. Click the Debugger tab to view the corresponding debugger settings page.

4. Click the Other Executables tab under the Debugger Options pane.

Debugger
Load multiple binaries

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 157

5. Click Add to open the Debug Other Executable dialog.

The Debug Other Executable dialog allows you to specify additional ELF files to download or debug in addition
to the main executable file associated with the launch configuration.

Figure 102: Debug Other Executable

6. Enter the path to the additional executable file that the debugger controls in addition to the current project's
executable file. Alternatively, click the Browse button to specify the file path.

7. Select the Load Symbols checkbox to have the debugger load symbols for the specified file. Deselect to
prevent the debugger from loading the symbols. The Debug column of the File list corresponds to this
setting.

8. Select the Download to Device checkbox to have the debugger download the specified file to the target
device. Deselect this checkbox to prevent the debugger from downloading the file to the device. The
Download column of the File list corresponds to this setting.

9. Click OK to add the additional executable to the Other Executables file list.

10.Click Debug to launch a debug session with multiple binaries.

Multiple binary files within a debugging session are now available.

This section includes the following topic:

• Viewing binaries on page 158

3.16.1 Viewing binaries
The Modules view shows the application executable and all shared libraries loaded by the application during a
debug session.

In addition to the current project's executable file, the Modules view shows the other executables listed in the
Other Executables pane (see Load multiple binaries on page 157).

To view the executables loaded during a debug session:

1. Choose Window > Show View > Modules from the IDE menu bar.

The Modules view appears.

Debugger
Load multiple binaries

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
158 Freescale Semiconductor, Inc.

Figure 103: Modules view

2. Click on the application executable to view its details.

An executable can also be expanded in the Modules view (to shows its symbols) regardless of whether the
executable has been targeted or not in the Debug Other Executable dialog.

3. An executable that is not marked to be targeted at launch time can be forced to be targeted at any time
during the debug session by choosing Load Symbols from the shortcut menu that appears on right-clicking
the executable. The menu command will not be available if the executable is already targeted.

All executables listed in the Other Executables pane are added to the Modules view
whether or not they are marked to be targeted or downloaded.

 NOTE

3.17 Memory view
The Memory view lets you monitor and modify your process memory.

The process memory is presented as a list called memory monitors. Each monitor represents a section of
memory specified by its location called base address. Each memory monitor can be displayed in different
predefined data formats known as memory renderings.

The debugger supports the following rendering types:

• Hex Integer

• Hexadecimal (default)

• ASCII

• Signed integer

• Unsigned integer

• Traditional

• Mixed Source

• Disassembly

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 159

• Floating Point

• Fixed Point

The default rendering is displayed automatically when a monitor is created.

The Memory view contains these two panes:

• Monitors - Displays the list of memory monitors added to the debug session currently selected in the Debug
view

• Renderings - Displays memory renderings.

The content of the Renderings pane is controlled by the selection in the Monitors pane. The Renderings pane
can be configured to display two renderings simultaneously.

This section includes the following topics:

• Opening Memory view on page 160

• Adding memory monitor on page 160

• Adding memory renderings on page 162

• Mixed source rendering on page 163

• Setting memory access size on page 164

• Exporting memory on page 164

• Importing memory on page 165

• Setting watchpoint in Memory view on page 166

• Clearing watchpoints from Memory view on page 166

3.17.1 Opening Memory view
To open the Memory view, choose Window > Show View > Memory from the IDE menu bar.

The following figure shows the memory view.

Figure 104: Memory view

3.17.2 Adding memory monitor
This topic explains the steps required to add a memoy monitor.

To add a memory monitor to Memory view:

1. Start a debugging session.

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
160 Freescale Semiconductor, Inc.

2. Click the Memory tab.

The Memory view appears.

3. In the Monitors pane toolbar, click the plus-sign (+) icon. Alternatively, right-click a blank area in the
Monitors pane and choose Add Memory Monitor from the shortcut menu.

The Monitor Memory dialog appears.

Figure 105: Monitor Memory dialog

4. Specify information about the memory monitor:

• To enter a memory space and literal address, enter an address.

• To enter an expression, type in the expression. If you enter a literal address as the expression, use the
prefix 0x to indicate hexadecimal notation, or use no prefix to indicate decimal notation. You can use the
available pop-up menu to choose a previously specified expression.

If you do not select a memory space and the expression does not contain a memory
space then the memory space is set to default data memory space that is specific for
each architecture

 NOTE

5. If you want to translate the memory address or the expression to another memory space, select the
Memory space checkbox.

The Memory space pop-up menu becomes available.

6. Choose one of the following values from the Memory space pop-up menu.

• Physical - Indicates that the specified address or expression refers to physical memory space.

• Data - Indicates that the specified address or expression refers to data memory space.

• Program - Indicates that the specified address or expression refers to program memory space.

7. Click OK.

The memory monitor is added to the Monitors pane and the default rendering is displayed in the Renderings
pane.

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 161

Figure 106: Added memory monitor

3.17.3 Adding memory renderings
This section provides details on adding memory rendering. When you add a variable, expression, or register
to the Memory view, you can do so multiple times, each time adding a new (or the same) rendering.

Alternatively, once you have added a memory monitor and rendering, you can go to the Renderings pane and
click Add Rendering(s) . This will prompt you with a dialog to select the rendering that you want to add to the
view. In this dialog, you can select more than one rendering by using the Shift or Control key. This will cause a
rendering to be opened for each rendering format that is selected. When you add multiple memory renderings,
they are separated by tabs.

For more details on opening the Memory view and adding memory monitors, see Adding memory monitor on
page 160.

You can also split the Memory Renderings pane by clicking the Toggle Split Pane icon in the Memory view
toolbar. When the Memory Renderings pane is split, you can view two renderings side-by-side.

When you have multiple memory renderings for a memory monitor, you can set the renderings to be linked with
one another. To do this, click the Link Memory Rendering Panes icon in the toolbar. When renderings are linked,
they are synchronized with each other (for example, if you change the column size in one rendering, the column
size in the other rendering will also change - or if you scroll or move the cursor in one rendering, the other
rendering will scroll or follow the same cursor movement). Linking memory renderings only applies to the current
Memory view. If you have multiple Memory views open, they do not link to each other.

To remove a rendering, select it in the Memory Renderings pane, right-click and choose Remove Rendering
from the shortcut menu. When you remove all memory renderings for a monitored expression, variable, or
register, the Memory Renderings pane will be populated with the memory rendering selection list. From this list,
you can select the data format that you want to use for the memory rendering and click the Add Rendering(s)
button.

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
162 Freescale Semiconductor, Inc.

Figure 107: Added memory rendering

3.17.4 Mixed source rendering
The mixed source rendering allows you to view memory with instructions in C correspondence or mixed
modes.

To add mixed source rendering in the Memory view:

1. Open the Memory view (see Opening Memory view on page 160).

2. Add a memory monitor (see Adding memory monitor on page 160).

3. Click the New Renderings tab in the Renderings pane.

The New Renderings tab displays the different rendering types that can be added in the Renderings pane.

4. Select Mixed Source from the Select rendering(s) to create list.

5. Click the Add Rendering(s) button.

The mixed source rendering is added to the Renderings pane in the Memory view.

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 163

Figure 108: Mixed source rendering

3.17.5 Setting memory access size
This section explains how to define the memory access size.

To set memory access size:

1. Open the Memory view (see Opening Memory view on page 160).

2. Right-click on a Memory Rendering.

The shortcut menu appears.

3. Choose Format from the shortcut menu.

The Format dialog appears.

4. Choose a row size from the Row Size pop-up menu to change the number of rows displayed in the
Renderings pane of the Memory view.

5. Choose a column size from the Column Size pop-up menu to change the number of columns.

The default value for the Column size depends on the architecture being debugged. For
example, for 32 bit architectures the default value for Column size is 4 and for 8 bit
architectures the default value is 1. To save the newly selected values as default values,
click the Save as Defaults button.

 NOTE

6. Click OK.

3.17.6 Exporting memory
This section explains the steps required to export the memory data.

To export memory data:

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
164 Freescale Semiconductor, Inc.

1. Open the Memory view (see Opening Memory view on page 160).

2. Click the Export button in the Memory view toolbar.

The Export Memory dialog appears.

Figure 109: Export Memory dialog

• Format pop-up menu - Lets you choose the format in which the memory data is exported.

• SRecord - Exports memory data in Motorola S-record format.

• Plain Text - Exports memory data in ASCII format.

• RAW Binary - Exports memory data in binary format.

• Start address textbox - Specify the start address of memory range to be exported.

• End address textbox - Specify the end address of the memory range to be exported.

• Length textbox- Displays the length of the memory range.

• File name textbox - Specify the file name to save the exported memory. Click the Browse button to select
a file on your system.

• Choose memory format from the Format pop-up menu.

• Specify the start address of the memory range to be exported in the Start address textbox.

• Specify the end address of the memory range to be exported in the End address textbox.

• Type a file name in the File name textbox. Click Browse to select a file on your system.

• Click OK.

Memory data is now exported.

3.17.7 Importing memory
This section explains the steps required to import the memory data.

To import memory data:

1. Open the Memory view (see Opening Memory view on page 160).

2. Click the Import button in the Memory view toolbar.

The Import Memory dialog appears.

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 165

Figure 110: Import Memory dialog

• Format pop-up menu - Allows you to choose the memory format.

• Restore to address specified in the file option - If selected, the imported memory is restored to the
memory location specified in the memory file.

• Restore to this address textbox - Specify a memory address to store the imported memory. The imported
memory is restored to the memory location specified in the textbox.

• File name textbox - Specify the file name to import memory. Click the Browse button to select a file from
your system.

• Scroll to restore address checkbox - If selected, the content in the memory view scroll to the restore point
after the export operation is completed.

3. Choose memory format from the Format pop-up menu.

4. Select Restore to address specified in the file to restore the memory to location specified in the memory
file.

5. Select Restore to this address option to store the memory data at the specified memory location. Type the
memory location in the adjacent textbox.

6. Type a file name in the File name textbox. Click Browse to select a file from your file system.

7. Select the Scroll to restore address checkbox to scroll to restore point in memory view after the export
operation is complete.

8. Click OK.

The memory data is now imported.

3.17.8 Setting watchpoint in Memory view
This section explains the steps required to set a watchpoint in the memory view.

To set a watchpoint using the Memory view:

1. Choose Windows > Open Perspective > Debug from the IDE menu bar to switch to the Debug perspective.

2. Choose Window > Show View > Memory.

The Memory view appears.

3. Select a range of bytes in the Memory Renderings pane of the Memory view.

4. Right-click and choose Add Watchpoint (C/C++) from the shortcut menu that appears.

3.17.9 Clearing watchpoints from Memory view
This section explains the steps required to remove the watchpoints from the memory view.

To clear a watchpoint from the Memory view:

1. Select the watchpoint expression in the Breakpoints view.

2. Click the Remove Selected Breakpoints button.

To clear all watchpoints from the Memory view:

Debugger
Memory view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
166 Freescale Semiconductor, Inc.

1. Open the Breakpoints view.

2. Choose Run > Remove all Breakpoints or click the Remove All Breakpoints button in the Breakpoints
view .

All watchpoints clear automatically when the target program terminates or the debugger
terminates the program. Your watchpoints are reset the next time the program runs.

 NOTE

The watchpoint is cleared from memory view.

3.18 Memory Browser view
The Memory Browser view lets you monitor your process memory.

This view also helps you browse through the memory rendering. You can specify a memory space along the
address to browse for.

To open the Memory Browser view, click the Memory Browser tab in the Debug perspective. Alternatively, from
the IDE menu bar, choose Window > Show View > Memory Browser.

Figure 111: Memory Browser view

To browse to a desired memory location, type the memory address in the Memory Address textbox and click
the Go button. The memory location is highlighted in the Memory Browser view.

If you do not select a memory space and the expression does not contain a memory
space then the memory space is set to default data memory space that is specific for
each architecture.

 NOTE

If you want to translate the memory address or the expression to another memory space, choose one of the
following values from the Memory space pop-up menu.

• Physical - Indicates that the specified address or expression refers to physical memory space.

• Data - Indicates that the specified address or expression refers to data memory space.

• Program - Indicates that the specified address or expression refers to program memory space.

Debugger
Memory Browser view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 167

3.19 Memory Management Unit configurator
The CodeWarrior Memory Management Unit (MMU) configurator allows different user tasks or programs
(usually in the context of an RTOS) to use the same areas of memory.

To use the MMU configurator, you set up a mapping for data and instruction addresses, then enable address
translation. The mapping links virtual addresses to physical addresses. Translation occurs before software acts
on the addresses.

The MMU configurator simplifies peripheral-register initialization of the MMU registers. You can use the tool to
generate code that you can insert into a program. The inserted code initializes an MMU configuration or writes
to the registers on-the-fly. Also, you can use the MMU configurator to examine the status of the current MMU
configuration.

Use the MMU configurator to:

• configure MMU general control registers

• configure MMU program memory-address-translation properties

• configure MMU data memory-address-translation properties

• display the current contents of each register

• write the displayed contents from the MMU configurator to the MMU registers

• save to a file (in a format that you specify) the displayed contents of the MMU configurator

This chapter has these sections:

• Creating MMU configuration on page 168

• Saving MMU Configurator settings on page 171

• MMU Configurator toolbar on page 171

• MMU Configurator pages on page 172

• Opening MMU Configurator view on page 182

3.19.1 Creating MMU configuration
You must create an MMU configuration to use the MMU configurator.

To create the configuration:

1. From the main menu bar, choose File > New > Other.

The New wizard appears.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
168 Freescale Semiconductor, Inc.

Figure 112: New wizard - MMU configuration

2. Choose Peripheral Configurators > MMU Configuration File.

3. Click Next.

The MMU Configurator File page appears.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 169

Figure 113: MMU Configurator File page

4. Enter in the Container textbox the path to the directory in which you want to store the MMU configuration.
Alternatively, click Browse and use the resulting dialog to specify the directory.

5. Enter in the File name textbox a name for the MMU configuration. Alternatively, leave the default name
intact.

If you enter a new name, make sure to preserve the .mmu filename extension.

 NOTE

6. Expand Device Number, and select the target hardware for which you are creating the MMU configuration.
(SC3x50)

7. Click Finish.

The IDE generates the MMU configuration file in the specified container directory and opens the MMU
Configuration File Editor view.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
170 Freescale Semiconductor, Inc.

Figure 114: MMU Configuration File Editor view

3.19.2 Saving MMU Configurator settings
Each time you change a setting on a page of the MMU configurator, you create a pending (unsaved) change.
To commit those pending changes, you must save the MMU configurator settings to a file.

An asterisk (*) appears to the left of the MMU Configuration File Editor tab text to indicate that the MMU
configurator still has pending changes among its pages.

To save to a file the current settings on each page of the MMU Configuration File Editor view:

1. Click the MMU Configuration File Editor tab.

The corresponding view becomes active.

2. From the main menu bar, choose File > Save.

The IDE saves to a file the pending changes to each page of the MMU configurator.

3.19.3 MMU Configurator toolbar
The MMU Configurator has an associated toolbar that helps you perform various actions.

Depending on how you open the MMU configurator, this toolbar appears either in the main IDE toolbar, or in the
MMU configurator view toolbar. The following table explains each toolbar button.

Table 19: MMU configurator toolbar buttons

Name Icon Explanation

Save C Source Save the generated C code to a new .c file.

Table continues on the next page...

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 171

Table 19: MMU configurator toolbar buttons (continued)

Name Icon Explanation

Save ASM Source Save the generated Assembly code to a new .asm file.

Save TCL Source Save the generated TCL script to a new .tcl file.

Read Target Registers Updates the content of the MMU Configuration File Editor pages
to reflect the current values of the target hardware registers.

Write Target Registers Writes the modified content of all the MMU Configuration File
Editor pages. You must click this button, or use the
corresponding toolbar menu command to write the MMU
Configurator modifications to the target hardware registers.

3.19.4 MMU Configurator pages
You use MMU configurator pages to configure MMU mapping and translation properties.

The MMU configurator's tabbed interface displays pages for configuration options and pages for generated code.

This topic includes the following sections:

• General page on page 173

• Program MATT page on page 174

• Data MATT page on page 177

• Saving MMU configurator generated code on page 180

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
172 Freescale Semiconductor, Inc.

3.19.4.1 General page
Use the General page to configure the overall MMU properties.

Figure 115: MMU Configuration File Editor- General page

The following table explains options on the General page.

Table 20: General page settings

Page Item Explanation

Address Translation Selected - Allows address translation. For example,
translation occurs from a virtual address to a physical
address. Deselected - Disables address translation.
For example, translation does not occur from a virtual
address to a physical address. This checkbox
corresponds to the Address Translation Enable (ATE)
bit of the MMU Control Register (M_CR).

Memory Protection Selected - Allows protection checking for all enabled
segment descriptors. With this checkbox selected, the
system consumes more power. Deselected - Disables
protection checking for all enabled segment
descriptors. With this checkbox deselected, the
system consumes less power. This checkbox
corresponds to the Memory Protection Enable (MPE)
bit of the MMU Control Register (M_CR).

Table continues on the next page...

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 173

Table 20: General page settings (continued)

Page Item Explanation

DPU Selected - Allows the Debug and Profiling Unit (DPU).
Deselected - Disables the DPU. With this checkbox
deselected, DPU registers are disabled for read and
write accesses. This checkbox corresponds to the
Debug and Profiling Unit Enable (DPUE) bit of the
MMU Control Register (M_CR).

Brunch Flush Selected - Allows automatic branch-target buffer flush.
Deselected - Disables automatic branch-target buffer
flush.

Cancel Cache Commands Selected - Cancels the cache command for program
and data except for DFLUSH and DSYNC. This
checkbox is not available for MSC8144 target device.

Capture Violation Address Selected - Includes the address at which the violation
occurred. Deselected - Does not include the address
at which the violation occurred.

3.19.4.2 Program MATT page
Use the Program MATT page to define and display program memory-space mappings (virtual-to-physical
address mappings) for the StarCore DSP.

The MMU configurator generates the appropriate descriptors for the program memory-address translation table
(MATT).

Each memory-space mapping has a corresponding entry in the list on the left-hand side of the Program MATT
page. Each entry shows an abbreviated expression which summarizes the settings on the right-hand side of the
page. A plus sign to the left of an entry indicates an enabled mapping, and a minus sign indicates a disabled
mapping.

To change an entry, select it from the left-hand side of the page, then use the Address, Size, and Properties
settings to specify options that the MMU configurator verifies as a group. Click the Change button to assign the
specified options to the selected entry. To cancel your changes, select another entry from the left-hand side of
the page, without clicking the Change button.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
174 Freescale Semiconductor, Inc.

Figure 116: MMU Configuration File Editor - Program MATT page

The following table explains each option on the Program MATT page.

Table 21: Program MATT page settings

Option Explanation

Virtual Enter the virtual base address of the program segment. This option corresponds to
the Program Segment Virtual Base Address and Size (PSVBAS) bits of the Program
Segment Descriptor Registers A (M_PSDAx) that configure the virtual base address.

Physical Enter the most-significant part of the physical address to use for translation. This
option corresponds to the Data Segment Physical Base Address (DSPBA) bits of the
Data Segment Descriptor Registers B (M_DSDBx)."

Size Specify the PMATT Units number in Number box. Select the PMATT Units type from
the Type pop-up menu: B, KB, MB, GB

Permissions Specify whether to share the program segment. This option corresponds to the
System/Shared Virtual Program Memory (SSVPM) bit of the Program Segment
Descriptor Registers A (M_PSDAx).

Burst Specify the number of transactions (beats) on the bus that the bus controller cannot
interrupt. This burst size applies in the region to a cacheable segment. This option
corresponds to the Program Burst Size (PBS) bits of the Program Segment
Descriptor Registers B (M_PSDBx).

Table continues on the next page...

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 175

Table 21: Program MATT page settings (continued)

Option Explanation

L2 Cache Policy Determines the cache policy for the L2 cache for accesses from the core through L1
Instruction cache: Cacheable, NonCacheable, and Reserved. The pop-up menu has
two Reserved values.This is because the L2 Cache Policy Values is stored on 2 bits
so they are 4 possible values (2 valid and 2 reserved). Every entry in the combo box
corresponds to a combination of bits.

Cacheable Selected - Allows caching of the segment in instruction cache. Deselected - Disables
caching of the segment in instruction cache. This checkbox corresponds to the
Instruction Cacheability (IC) bit of the Program Segment Descriptor Registers A
(M_PSDAx).

PAPS Selected-The segment has supervisor-level fetch permission for program accesses.
If you select the PAPU checkboxas well, you disable program-protection checks for
this segment. Deselected - The segment does not have supervisor-level fetch
permission for program accesses. This checkbox corresponds to the Program
Access Permission in Supervisor Level (PAPS) bit of the Program Segment
Descriptor Registers A (M_PSDAx).

Entry Enabled Selected - The MMU enables this mapping entry. Deselected - The MMU disables
this mapping entry.

PAPU Selected - The segment has user-level fetch permission for program accesses. If you
select the PAPS checkbox as well, you disable program-protection checks for this
segment. Deselected - The segment does not have user-level fetch permission for
program accesses. This checkbox corresponds to the Program Access Permission
in User Level (PAPU) bit of the Program Segment Descriptor Registers A
(M_PSDAx).

Prefetch Line Selected - Allows the fetch unit's program-line pre-fetch to a segment cacheable in
instruction cache. Deselected - Disables the fetch unit's program-line prefetch to a
segment cacheable in instruction cache. This checkbox corresponds to the Program
Pre-fetch Line Enable (PPFE) bit of the Program Segment Descriptor Registers B
(M_PSDBx).

Program Next Line
Prefetch

Selected - Allows the fetch unit's program next line pre-fetch mechanism to an ICache
cacheable segment. Deselected - Enables the fetch unit's program next line pre-fetch
mechanism to an ICache cacheable segment.

The PMATT Table page as shown in figure below displays an alternate, tabular rendering of the settings that
you specify on the Program MATT page. Use this page to view the configuration of all Program MATT mappings.
The MMU configurator uses the settings that you specify on the Program MATT page to generate the column
headers of this page. The table data shows the validated records for each Program MATT entry. You can resize
the table columns to hide columns or view the larger data fields. A plus sign (+) in a table cell represents a
selected checkbox in the associated Program MATT configuration page.

The PMATT Table page shows just a tabular summary of the settings that you specify
on the Program MATT page. To make changes, use the Program MATT page.

 NOTE

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
176 Freescale Semiconductor, Inc.

Figure 117: MMU Configuration File Editor - PMATT Table page

3.19.4.3 Data MATT page
Use the Data MATT page to define and display data memory-space mappings (virtual-to physical address
mappings) for the StarCore DSP.

The MMU configurator generates the appropriate descriptors for the data memory-address translation table
(MATT).

Each memory-space mapping has a corresponding entry in the list on the left-hand side of the Data MATT page.
Each entry shows an abbreviated expression which summarizes the settings on the right-hand side of the page.
A plus sign to the left of an entry indicates an enabled mapping, and a minus sign indicates a disabled mapping.

To change an entry, select it from the left-hand side of the page, then use the Address, Size, and Properties
settings to specify options that the MMU configurator verifies as a group. Click the Change button to assign the
specified options to the selected entry. To cancel your changes, select another entry from the left-hand side of
the page, without clicking the Change button.

The following figure shows the Data MATT page.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 177

Figure 118: MMU Configuration File Editor - Data MATT page

The following table explains each option on the Data MATT page

Table 22: Data MATT page settings

Option Explanation

Virtual Enter the virtual base address of the data segment. This option corresponds to the Data
Segment Virtual Base Address and Size (DSVBAS) bits of the Data Segment Descriptor
Registers A (M_DSDAx) that configure the virtual base address.

Physical Enter the most-significant part of the physical address to use for translation. The value
that you specify determines the size of the most- significant part. This option
corresponds to the Data Segment Physical Base Address (DSPBA) bits of the Data
Segment Descriptor Registers B (M_DSDBx).

Size Specify the PMATT Units number in Number box. Select the PMATT Units type from
the pop-up menu: B, KB, MB, GB

Permissions Specify whether to share the data segment: shared and non-shared This option
corresponds to the Supervisor/Shared Virtual Data Memory (SSVDM) bit of the Data
Segment Descriptor Registers A (M_DSDAx).

Burst Specify the number of transactions (beats) on the bus that the bus controller cannot
interrupt. This burst size applies in the region to a cacheable segment. This option
corresponds to the Data Burst Size (DBS) bits of the Data Segment Descriptor Registers
B (M_DSDBx).

Table continues on the next page...

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
178 Freescale Semiconductor, Inc.

Table 22: Data MATT page settings (continued)

Option Explanation

L2 Cache Policy Determines the cache policy for the L2 cache for accesses from the core through L1
Data Cache: Cacheable write through, Cacheable write-back, Non-cacheable, and
Adaptive write.

DAPU Specify whether to allow user-level read (r-), write (-w), both (rw), or neither(--) types of
data access. This option corresponds to the Data Access Permission in User Level
(DAPU) bits of the Data Segment Descriptor Registers A (M_DSDAx).

DAPS Specify whether to allow supervisor-level read (r-), write (-w), both (rw), or neither (--)
types of data access. This option corresponds to the Data Access Permission in
Supervisor Level (DAPS) bits of the Data Segment Descriptor Registers A (M_DSDAx).

Write Policy Specify the policy to use for data writes and cache:

• Cacheable write through-Writes are buffered in the write queue (WRQ) and goes both
to the cache and to the higher-level memory. The write-through is a non-write allocate,
and a cacheable write-through access is not updated in the cache unless there is a
hit.

• Cacheable write back-writes are buffered in the write queue (WRQ) and goes through
the DCache and the write back buffer (WBB). The information is written to the VBR
in the cache only. The modified cache VBR is written to higher-level memory only
when it is replaced. The resulting WBB is combined with a write-allocate write-miss
policy in which the required VBR is loaded to cache when a write-miss occurs.

• Non Cacheable write through-writes are buffered in the WRQ and goes through the
write through buffer (WTB) to the higher-level memory

• Non-cacheable write-through destructive area-writes are buffered in the WRQ and
goes through the write through buffer (WTB) to the higher-level memory. Speculative
read accesses are blocked in the platform level and does not goes to a higher level
memory.

Prefetch Line Selected - Enables the fetch unit's data-line prefetch to a segment cacheable in data
cache. Deselected - Disables the fetch unit's data-line prefetch to a segment cacheable
in data cache. This checkbox corresponds to Data Pre-fetch Line Enable (DPFE) bit of
the Data Segment Descriptor Registers B (M_DSDBx).

Entry Enabled Selected - The MMU enables this mapping entry. Deselected - The MMU disables this
mapping entry.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 179

Figure 119: MMU Configuration File Editor - Data MATT Table page

The DMATT Table page shows an alternate, tabular rendering of the settings that you specify on the Data MATT
page. Use this page to view the configuration of all Data MATT mappings. The MMU configurator uses the
settings that you specify on the Data MATT page to generate the column headers of this page. The table data
shows the validated records for each Data MATT entry. You can resize the table columns to hide columns or
view the larger data fields. A plus sign (+) in a table cell represents a selected checkbox in the associated Data
MATT configuration page.

The DMATT Table page shows the summary of the settings that you specify on the
Data MATT page in the tabular format. To changes these settings, use the Data MATT
page.

 NOTE

3.19.4.4 Saving MMU configurator generated code
You can save the C code, assembly code, and TCL script generated by the MMU Configuration File Editor.

This section includes the following topics:

• Saving generated C code on page 180

• Saving generated assembly code on page 181

• Saving generated TCL script on page 181

3.19.4.4.1 Saving generated C code
The generated C code is unique for different targets. This section explains how to save the generated C code.

Follow these steps to save the C code generated by the MMU Configuration File Editor:

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
180 Freescale Semiconductor, Inc.

1. From the CodeWarrior IDE menu bar, choose MMU Editor > Save C to save the generated C code.
Alternatively, click the corresponding toolbar buttons in the MMU Configurator toolbar.

A standard Save dialog appears.

2. Specify the filename in the File name textbox and click Save to save the generated code as a new file.

The MMU Configuration File Editor regenerates the C code when you change settings
in the configuration pages or when you click Change on the Program MATT or Data
MATT pages.

 NOTE

3.19.4.4.2 Saving generated assembly code
The generated Assembly (ASM) code is unique for different targets. This section explains how to save the
generated ASM code.

Follow these steps to save the ASM code generated by the MMU Configuration File Editor:

1. From the CodeWarrior IDE menu bar, choose MMU Editor > Save ASM to save the generated Assembly
code. Alternatively, click the corresponding toolbar buttons in the MMU Configurator toolbar.

A standard Save dialog appears.

2. Specify the name of the file in the File name textbox and click Save to save the generated code as a new
file.

The MMU Configuration File Editor regenerates the Assembly code when you change
settings in the configuration pages or when you click Change on the Program MATT or
Data MATT pages.

 NOTE

3.19.4.4.3 Saving generated TCL script
This section explains how to save the generated TCL script.

The generated TCL script can be executed within the Debugger Shell view, or the Debugger Shell can execute
the generated TCL script as an initialization script for the target hardware. The generated TCL script is unique
for different targets.

Follow these steps to save the TCL script generated by the MMU Configuration File Editor:

1. From the CodeWarrior IDE menu bar, choose MMU Editor > Save TCL to save the generated TCL script.
Alternatively, click the corresponding toolbar buttons in the MMU Configurator toolbar.

A standard Save dialog appears.

2. Specify the filename in the File name textbox and click Save to save the generated code as a new file.

The MMU Configuration File Editor regenerates the TCL script when you change
settings in the configuration pages or when you click Change on the Program MATT or
Data MATT pages.

 NOTE

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 181

3.19.5 Opening MMU Configurator view
You can use MMU Configurator view to examine the current state of a thread's MMU configuration during the
course of the debugging session.

Using the New window to create an MMU configuration is just one way to work with MMU. Alternatively, you can
open the MMU Configurator view, such as during a debugging session. Also, you can detach the MMU
Configurator view into its own floating window and reposition that window into other collections of views.

Because the MMU configurator view does not have an associated configuration file
initially, the MMU tab appears in place of the tab that shows the name of the
configuration file. Saving the MMU Configurator view settings to a file (by choosing File
> Save) replaces the MMU tab with the name of the saved configuration file.

 NOTE

To open the MMU Configurator view:

1. Start a debugging session.

2. In the Debug view of the Debug perspective, select the process for which you want to work with MMU.

3. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

Figure 120: Show View dialog - MMU Configurator

4. Expand Debug group, and choose MMU Configurator .

5. Click OK.

The MMU Configurator view appears, attached to an existing collection of views in the current perspective.

Debugger
Memory Management Unit configurator

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
182 Freescale Semiconductor, Inc.

You just finished opening the MMU Configurator view. You can right-click the MMU Configurator tab to choose
the menu command that detaches the view into a floating window. Also, you can drag the MMU Configurator
tab to a different collection of view tabs.

3.20 Multicore debugging
The debugger allows simultaneous debugging of multiple projects. This feature provides multi-core debugging
capability for some embedded processors.

By configuring each project to operate on a single core, the debugger can debug multiple cores by debugging
multiple projects.

CodeWarrior for Microcontrollers v10.x does not support debugging multiple projects on
multiple cores in the same multi-core target. CodeWarrior for Microcontrollers v10.x
supports creating and/or debugging Single Multi Processing (SMP) projects.

 NOTE

Configuring multi-core debugging involves these tasks:

• creating a project for each core

• configuring specific target settings for each project

• for some cores, specifying a configuration file for initializing multi-core debugging

You can use either the user interface or the Debugger Shell to perform multicore operations. In the user interface,
you can access multicore operations from these locations in the Debug perspective:

• Run menu

• Debug view shortcut menu

• Debug view toolbar

• Debug view toolbar pop-up menu

This section explains the follwoing topics:

• Multicore Suspend on page 183

• Multicore Resume on page 184

• Multicore Terminate on page 184

• Multicore Restart on page 184

3.20.1 Multicore Suspend
This section explains the steps required to suspend a multicore project.

To suspend execution of a core:

1. Enable multicore groups for multicore operations (see Multicore Groups on page 185).

2. In the Debug view, select a thread that corresponds to a core for bareboard debugging.

3. Click Multicore Suspend.

Alternatively, in the Command-Line Debugger Shell, select a thread using the switchtarget command and
then use the mc::stop command to suspend execution of a core during a debugging session.

Debugger
Multicore debugging

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 183

If Use all cores is enabled, then all cores in the processor are suspended. Otherwise, if
the core is in a multicore group, then all cores in the multicore group are suspended. In
either case, cores that are not being debugged can still be affected by the command. If
this is not the desired behavior, then reconfigure your multicore groups.

 NOTE

3.20.2 Multicore Resume
This section explains the steps required to resume a multicore project.

To resume execution of a core:

1. Enable multicore groups for multicore operations (see Multicore Groups on page 185).

2. In the Debug view, select a thread that corresponds to a core for bareboard debugging.

3. Click Multicore Resume.

Alternatively, in the Command-Line Debugger Shell, select a thread using the switchtarget command and
then use the mc::go command to resume execution of a core during a debugging session.

If Use all cores is enabled, all cores in the processor are resumed. Otherwise, if the core
is in a multicore group then all cores in the Multicore Group are resumed. In either case,
note that cores that are not being debugged can still be affected by the command. If this
is not the desired behavior, reconfigure your multicore groups.

 NOTE

3.20.3 Multicore Terminate
This section explains the steps required to terminate a multicore project.

To terminate execution of a core:

1. Enable multicore groups for multicore operations (see Multicore Groups on page 185).

2. In the Debug view, select a thread that corresponds to a core for bareboard debugging.

3. Click Multicore Terminate.

Alternatively,in the Command-Line Debugger Shell, select a thread using the switchtarget command and
then use the mc::kill command to terminate execution of a core during a debugging session.

If Use all cores is enabled then all Debug Threads for the processor will be terminated.
Otherwise, if the core is in a multicore group then all threads corresponding to the cores
in the multicore group will be terminated.

 NOTE

3.20.4 Multicore Restart
This section explains the steps required to restart a multicore project.

To restart execution of a core:

1. Enable multicore groups for multicore operations (see Multicore Groups on page 185).

2. In the Debug view, select a thread that corresponds to a core for bareboard debugging.

3. Click Multicore Restart.

Alternatively,in the Command-Line Debugger Shell, select a thread using the switchtarget command and then
use the mc::restart command to restart execution of a core during a debugging session.

Debugger
Multicore debugging

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
184 Freescale Semiconductor, Inc.

3.21 Multicore Groups
The multicore grouping feature helps you define multiple arbitrary groupings of cores and then perform
multicore operations on the groups.

Clicking the Multicore Groups button in the Debug view toolbar allows you to create new multicore groups.

Figure 121: Multicore Groups

The Multicore Groups pop-up menu provides the following options:

• Use All Cores - If the selected debug context is a multicore system, then all cores are used for multicore
operations.

• Disable Halt Groups - Disables breakpoint halt groups, see Multicore breakpoint halt groups on page 192.

• Limit new breakpoints to current group - If selected, all new breakpoints set during a debug session are
reproduced only on cores belonging to the group of the core on which the breakpoint is set.

• Edit Target Types - Opens the Target Types dialog to add or remove target types, see Editing multicore
group on page 189.

• Edit Multicore Groups - Opens the Multicore Groups dialog to create multicore groups. You can also use
this option to modify existing multicore groups.

The Multicore Groups pop-up menu also shows the list of groups that are shown in the Multicore Groups dialog.

This section includes:

• Creating multicore group on page 185

• Modifying multicore group on page 188

• Editing multicore group on page 189

• Using multicore group debugging commands on page 191

• Multicore breakpoint halt groups on page 192

3.21.1 Creating multicore group
You can create multicore groups using the New Multicore Group dialog.

To create a multicore group:

1. Click the Multicore Groups button from the Debug view toolbar.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 185

The Multicore Groups dialog appears.

Figure 122: Multicore Groups dialog

• New button - Creates a new group using the New Multicore Group dialog. The initial name of the group is
the name unless the name is already in use. If the name is already in use then an index is appended to
the group name. The initial enablement of the group and its descendants will be non-cores enabled,
cores disabled. This guarantees an initial state with no error due to overlap.

• Remove button - Removes a selected group.

• Remove All button - Remove all groups.

• Use all cores checkbox - If selected, all cores are used for multicore operations irrespective of multicore
groups.

• Limit new breakpoints to current group checkbox - If selected, all new breakpoints set during a debug
session are reproduced only on cores belonging to the group of the core on which the breakpoint is set.
When the Use all cores checkbox is selected, this checkbox appears dimmed and is not used on
breakpoints filtering, as all cores are considered on the same group for multicore operations.

• Click the New button.

The New Multicore Group dialog appears.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
186 Freescale Semiconductor, Inc.

Figure 123: New Multicore Group dialog

• Select a target type from the list.

• Click OK.

The group appears in the Multicore Groups dialog.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 187

Figure 124: Added multicore group

• Repeat Steps 2 - 4 to add more core groups for multicore operations.

• Click OK.

You have just created multicore group.

3.21.2 Modifying multicore group
You can also modify an existing multicore group to add cores to the multicore group.

You are not allowed to enable a group that overlaps with another group.

 NOTE

To modify a multicore group:

1. Choose Edit Multicore Groups from the Multicore Groups pop-up menu in the Debug view toolbar to open
Multicore Groups dialog.

2. Select the cores you want to add to the multicore group.

3. Deselect the cores you want to remove from the multicore group.

4. Click OK.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
188 Freescale Semiconductor, Inc.

3.21.3 Editing multicore group
You can edit multicore groups to add and remove system types from multicore groups.

You can add custom target types by importing files from:

• JTAG configuration files

• Device Tree Blob files (for Power Architecture)

To add and remove system types from multicore groups:

1. Choose Edit Target Type from the Multicore Groups pop-up menu.

The Target Types dialog appears.

Figure 125: Target Types dialog

• Import - Creates a custom target type by importing it from a configuration file.

• Remove - Removes a target type from the list.

• Remove All - Removes all target types from the list.

2. Click Import.

The Open dialog appears.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 189

Figure 126: Import target type

3. Select a multicore configuration file and click Open.

The multicore appears in the Target Types dialog.

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
190 Freescale Semiconductor, Inc.

Figure 127: Added target types

4. Click OK.

3.21.4 Using multicore group debugging commands
Multicore Group features can also be accessed from the Debugger Shell command line.

The following table lists and defines different multicore group debugging commands.

Table 23: Multicore group debugging commands

Command Description

mc::type Syntax mc::type Lists the available target types.

mc::type import Syntax mc::type import <filename> Imports a new specified using the
filename .

mc::type remove Syntax mc::type remove <filename>|<type-index> ... Removes the
specified imported or types. Built-in target types cannot be removed and will
return an error.

mc::type removeall Syntax mc::type removeall Removes all imported target types.

mc::group Syntax mc::group Lists the defined groups.

mc::group new Syntax mc::group new <type-name>|<type-index> [<name>] Creates a
new group for the system specified using the type-name or type-index . If
no name is specified, then a unique default name is assigned to the group.

Table continues on the next page...

Debugger
Multicore Groups

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 191

Table 23: Multicore group debugging commands (continued)

Command Description

mc::group rename Syntax mc::group rename <name>|<group-index> <new-name> Renames
an existing group. Specifying a duplicate name results in an error.

mc::group remove Syntax mc::group remove <name>|<group-index> ... Removes the
specified group or groups.

mc::group removeall Syntax mc::group removeall Removes all groups.

mc::group enable|disable Syntax mc::group enable|disable <index> ...|all Enables or disables
nodes in the group tree.

3.21.5 Multicore breakpoint halt groups
A halt group is a group of cores that will stop execution simultaneously whenever any one of the cores in the
group hits a breakpoint.

In multicore groups, each group can be configured as a run control group, a breakpoint halt group, or both.

The halt groups are configured on any applicable debug target. Similarly, whenever a debug session is launched,
all applicable halt groups are applied to the debug target.

Multicore breakpoint halt groups are supported by P4080 processor only.

 NOTE

3.22 Multicore reset
This CodeWarrior debugger feature lets you configure reset and run out of reset action for your target
system.

It also enables you to configure your target system to perform system reset action.

The system reset action is applicable for initial launch only.

 NOTE

To specify reset setting for cores in a multicore environment:

1. Go to the Remote Systems view on page 68.

2. Right-click a remote system and choose Properties from the shortcut menu.

The Properties for <Remote System> dialog appears.

Debugger
Multicore reset

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
192 Freescale Semiconductor, Inc.

Figure 128: Properties for <Remote System> dialog

3. Click the Initialization tab.

Debugger
Multicore reset

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 193

Figure 129: Initialization pane

• Execute system reset - Resets the entire Remote System. This checkbox is available only if the
processor supports system reset. Reset system is executed only for the initial launch.

• Core reset - Independently resets one or more cores from the Remote System. This is available only if
the processor supports core reset. Use this column in RSE configuration if you want to independently
reset the core on launch or restart. Initial launches with system reset and core reset options will execute
only the system reset.

• Run out of reset - Puts a core in run mode after reset. This is available only if System Reset or Core
Reset is selected.

• Initialize target - Allows initialize target script configuration

• Initialize target script - Script to initialize the target. This is available only if initialize target is selected.
Target initialization scripts and reset cores are applied to cores being launched.

4. Select the Execute system reset checkbox to perform system reset. The system reset applies only to initial
launch.

5. Select the Core reset checkbox adjacent to the core on which you want to perform a reset action.

6. Select the Run out of reset checkbox adjacent to the core on which you want to perform run out of reset
action.

7. Click OK.

Initialization files are executed only for cores selected for debug.

 NOTE

This section explains:

• On demand reset on page 195

Debugger
Multicore reset

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
194 Freescale Semiconductor, Inc.

3.22.1 On demand reset
The on demand settings are serialized when the user performs the reset action.

The Reload button allows user to load the settings from the remote system configuration. The on demand reset
configurations apply to the whole system, these configurations are not filtered to the active debug context. The
initialization files are executed only for cores under debug.

You can access the Reset command from the Run menu in the debug view.

Figure 130: On demand reset

3.23 Path mappings
The Path Mapping settings are used in IDE to resolve a partial or absolute path from a binary executable
during debugging to effectively locate a source file.

A binary executable used for debugging typically contains a list of source files in its debugger that were used to
build the executable. The source file list is used by the debugger to provide source level debugging. The
CodeWarrior IDE supports automatic as well as manual path mapping.

In this section:

• Automatic path mappings on page 195

• Manual path mappings on page 197

3.23.1 Automatic path mappings
The Automatic Path Mapping feature focuses on reducing as much as possible the manual steps required by
the user to set up the path mapping settings to support source level debugging.

For automatic path mapping:

1. In the CodeWarrior Projects view, expand Binaries folder and right-click the *.eld file.

2. Choose Properties from the shortcut menu that appears.

The Properties for *.eld dialog appears.

3. Select Path Mappings on the left side of the dialog.

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 195

The Path Mappings page appears. This page displays every path mapping settings for the launch
configurations associated with a project.

Figure 131: Automatic path mapping

You can edit either a single set of settings for all launch configurations associated with a project or the settings
for a given launch configuration by choosing the appropriate value from the Launch Configuration pop-up
menu.

Under each path mapping, the table displays a list of source files that exist in the binary executable that share
the same source mapping prefix. In the Local Path column, a green sign () appears if the file exists after
being mapped by the destination path or a red () if it does not. Also, the local path itself is displayed in red
if it does not exist on the local file system.

A default folder named Files Not Mapped is created if you explicitly remove existing mappings. All unmapped
files that are not found on the file system are automatically shown under this folder.

The following table describes various options available in the Path Mappings page.

Table 24: Automatic path mappings options

Options Description

Auto Correct When clicked, iterates automatically through all the
files not found on the file system and attempt to
group them with their common prefix. This action
often generates satisfactory results from the source
files listed in the binaries so that the manual steps
required by the user are kept at a minimum.

Table continues on the next page...

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
196 Freescale Semiconductor, Inc.

Table 24: Automatic path mappings options (continued)

Options Description

Add Allows you to create a new Path Mapping entry. If
any paths are selected, the dialog will be pre-
initialized with their common prefix.

Remove Allows you to remove any path mapping or default
entry.

Edit Allows you to change the values of the selected path
mapping entry. Editing non-path mapping entry is not
supported.

Up Allows you to reorder the entries by moving the
selected entry up in the list. Note that path mappings
need always to be grouped together, and as such
moving up the top most path mapping will always
move its siblings above the preceding entry as well.

Down Allows you to reorder the entries by moving the
selected entry down in the list. Note that path
mappings need always to be grouped together, and
as such moving down the bottom most path mapping
will always move its siblings below the following entry
as well.

Restore Defaults Resets the launch configuration path mappings
settings to their previous values, including the library
path mapping automatically generated by the APM
plug-in.

If you create a new path mappings manually from the source lookup path, the source
files are automatically resorted to their most likely path mapping parent.

 NOTE

4. Click OK.

The Path Mappings dialog closes.

3.23.2 Manual path mappings
Path mappings can be added manually per launch configuration or global, per workspace.

You need to specify the source lookup path in terms of the compilation path and the local file-system path for
the newly imported executable file. The CodeWarrior debugger uses both of these paths to debug the executable
file. The compilation path is the path to the original project that built the executable file. If the original project is
from an IDE on a different computer, you specify the compilation path in terms of the file system on that computer.
The local file-system path is the path to the project that the CodeWarrior IDE creates in order to debug the
executable file.

In the latest case the mapping will be valid for all the projects within the workspace.

To add a path mapping to a launch configuration:

1. Click the Source tab of the Debug Configurations dialog.

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 197

Figure 132: Debug Configurations dialog - Source pane

2. Click Add.

The Add Source dialog appears.

3. Select Path Mapping.
Figure 133: Add Source dialog

4. Click OK.

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
198 Freescale Semiconductor, Inc.

The Path Mappings dialog appears.

Figure 134: Path Mappings dialog

5. Specify the Path mappings name in the Name textbox.

6. Click Add.

7. In the Compilation path textbox, enter the path to the parent project of the executable file, relative to the
computer that generated the file.

For example, the computer on which you debug the executable file is not the same computer that generated
that executable file. On the computer that generated the executable file, the path to the parent project is D:
\workspace\originalproject. Enter this path corresponding to the Compilation path textbox.

You can use the IDE to discover the path to the parent project of the executable file,
relative to the computer that generated the file. In the C/C++ Projects view of the C/C+
+ perspective, expand the project that contains the executable file that you want to
debug. Next, expand the group that has the name of the executable file itself. A list of
paths appears, relative to the computer that generated the file. Search this list for the
names of source files used to build the executable file. The path to the parent project of
one of these source files is the path you should enter in the Compilation path textbox.

 TIP

8. In the Local file system path textbox, enter the path to the parent project of the executable file, relative to
your computer. Alternatively, click the Browse button to specify the parent project.

Suppose the computer on which you debug the executable file is not the same computer that generated that
executable file. On your current computer, the path to the parent project of the executable file is C:\projects
\thisproject. Enter this path in the Local file system path textbox.

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 199

9. Click OK.

The Path Mappings dialog closes. The mapping information now appears under the path mapping shown in
the Source Lookup Path list of the Source page.

10.If needed, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list, stopping at the first match.
To change this order, select a path, then click the Up or Down button to change its position in the list.

11.Click Apply.

The IDE saves your changes.

This section also includes:

• Adding path mapping to workspace on page 200

3.23.2.1 Adding path mapping to workspace
This section explains the steps required to add path mapping to a workspace.

To add a path mapping to the workspace:

1. Choose Window > Preferences from the CodeWarrior IDE menu bar.

The Preferences dialog appears.

2. Expand C/C++ > Debug > Common Source Lookup Path.

Debugger
Path mappings

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
200 Freescale Semiconductor, Inc.

Figure 135: Preferences dialog - Common Source Lookup Path

3. Repeat steps 2-11 provided in the Manual path mappings on page 197 section for adding a path mapping
for a single launch configuration.

3.24 Redirecting standard output streams to socket
This CodeWarrior feature allows you to redirect standard output (stdout, stderr) of a process being
debugged to a user specified socket.

To specify the initial connection redirection settings:

1. In the CodeWarrior Projects view, right-click the project folder to display a shortcut menu.

2. Choose Debug As > Debug Configurations from the shortcut menu.

Debugger
Redirecting standard output streams to socket

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 201

The Debug Configurations dialog appears. The left pane of the Debug Configurations dialog has a list of
debug configurations that apply to the current application.

3. Expand the CodeWarrior tree, and select the name of the debug configuration for which you want to
modify debugger settings.

The right pane of the Debug Configurations dialog shows the settings for the configuration that you selected.

4. Click the Common tab.

The common settings are available in the right pane of the Debug Configurations dialog.

Figure 136: Debug Configurations dialog

5. Select the Port checkbox.

The Act as Server or Hostname/IP address options become available.

6. Type the port number in the Port textbox.

7. Select Act as Server to redirect the output from this process to a local server socket bound to the specified
port.

8. Select Hostname/IP address to redirect the output from this process to a server socket located on the
specified host and bound to the specified port. The debugger will connect and write to this server socket
via a client socket created on an ephemeral port

9. Click Apply.

The changes are applied to the selected debug configuration.

Debugger
Redirecting standard output streams to socket

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
202 Freescale Semiconductor, Inc.

You can also use the redirect command in the debugger shell to redirect standard
output streams to a socket.

 NOTE

3.25 Refreshing data during runtime
This debugger feature refreshes the memory and registers data non-intrusively during runtime.

The data is automatically refreshed after a specified interval during runtime.

You can also refresh data by clicking the Refresh button from a view toolbar. If you choose Refresh While
Running from the pop-up menu, the data is refreshed automatically after the interval specified in debug
configurations settings.

The data can be refreshed for the following views:

• Memory view

• Variable view

• Registers view

To specify a time interval to automatically refresh view data during runtime:

1. In the CodeWarrior Projects view, right-click the project folder to display a shortcut menu.

2. Choose Debug As > Debug Configurations from the shortcut menu.

The Debug Configurations dialog appears. The left pane of the Debug Configurations dialog lists debug
configurations that apply to the current project.

3. Expand the CodeWarrior tree, and choose the name of the debug configuration for which you want to
modify debugger settings.

The right pane of the Debug Configurations dialog shows the settings for the configuration that you selected.

4. Click the Debugger tab.

5. Click the Debug tab from the Debugger Options group.

Debugger
Refreshing data during runtime

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 203

Figure 137: Refresh settings

6. Type the refresh interval in the Refresh while running period (seconds) textbox.

7. Click Apply.

The changes are applied to the selected debug configuration.

3.26 Registers view
The Registers view lists information about the registers in a selected stack frame.

Values that have changed are highlighted in the Registers view when your program stops.

You can use the Registers view to:

• add, edit, or remove groups of registers

• view register details, such as explanations of a register's bit fields and values

• change register values

• import/export register data

You can also change the number system in which the debugger displays register values. These number systems
are supported:

Debugger
Registers view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
204 Freescale Semiconductor, Inc.

• Default

• Decimal

• Hexadecimal

• Octal

• Binary

• Fractional

The Registers view also allows you to cast existing data type to complex data types that may or may not exist
in the debugged executable. For more information on casting a data type, see Cast to Type on page 230.

Casting a register to a type requires that the size of the register must match the size of
the type, otherwise the cast will fail. Therefore, if the type is a complex one (for example,
structure, union), it should be declared first to avoid padding done by compilers.

 NOTE

Figure 138: Registers view

This section explains:

• Opening Registers view on page 206

• Viewing registers on page 206

• Changing register values on page 206

Debugger
Registers view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 205

• Exporting registers on page 207

• Importing registers on page 208

• Changing register data display format on page 209

3.26.1 Opening Registers view
This section provides instructions on how to open a registers view.

To open the Registers view:

1. Switch to the Debug perspective.

2. Choose Window > Show View > Registers from the IDE menu bar.

3.26.2 Viewing registers
This section provides instructions on how to view the registers content.

To view registers content:

1. Open the Registers view.

2. Expand a register group.

Expanding a group shows its content by register name and the content of each register in the group.

3.26.3 Changing register values
This section provides instructions on how to edit the values of a register.

To change the value of a register:

1. Open the Registers view.

2. Expand the hierarchical list to reveal the register whose value you want to modify.

3. Right-click the register value that you want to change and choose Change Value from the shortcut menu
that appears.

The Set Value dialog appears.

Figure 139: Set Value dialog

4. Enter a new value in the Enter a new value for ALTCAR textbox.

5. Click OK.

The debugger assigns the specified value to the selected register.

Debugger
Registers view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
206 Freescale Semiconductor, Inc.

Alternatively, you can click on the value and edit it to change the Registers value.

 TIP

3.26.4 Exporting registers
This section provides instructions on how to export a register data file.

The export operation generates two files:

• a *.regs file that contains the registers information in XML format which is also used by the import
operation.

• a *.csv file that contains the registers information in plain text CSV (comma-separated values) format that
can be used for easy visual inspection in an external text editor or MS Excel/Open Office.

To export register data to a file:

1. Open the Registers view.

2. Click the Export registers button in the Registers view toolbar.

The Export Registers dialog appears.

Figure 140: Export Registers dialog

• Registers group - Controls the scope of export operation. Selecting the All option exports all registers in
the Registers view. Selecting the Selected option exports selected registers. If a register group is
selected in the Registers view then the entire register tree, starting at the selected node, is exported.

The Selected option is unavailable if no register is selected in the Registers view.

 NOTE

Debugger
Registers view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 207

• File textbox - Specifies the name of the file to store the exported register information.

• Include register information checkbox - Select to export the location information for registers.

• Overwrite existing checkbox - Select this checkbox to overwrite an existing file.

• Cancel on error checkbox - Select to stop the export operation upon encountering any error.

3. Click Finish.

3.26.5 Importing registers
This section provides instructions on how to import register data.

To import register data from a file:

1. Open the Registers view.

2. Click the Import registers button in the Registers view toolbar.

The Import Registers dialog appears.

Figure 141: Import Registers dialog

• File pop-up menu - Specifies the name of the register data file to import register information.

• Import all registers - Selecting this option allows you to import all registers from the register data file.

• Import selected registers - Selecting this option allows you to select registers you want to import.

• Verify checkbox - When selected, a register write to the target is followed by a read and a comparison
against the written value. This ensures that the import operation on the register is successful.

Debugger
Registers view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
208 Freescale Semiconductor, Inc.

• Cancel on error checkbox - Select to stop the import operation upon encountering any error.

3. Click Finish.

3.26.6 Changing register data display format
You can also change the format in which the debugger displays the contents of the registers.

For example, you can specify that a register's contents be displayed in hexadecimal, rather than binary. The
debugger provides these data formats:

• Binary

• Natural

• Decimal

• Hexadecimal

To change register display format:

1. Open the Registers view.

2. Expand the hierarchical list to reveal the register for which you want to change the display format.

3. Select the register value that you want to view in a different format.

The value highlights.

4. Right-click and choose Format > dataformat from the shortcut menu that appears, where dataformat is the
data format in which you want to view the register value.

The register value changes format.

3.27 Register Details view
The Register Details view shows detailed information for a selected register.

The Register Details view shows the following information for a register:

• Bit Fields - Shows a graphical representation of the selected register's bit values. This graphical
representation shows how the register organizes bits. You can use this representation to select and change
the register's bit values. Hover the cursor over each part of the graphical representation to see additional
information.

• Actions - Lets you perform various operations on the selected register's bit-field values.

• Description - Shows explanatory information for the selected register. The information includes name,
current value, description, and bit-field explanations and values of the selected register.

The default display of the Registers view shows register details, such as Bit Fields,
Description, and Actions. To see more register contents, use the pop-up menu in the
Registers view to choose Layout > Registers View Only. To restore the register details,
use the pop-up menu to choose a different menu command.

 NOTE

To open the Register Details view, right-click on a register name in the Registers view and choose Show Details
As > Register Details pane from the shortcut menu. You can also click the Register Details button on the toolbar
to open the Register Details view.

Debugger
Register Details view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 209

Figure 142: Register details in Registers view

If the Registers view loses focus, all pending changes are discarded. For more
information, see the <Product> Targeting Manual.

 NOTE

Following sections will help you with more details on the Register Details view:

• Viewing register details offline on page 210

• Loading register dump file in offline Register Details view on page 212

• Customizing Register Details pane on page 213

3.27.1 Viewing register details offline
The Register Details view allows you to browse registers information from debugger database offline (without
a debug session) for a specific processor and core from all processors supported by that product.

Click the Register Details button in the CodeWarrior IDE toolbar to open the offline Register Details view.
The register details are presented in the same way as in the Registers view. Choose a supported processor
from the Processors pop-up menu and a core available on the chosen processor from the Core pop-up menu.
Click the register from the list to view details offline. All registers appear in a tabular format similar to the online
Registers view. The value shown for each register is 0 and all registers are read-only. You can view all possible
values for bit fields, but the write operation is disabled.

Debugger
Register Details view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
210 Freescale Semiconductor, Inc.

The Register Details view also provides an editor for "regs" files (files exported from registers view). Choose
File > Open File and select the previously exported registers dump (. reg) file, to open the Register Details
view for viewing and editing registry details offline. For details on how to create a .reg file, see Exporting
registers on page 207.

Figure 143: Viewing register details offline - Visual editor

Upon loading the registers file, you can view and edit the register details in the Visual Editor mode and click
Write to save the updated details to the .reg file. Alternatively, you can click the Text Editor tab to edit the
registers file.

Debugger
Register Details view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 211

Figure 144: Viewing register details offline - Text editor

3.27.2 Loading register dump file in offline Register Details view
You can load a memory mapped register dump file to see the register values in the offline Register Details
view.

Memory Mapped Registers(MMR) have static offset information in the debug database. This offset is relative to
a base address and is computed at runtime based on a specific formula.

The dump file can be raw binary or in plain hex text format (annotated hex text format not supported yet).

The offline Register Details view displays the offsets from debug database (in the Offset column) and the offset
from dump file (in the Load dump file column) from where registers values are loaded. The dump file can be
loaded either for an IP block, or a part of an IP block, or multiple IP blocks.

When a new processor is selected, the previously mapping configuration is applied to the new selected
processor.

You can add optional columns to the Register Details view by right-clicking on the table's
header and choosing the required option from the shortcut menu.

 NOTE

The following table provides details of the various options that help you load register dump file for mapping on
MMR registers. These options are available in the shortcut menu that appears on right-clicking in the Register
Details view.

Table 25: Register Details view - Shortcut menu

Menu Command Description

Load dump file Launches the Import Register Dump dialog asking for details of the dump
file to load.

Unload dump file Unloads the current dump file. The menu command is available only when
a dump file is loaded.

Table continues on the next page...

Debugger
Register Details view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
212 Freescale Semiconductor, Inc.

Table 25: Register Details view - Shortcut menu (continued)

Menu Command Description

Change destination offset Launches the Change Destination Offset dialog asking for a new memory
offset where the dump file will be loaded. The menu command is available
only when a dump file is loaded.

Endianness Shows current endianness for the dump file and allows toggling it. The menu
command is available only when a dump file is loaded.

Runtime address Launches the Runtime address dialog asking for runtime address details
from where the dump was made. The menu command is available only when
a dump file is loaded.

To load a dump file in the offline Register Details view, perform the following steps.

1. Right-click in the Register Detailsview, and choose Load Dump File from the shortcut menu. Alternatively,
you can drag and drop the dump file over the registers.

The Import Register Dump dialog appears.

2. Browse the dump file to be loaded.

3. Specify the Dump type, Destination offset, and dump Endianness in the respective fields. Destination
offset is the memory offset where the register dump file will be loaded.

4. Click Finish.

A column is added with the name same as that of the loaded dump file along with global offset for the file.
For example, dump.bin. To change the value of the destination offset, choose Change destination offset from
the shortcut menu.

In case you choose the drag and drop method to load the dump file, the Dump file and Destination offset are
automatically filled in. You can change the endianness for the dump file by choosing Endianness from the
shortcut menu. The value of the register will be loaded from dump file at displayed file offset and using the
displayed endianness. The registers that are mapped outside the dump file range display “NA” in the dump file
column.

3.27.3 Customizing Register Details pane
You can customize background color, fonts, and foreground color for the Register Details pane.

To customize Register Details pane:

1. Open the Registers view.

2. Choose Window > Preferences from the IDE menu bar.

The Preferences dialog appears.

3. Choose General > Appearance > Colors and Fonts from the left pane of the Preferences dialog.

The color and fonts preferences appear in the right pane of the Preferences dialog.

Debugger
Register Details view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 213

Figure 145: Preferences dialog

4. Expand Debug > Register Details tree controls.

5. Modify colors and fonts settings to suit your needs.

6. Click Apply.

7. Click OK.

3.28 Remote launch
The remote launch feature of CodeWarrior allows launch configurations to be executed remotely.

A Jython script is used to declare which launch configuration to use as a basis and provides points of interaction
with the executing launch configuration if desired.

The launch scripts can be submitted to CodeWarrior in these ways:

• The submissions web page

• Java and/or Python Clients

CodeWarrior requires a launch configuration to be set up on the host CodeWarrior instance in order to execute.
The remote launch script will make a copy of that launch configuration, execute it, and then delete the
configuration.

This section explains:

Debugger
Remote launch

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
214 Freescale Semiconductor, Inc.

• Remote Launch view on page 215

3.28.1 Remote Launch view
The Remote Launch view displays the remote launch configurations for the project.

The Enable Remote Launch option in the pop-up menu is a toggle button to enable or disable the remote launch
view. The Open Remote Launch Web Page opens the CodeWarrior Remote Launch web page where you can
submit remote launch scripts.

Click the Help/Examples link in the CodeWarrior Remote Launch web page for remote
launch examples.

 NOTE

To open the Remote Launch view:

1. Choose Window > Show View > Others from the IDE menu bar.

The Show View dialog appears.

Figure 146: Show View dialog

2. Expand the Debug tree control.

3. Select Remote Launch.

4. Click OK.

The Remote Launch view appears.

Debugger
Remote launch

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 215

Figure 147: Remote Launch view

The Jython Consoles view is a scripting view where you can work with Jython scripts. You can use this view to
test remote launches.

Figure 148: Jython Consoles view

3.29 Stack crawls
CodeWarrior allows you to limit the depth of stack crawls in the debugger.

You can limit the stack crawl depth in two ways.

• One Frame mode on page 216

• Global preference on page 217

3.29.1 One Frame mode
In the one frame mode, only the topmost frame is retrieved by the debugger engine and displayed in the
Debug view and in the debugger shell.

The following figure shows selecting the one-frame mode from the Debug view.

Debugger
Stack crawls

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
216 Freescale Semiconductor, Inc.

Figure 149: Selecting One Frame mode

The Show Only One Frame menu command is a two-state menu item which uses a checkmark to indicate the
state. If the Show Only One Frame menu command is chosen then a checkmark appears and only one frame
is displayed. The following figure shows the stack crawl in a one frame mode.

Figure 150: Stack crawls in One Frame mode

The decorator 1 in the stack frame element indicates that the stack crawl is limited to one.

3.29.2 Global preference
CodeWarrior exposes a global preference that allows you to specify the maximum number of frames that will
be displayed in the Debug view.

This limit is merely a display limit and does not restrict the depth of the stack crawl calculated by the debugger
engine. This mode allows you to manage the amount of content in the Debug view.

To specify the maximum frames in the global preference window:

1. Choose Window > Preferences from the IDE menu bar.

The Preferences dialog appears.

2. Expand C/C++ and select the Debug group.

General C/C++ debug settings appears in the left pane of the Preferences dialog.

Debugger
Stack crawls

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 217

Figure 151: Preferences dialog

3. Type the maximum frame depth in the Maximum stack crawl depth textbox.

The upper limit for maximum frame depth is 100.

 NOTE

4. Click Apply.

5. Click OK.

Changing the stack crawl preference does not have an immediate effect on stack crawls currently displayed in
the Debug view. The limit takes effect the next time the stack crawl is constructed, which happens either on the
next suspended event, or after toggling in or out of the one frame mode.

When the actual stack crawl depth of a core exceeds the number of frames specified in the global preference,
the stack crawl contains a final frame that is labeled ... (Figure 152. Exceeding stack crawl depth on page
219). This label indicates that frames are being omitted from display.

Debugger
Stack crawls

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
218 Freescale Semiconductor, Inc.

Figure 152: Exceeding stack crawl depth

3.30 Symbolics
Use the Symbolics page to specify whether the debugger keeps symbolics in memory.

Symbolics represent an application's debugging and symbolic information. Keeping symbolics in memory, known
as caching symbolics, helps when you debug a large application.

Suppose that the debugger loads symbolics for a large application, but does not download program code and
data to a hardware device. Also, suppose that the debugger uses custom makefiles with several build steps in
order to generate the large application. In this situation, caching symbolics helps speed up the debugging
process. The debugger uses the cached symbolics during subsequent debugging sessions. Otherwise, the
debugger spends significant time creating an in-memory representation of symbolics during subsequent
debugging sessions.

Caching symbolics provides the most benefit for large applications because doing so
speeds up application-launch times. If you debug a small application, caching symbolics
does not significantly improve launch times.

 NOTE

To open the Symbolics page:

1. Choose Run > Debug Configurations from the IDE menu bar.

The Debug Configurations dialog appears. The left side of this dialog has a list of debug configurations that
apply to the current application.

2. Expand CodeWarrior and select the debug configuration that you want to modify.

3. Click the Debugger tab to view the corresponding debugger settings page.

4. Click the Symbolics tab in the Debugger Options group on the page.

The Symbolics page appears.

Debugger
Symbolics

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 219

Figure 153: Symbolics page

3.31 System Browser view
The System Browser view is a framework for displaying embedded operating system (OS) information.

If you are working with a target running an embedded OS, you can use the System Browser view to gather
information about the OS during a debug session.

This section includes:

• Opening System Browser view on page 220

3.31.1 Opening System Browser view
The System Browser view allows you to debug specific threads, tasks, and processes running in the OS.

To open the System Browser view:

1. Start a debugging session.

2. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

Debugger
System Browser view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
220 Freescale Semiconductor, Inc.

Figure 154: Show View dialog

3. Expand the Debug group and select System Browser.

4. Click OK.

The System Browser view appears.

Figure 155: System Browser view

Debugger
System Browser view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 221

The System Browser view shows information only when there is an OS running on the
target being debugged.

 NOTE

3.32 Target connection lost
You can configure the debugger's behavior when connection to the target is lost, such as low power modes,
target power switched off, target changed communication speed, or disconnected run control.

This feature helps you configure the debugger to close the connection or automatically reconnect with a specified
time-out value.

To configure target connection lost settings for debugger:

1. Open Remote System view.

2. Right-click a remote system name and choose Properties from the shortcut menu.

The Properties for <Remote System> dialog appears.

3. In the right pane, click Advanced tab.

The advanced connection settings appear under the Advanced pane.

Figure 156: Advanced settings

4. Specify the target connection lost settings to suit your needs.

• Try to reconnect - Whenever target connection is lost, the debugger does not close the debug session
but waits for the connection to be restored. A time-out may be specified to limit the waiting time. When
the time-out expires, the debugger closes the debug session.

• Terminate the debug session - Select this option to terminate the debug session when target connection
is lost.

• Ask me - Select this option to prompt the user for an action when target connection is lost.

Debugger
Target connection lost

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
222 Freescale Semiconductor, Inc.

5. Click OK.

You have just configured target connection lost settings for debugger.

3.33 Target initialization files
A target initialization file contains commands that initialize registers, memory locations, and other components
on a target board.

The most common use case is to have the CodeWarrior debugger execute a target initialization file immediately
before the debugger downloads a bareboard binary to a target board. The commands in a target initialization
file put a board in the state required to debug a bareboard program.

The target board can be initialized either by the debugger (by using an initialization file),
or by an external boot loader or OS (U-Boot, Linux). In both cases, the extra use of an
initialization file is necessary for debugger-specific settings (for example, silicon
workarounds needed for the debug features).

 NOTE

This section includes:

• Selecting target initialization file on page 223

3.33.1 Selecting target initialization file
A target initialization file is a command file that the CodeWarrior debugger executes each time the launch
configuration to which the initialization file is assigned is debugged. You can use the target initialization file for
all launch configuration types (Attach, Connect and Download).

The target initialization file is executed after the connection to the target is established, but before the download
operation takes place.

The debugger executes the commands in the target initialization file using the target connection protocol, such
as a JTAG run control device.

You do not need to use an initialization file if you debug using the CodeWarrior TRK
debug protocol.

 NOTE

To select a target initialization file, follow these steps:

1. Go to the Remote Systems view on page 68.

2. Right-click a remote system name and choose Properties from the shortcut menu.

The Properties for <Remote System> dialog appears.

3. Click the Initialization tab.

Debugger
Target initialization files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 223

Figure 157: Properties for <Remote System> - Initialization settings

4. Click the ellipsis button in the Initialize target script column corresponding to the core for which you want to
select the target initialization file.

Click in the specified cell of the Initialize target script column for the ellipsis button to
appear.

 TIP

The Target Initialization File dialog appears.

Figure 158: Target Initialization File dialog

a. Select the File checkbox to enable the textbox.

b. Enter the target initialization file path in the File textbox. You can use the Workspace, File System, or
Variables buttons to select the desired file.

c. Click OK.

Debugger
Target initialization files

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
224 Freescale Semiconductor, Inc.

The target initialization file path appears in the Initialize target column.

5. Click OK.

3.34 Target Tasks view
You can use the Target Tasks view to run a hardware-diagnostic or memory operation.

To open the Target Tasks view:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group and select Target Tasks.

3. Click OK.

The Target Tasks View appears in the Debug perspective.

Figure 159: Target Task view

This section includes:

• Exporting target tasks on page 225

• Importing target tasks on page 226

3.34.1 Exporting target tasks
You can export a target task to an external file. The exported task is stored in XML format.

To export a target task:

1. Select the target task in the Target Task view.

2. Click the Export button from the Target Task view toolbar. Alternatively, right-click the target task and
choose Export from the shortcut menu.

The Save As dialog appears.

3. Type a file name in the File name pop-up menu.

4. Click Save.

Debugger
Target Tasks view

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 225

3.34.2 Importing target tasks
You can import a target task from an external file.

To import a target task:

1. Click the Import button in the Target Tasks view toolbar. Alternatively, right-click in the Target Tasks view
and chosse Import from the shortcut menu.

The Open dialog appears.

2. Select a target task file.

3. Click Open.

3.35 Variables
The Variables view shows all global and static variables for each process that you debug.

Use the view to observe changes in variable values as the program executes.

Figure 160: Variables view

This section includes:

• Opening Variables view on page 227

Debugger
Variables

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
226 Freescale Semiconductor, Inc.

• Adding variable location to view on page 227

• Manipulating variable values on page 228

• Adding global variables on page 229

• Cast to Type on page 230

3.35.1 Opening Variables view
Use the Variables view to display information about the variables in the currently-selected stack frame.

To open the Variables view:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group and choose Variables.

3. Click OK.

The Variables view appears.

3.35.2 Adding variable location to view
You can add the variable location column in the Variables view. A variable location can be a memory address
or a register.

This can change from one execution point to another in the target application. The return value will be a
hexadecimal ("0x...") value if the variable is in memory; if it is in a register, $<register-name> will be returned.

To add the variable location column in the Variables view:

1. Open the pop-up menu in the Variables view .

2. Choose Layout > Select Columns.

The Select Columns dialog appears.

Debugger
Variables

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 227

Figure 161: Select Columns dialog

In the Variables view, Freescale CDT (C/C++ Development toolkit) does not support the
Actual Type column. This column is relevant for C++ only when RTTI (Runtime type
information) is used. Choose Window > Preferences... > C/C++ > Debug > CodeWarrior
Debugger, and select the Attempt to show the dynamic runtime type of objects checkbox
to get declared types displaying the Actual types.

 NOTE

3. Select the Location checkbox.

4. Click OK.

You can use the Select Columns dialog to hide/show different columns in the Variables
view.

 TIP

The variable location column appears in the Variables view.

3.35.3 Manipulating variable values
You can change the way the Variables view displays a variable value.

To manipulate the format of a variable value, choose Format from the shortcut menu and choose any of the
following formats:

• Binary

• Natural

Debugger
Variables

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
228 Freescale Semiconductor, Inc.

• Decimal

• Hexadecimal

• Fractional

This topic includes:

• Fractional variable formats on page 229

3.35.3.1 Fractional variable formats
In addition to the Natural, Binary, Decimal, and Hexadecimal variable formats, CodeWarrior also supports an
additional class of custom fractional formats called Qn.

Qn is a floating point representation of a fractional or fixed point number where n signifies the number of fractional
bits (the number of bits to the right of the binary point).

CodeWarrior supports fractional formats ranging from Q0 to Q31 and for StarCore devices it ranges from Q0 to
Q39.

To change the variable display format to fractional format:

1. Open the Variables view.

2. Right-click a variable in the Variables view.

A shortcut menu appears.

3. Choose Format > Fractional > Qn (where n = 0 to 31 and for StarCore devices n = 0 to 39).

The variable value will be displayed in the specified Qn format.

The Qn formats are available or dimmed depending on the size of the variable.

- Q0 - Q7 available for 1 byte variables

- Q0 - Q15 available for 2 byte variables

- Q0 - Q31 available for 4 byte variables

- Q0 - Q39 available for 5 byte variables. For variable size more than 32 bits, Q32-Q39
is available.

 NOTE

3.35.4 Adding global variables
You can add global variables to the Variables view.

To add global variable:

1. Choose Project > Debug from the IDE menu bar.

A debugging session starts.

2.
In the Variables view toolbar, click the Add Global Variables button .

The Add Globals dialog appears.

You can also add a global variable by choosing the Add Global Variable command from
the shortcut menu.

 TIP

Debugger
Variables

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 229

Figure 162: Add Globals dialog

3. Specify a search criteria in the available textbox to filter the list of variables.

4. Select the global variable to be added.

Global variables of other executables (other than the main one) are also listed in the
Add Globals dialog.

 NOTE

5. Click OK.

3.35.5 Cast to Type
This feature allows the user to cast the type of a variable to a particular type.

The Cast to Type dialog helps you filter the type list based on a search pattern specified in the search textbox.

To cast a variable to a selected type:

1. Open the Variables view.

2. Right-click a variable in the Variables view and choose Cast to Type from the shortcut menu.

The Cast to Type dialog appears.

Debugger
Variables

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
230 Freescale Semiconductor, Inc.

Figure 163: Cast to Type dialog

3. Specify a search pattern in the Search textbox.

The matching types appear in the Matching Items listbox.

4. Select a type from the Matching Items listbox.

5. Click OK.

3.36 Watchpoints
You use watchpoints (sometimes referred to as access breakpoints or memory breakpoints) to halt program
execution when your program reads or writes to a specific memory location.

You can then examine the call chain, check register and variable values, and step through your code. You can
also change variable values and alter the flow of normal program execution.

You can set a watchpoint from the:

• Breakpoints view

• Memory view

• Registers view

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 231

• Variables view

Not all targets support setting a watchpoint on a memory range. For example, if a target
has only one or two debug watch registers, you cannot set a watchpoint on 50 bytes.

 NOTE

The debugger handles both watchpoints and breakpoints in a similar way. You use the Breakpoints view to
manage both types. For example, you use the Breakpoints view to add, remove, enable, and disable both
watchpoints and breakpoints.

The debugger attempts to set the watchpoint if a session is in progress based on the active debugging context
(the active context is the selected project in the Debug view). If the debugger sets the watchpoint when no
debugging session is in progress, or when re-starting a debugging session, the debugger attempts to set the
watchpoint at startup as it does for breakpoints.

The Problems view displays error messages when the debugger fails to set a watchpoint. For example, if you
set watchpoints on overlapping memory ranges, or if a watchpoint falls out of execution scope, an error message
appears in the Problems view. You can use this view to see additional information about the error.

This section includes the following topics:

• Setting watchpoint on page 232

• Creating watchpoint on page 233

• Viewing watchpoint properties on page 234

• Modifying watchpoint properties on page 235

• Disabling watchpoint on page 236

• Enabling watchpoint on page 236

• Remove watchpoint on page 237

• Remove all watchpoints on page 237

3.36.1 Setting watchpoint
Use the Add Watchpoint dialog (Creating watchpoint on page 233) to set a watchpoint. When the value at the
memory address on which you set a watchpoint changes, your program's execution halts and the debugger
takes control.

To set a watchpoint:

1. Open the Debug perspective.

2. Open any of the following views:

• Breakpoints

• Memory

• Register

• Variables

3. Right-click in the selected view.

The process of setting a watchpoint varies depending upon the type of view:

• Registers - select register(s) on which you want to set the watchpoint and choose Watch from the
shortcut menu that appears.

• Variables - select global variable(s) and choose Watch from the shortcut menu.

• Breakpoints - choose Add Watchpoint (C/C++) from the shortcut menu.

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
232 Freescale Semiconductor, Inc.

The Add Watchpoint dialog appears.

• Memory - select the addressable unit or range of units on which you want to set the watchpoint, right-
click, and choose Add Watchpoint (C/C++) from the shortcut menu that appears.

The Add Watchpoint dialog appears.

The Breakpoints view shows information about the newly set watchpoint and the number of addressable units
that the watchpoint monitors.

The Problems view shows error messages if the debugger fails to set a watchpoint.

3.36.2 Creating watchpoint
Use the Add Watchpoint dialog to create a watchpoint.

The debugger sets the watchpoint according to the settings that you specify in this dialog.

The following table describes each option.

Table 26: Add Watchpoint dialog options

Option Description

Expression to Watch Enter an expression that evaluates to an address on
the target device. The debugger displays an error
message when the specified expression evaluates to
an invalid address. You can enter these types of
expressions:

• An r-value, such as &variable

• A register-based expression. Use the $ character to
denote register names. For example, enter $SP-12
to have the debugger set a watchpoint on the stack-
pointer address minus 12 bytes.

The Add Watchpoints dialog does not support entering
expressions that evaluate to registers.

Memory Space Select it if you want to specify the memory space in
which the watchpoint is set. The pop-up menu to the
right of the checkbox lists each memory space
available for the active debug context. If no debug
session is active, the pop-up menu is empty and lets
you enter text. This feature lets you set a memory-
space-qualified watchpoint before starting a debug
session.

Range If selected - enter the number of addresable units that
the watchpoints monitors. If deselected - set the
watchpoint on the entire range of memory occupied by
the variable.

Write If selected - the watchpoint monitors write activity on
the specified memory space and address range. If
deselected - the watchpoint does not monitor write
activity.

Table continues on the next page...

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 233

Table 26: Add Watchpoint dialog options (continued)

Option Description

Read If selected - the watchpoint monitors read activity on
the specified memory space and address range. If
deselected - the watchpoint does not monitor read
activity.

Enabled Select the Enabled option to enable or disable a
breakpoint.

Condition Specifies an expression that is evaluated when the
watchpoint is hit.

Ignore count Set the ignore count of watchpoint number to an
integer n. The next n times the watchpoint is reached,
program's execution does not stop; other than to
decrement the ignore count, debugger takes no action.
To make the watchpoint stop the next time it is
reached, specify a count of 0 (zero).

3.36.3 Viewing watchpoint properties
After you set a watchpoint, you can view its properties.

To view properties for a watchpoint:

1. Right-click the watchpoint in the Breakpoints view and choose Properties from the shortcut menu.

The Properties for dialog appears.

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
234 Freescale Semiconductor, Inc.

Figure 164: Properties for dialog

3.36.4 Modifying watchpoint properties
After you set a watchpoint, you can modify its properties.

To modify properties for a watchpoint:

1. Right-click the watchpoint in the Breakpointsview and choose Breakpoint Properties from the shortcut
menu.

The Properties for C/C++ Watchpoint dialog appears.

2. Select Common in the left pane of the Properties for C/C++ Watchpoint dialog.

The right pane displays the common properties for the watchpoint.

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 235

Figure 165: Common watchpoint properties

3. Edit the values in the fields.

4. Click OK.

3.36.5 Disabling watchpoint
Disable a watchpoint to prevent it from affecting program execution.

The disabled watchpoint remains at the memory location at which you set it, so that you can enable it later.

To disable a watchpoint, select its name in the Breakpoints view, right-click and choose Disable from the shortcut
menu.

3.36.6 Enabling watchpoint
Enable a watchpoint to have it halt program execution when its associated memory location changes value.

Enabling a watchpoint that you previously disabled is easier than clearing it and re-creating it from scratch.

To enable a watchpoint, select its name in the Breakpoints view, right-click and choose Enable from the shortcut
menu.

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
236 Freescale Semiconductor, Inc.

3.36.7 Remove watchpoint
This section explains how to remove a watchpoint.

To remove a watchpoint in the Breakpoints view, select its name from the list, right-click and choose Remove
from the shortcut menu that appears.

3.36.8 Remove all watchpoints
This section explains how to remove all the watchpoints.

To remove all watchpoints, right-click in the Breakpoints view and choose Remove All from the shortcut menu
that appears. The Breakpoints view reflects your changes.

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 237

Debugger
Watchpoints

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
238 Freescale Semiconductor, Inc.

Chapter 4
Debugger Shell
CodeWarrior supports a command-line interface to some of its features including the debugger. You can use
the command-line interface together with TCL scripting engine. You can even issue a command that saves the
command-line activity to a log file.

The Debugger Shell view is used to issue command lines to the IDE. For example, you enter the command
debug in this window to start a debugging session. The window lists the standard output and standard error
streams of command-line activity.

Figure 166: Debugger Shell view

To open the Debugger Shell view, perform these steps.

1. Switch the IDE to the Debug perspective and start a debugging session.

2. Choose Window > Show View > Debugger Shell.

The Debugger Shell view appears (Figure 166. Debugger Shell view on page 239).

Alternatively, choose Window > Show View > Other. Expand the Debug tree control in
the Show View dialog, choose Debugger Shell, and click OK.

 NOTE

Debugger Shell

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 239

Figure 167: Show View - Debugger Shell

To issue a command-line command, type the desired command at the command prompt (%>) in the Debugger
Shell view, then press the Enter key. The command-line debugger executes the specified command.

If you work with hardware as part of your project, you can use the command-line debugger to issue commands
to the debugger while the hardware is running.

To list the commands the command-line debugger supports, type help at the command
prompt and press Enter. The help command lists each supported command along with
a brief description of each command.

 NOTE

To view page-wise listing of the debugger shell commands, right-click in the Debugger
Shell view and choose Paging from the shortcut menu. Alternatively, click the Enable
Paging icon.

 TIP

This chapter includes:

• Executing previously issued commands on page 241

• Using code hints on page 241

• Using auto-completion on page 241

• Command-line debugger shell on page 242

• Debugger Shell commands on page 242

Debugger Shell

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
240 Freescale Semiconductor, Inc.

4.1 Executing previously issued commands
The debugger shell maintains a history of previously executed commands. Instead of re-typing these
commands, you can recall them from the history. To recall a command from the history, press the Up arrow
key.

Each press of the Up arrow key shows the preceding issued command. Each press of the Down arrow key shows
the succeeding issued command.

4.2 Using code hints
You can have the debugger shell complete the name of a command as you enter it on the command-line.

As you continue typing characters, the debugger shell refines the list of possible commands. For example, you
can use this technique as a shortcut to entering help to see a full list of commands.

To use code hints in the debugger shell:

1. Open the Debugger Shell view.

2. Type Ctrl + Space .

Code hints appear. As you enter additional characters, the debugger shell refines the commands that appear
in the code hints. Use the arrow keys or the mouse to scroll through the command names that appear in the
list. The debugger shell shows additional information for the highlighted command name.

3. Highlight the name of the command that you want to have the debugger shell complete for you.

4. Press the Enter key, or double-click the name of the command.

The remaining characters of the command name appear in the debugger shell.

Press the Esc key to exit code hints and return to the debugger shell.

 NOTE

4.3 Using auto-completion
This section explains the auto-completion feature of CodeWarrior.

The Debugger Shell supports auto-completion of these items:

• Debugger Shell commands

• Arguments (such as file path)

• TCL commands (both built-in and those created with proc)

To use auto-completion:

1. Open the Debugger Shell view.

2. Type the initial characters of an item that the debugger shell can auto-complete.

3. Press the Tab key.

The remaining characters of the item appear in the debugger shell.

Debugger Shell
Executing previously issued commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 241

If you enter the abbreviated form of an IDE command name, press the spacebar instead
of the Tab key to have the IDE auto-complete the command name

 TIP

4.4 Command-line debugger shell
The command-line debugger engine executes the commands that you enter in the debugger shell and then
displays the results.

Use the debugger shell to execute commands in a command-line environment. For example, the launch, debug,
and run commands let you list or run launch configurations from the command line.

4.5 Debugger Shell commands
This topic lists and defines every command-line debugger command.

Following list of commands are used:

• about on page 244

• alias on page 244

• bp on page 245

• cd on page 246

• change on page 246

• cls on page 249

• cmdwin::ca on page 249

• cmdwin::caln on page 249

• config on page 250

• copy on page 254

• debug on page 255

• dir on page 255

• disassemble on page 256

• display on page 257

• evaluate on page 260

• finish on page 261

• fl::blankcheck on page 262

• fl::checksum on page 262

• fl::device on page 263

• fl::diagnose on page 264

• fl::disconnect on page 265

• fl::dump on page 265

• fl::erase on page 266

Debugger Shell
Command-line debugger shell

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
242 Freescale Semiconductor, Inc.

• fl::image on page 266

• fl::protect on page 267

• fl::secure on page 267

• fl::target on page 268

• fl::verify on page 269

• fl::write on page 269

• funcs on page 269

• getpid on page 269

• go on page 269

• help on page 270

• history on page 271

• jtagclock on page 271

• kill on page 271

• launch on page 272

• linux::displaylinuxlist on page 272

• linux::loadsymbolics on page 273

• linux::refreshmodules on page 273

• linux::selectmodule on page 273

• linux::unloadsymbolics on page 273

• loadsym on page 273

• log on page 274

• mc::config on page 274

• mc::go on page 275

• mc::group on page 275

• mc::kill on page 276

• mc::reset on page 276

• mc::restart on page 276

• mc::stop on page 277

• mc::type on page 277

• mem on page 278

• next on page 280

• nexti on page 280

• oneframe on page 280

• pwd on page 281

• quitIDE on page 281

• radix on page 281

• redirect on page 282

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 243

• refresh on page 283

• reg on page 283

• reset on page 286

• restart on page 286

• restore on page 287

• run on page 288

• save on page 288

• setpc on page 289

• setpicloadaddr on page 290

• stack on page 290

• status on page 291

• step on page 291

• stepi on page 292

• stop on page 292

• switchtarget on page 293

• system on page 294

• var on page 294

• wait on page 295

• watchpoint on page 296

4.5.1 about
Lists the version information.

Syntax

about

4.5.2 alias
Creates an alias for a debug command, removes such an alias, or lists all current aliases.

Syntax

alias [<alias> [<command>]]

Parameters

alias

Lists current aliases.

Examples

The following table lists and defines examples of the alias command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
244 Freescale Semiconductor, Inc.

Table 27: alias Command-line debugger commands - Examples

Command Description

alias Lists current aliases.

alias ls dir Issues the dir command when ls is typed.

alias ls Removes the alias ls.

4.5.3 bp
Sets a breakpoint, removes a breakpoint, or lists the current breakpoints.

Syntax

bp

bp [-{hw|sw|auto}] {<func>|[<ms>:]<addr>|<file> <line> [<column>]}

bp [-{hw|sw|auto}] {<file> <line> [<function>] [column]}

bp all|#<id>|#<id.instance>|<func>|<addr> off|enable|disable|{ignore <count>}

bp #<id> cond <c-expr>

Examples

The following table lists and defines examples of the bp command.

Table 28: bp Command-line debugger command - Examples

Command Description

bp Lists all breakpoints.

bp -hw fn Sets hardware breakpoint at function fn().

bp -auto file.cpp 101 1 Sets an auto breakpoint on file file.cpp at line 101,
column 1.

bp -auto file.cpp 101 "int foo<int>()" 1 Sets an auto breakpoint on file file.cpp at line 101 on
function template instance " int foo<int>() ",
column 1.

bp fn off Removes the breakpoint at function fn().

bp 10343 Sets a breakpoint at memory address 10343.

bp #4 off Removes the breakpoint number 4.

bp #4 disable Disables the breakpoint number 4.

bp #4 ignore 3 Sets ignore count to 3 for breakpoint number 4.

bp #4 cond x == 3 Sets the condition for breakpoint number 4 to fire only
if x == 3.

bp #4.1 off Removes the breakpoint instance number 4.1.

bp #4.1 ignore 3 Sets ignore count to 3 for breakpoint instance number
4.1.

bp #4.1 cond x == 3 Sets the condition for breakpoint instance number 4.1
to fire only if x == 3.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 245

4.5.4 cd
Changes to a different directory or lists the current directory.

Pressing the Tab key completes the directory name automatically.

Syntax

cd [<path>]

Parameter

path

Directory pathname; accepts asterisks and wildcards.

Examples

The following table lists and defines examples of the cd command.

Table 29: cd Command-line debugger command - Examples

Command Description

cd Displays current directory.

cd c: Changes to the C: drive root directory.

cd d:/mw/0622/ test Changes to the specified D: drive directory

cd c:p*s Changes to any C: drive directory whose name starts with p and ends with
s.

4.5.5 change
Changes the contents of register, memory location, block of registers, or memory locations.

Syntax

change <addr-spec> [<range>] [-s|-ns] [%<conv>] <value>

change <addr-spec>{..<addr>|#<n>} [<range>] [-s|-ns] [%<conv>] <value>

change <reg-spec> [<n>] [-s|-ns] [%<conv>] <value>

change <reg-spec>{..<reg>|#<n>} [-s|-ns] [%<conv>] <value>

change <var-spec> [-s|-ns] [%<conv>] <value>

change v <var> [-s|-ns] [%<conv>] <value>

Parameter

The following table lists and defines parameters of the change command.

Table 30: change Command-line debugger command - Parameters

Command Description

<ms> On architectures supporting multiple memory spaces, specifies the memory space in
which <addr> is to be found. See help for the option -ms of display or mem for more
information on memory spaces. If unspecified, the setting "config MemIdentifier" is used.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
246 Freescale Semiconductor, Inc.

Table 30: change Command-line debugger command - Parameters (continued)

Command Description

<addr> Target address in hex format.

<count> Number of memory cells.

x<cell-size> Memory is displayed in units called cells, where each cell consists of <cell-size> bytes.
If unspecified, the setting "config MemWidth" is used.

h<access-size> Memory is accessed with a hardware access size of <access-size> bytes. If unspecified,
the setting "config MemAccess" is used.

{8,16,32,64}bit Sets both <cell-size> and <access-size>.

<a1>{..<a2>|#<n>} Specifies a range of memory either by two endpoints, <a1> and <a2>, or by a startpoint
and a byte count, <a1> and <n>. This alternate syntax is provided mainly for backwards
compatibility. The new form of <addr> and <count> should be easier to use and thus
preferred.

{r|nr} If multiple registers are specified, then the prefix r: causes a recursive, depth-first
traversal of the register hierarchy. The prefix nr: prevents recursion. If unspecified,
recursion is the default. Note that different levels of the register hierarchy are
represented in the manner of a path with forward-slashes '/' used to delimit the register
groups. A name that contains a slash itself can be represented with an escape backward-
slash '\' followed by the forward-slash. Further note that a backslash in a doubly-quoted
Tcl string is itself an escape character -- in this case two backslashes are required.
Alternatively, you may use curly braces '{' and '}' to denote your string in which case just
one backslash is necessary.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to access.

<n> Number of registers.

all Specifies all registers.

v: If this option appears with no <var> following it, then all variables pertinent to the current
scope are printed.

<var> Symbolic name of the variable to print. Can be a C expression as well.

v This alternate syntax is provided mainly for backward compatibility.

-s|-ns Specifies whether each value is to be swapped. For memory, specifies whether each
cell is to be swapped. With a setting of -ns, target memory is written in order from lowest
to highest byte address. Otherwise, each cell is endian swapped. If unspecified, the
setting "config MemSwap" is used.

%<conv> Specifies the type of the data. Possible values for <conv> are given below. The default
conversion is set by the radix command for memory and registers and by the config var
command for variables.

%x Hexadecimal.

%d Signed decimal.

%u Unsigned decimal.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 247

Table 30: change Command-line debugger command - Parameters (continued)

Command Description

%f Floating point.

%[Q<n>]F Fixed or Fractional. The range of a fixed point value depends on the (fixed) location of
the decimal point. The default location is set by the config command option
"MemFixedIntBits".

%s ASCII.

Examples

The examples assume the following settings:

• radix x

• config MemIdentifier 0

• config MemWidth 32

• config MemAccess 32

• config MemSwap off

The following table lists and defines Memory examples of the change command.

Table 31: change Command-line debugger command - Memory examples

Command Description

change 10000 10 Change memory range 0x10000-3 to 0x10 (because radix is hex).

change 1:10000 20 Change memory range 0x10000-3, memory space 1, to 0x20.

change 10000 16 20 Change each of 16 cells in the memory range 0x10000-3f to 0x20.

change 10000 16x1h8 31 Change each of 16, 1-byte cells to 0x31, using a hardware access size of
8-bytes per write.

change 10000 -s %d 200 Change memory range 0x10000-3 to c8000000.

The following table lists and defines Register examples of the change command.

Table 32: change Command-line debugger command - Register examples

Command Description

change R1 123 Change register R1 to 0x123.

change R1..R5 5432 Change registers R1 through R5 to 0x5432.

change "General Purpose
Registers/R1" 100

Change register R1 in the General Purpose Register group to
0x100.

The following table lists and defines Variable examples of the change command.

Table 33: change Command-line debugger command - Variable examples

Command Description

change myVar 10 Change the value of variable myVar to 16 (0x10)

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
248 Freescale Semiconductor, Inc.

4.5.6 cls
Clears the command line debugger window.

Syntax

cls

4.5.7 cmdwin::ca
Manages global cache operations.

That is, they affect the operation of the entire cache. For multi-core processors, these commands operate on a
specific cache if an optional ID number is provided. If the ID number is absent, the command operates on the
cache that was assigned as the default by the last cmdwin::ca::default command. The following table
summarizes cache commands.

Table 34: Global cache commands

Command Description

cmdwin::ca::default Sets specified cache as default

cmdwin::ca::enable Enables/disables cache

cmdwin::ca::flush Flushes cache

cmdwin::ca::inval Invalidates cache

cmdwin::ca::lock Locks/Unlocks cache

cmdwin::ca::show Shows the architecture of the cache

Syntax

command [<cache ID>] [on | off]

Parameters

<cache ID>

Selects the cache that the command affects.

[on | off]

Changes a cache state.

4.5.8 cmdwin::caln
Manages cache line operations.

They affect memory elements within a designated cache. The following table summarizes these commands.

Table 35: Cache line commands

Command Description

cmdwin::caln::get Displays cache line

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 249

Table 35: Cache line commands (continued)

Command Description

cmdwin::caln::flush Flushes cache line

cmdwin::caln::inval Invalidates cache line

cmdwin::caln::lock Locks/unlocks cache line

cmdwin::caln::set Writes specified data to cache line

Syntax

command [<cache ID>] <line> [<count>]

Parameters

<cache ID>

Optional. Specifies the cache that the command affects, otherwise it affects the default cache.

<line>

Specifies the cache line to affect.

<count>

Optional. Specifies the number of cache lines the command affect.

Examples

The following table lists and defines examples of the cmdwin::caln commands.

Table 36: copy Command-line debugger command - Examples

Command Description

cmdwin::caln:get 2 Displays the second cache line.

cmdwin::caln:flush 2 Flushes line 2 of the default cache.

cmdwin::caln:set 2 = 0 1 1 2 3 5 8
13

Sets the contents of cache line two, where the first word has a
value of 0, the second word has a value of 1, the third word has a
value of 1, the fourth word has a value of 2, and so on.

4.5.9 config
Configures the command window.

Syntax

config <option> [<sub-option>] <value> [-np]

config

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
250 Freescale Semiconductor, Inc.

Options

<none>

With no options, config displays the current configuration settings.

-np

Do not print anything to the display, only return the data.

The table below lists and defines Display options of the config command.

Table 37: config Command-line debugger command - Display options

Command Description

echoCmd on|off When set on, commands executed from scripts are printed. If this option
is prefixed with @ the command itself will not be printed.

h/exPrefix <prefix> Sets the string to be used as the prefix for hex values.

binPrefix <prefix> 3 Sets the string to be used as the prefix for binary values.

showCommas off | on When set on, decimal data is displayed with commas inserted every
three digits. Hex and binary data is displayed with a colon inserted every
four digits.

hexPadding on | off When set on, hex values are padded with leading zeros.

decPadding on | off When set on, decimal values are padded with leading zeros.

mem/Identifier <mem-space-id> Sets the string to be used for the main memory space prefix.

memCache off | on With memCache off, the Command Window will always read target
memory. This setting is useful if your target memory may change while
the target is paused. With memCache on, the Command Window will
cache target memory reads while your target is paused. This setting will
improve the performance of the Command Window.

memReadMax <max-bytes> Limits the amount of memory to be read in a single command. This
prevents the Command Window from locking up on abnormally large
memory read requests.

memSwap off | on When set, memory values are swapped on cell boundaries by default.

memWidth <bits> | factory Specifies the default width for display of memory data. Initially, the
default width may vary depending on the active debugger; once the user
has changed the value, the new value is used for all active debuggers.
The initial behavior can be restored with the keyword "factory".

memAccess <bits> Specifies the default hardware access size for target memory. A setting
of 0 allows the hardware access size to match the display width of the
command.

memFixedIntBits <bits> For fixed point formatting, sets the range to the specified number of bits.
For example, a value of 8 will set the range to [-2^8,2^8), or [-256,256).

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 251

Table 37: config Command-line debugger command - Display options (continued)

Command Description

variable <sub-option> [on | off] Enables or disables certain fields in the output of the "evaluate"
command. If neither on nor off are specified, then the field is enabled.
Possible values for <sub-option> are:

• echo - the variable name

• location - the address of the variable

• size - the size of the variable is bytes

• type - the variable type

variable format <format> Controls the output format of the "evaluate" command. Possible values
for <format> are:

• - | Default

• d | Signed

• u | Unsigned

• x | h | Hex

• c | Char

• s | CString

• p | PascalString

• f | Float

• e | Enum

• i | Fixed Fract

• b | Binary Boolean SignedFixed

• o | w | Unicode

The following table lists and defines Run Control options of the config command.

Table 38: config Command-line debugger command - Run control options

Command Description

autoThreadSwitch off | interactive-
only | on

Allows the user to control whether the Command Window will
perform automatic thread-switching. Possible settings are
always on, always off, and on when running interactively, that
is not from a script. If enabled, automatic thread switching is
done in the following cases:

• If no thread is currently selected or if the current thread exits,
then the first one detected will become the current.

• If the current thread is running and another thread stops, then
the current thread will switch to the stopped thread.

debugTimeout <seconds> The maximum amount of time to wait for a debug command to
finish. You can also hit ESC to stop waiting.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
252 Freescale Semiconductor, Inc.

Table 38: config Command-line debugger command - Run control options (continued)

Command Description

runControlSync off | script-only | on Sets how to synchronize run control commands. If set to "on",
then all run control commands will wait until a thread stopped
event. If set to "off", then all run control commands will return
immediately. If set to "script-only", then all run control
commands will wait while running a script but will return
immediately while running interactively.

setPCNextValidLine on | off Controls the behavior of the setpc command in the case that
the specified file line number has no source code. If set to "on",
the PC is set to the next line number containing source. If set
to "off", an error is shown.

Examples

config

Display the current config status.

The following table lists and defines Display examples of the config command.

Table 39: Conf Command-Line Debugger Command - Display Examples

Command Description

config echoCmd on If "reg D1" is a command executed from a script, the output will have on top
the command itself:

cmdwin::reg D1

+ General Purpose Registers

D1=$ffffffffff

config hexPrefix 0x Show hexadecimal numbers with "0x" prefix.

config ShowCommas o n Show hexadecimal and binary numbers with a colon, as in $0000:0000, and
show decimal numbers with a comma, as in 1,000,000.00.

config HexPadding off Show hex and binary numbers with leading zeros, as in 0x0000. config
MemIdentifier 0. Use "0" as the default memory space for memory commands.

config MemCache off Turn off caching of target memory. AFFECTS COMMAND WINDOW ONLY.

config MemReadMax 2048 Limit memory commands to 2048 (decimal) bytes.

config MemSwap on Swap memory on cell boundaries before accessing the target.

config MemWidth 16 Displays and writes 16bit values.

config MemWidth factory Reset the MemWidth to factory settings.

config MemAccess 8 Uses an 8-bit access size for reading and writing target memory.

config MemFixedIntBits 8 Sets the fixed point range to [-2^8,2^8), or [-256,256).

config var echo on Include the variable name in the output of the "evaluate" command.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 253

Table 39: Conf Command-Line Debugger Command - Display Examples (continued)

Command Description

config var format d Set the default display format of the "evaluate" command to decimal. The
format may be one of the following strings or the corresponding character
abbreviation: Default('-'), Signed('d'), Unsigned('u'), Hex('h'|'x'), Char('c'),
CString('s'), PascalString('p'), Float('f'), Enum('e'), Fixed('i'), Fract(no abbrev),
Binary('b'), Boolean(no abbrev), SignedFixed(no abbrev), Unicode('o'|'w').

config var type off Exclude the variable type name in the output of the "evaluate" command.

config var location on Include the memory address in the output of the "evaluate" command.

config var size on Include the variable size in the output of the "evaluate" command.

The following table lists and defines Run Control examples of the config command.

Table 40: config Command-line debugger command - Run control examples

Command Description

config AutoThreadSwitch
interactive-only

If commands are being entered interactively, that is not from a
script, automatic thread switching will be performed. If no thread is
currently selected or if the current thread exits, then the first one
detected will become the current. If the current thread is running
and another thread stops, then the current thread will switch to the
stopped thread.

config DebugTimeout 10 Wait up to 10 seconds for debug command to finish.

config RunControlSync on Run control commands will wait for thread-stopped event.

config SetPCNextValidLine on If setpc is called for a file line number with no source code, the line
number is automatically increased to the next line with source
code.

4.5.10 copy
Copies contents of a memory address or address block to another memory location.

Syntax

copy [<ms>:]<addr>[..<addr>|#<bytes>] [<ms>:]<addr>

Parameter

<addr>

One of these memory-address specifications:

• A single address

• First address of the destination memory block.

Examples

The following table lists and defines examples of the copy command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
254 Freescale Semiconductor, Inc.

Table 41: copy Command-line debugger command - Examples

Command Description

copy 00..1f 30 Copies memory addresses 00 through 1f to address 30.

copy 20#10 50 Copies 10 memory locations beginning at memory location 20 to memory
beginning at location 50.

4.5.11 debug
Launches a debug session.

Syntax

debug [[-index] <index> | [-name] <debug-config-name>]

Examples

The following table lists and defines examples of the debug command.

Table 42: debug Command-line debugger command - Examples

Command Description

debug Starts debugging using the default launch configuration, which is the last
debugged configuration if one exists and index 0 otherwise.

debug -index 3 Starts debugging using the launch configuration at index 3. Type `launch'
for the current set of launch configurations.

debug -name 3 Starts debugging using the launch configuration named `3'. Type `launch'
for the current set of launch configurations.

debug 3 Starts debugging using the launch configuration named `3'. If `3' does not
exist then launch configuration with index 3 will be launched. Type ̀ launch'
for the current set of launch configurations.

debug {My Launch Config} Starts debugging using the launch configuration named `My Launch
Config'. Type `launch' for the current set of launch configurations.

4.5.12 dir
Lists directory contents.

Syntax

dir [path|files]

Examples

The following table lists and defines examples of the dir command.

Table 43: dir Command-line debugger command-Examples

Command Description

dir Lists all files of the current directory.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 255

Table 43: dir Command-line debugger command-Examples (continued)

Command Description

di *.txt Lists all current-directory files that have the .txt file name extension.

dir c:/tmp Lists all files in the tmp directory on the C: drive.

dir /ad Lists only the subdirectories of the current directory.

4.5.13 disassemble
Disassembles the instructions of the specified memory block.

Syntax

disassemble

disassemble pc|[<ms>:]<addr> [<count>]

disassemble reset

disassemble [<ms>:]<a1>{..<a2>|#<n>}

Parameter

[none]

With no options, the next block of instructions is listed. After a target stop event, the next block starts at the PC.

[<ms>:]<addr>

Target address in hex. On targets with multiple memory spaces, a memory space id can be specified.

pc

The current program counter.

<count>

Number of instructions to be listed.

reset

Reset the next block to the PC and the instruction count to one screen.

<a1>{..<a2>|#<n>}

Specifies a range of memory either by two endpoints, <a1> and <a2> , or by a startpoint and a count, <a1> and
<n> .

Examples

The following table lists and defines examples of the disassemble command.

Table 44: disassemble Command-line debugger command - Examples

Command Description

disassemble Lists the next block of instructions.

disassemble reset Resets the next block to the PC and the instruction
count to one screenful.

disassemble pc Lists instructions starting at the PC.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
256 Freescale Semiconductor, Inc.

Table 44: disassemble Command-line debugger command - Examples (continued)

Command Description

disassemble pc 4 Lists 4 instructions starting at the PC. Sets the
instruction count to 4.

disassemble 1000 Lists instructions starting at address 0x1000.

disassemble p:1000 4 Lists 4 instructions from memory space p, address
1000. Sets the instruction count to 4.

4.5.14 display
Lists the contents of a register or memory location.

In addition, it lists all register sets of a target; adds register sets, registers, or memory locations; or removes
register sets, registers, or memory locations.

Syntax

display <addr-spec> [<range>] [-s|-ns] [%<conv>] [-np]

display -ms

display <addr-spec>{..<addr>|#<n>} [<range>] [-s|-ns] [%<conv>] [-np]

display <reg-spec> [<n>] [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

display <reg-spec>{..<reg>|#<n>} [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

display all|r:|nr: [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

display [-]regset

display <var-spec> [-np] [-s|-ns] [%<conv>]

display v: [-np] [-s|-ns] [%<conv>]

Options

The following table lists and defines parameters of the display command.

Table 45: display Command-line debugger command - Options

Command Description

<ms> On architectures supporting multiple memory spaces,
specifies the memory space in which <addr> is to be
found. See help for the option -ms of display or mem
for more information on memory spaces. If
unspecified, the setting "config MemIdentifier" is used.

<addr> Target address in hex format.

<count> Number of memory cells.

x<cell-size> Memory is displayed in units called cells, where each
cell consists of <cell-size> bytes. If unspecified, the
setting "config MemWidth" is used.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 257

Table 45: display Command-line debugger command - Options (continued)

Command Description

h<access-size> Memory is accessed with a hardware access size of
<access-size> bytes. If unspecified, the setting "config
MemAccess" is used.

{8,16,32,64}bit Sets both <cell-size> and <access-size>.

-np Don't print anything to the display, only return the data.

-ms On architectures supporting multiple memory spaces,
displays the list of available memory spaces including
a mnemonic and/or an integer index which may be
used when specifying a target address.

<a1>{..<a2>|#<n>} Specifies a range of memory either by two endpoints,
<a1> and <a2>, or by a startpoint and a byte count,
<a1> and <n>. This alternate syntax is provided mainly
for backwards compatibility. The new form of <addr>
and <count> should be easier to use and thus
preferred.

{r|nr} If multiple registers are specified, then the prefix r:
causes a recursive, depth-first traversal of the register
hierarchy. The prefix nr: prevents recursion. If
unspecified, recursion is the default. Note that different
levels of the register hierarchy are represented in the
manner of a path with forward-slashes '/' used to
delimit the register groups. A name that contains a
slash itself can be represented with an escape
backward-slash '\' followed by the forward-slash.
Further note that a backslash in a doubly-quoted Tcl
string is itself an escape character -- in this case two
backslashes are required. Alternatively, you may use
curly braces '{' and '}' to denote your string in which
case just one backslash is necessary.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to access.

<n> Number of registers.

all Specifies all registers.

-d Print detailed data book information.

-nr Print only register groups, that is no registers.

-nv Print only register groups and register names, that is
no values.

-np Don't print anything to the display, only return the data.

regset Display the register group hierarchy.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
258 Freescale Semiconductor, Inc.

Table 45: display Command-line debugger command - Options (continued)

Command Description

v: If this option appears with no <var> following it, then
all variables pertinent to the current scope are printed.

<var> Symbolic name of the variable to print. Can be a C
expression as well.

-s|-ns Specifies whether each value is to be swapped. For
memory, specifies whether each cell is to be swapped.
With a setting of -ns, target memory is written in order
from lowest to highest byte address. Otherwise, each
cell is endian swapped. If unspecified, the setting
"config MemSwap" is used.

%<conv> Specifies the type of the data. Possible values for
<conv> are given below. The default conversion is set
by the radix command for memory and registers and
by the config var command for variables.

%x Hexadecimal.

%d Signed decimal.

%u Unsigned decimal.

%f Floating point.

%[Q<n>]F Fixed or Fractional. The range of a fixed point value
depends on the (fixed) location of the decimal point.
The default location is set by the config command
option "MemFixedIntBits".

%s ASCII.

Examples

The examples assume the following settings:

• radix x

• config MemIdentifier 0

• config MemWidth 32

• config MemAccess 32

• config MemSwap off

The following table lists and defines examples of the display command.

Table 46: display Command-line debugger command - Examples

Command Description

display 10000 Displays memory range 0x10000-3 as one cell.

display 1:10000 Displays memory range 0x10000-3, memory space 1,
as one cell.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 259

Table 46: display Command-line debugger command - Examples (continued)

Command Description

display 10000 16 Displays memory range 0x10000-3f as 16 cells.

display 10000 16x1h8 Displays 16, 1-byte cells, with a hardware access size
of 8-bytes per read.

display 10000 8bit Displays one byte, with a hardware access size of one
byte.

display 10000 -np Returns one cell, but don't print it to the Command
Window.

display 10000 -s Displays one cell with the data endian-swapped.

display 10000 %d Displays one cell in decimal format.

display -ms Displays the available memory spaces, if any.

display -regset Lists all the available register sets on the target chip.

display R1 Displays the value of register R1.

display "General Purpose Registers/R1" Displays the value of register R1 in the General
Purpose Register group.

display R1 -d Displays detailed "data book" contents of R1, including
bitfields and definitions.

display "nr:General Purpose Registers/R1"
25

Beginning with register R1, display the next 25
registers. Register groups are not recursively
searched.

display myVar -s %d Displays the endian-swapped contents of variable
myVar in decimal.

4.5.15 evaluate
Displays variable or expression.

Syntax

evaluate [#<format>] [-l] [<var|expr>]

Parameter

<format>

Output format and possible values:

#-, #Default

#d, #Signed

#u, #Unsigned

#h, #x, #Hex

#c, #Char

#s, #CString

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
260 Freescale Semiconductor, Inc.

#p, #PascalString

#f, #Float

#e, #Enum

#i, #Fixed

#o, #w, #Unicode

#b, #Binary

<none>, #Fract

<none>, #Boolean

<none>, #SignedFixed

Examples

The following table lists and defines examples of the evaluate command.

Table 47: evaluate Command-line debugger command - Examples

Command Description

evaluate Lists the types for all the variables in current and global
stack.

evaluate i Returns the value of variable 'i'

evaluate #b i Returns the value of variable 'i' formatted in binary

evaluate -l 10 Returns the address for line 10 in the current file

evaluate -l myfile.c,10 Returns the address for line 10 in file myfile.c

evaluate -l +10 Returns the address to an offset of 10 lines starting
from the current line

evaluate -l myfile.c:mysymbol Returns the address of the symbol 'mysymbol' defined
in file 'myfile.c'.

evaluate -l mysymbol Returns the address of the global symbol 'mysymbol'.

evaluate -l mysymbol +10 Returns the address of the 10'th line belonging to the
global symbol 'mysymbol'.

evaluate -l myfile.c:mysymbol Returns the address of the local symbol 'mysymbol'
defined in the file 'myfile.c'.

evaluate -l myfile.c:mysymbol 10 Returns the address of the 10'th line belonging to the
local symbol.

4.5.16 finish
Executes until the current function returns.

Syntax

finish

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 261

4.5.17 fl::blankcheck
Tests that the flash device is in the blank state.

Syntax

blankcheck all | list

Parameters

all

Check that all sectors are in the blank state.

list

Check that specific sectors are in the blank state. The sector list is set with the "device" command.

Examples

The following table lists and defines examples of the fl::blankcheck command.

Table 48: fl::blankcheck Command-line debugger command - Examples

Command Description

blankcheck all Tests if the flash device is in the blank state. All sectors
will be tested regardless of the enabled list maintained
by the "device" command.

blankcheck list Tests whether the sectors in the enabled list are in the
blank state.

4.5.18 fl::checksum
Calculates a checksum.

Syntax

checksum [-host | -range <addr> <size> | -dev]

Options

The following table lists and defines options of the fl::checksum command.

Table 49: fl::checksum Command-line debugger command - Options

Command Description

<none> When no options are specified, calculate the
checksum for the target memory contents
corresponding to the settings of the fl::image
command. The target is defined by the fl::target
command.

-host Calculates the checksum for the host image file
contents corresponding to the settings of the fl::image
command.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
262 Freescale Semiconductor, Inc.

Table 49: fl::checksum Command-line debugger command - Options (continued)

Command Description

-range <addr> <size> Calculate the checksum for the target
memory contents specified by a beginning address
<addr> and number of bytes <size>, both given in hex.
The target is defined by the fl::target command.

-dev Calculates the checksum for the entire flash contents.
The flash is defined by the fl::device command. The
target is defined by the fl::target command.

Examples

checksum

Calculates a checksum.

4.5.19 fl::device
Defines the flash device.

Syntax

device

device <setting> ...

device ls

device ls org [<dev>]

device ls sect [[<dev>] <org>]

Options

The following table lists and defines options of the fl::device command.

Table 50: fl::device Command-line debugger command - Options

Command Description

<none> With no options, lists the current settings.

<setting> Used to set a configuration setting. Possible values
are: -d <dev>, -o <org>, -a <addr> [<end>] ,
-se all | <index> ... , -sd all |
<index> ...

-d <dev> Sets the device to <dev>.

-o <org> Sets the organization to <org>.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 263

Table 50: fl::device Command-line debugger command - Options (continued)

Command Description

-a <addr> [<end>] Sets the start <addr> and optional end <end> address
for the device, both given in hex.

-se all | <index> ... Enable sectors for "erase" and "blankcheck". Sectors
are specified with a zero-based index.

-sd all | <index> ... Disables sectors for "erase" and "blankcheck". Sectors
are specified with a zero-based index.

ls Lists all the supported devices.

ls org [<dev>] Lists the organizations for a particular device. The
device may be specified with <dev>, otherwise the
current device is used.

ls sect [[<dev>] <org>] Lists the sectors for a particular device and
organization. The organization may be specified with
<org>, otherwise the current device and organization
is used. If <org> is specified, the device may be
specified with <dev>, otherwise the current device is
used. If <dev> is specified, then 0 is used for the
starting address; otherwise, the current device start
address is used.

Examples

device

Lists the current settings.

4.5.20 fl::diagnose
Dumps flash information.

Syntax

diagnose [full]

Options

full

Also dump sector status (programmed/erased). This could take a few minutes for large flashes.

Examples

The following table lists and defines examples of the fl::diagnose command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
264 Freescale Semiconductor, Inc.

Table 51: fl::diagnose Command-line debugger command - Examples

Command Description

diagnose Dumps flash information like ID, sector map, sector
factory protect status. fl::device command needs
to be called prior to this command in order to set the
device.

4.5.21 fl::disconnect
Closes the connection to the target.

Syntax

disconnect

Examples

disconnect

Closes the connection to the target. The first flash command that needs to access the target opens a connection
to the target that remains open for further flash operations.

4.5.22 fl::dump
Dumps the content of entire flash to the specified file.

Syntax

fl::dump [all | -range start_addr end_addr] -o <file>

Parameter

-all

Dumps content of entire flash to the specified file.

-range <start_addr> <end_addr>

Sets the range of flash region to be dumped.

-t <type>

Sets the type of flash region to be dumped .

-o <file>

Dumps the flash to the specified file. This is mandatory.

Examples

dump -all -t "Binary/Raw Format" -o "myfile"

Dumps all flash or flash region from <start_addr> to <end_addr> to the file specified with -o argument.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 265

4.5.23 fl::erase
Erases the flash device.

Syntax

erase all | list | image

Parameters

all

Erases all sectors using an all-chip erase function.

list

Erases specific sectors as set with the "device" command.

image

Erases all sectors occupied by the file specified with fl::image.

Examples

The following table lists and defines examples of the fl::erase command.

Table 52: fl::erase Command-line debugger command - Examples

Command Description

erase all Erases the device using the all-chip erase operation.
This is not supported by all flash devices. All sectors
will be erased regardless of the enabled list maintained
by the "device" command. Erase the device one sector
at a time. All sectors will be erased regardless of the
enabled list maintained by the "device" command.

erase list Erases the sectors in enabled list.

erase image Erases the sectors occupied by the file defined with
fl::image.

4.5.24 fl::image
Defines the flash image settings.

Syntax

image

image <setting> ...

image ls

Options

The following table lists and defines options of the fl::image command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
266 Freescale Semiconductor, Inc.

Table 53: fl::image Command-line debugger command - Options

Command Description

<none> With no options, lists the current settings.

<setting> Used to set a configuration setting. Possible values
are: -f <file>, -t <type>, -re on|off, -r
<addr> [<end>], -oe on|off, -o <offset>

-f <file> Sets the image file.

-t <type> Sets the type of the image file. Possible values are
shown by "image ls".

-re on|off If -re is set to on, the range settings of this command
will be used to restrict all flash commands to a
particular address range. Otherwise no restriction is
made.

-r <addr> [<end>] Sets the start <addr> and optional end <end> address
for the restricting flash access, both given in hex. The
range must also be enabled by the option "-re".

-oe all | <index> ... If -oe is set to on, the offset setting of this command
will be used.

-o If -oe is set to on, then the value of this setting is added
to all addresses in the image file. The value is given in
hex.

Examples

image

Lists the current settings.

4.5.25 fl::protect
Protects the sectors.

Syntax

fl::protect [on | off]

Parameter

[on | off]

Enables or disables protection of sectors.

4.5.26 fl::secure
Secures/unsecures the device.

Syntax

fl::secure [on | off] [password <pass>]

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 267

Parameter

[on | off]

Secures or unsecures a device.

password <pass>

Password used to secure the device.

4.5.27 fl::target
Defines the target configuration settings.

Syntax

target

target <setting> ...

target ls [p|c]

Options

The following table lists and defines options of the fl::target command.

Table 54: fl::target Command-line debugger command - Options

Command Description

<none> With no options, lists the current settings.

<setting> Used to set a configuration setting. Possible values are:
-c <conn>, -p <proc>, -ie on|off , -i <initfile>, -b
<addr> [<size>] , -v on|off , -l on|off

-lc <launch configuration name> Sets the launch configuration that will be used.

-c <conn> Sets the connection to <conn> .

-p <proc> Sets the processor to <proc> .

-ie on|off Enables or disables the initfile set by -i.

-i <initfile> Sets the target initialization file to <initfile> . Only used if -ie is on.

-b <addr> [<size>] Sets the target RAM buffer for downloading image data to begin at
<addr> with <size> bytes, both given in hex.

-v on|off Sets the target memory verification on or off.

-l on|off Enable or disable logging.

ls [p|c] Lists the supported processors and/or the available connections.

Examples

target

Lists the current settings.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
268 Freescale Semiconductor, Inc.

4.5.28 fl::verify
Verifies the flash device.

Syntax

verify

4.5.29 fl::write
Writes the flash device.

Syntax

write

4.5.30 funcs
Displays information about functions.

Syntax

funcs [-all] <file> <line>

Parameter

[-all]

Displays information about the functions using all debug contexts.

<file>

Specifies the file name.

<line>

Specifies the line number.

4.5.31 getpid
Lists the ID of the process being debugged.

Syntax

getpid

4.5.32 go
Starts to debug your program from the current instruction.

Syntax

go [nowait | <timeout_s>]

Parameter

<none>

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 269

Runs the default thread. The command may wait for a thread break event before returning, depending on the
settings config runControlSync and config autoThreadSwitch.

nowait

Returns immediately without waiting for a thread break event.

<timeout_s>

Maximum number of seconds to wait for a thread break event. Can be set to nowait .

Examples

The following table lists and defines examples of the go command.

Table 55: go Command-line debugger command - Examples

Command Description

go Runs the default thread.

go nowait Runs the default thread without waiting for a thread
break event.

go 5 Runs the default thread. If config runControlSync is
enabled, then the command will wait for a thread break
event for a maximum of 5 seconds.

4.5.33 help
Lists debug command help in the command-line debugger window.

Syntax

help [-sort | -tree | <cmd>]

Parameter

command

Name or short-cut name of a command.

Examples

The following table lists and defines examples of the help command.

Table 56: help Command-Line Debugger Command - Examples

Command Description

help Lists all debug commands.

help b Lists help information for the break command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
270 Freescale Semiconductor, Inc.

4.5.34 history
Lists the history of the commands entered during the current debug session.

Syntax

history

4.5.35 jtagclock
Reads or updates the current JTAG clock speed.

Syntax

jtagclock

jtagclock <chain-position> [<speed-in-kHz>]

Examples

The following table lists and defines examples of the jtagclock command.

Table 57: jtagclock Command-line debugger command - Examples

Command Description

jtagclock 3 Reads the current jtag clock speed for chain position
3.

jtagclock 3 1000 Updates the jtag clock speed to 1000kHz for chain
position 3.

4.5.36 kill
Closes the specified debug session.

Syntax

kill [all | <index> ...]

Examples

The following table lists and defines examples of the kill command.

Table 58: kill Command-line debugger command - Examples

Command Description

kill Kills the debug session for the current process.

kill all Kills all active debug sessions.

kill 0 1 Kills debug sessions 0 and 1.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 271

4.5.37 launch
Lists the launch configurations.

Syntax

launch

Examples

launch

List the launch configurations. The last debugged configuration is denoted with an asterisk '*', last run with a
greater than '>'.

4.5.38 linux::displaylinuxlist
Lists the expression for each element of a Linux list.

Syntax

displaylinuxlist -list <listName> -function <functionWhereListIsVisible> -address
<listAddress> -type <elementTypeName> [-next <nextPath>]

Options

The following table lists and defines options of the linux::displaylinuxlist command.

Table 59: linux::displaylinuxlist Command-line debugger command - Options

Command Description

-l[ist] <listName> The name of the list (must be global).

-f[unction]
<functionWhereListIsVisible>

Some function where the list is visible, optional.

-a[ddress] <listAddress> The address of the list, in hexa, only in case when
(listName,functionWhereListIsVisible) are not specified, to be
used with local lists.

-t[ype] <elementTypeName> The type of the list elements.

-n[ext] <nextPath> Specifies in order all the structure member names needed to
reach the next element.

Examples

The following table lists and defines examples of the linux::displaylinuxlist command.

Table 60: linux::displaylinuxlist Command-line debugger command - Examples

Command Description

linux::displaylinuxlist -list workqueues -
function __create_workqueue -type
workqueue_struct -next list next

Lists the current workqueues.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
272 Freescale Semiconductor, Inc.

Table 60: linux::displaylinuxlist Command-line debugger command - Examples (continued)

Command Description

linux::displaylinuxlist -address 0xC00703fc
-type workqueue_struct -next list next

Lists the current workqueues, 0xC00703fc should be
the address of workqueues. Available only if the kernel
is stopped.

4.5.39 linux::loadsymbolics
Loads the symbolics for the selected module.

Syntax

loadsymbolics <absolute_file_path>

4.5.40 linux::refreshmodules
Lists loaded modules.

Syntax

refreshmodules

4.5.41 linux::selectmodule
Sets the current module.

Syntax

selectmodules <index>

4.5.42 linux::unloadsymbolics
Unloads the symbolics for the specified module.

Syntax

unloadsymbolics

4.5.43 loadsym
Loads a symbolic file.

Syntax

loadsym <filename> [PIC load addr (hex)]

Examples

The following table lists and defines examples of the loadsym command.

Table 61: loadsym Command-line debugger command - Examples

Command Description

loadsym myapp.elf Loads the debug information in myapp.elf into the debugger.

loadsym mypicapp.elf 0x40000 Loads the debug information in mypicapp.elf into the debugger;
symbolics addresses are adjusted based on the alternate load
address of 0x40000.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 273

4.5.44 log
Logs the commands or lists entries of a debug session.

If issued with no parameters, the command lists all open log files.

Syntax

log c|s <filename>

log off [c|s] [all]

log

Parameter

c

Command specifier.

s

Lists entry specifier.

<filename>

Name of a log file.

Examples

The following table lists and defines examples of the log command.

Table 62: log Command-line debugger command - Examples

Command Description

log Lists currently opened log files.

log s session.log Logs all display entries to file session.log.

log off c Closes current command log file.

log off Closes current command and log file.

log off all Closes all log files.

4.5.45 mc::config
Displays or edits multicore groups options.

Syntax

config [useAllCores|haltGroups|smartSelect [enable|disable]]

Examples

The following table lists and defines examples of the mc::config command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
274 Freescale Semiconductor, Inc.

Table 63: mc::config Command-Line Debugger Command - Examples

Command Description

mc::config Shows the current configuration settings.

mc::config useAllCores disable Disables Use All Cores mode.

mc::config haltGroups enable Enables halt groups (where supported)

mc::config smartSelect disable Disables smart select mode so that the mc::group enable|disable
commands behave analagously to pressing Ctrl+Click on a Multicore
Groups Dialog group node. Note : This setting does not affect the
Multicore Groups dialog operation.

4.5.46 mc::go
Resumes multiple cores.

Syntax

mc::go

Remarks

mc::go resumes the selected cores associated with the current thread context (see switchtarget on page
293).

4.5.47 mc::group
Displays or edits multicore groups.

Syntax

group

group new <type-name> [<name>]

group rename <name>|<group-index> <new-name>

group remove <name>|<group-index> ...

group removeall

group enable|disable [-context ops|swbps|hwbps|wps ...] <group-index> ...|all

Examples

The following table lists and defines examples of the mc::group command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 275

Table 64: mc::group Command-line debugger command - Examples

Command Description

mc::group Shows the defined groups, including indices for use in
the mc::group rename|enable|remove set of
commands.

mc::group new 8572 Creates a new group for target type 8572. The group
name will be based on the target name and will be
unique. The enablement of the group elements will be
all non-cores enabled, all cores disabled.

mc::group rename 0 "My Group Name" Renames the group at index 0 to "My Group Name".

mc::group enable 0 1.0 Enables the group at index 0 and the element at index
1.0 of the mc::group command.

mc::group enable -context swbps hwbps 0 Enables the group contexts for software and hardware
breakpoints at index 0 of the mc::group command.
Note, the index must correspond to a group, not a
specific core.

mc::group remove "My Group Name" Removes the group named "My Group Name".

mc::group removeall Removes all groups.

4.5.48 mc::kill
Terminates multiple cores.

Syntax

mc::kill

Remarks

mc::kill terminates the debug session for the selected cores associated with the current thread context (see
switchtarget on page 293).

4.5.49 mc::reset
Resets multiple cores.

Syntax

mc::reset

Remarks

mc::reset resets the debug session associated with the current thread context (see switchtarget on page
293).

4.5.50 mc::restart
Restarts multiple cores.

Syntax

mc::restart

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
276 Freescale Semiconductor, Inc.

Remarks

mc::restart restarts the debug session for the selected cores associated with the current thread context (see
switchtarget on page 293).

4.5.51 mc::stop
Suspends multiple cores.

Syntax

mc::stop

Remarks

mc::stop stops the selected cores associated with the current thread context (see switchtarget on page 293).

4.5.52 mc::type
Displays or edits target types.

SYNTAX

type

type import <filename>

type remove <filename>|<type-index> ...

ype removeall

Examples

The following table lists and defines examples of the mc::type command.

Table 65: mc::type Command-line debugger command - Examples

Command Description

mc::type Shows the target types available for multicore
debugging as well as type indices for use by the
mc::type remove and mc::group new commands.

mc::type import 8572_jtag.txt Creates a new type from the JTAG configuration file.

mc::type remove 8572_jtag.txt Removes the type imported from the specified file.

mc::group removeall Removes all imported types.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 277

4.5.53 mem
Reads and writes memory.

Syntax

mem <addr-spec> [<range>] [-s|-ns] [%<conv>] [-np]

mem

mem <addr-spec> [<range>] [-s|-ns] [%<conv>] =<value>

mem -ms

Overview

The mem command reads or writes one or more adjacent "cells" of memory, where a cell is defined as a
contiguous block of bytes. The cell size is determined by the <cell-size> parameter or by the config command
option "MemWidth".

Options

The following table lists and defines options of the mem command.

Table 66: mem Command-line debugger command - Options

Command Description

[none] With no option, next block of memory is read.

<ms> On architectures supporting multiple memory spaces, specifies the memory
space in which <addr> is to be found. See the help for the option -ms of display
or mem for more information on memory spaces. If unspecified, the setting
"config MemIdentifier" is used.

<addr> Target address in hex.

<count> Number of memory cells.

x<cell-size> Memory is displayed in units called cells, where each cell consists of <cell-
size> bytes. If unspecified, the setting "config MemWidth" is used.

h<access-size> Memory is accessed with a hardware access size of <access-size> bytes. If
unspecified, the setting "config MemAccess" is used.

{8,16,32,64}bit Sets both <cell-size> and <access-size> .

-np Don't print anything to the display, only return the data.

-ms On architectures supporting multiple memory spaces, displays the list of
available memory spaces including a mnemonic and/or an integer index which
may be used when specifying a target address.

-s|-ns Specifies whether each value is to be swapped. For memory, specifies whether
each cell is to be swapped. With a setting of -ns , target memory is written in
order from lowest to highest byte address. Otherwise, each cell is endian
swapped. If unspecified, the setting "config MemSwap" is used.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
278 Freescale Semiconductor, Inc.

Table 66: mem Command-line debugger command - Options (continued)

Command Description

%<conv> Specifies the type of the data. Possible values for <conv> are given below. The
default conversion is set by the radix command for memory and registers and
by the config var command for variables.

%x Hexadecimal.

%d Signed decimal.

%u Unsigned decimal.

%f Floating point.

%[Q<n>]F Fixed or Fractional. The range of a fixed point value depends on the (fixed)
location of the decimal point. The default location is set by the config command
option "MemFixedIntBits" .

%s ASCII.

Examples

The examples assume the following settings:

• radix x

• config MemIdentifier 0

• config MemWidth 32

• config MemAccess 32

• config MemSwap off

The following table lists and defines examples of the mem command.

Table 67: mem Command-line debugger command - Examples

Command Description

mem Displays the next block of memory.

mem 10000 Changes memory range 0x10000-3 as one cell.

mem 1:10000 Changes memory range 0x10000-3, memory space 1, as one cell.

mem 10000 16 Displays memory range 0x10000-3f as 16 cells.

mem 10000 16x1h8 Displays 16, 1-byte cells, with a hardware access size of 8-bytes per
read.

mem 10000 8bit Displays one byte, with a hardware access size of one byte.

mem 10000 -np Returns one cell, but don't print it to the Command Window.

mem 10000 -s Displays one byte with the data endian-swapped.

mem 10000 %d Displays one cell in decimal format.

mem -ms Displays the available memory spaces, if any.

mem 10000 =10 Changes memory range 0x10000-3 to 0x10 (because radix is hex).

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 279

Table 67: mem Command-line debugger command - Examples (continued)

Command Description

mem 1:10000 =20 Changes memory range 0x10000-3 , memory space 1, to 0x20 .

mem 10000 16x1h8 =31 Changes each of 16, 1-byte cells to 0x31 , using a hardware access
size of 8-bytes per write.

mem 10000 -s %d =200 Changes memory range 0x10000-3 to c8000000.

4.5.54 next
Runs to next source line or assembly instruction in current frame.

Syntax

next

Remarks

If you execute the next command interactively, the command returns immediately, and target-program execution
starts. Then you can wait for execution to stop (for example, due to a breakpoint) or type the stop command.

If you execute the next command in a script, the command-line debugger polls until the debugger stops (for
example, due to a breakpoint). Then the command line debugger executes the next command in the script. If
this polling continues indefinitely because debugging does not stop, press the ESC key to stop the script.

4.5.55 nexti
Executes over function calls, if any, to the next assembly instruction.

Syntax

nexti

Remarks

If you execute nexti command, it will execute the thread to the next assembly instruction unless current instruction
is a function call. In such a case, the thread is executed until the function returns.

4.5.56 oneframe
Queries or sets the one-frame stack crawl mode for the current thread.

Syntax

oneframe [on | off]

Examples

The following table lists and defines examples of the oneframe command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
280 Freescale Semiconductor, Inc.

Table 68: oneframe Command-line debugger command - Examples

Command Description

oneframe on Tells the debugger to only query and show one frame
in stack crawls.

oneframe off Turns off one-frame mode.

oneframe Reveals if one-frame mode is on or off.

4.5.57 pwd
Lists current working directory.

Syntax

pwd

4.5.58 quitIDE
Quits the IDE.

Syntax

quitIDE

4.5.59 radix
Lists or changes the default input radix (number base) for command entries, registers and memory locations.

Entering this command without any parameter values lists the current default radix.

Syntax

radix [x|d|u|b|f|h]

Parameter

x

Hexadecimal

d

Decimal

u

Unsigned decimal

b

Binary

f

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 281

Fractional

h

Hexadecimal

Examples

The following table lists and defines examples of the radix command.

Table 69: radix Command-line debugger command - Examples

Command Description

radix Lists the current setting.

radix d Changes the setting to decimal.

radix x Changes the setting to hexadecimal.

4.5.60 redirect
Redirects I/O streams of the current target process.

Syntax

redirect <stream> <destination>

Options

The following table lists and defines options of the red command.

Table 70: red Command-line debugger command - Options

Command Description

<stream> stdout | stderr | both

<destination> stop | server <port> | socket [<host>] <port>

<port> TCP/IP port number of destination socket.

<host> IP4 address or IP6 address or hostname of target system. Assumed to be
"localhost" if omitted.

stop Ends redirection for the specified stream(s).

server Attempts to establish a server socket on the specified port. Client sockets
may connect to this server socket and read the redirected data. Data written
by the target while no client is connected is discarded.

socket Attempts to connect to the specified server socket. All target output data is
written to this connection.

Examples

The following table lists and defines examples of the red command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
282 Freescale Semiconductor, Inc.

Table 71: red Command-line debugger command - Examples

Command Description

redirect stdout server 27018 Redirects output of stdout for the current process to a server
socket on local port 27018.

redirect stderr socket logmachine.com
22018

Attempts to connect to the server socket at port 22018 on host
"logmachine.com" and redirects output of stderr for the current
process to that connection.

redirect both stop Ends redirection (if any) currently in place for both stdout and
stderr for the current process.

4.5.61 refresh
Discards all cached target data and refresh views.

Syntax

refresh [all | -p <pid> <pid> ...]

Options

The following table lists and defines options of the refresh command.

Table 72: refresh Command-line debugger command - Options

Command Description

[none] No option will refresh current process only.

all Refreshes all currently debugged processes.

-p <+pid> Specifies list of process ID for the processes to be
refreshed.

Examples

refresh -p 0 1

Refreshes debugger data for debugged processes with PID `0' and `1'.

4.5.62 reg
Reads and writes registers.

Syntax

reg export <reg-spec> [<n>] <file>

reg export <file>

reg import <file>

reg <reg-spec> [<n>] [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

reg <reg-spec>{..<reg>|#<n>} [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

reg all|r:|nr: [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

reg <reg-spec> [<n>] [-s|-ns] [%<conv>] =<value>

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 283

reg <reg-spec>{..<reg>|#<n>} [-s|-ns] [%<conv>] =<value>

reg -regset

reg

Options

The following table lists and defines options of the reg command.

Table 73: reg Command-line debugger command - Options

Command Description

export Exports all or a set (specified through <reg-spec>
[<n>]) of registers into a specified file. The traversal of
the register hierarchy is recursive. Existing files are
overwritten.

import Imports registers from a specified file.

[none] No option is equivalent to reg -regset .

<reg-spec> [{r|nr}:]<reg> {r|nr} If multiple registers are specified, then the prefix r:
causes a recursive, depth-first traversal of the register
hierarchy. The prefix nr: prevents recursion. If
unspecified, recursion is the default. Note that different
levels of the register hierarchy are represented in the
manner of a path with forward-slashes '/' used to
delimit the register groups. A name that contains a
slash itself can be represented with an escape
backward-slash '\' followed by the forward-slash.
Further note that a backslash in a doubly-quoted Tcl
string is itself an escape character -- in this case two
backslashes are required. Alternatively, you may use
curly braces '{' and '}' to denote your string in which
case just one backslash is necessary.

<reg> A register name or a register group name.

..<reg> The end point for a range of registers to access.

<n> Number of registers.

all Specifies all registers.

-d Print detailed data book information.

-nr Print only register group, that is no registers.

-nv Print only register groups and register names, that is
no values.

-np Do not print anything to the display, only return the
data.

regset Display the register group hierarchy.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
284 Freescale Semiconductor, Inc.

Table 73: reg Command-line debugger command - Options (continued)

Command Description

-s| -ns Specifies whether each value is to be swapped. For
memory, specifies whether each cell is to be swapped.
With a setting of -ns, target memory is written in order
from lowest to highest byte address. Otherwise, each
cell is endian swapped. If unspecified, the setting
"config MemSwap" is used.

%<conv> Specifies the type of the data. Possible values for
<conv> are given below. The default conversion is set
by the radix command for memory and registers and
by the config var command for variables.

%x Hexadecimal

%d Signed decimal.

%u Unsigned decimal.

%f Floating point.

%[Q<n>]F Fixed or fractional. The range of a fixed point value
depends on the (fixed) location of the decimal point.
The default location is set by the config command
option MemFixedIntBits .

%s ASCII

Examples

The following table lists and defines examples of the reg command.

Table 74: reg Command-line debugger command - Examples

Command Description

reg -regset Lists all the available register sets on the target chip.

reg R1 Displays the value of register R1.

reg "General Purpose Registers/R1" Displays value of register R1 in the General Purpose
Register group.

reg R1 -d Displays detailed "data book" contents of R1, including
bitfields and definitions.

reg "nr:General Purpose Registers/R1" 25 Beginning with register R1, display the next 25
registers. Register groups are not recursively
searched.

reg R1 =123 Changes register R1 to 0x123 .

reg R1..R5 =5432 Changes registers R1 through R5 to 0x5432 .

reg "General Purpose Registers/R1" =100 Changes register R1 in the General Purpose Register
group to 0x100 .

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 285

Table 74: reg Command-line debugger command - Examples (continued)

Command Description

reg export filename Exports all registers from the target to the specified file.

reg export R1 filename Exports the value of register R1 to the specified file.

reg export "General Purpose Registers/R1" 25
filename

Beginning with register R1, export the next 25 registers
to the specified file.

reg import filename Imports registers from the specified file.

4.5.63 reset
Resets the target hardware.

Syntax

reset [h/ard|s/oft] [run]

Options

h/ard|s/oft

The type of reset, either hard or soft. If unspecified, the default depends on the hardware support. If soft is
supported, then that is the default. Otherwise, if hard is supported, then that is the default.

run

Let's the target run after the reset, also called "reset to user". Otherwise, the target is halted at the reset vector.

Examples

The following table lists and defines examples of the reset command.

Table 75: reset Command-line debugger command - Examples

Command Description

reset Issues a soft reset if supported, otherwise a hard reset.

reset s Issues a soft reset.

reset hard Issues a hard reset.

reset run Issues a soft reset if supported, otherwise a hard reset. The target is
allowed to run after the reset.

4.5.64 restart
Restarts the current debug session.

Syntax

restart

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
286 Freescale Semiconductor, Inc.

Examples

restart

This command will restart the current debug session.

4.5.65 restore
Writes file contents to memory.

Syntax

restore -h <filename> [[<ms>:]<addr>|+<offset>] [8bit|16bit|32bit|64bit]

restore -b <filename> [<ms>:]<addr> [8bit|16bit|32bit|64bit]

Options

The following table lists and defines options of the restore command.

Table 76: restore Command-line debugger command - Options

Command Description

-h|-b Specifies the input file format as hex or binary.

[<ms>:]<addr> Address to load to. For hex format, this selection
overrides the address specified in the file. For
architectures with multiple memory spaces, a memory
space id may be specified. See config MemIdentifier
and mem -ms for more details.

<offset> Loads the contents of the hex file at an offset of the
original location.

8bit|16bit|32bit|64bit Controls the memory access size.

Examples

The following table lists and defines examples of the restore command.

Table 77: restore Command-line debugger command - Examples

Command Description

restore -h dat.txt Loads the contents of the hex file dat.txt into memory.

restore -b dat.bin 0x20 Loads the contents of binary file dat.bin into memory
beginning at 0x20.

restore -h dat.bin +0x20 Loads the contents of the binary file dat.lod into
memory with an offset of 0x20 relative to the address
saved in dat.bin.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 287

4.5.66 run
Launches a process.

Syntax

run [[-index] <index> | [-name] <debug-config-name>]

Examples

The following table lists and defines examples of the run command.

Table 78: run Command-line debugger command-Examples

Command Description

run Starts a process using the default launch
configuration, which is the last run configuration if one
exists and index 0 otherwise.

run -index 3 Starts a process using the launch configuration at
index 3. Type 'launch' for the current set of launch
configurations.

run -name 3 Starts a process using the launch configuration named
'3'. Type 'launch' for the current set of launch
configurations.

run 3 Starts a process using the launch configuration named
'3'. If '3' does not exist then configuration with index 3
will be started. Type 'launch' for the current set of
launch configurations.

run {My Launch Config} Starts debugging using the launch configuration
named 'My Launch Config' . Type 'launch' for the
current set of launch configurations.

4.5.67 save
Saves the contents of memory locations to a binary file or a text file containing hexadecimal values.

Syntax

save -h|-b [<ms>:]<addr>... <filename> [-a|-o] [8bit|16bit|32bit|64bit]

Parameter

-h|-b

Sets the output file format to hex or binary. For hex format, the address is also saved so that the contents can
easily be restored with the restore command.

[<ms>:]<addr>

Address to read from. For architectures with multiple memory spaces, a memory space id may be specified.

-a

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
288 Freescale Semiconductor, Inc.

Append specifier. Instructs the command-line debugger to append the saved memory contents to the current
contents of the specified file.

-o

Overwrite specifier. Tells the debugger to overwrite any existing contents of the specified file.

8bit|16bit|32bit|64bit

Controls the memory access size.

Examples

The following table lists and defines examples of the save command.

Table 79: save Command-line debugger command - Examples

Command Description

set addressBlock1 "p:10..`31" set
addressBlock2 "p:10000#20" save -h
$addressBlock1 $addressBlock2 hexfile.txt -
a

Dumps contents of two memory blocks to the text file
hexfile.txt (in append mode).

set addressBlock1 "p:10..`31" set
addressBlock2 "p:10000#20" save -b
$addressBlock1 $addressBlock2 binfile.bin -
o

Dumps contents of two memory blocks to the binary
file binfile.bin (in overwrite mode).

4.5.68 setpc
Sets the value of the program counter register.

Syntax

setpc {[-va|-ve|-vn]} -address <address>

setpc {[-va|-ve|-vn]} -line <line_number> {source_file} {target}

setpc {[-va|-ve|-vn]} -line [+|-]n

setpc {[-va|-ve|-vn]} -gsymbol <symbol>

setpc {[-va|-ve|-vn]} -lsymbol <symbol> <source_file> {target}

setpc {[-va|-ve|-vn]} -line [+|-]n <symbol>

setpc {[-va|-ve|-vn]} -line [+|-]n <symbol> <source_file> {target}

setpc {[-va|-ve|-vn]} -line [+|-] <symbol> <source_file> {target}

Examples

The following table lists and defines examples of the setpc command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 289

Table 80: setpc Command-line debugger command - Examples

Command Description

setpc -address 0x1000 Sets the PC to address 0x1000.

setpc -line 10 Sets the PC to source line 10 in the current source file.

setpc -line 10 myfile.c Sets the PC to source line 10 in source file 'myfile.c'.

setpc -line +10 Sets the PC to an offset of 10 lines from the current source line.

setpc -gsymbol my_extern_function Sets the PC to the address of the 'my_extern_function' global
symbol.

setpc -lsymbol my_static_function
myfile.c

Sets the PC to the address of the 'my_static_function' local
symbol defined in source file 'myfile.c'.

setpc -line +10 my_extern_function Sets the PC to the address corresponding to an offset of 10
source lines from the location where 'my_extern_function' global
symbol was defined.

setpc -line +10 my_static_function
myfile.c

Sets the PC to the address corresponding to an offset of 10
source lines from the location where 'my_static_function' local
symbol was defined, in source file 'myfile.c'.

setpc -line 10 myfile.c mymodule.ko Sets the PC to source line 10 in source file 'myfile.c'. The file
'myfile.c' is used by the target 'mymodule.ko'.

4.5.69 setpicloadaddr
Indicates where a PIC executable is loaded.

Syntax

setpicloadaddr [symfile] <PIC load addr (hex) | reset>]

Examples

The following table lists and defines examples of the setpicloadaddr command.

Table 81: setpicloadaddr Command-line debugger command - Examples

Command Description

setpicloadaddr 0x40000 Tells the debugger the main executable is loaded at
0x40000.

setpicloadaddr myapp.elf 0x40000 Tells the debugger myapp.elf is loaded at 0x40000.

setpicloadaddr myapp.elf reset Tells the debugger myapp.elf is loaded at the address
set in the ELF.

4.5.70 stack
Prints the call stack.

Syntax

stack [num_frames] [-default]

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
290 Freescale Semiconductor, Inc.

Examples

The following table lists and defines examples of the stack command.

Table 82: stack Command-line debugger command - Examples

Command Description

stack Prints the entire call stack unless limited with stack -
default.

stack 6 Prints the 6 innermost call stack levels.

stack -6 Prints the 6 outermost call stack levels.

stack 6 -default Limits the number of stack frames shown to the 6
innermost levels.

stack -default Removes the stack frame limit.

4.5.71 status
Lists the debug status of all existing active targets.

Syntax

status

4.5.72 step
Steps through a program, automatically executing the display command.

Syntax

step [asm|src] [into|over|out]

step [nve|nxt|fwd|end|aft]

Parameter

asm|src

Controls whether the step is performed at the assembly instruction level or the source code level.

into|over|out

Controls the type of step operation. If unspecified, into is used.

nve

Step non optimized action.

nxt

Step next action.

fwd

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 291

Step forward action.

end

Step end of statement action.

aft

Step end all previous action.

Examples

The following table lists and defines examples of the step command.

Table 83: step Command-line debugger command - Examples

Command Description

step Steps into the current source or assembly line.

step over Steps over the current source or assembly line.

step out Steps out of a function.

step asm Steps over a single assembly instruction.

4.5.73 stepi
Executes to the next assembly instruction.

Syntax

stepi

4.5.74 stop
Stops a running program (started by a go, step, or next command).

Syntax

stop

Examples

The following table lists and defines examples of the stop command.

Table 84: stop Command-line debugger command - Examples

Command Description

stop Using it after command go/step out/next, this will stop
the target program.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
292 Freescale Semiconductor, Inc.

4.5.75 switchtarget
Displays information about debugged threads, processes and connections or changes the debug context for
subsequent commands.

Syntax

switchtarget [<index> | -cur | -ResetIndex -pid | -tid | -conn | -arch]

switchtarget -tid [-pid=<procID>] [[-arch==<name>] | [-conn==<name>]]

switchtarget -pid [[-arch==<name>] | [-conn==<name>]]

switchtarget -arch [-conn==<name>]

switchtarget -conn [-arch==<name>]

switchtarget [-pid=<procID>] [-tid=<threadID>] [[-arch==<name>] | [- conn==<name>]]

Parameter

index

Session Index number.

Examples

The following table lists and defines examples of the switchtarget command.

Table 85: switchtarget Command-line debugger command - Examples

Command Description

switchtarget Lists currently available debug sessions.

switchtarget 0 Selects the thread with index 0

switchtarget -cur Lists the index of the current thread.

switchtarget -ResetIndex Resets the index counter to 0, not valid while debugging.

switchtarget -tid Lists the thread IDs of the current process of the current connection.

switchtarget -pid Lists the process IDs of the debugged processes of the current
connection.

switchtarget -pid -arch=EPPC Lists the process IDs of the debugged processes of EPPC
architecture on the current debug system.

switchtarget -pid -conn=Launch-1 Lists the process IDs of the debugged processes of the Launch-1
connection.

switchtarget -arch -conn=Launch-1 Lists the architectures debugged on Launch-1 connection.

switchtarget -conn -arch=EPPC Lists the name of the connection of EPPC architecture on the
current debug system.

Table continues on the next page...

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 293

Table 85: switchtarget Command-line debugger command - Examples (continued)

Command Description

switchtarget -pid=0 -tid=0 -
arch=EPPC

Switches current context to thread 0 of process 0 of EPPC
architecture on the current debug system.

switchtarget -pid=0 -tid=0 -
conn=Launch-1

Switches current context to thread 0 of process 0 on Launch-1
connection.

4.5.76 system
Executes system command.

Syntax

system [command]

Parameter

command

Any system command that does not use a full screen display.

Examples

The following table lists and defines examples of the system command.

Table 86: system Command-line debugger command - Examples

Command Description

system del *.tmp Deletes from the current directory all files that have the .tmp filename
extension.

4.5.77 var
Reads and writes variables or C-expressions.

Syntax

var

var <var-spec> [-np] [-s|-ns] [%<conv>]

var v: [-np] [-s|-ns] [%<conv>]

var <var-spec> [-s|-ns] [%<conv>] =<value>

Options

The following table lists and defines options of the var command.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
294 Freescale Semiconductor, Inc.

Table 87: var Command-line debugger command - Options

Command Description

[none] No option is equivalent to "var v:".

v: If this option appears with no <var> following it, then all variables pertinent to the
current scope are printed.

<var> Symbolic name of the variable to print. Can be a C expression as well.

-np Don't print anything to the display, only return the data.

-s|-ns Specifies whether each value is to be swapped. For memory, specifies whether each
cell is to be swapped. With a setting of -ns, target memory is written in order from
lowest to highest byte address. Otherwise, each cell is endian swapped. If unspecified,
the setting "config MemSwap" is used.

%<conv> Specifies the type of the data. Possible values for <conv> are given below. The default
conversion is set by the radix command for memory and registers and by the config
var command for variables.

%x Hexadecimal.

%d Signed decimal.

%u Unsigned decimal.

%f Floating point.

%[Q<n>]F Fixed or Fractional. The range of a fixed point value depends on the (fixed) location
of the decimal point. The default location is set by the config command option
"MemFixedIntBits".

%s ASCII.

Examples

The following table lists and defines examples of the var command.

Table 88: var Command-line debugger command - Examples

Command Description

var myVar -s %d Displays the endian-swapped contents of variable myVar in decimal.

var myVar =10 Changes the value of variable myVar to 16 (0x10).

4.5.78 wait
Tells the debugger to wait for a specified amount of time, or until you press the space bar.

Syntax

wait <time-ms>

Parameter

time-ms

Number of milliseconds to wait.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 295

Examples

The following table lists and defines examples of the wait command.

Table 89: wait Command-line debugger command - Examples

Command Description

wait Debugger waits until you press the space bar.

wait 2000 Wait for 2 seconds.

4.5.79 watchpoint
Sets, removes, disables, enables or list watchpoints.

You can also set condition on watchpoint.

Syntax

watchpoint

watchpoint [-{r|w|rw}] {<var>|[<ms>:]<addr> <size>}

watchpoint all|#<id>|<var>|[<ms>:]<addr> off|enable|disable

watchpoint #<id> ignore <count>

watchpoint #<id> cond <c-expr>

watchpoint #<id> type -{r|w|rw}

watchpoint #<id> size <units>

Examples

The following table lists and defines examples of the watchpoint command.

Table 90: watchpoint Command-line debugger command - Examples

Command Description

watchpoint Displays all watchpoints.

watchpoint gData Sets read-write (the default) watchpoint on variable gData.

watchpoint -r gData Sets read-only watchpoint on variable gData.

watchpoint all off Removes all watchpoints.

watchpoint #4 disable Disables watchpoint number 4.

watchpoint 10343 4 Sets a watchpoint at memory address 10343 of length 4.

watchpoint #4 ignore 3 Sets ignore count to 3 for watchpoint number 4.

watchpoint #4 cond x == 3 Sets the condition for watchpoint number 4 to fire only if x == 3.

watchpoint #4 type -rw Sets the access type read/write for watchpoint number 4.

watchpoint #4 size 8 Sets the size to 8 units for watchpoint number 4.

Debugger Shell
Debugger Shell commands

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
296 Freescale Semiconductor, Inc.

Chapter 5
Debugger Script Migration
This chapter describes the migration from the Command window of the CodeWarrior Classic IDE to the debugger
shell of the CodeWarrior Eclipse IDE. The Debugger Shell of the CodeWarrior Eclipse IDE uses the same
TclScript scripting engine as the Command Window with some notable exceptions and changes, as follows:

• new command line syntax for launching the CodeWarrior Eclipse IDE

• removal of the build commands

• removal of the display commands, which are replaced by GUI preferences

• improved step command syntax

• new commands for starting a debug session

This chapter explains:

• Command-line syntax on page 297

• Launching debug session on page 297

• Stepping on page 299

• Settings of config command on page 300

5.1 Command-line syntax
You can start the CodeWarrior Eclipse IDE and execute a Debugger Shell script using the command-line
syntax.

For example, execute a Debugger Shell script with a TclScript script as input from the command-line, as shown
in the example below:

D:\SC\eclipse>cwide.exe -vmargsplus -Dcw.script=D:\my_script.tcl

Users familiar with the -vmargs option in the CodeWarrior Eclipse IDE should note that
CodeWarrior will not work properly if -vmargs is used. Use the custom -vmargsplus
option in place of the -vmargs option.

 NOTE

5.2 Launching debug session
The CodeWarrior Eclipse IDE provides debugger commands that can be run in the Debugger Shell.

In the CodeWarrior Classic IDE, you use the project -list command to browse the list of projects to debug and
the debug command to start a debug session. However, in the CodeWarrior Eclipse IDE, you use the following
commands in the Debugger Shell:

• launch: to list the launch configurations

• debug: to start a debug session

• run: to start a process

Debugger Script Migration
Command-line syntax

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 297

Figure 168: launch command

Figure 169: debug and run commands

The debug command in the CodeWarrior Eclipse IDE also replaces the attach and
connect commands, which have been removed in the CodeWarrior Eclipse IDE.

 NOTE

The help launch, help debug, and help run commands display the help details of the respective commands, as
shown in Figure 170. help command on page 299.

Debugger Script Migration
Launching debug session

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
298 Freescale Semiconductor, Inc.

Figure 170: help command

5.3 Stepping
Use stepi and nexti commands at assembly instruction level in CodeWarrior.

In the CodeWarrior Classic IDE, the cmdwin::step command uses the Thread window source view mode to
determine if the step is performed at the assembly instruction level or at the source instruction level. The
CodeWarrior Eclipse IDE does not support the view mode concept. Use the new commands, stepi and
nexti, at the assembly instructional level. The stepi command executes to the next assembly instruction, and
the nexti command executes to the next assembly instruction unless the current instruction is a function call.

In addition, the syntax of the step commands has been redesigned to match the expected behavior. The step
command in the CodeWarrior Classic IDE is used to step over a source line. However, in the CodeWarrior
Eclipse IDE, the step or step in command means ̀ step into', which is used to step into a source line and the next
command means ̀ step over'. The step li command has been removed. A new command, finish has been added
for stepping out of a function.

For backwards compatibility, you can enable the original CodeWarrior Classic IDE
syntax by setting the environment variable, FREESCALE_CMDWIN_CLASSIC_STEP.

 NOTE

Debugger Script Migration
Stepping

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 299

5.4 Settings of config command
This section lists the config command settings that have been removed in the CodeWarrior Eclipse IDE.

The table below shows the config command settings that have been removed in the CodeWarrior Eclipse IDE.

Table 91: config command settings

Command Description

config c Sets the syntax coloring

config o Aborts a script

config page Controls the paging behavior

config s Sets the page size

config project Accesses the build projects

config target Accesses the build targets

The remaining config command settings work the same as in the CodeWarrior Classic IDE.

Debugger Script Migration
Settings of config command

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
300 Freescale Semiconductor, Inc.

Index
A
about 244
About debugger 92
Action Type 140
Active configuration 16
Add flash device 130
Add Flash Programmer Actions 131
Add macro 53
Adding breakpoint action 107
Adding global variables 229
Adding memory monitor 160
Adding memory renderings 162
Adding path mapping to workspace 200
Adding variable location to view 227
Address 143
Address lines 144
alias 244
Apply to Connection 71
Apply to Project 70
Attaching breakpoint actions to breakpoints 108
Auto-completion 241
Automatic Linking with referenced project build artifact 58
Automatic path mappings 195
Automatic project remote system setting cache 72
Automatic removal of unreferenced remote system 71

B
bp 245
Breakpoint actions 105
Breakpoint Actions preferences page 106
Breakpoint annotations 94
Breakpoint Persistence 97
Breakpoint preferences 97
Breakpoints 92
Breakpoints view 93
build 22
Build while debugging 110
Bus noise 144

C
Cache view 111
Cache view pop-up menu 114
Cast to Type 230
cd 246
change 246
Changing program counter value 125
Changing register values 206
Checksum actions 133
Circular build dependencies 59
Clearing watchpoints from Memory view 166

cls 249
cmdwin::ca 249
cmdwin::caln 249
Code hints 241
CodeWarrior debugger settings 116
CodeWarrior IDE advantages 13
CodeWarrior IDE overview 12
CodeWarrior Projects view 16
Column headers 18
Command line interface 21
Command-Line debugger shell 242
Command-line syntax 297
Commander view 27
Concurrent compilation 30
config 250
config settings 300
Configure flash programmer target task 130
Console view 32, 119
copy 254
Core index indicators in homogeneous multicore
environment 118
Create a flash programmer target task 128
Create a Referenced project 55
Creating hardware diagnostics task 139
Creating hardware or simulator connection configuration 62
Creating hardware or simulator target configuration 63
Creating launch group 153
Creating MMU configuration 168
Creating multicore group 185
Creating remote system 59
Creating task for import/export/fill memory 146
Creating TRK target configuration 67
Creating watchpoint 233
Customizing Commander view 29
Customizing Register Details Pane 213
cwide-env file 88

D
Data lines 145
Data MATT page 177
debug 255
Debug perspective 120
Debug view 121
Debugger 91
Debugger Script Migration 297
Debugger Shell 239
Debugger Shell commands 242
Debugging in Instruction Stepping mode 125
Development cycle 12
Diagnostic Information export 33
Diagnostics actions 134

Index

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 301

dir 255
Disabling breakpoints 103
Disabling watchpoint 236
disassemble 256
Disassembly view 125
Disconnecting core 124
display 257
Display of Launch Configurations Needing Migration 75
Documentation formats 11
Documentation structure 11
Dump Flash actions 134
Duplicate action 135

E
Editing multicore group 189
Enabling breakpoints 104
Enabling watchpoint 236
Environment variables in launch configuration 126
Erase/Blank check actions 132
Erasing flash device 138
evaluate 260
Execute flash programmer target task 136
Execute host-based Scope Loop on target 145
Execute target-based Memory Tests on target 146
Export Diagnostic Information 35
Export moacro 53
Exporting memory 164
Exporting memory to file 150
Exporting registers 207
Exporting target or connection configuration 69
Exporting target tasks 225
Extracting CodeWarrior configuration details 39

F
Figure conventions 12
Fill Memory 152
Filtering 20
Find and Open File 41
finish 261
fl::blankcheck 262
fl::checksum 262
fl::device 263
fl::diagnose 264
fl::disconnect 265
fl::dump 265
fl::erase 266
fl::image 266
fl::protect 267
fl::secure 267
fl::target 268
fl::verify 269
fl::write 269
Flash File to Target 137

Flash programmer 127
Fractional variable formats 229
funcs 269

G
General page 173
General settings for Diagnostic Information 33
generateMakefiles 24
getOptions 23
getpid 269
Global preference 217
go 269
Grouping breakpoints 103

H
Hardware diagnostics 139
help 270
history 271

I
IDE Extensions 15
Import example project 45
Import existing project 42
Import Macro 54
Import wizard 42
Import/Export/Fill memory 146
Importing data into memory 148
Importing files 41
Importing memory 165
Importing registers 208
Importing target or connection configuration 70
Importing target tasks 226
Introduction 11

J
jtagclock 271

K
Kernel Awareness 118
Keyboard conventions 12
kill 271

L
launch 272
Launch group 153
Launching debug session 297
Launching launch group 156
Limiting New Breakpoints to Active Debug Context 102
Linker Command File navigation 48
linux::displaylinuxlist 272

Index

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
302 Freescale Semiconductor, Inc.

linux::loadsymbolics 273
linux::refreshmodules 273
linux::selectmodule 273
linux::unloadsymbolics 273
Load multiple binaries 157
loadsym 273
log 274
Loop Speed 141

M
Manipulating variable values 228
Manual conventions 12
Manual path mappings 197
mc::config 274
mc::go 275
mc::group 275
mc::kill 276
mc::reset 276
mc::restart 276
mc::stop 277
mc::type 277
mem 278
Memory Access 141
Memory Browser view 167
Memory Management Unit configurator 168
Memory Mapped Registers(MMR) 212
Memory test use cases 145
Memory Tests 142
Memory view 159
Message alert 89
Migrating launch configurations 78
Migration using Quick Fix 81
Migration using Smart Migration 78
Mixed source rendering 163
MMU Configurator pages 172
MMU configurator toolbar 171
Modify Breakpoint Properties 99
Modifying debugger settings 116
Modifying multicore group 188
Modifying target or connection configuration 68
Modifying watchpoint properties 235
Multicore breakpoint halt groups 192
Multicore debugging 183
Multicore Groups 185
Multicore reset 192
Multicore Restart 184
Multicore Resume 184
Multicore Suspend 183
Multicore Terminate 184
Multiple compiler support 50

N
New External File 51

next 280
nexti 280

O
Offline Register Details view

Loading register dump file 212
On demand reset 195
One Frame mode 216
oneframe 280
Opening Cache view 112
Opening Memory view 160
Opening MMU Configurator view 182
Opening Registers view 206
Opening the System Browser view 220
Opening Variables view 227
OS application 119

P
Path mappings 195
Pinning Commander view 30
Preserving sorting 113
Problems view 54
Program MATT page 174
Program/Verify actions 132
Programming file 138
Protect/Unprotect actions 135
pwd 281

Q
Quick search 19
quitIDE 281

R
radix 281
redirect 282
Redo delete breakpoint 105
Referenced projects 55, 57
references 24
refresh 283
Refreshing Data During Runtime 203
reg 283
Register Details view 209
Registers view 204
Regular breakpoints 94
Release notes 11
Remote launch 214
Remote Launch view 215
Remote System Changed dialog 74
Remote System Missing 73
Remote system project cache preferences 73
Remote Systems view 68
Remove action 136

Index

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
Freescale Semiconductor, Inc. 303

Remove all watchpoints 237
Remove watchpoint 237
Removing All Breakpoints 104
Removing breakpoints 104
reset 286
restart 286
Restarting debugger 124
restore 287
Restricting breakpoints to selected targets and threads 101
Resuming program execution 124
Reverting debugger settings 117
run 288
Running program 124

S
save 288
Saving generated assembly code 181
Saving generated C code 180
Saving generated TCL script 181
Saving MMU configurator generated code 180
Saving MMU Configurator settings 171
Secure/Unsecure actions 135
Selecting breakpoint template 109
Selecting target initialization file 223
setOptions 25
setpc 289
setpicloadaddr 290
Setting line breakpoint 95
Setting memory access size 164
Setting method breakpoint 95
Setting special breakpoint 96
Setting watchpoint 232
Setting watchpoint in Memory view 166
Shortcut menus 32
Skipping all breakpoints 105
Special breakpoints 96
Specify target RAM settings 130
stack 290
Stack crawls 216
Standard output streams 201
Starting debugger 123
status 291
step 291
stepi 292
Stepping 299
Stepping into routine call 123
Stepping Out of Routine Call 123
Stepping over routine call 123
stop 292
Stopping debugger at program entry point 117
Stopping program execution 124
switchtarget 293
Symbolics 219
system 294

System Browser view 118, 220

T
Target connection lost 222
Target initialization files 223
Target management via Remote System Explorer 59
Target Tasks view 225
Tree and List View 17

U
Undo delete breakpoint 104
updateWorkspace 27
Using Multicore Group Debugging Commands 191

V
var 294
Variables 226
Viewing binaries 158
Viewing CodeWarrior plug-ins 85
Viewing register details offline 210
Viewing registers 206
Viewing watchpoint properties 234

W
wait 295
Walking Ones 143
watchpoint 296
Watchpoints 231
Working with breakpoints 99
Working with Hardware Diagnostic Action editor 140

Index

CodeWarrior Development Studio Common Features Guide, Rev. 10.x, 01/2016
304 Freescale Semiconductor, Inc.

How To Reach Us
Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system
and software implementers to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information
in this document. Freescale reserves the right to make changes
without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that
may be provided in Freescale data sheets and/or specifications can
and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical
experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &
Tm. Off. All other product or service names are the property of
their respective owners. The Power Architecture and Power.org
word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.
© 2008–2016 Freescale Semiconductor, Inc. All rights reserved.

CWCFUG
Rev. 10.x

01/2016

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Release notes
	1.2 Documentation structure
	1.2.1 Documentation formats

	1.3 Manual conventions
	1.3.1 Figure conventions
	1.3.2 Keyboard conventions

	1.4 CodeWarrior IDE overview
	1.4.1 Development cycle
	1.4.2 CodeWarrior IDE advantages

	2 IDE Extensions
	2.1 CodeWarrior Projects view
	2.1.1 Active configuration
	2.1.2 Tree and list view
	2.1.3 Column headers
	2.1.4 Quick search
	2.1.5 Filtering

	2.2 Command line interface
	2.2.1 build
	2.2.2 getOptions
	2.2.3 generateMakefiles
	2.2.4 references
	2.2.5 setOptions
	2.2.6 updateWorkspace

	2.3 Commander view
	2.3.1 Customizing Commander view
	2.3.2 Pinning Commander view

	2.4 Concurrent compilation
	2.5 Console view
	2.6 Shortcut menus
	2.7 Diagnostic Information export
	2.7.1 General settings for Diagnostic Information
	2.7.2 Export Diagnostic Information

	2.8 Extracting CodeWarrior configuration details
	2.9 Find and Open File
	2.10 Importing files
	2.10.1 CodeWarrior drag and drop support
	2.10.2 Using Import wizard
	2.10.2.1 Import existing project
	2.10.2.2 Import example project

	2.11 Key mappings
	2.12 Linker Command File navigation
	2.13 Multiple compiler support
	2.14 New External File
	2.15 Exporting and importing macros
	2.15.1 Add macro to a project
	2.15.2 Export macros for a project
	2.15.3 Import macros into a new project

	2.16 Problems view
	2.17 Referenced projects
	2.17.1 Create Referenced project
	2.17.2 Displaying referenced projects in CodeWarrior Projects view
	2.17.3 Automatic linking with referenced project build artifact
	2.17.4 Circular build dependencies

	2.18 Target management via Remote System Explorer
	2.18.1 Creating remote system
	2.18.2 Creating hardware or simulator connection configuration
	2.18.3 Creating hardware or simulator target configuration
	2.18.4 Creating TRK target configuration
	2.18.5 Remote Systems view
	2.18.5.1 Modifying target or connection configuration
	2.18.5.2 Exporting target or connection configuration
	2.18.5.3 Importing target or connection configuration
	2.18.5.4 Apply to Project
	2.18.5.5 Apply to Connection
	2.18.5.6 Automatic removal of unreferenced remote system

	2.18.6 Automatic project remote system setting cache
	2.18.6.1 Remote System Missing
	Remote system project cache preferences

	2.18.6.2 Remote System Changed dialog

	2.18.7 Compatibility with older products
	2.18.7.1 Display of launch configurations needing migration
	2.18.7.2 Migrating launch configurations
	Migration using Smart Migration
	Migration using Quick Fix

	2.19 Viewing CodeWarrior plug-ins
	2.20 Editing cwide-env file
	2.21 Handling message alerts

	3 Debugger
	3.1 About debugger
	3.2 Breakpoints
	3.2.1 Breakpoints view
	3.2.2 Breakpoint annotations
	3.2.3 Regular breakpoints
	3.2.3.1 Setting line breakpoint
	3.2.3.2 Setting method breakpoint

	3.2.4 Special breakpoints
	3.2.4.1 Setting special breakpoint using IDE

	3.2.5 Breakpoint persistence
	3.2.6 Breakpoint preferences
	3.2.7 Working with breakpoints
	3.2.7.1 Modify breakpoint properties
	3.2.7.2 Restricting breakpoints to selected targets and threads
	3.2.7.3 Limiting new breakpoints to active debug context
	3.2.7.4 Grouping breakpoints
	3.2.7.5 Disabling breakpoints
	3.2.7.6 Enabling breakpoints
	3.2.7.7 Removing breakpoints
	3.2.7.8 Removing all breakpoints
	3.2.7.9 Undo delete breakpoint
	3.2.7.10 Redo delete breakpoint
	3.2.7.11 Skipping all breakpoints

	3.2.8 Breakpoint actions
	3.2.8.1 Breakpoint Actions preferences page
	3.2.8.2 Adding breakpoint action
	3.2.8.3 Attaching breakpoint actions to breakpoints

	3.2.9 Selecting breakpoint template

	3.3 Build while debugging
	3.4 Cache view
	3.4.1 Opening Cache view
	3.4.2 Preserving sorting
	3.4.3 Cache view pop-up menu

	3.5 CodeWarrior debugger settings
	3.5.1 Modifying debugger settings
	3.5.2 Reverting debugger settings
	3.5.3 Stopping debugger at program entry point

	3.6 Core index indicators in homogeneous multicore environment
	3.6.1 System Browser view
	3.6.1.1 Kernel Awareness
	3.6.1.2 OS application

	3.6.2 Console View

	3.7 Debug perspective
	3.8 Debug view
	3.8.1 Common debugging actions
	3.8.1.1 Starting debugger
	3.8.1.2 Stepping into routine call
	3.8.1.3 Stepping out of routine call
	3.8.1.4 Stepping over routine call
	3.8.1.5 Stopping program execution
	3.8.1.6 Resuming program execution
	3.8.1.7 Running program
	3.8.1.8 Disconnecting core
	3.8.1.9 Restarting debugger
	3.8.1.10 Debugging in Instruction Stepping mode
	3.8.1.11 Changing program counter value

	3.9 Disassembly view
	3.10 Environment variables in launch configuration
	3.11 Flash programmer
	3.11.1 Create a flash programmer target task
	3.11.2 Configure flash programmer target task
	3.11.2.1 Add flash device
	3.11.2.2 Specify target RAM settings
	3.11.2.3 Add flash programmer actions
	Erase/Blank check actions
	Program/Verify actions
	Checksum actions
	Diagnostics actions
	Dump Flash actions
	Protect/Unprotect actions
	Secure/Unsecure actions
	Duplicate action
	Remove action

	3.11.3 Execute flash programmer target task

	3.12 Flash File to Target
	3.12.1 Erasing flash device
	3.12.2 Programming a file

	3.13 Hardware diagnostics
	3.13.1 Creating hardware diagnostics task
	3.13.2 Working with Hardware Diagnostic Action editor
	3.13.2.1 Action Type
	3.13.2.2 Memory Access
	3.13.2.3 Loop Speed
	3.13.2.4 Memory Tests
	Walking Ones
	Address
	Bus noise
	Address lines
	Data lines

	3.13.3 Memory test use cases
	3.13.3.1 Use Case 1: Execute host-based Scope Loop on target
	3.13.3.2 Use Case 2: Execute target-based Memory Tests on target

	3.14 Import/Export/Fill memory
	3.14.1 Creating task for import/export/fill memory
	3.14.2 Importing data into memory
	3.14.3 Exporting memory to file
	3.14.4 Fill memory

	3.15 Launch group
	3.15.1 Creating launch group
	3.15.2 Launching launch group

	3.16 Load multiple binaries
	3.16.1 Viewing binaries

	3.17 Memory view
	3.17.1 Opening Memory view
	3.17.2 Adding memory monitor
	3.17.3 Adding memory renderings
	3.17.4 Mixed source rendering
	3.17.5 Setting memory access size
	3.17.6 Exporting memory
	3.17.7 Importing memory
	3.17.8 Setting watchpoint in Memory view
	3.17.9 Clearing watchpoints from Memory view

	3.18 Memory Browser view
	3.19 Memory Management Unit configurator
	3.19.1 Creating MMU configuration
	3.19.2 Saving MMU Configurator settings
	3.19.3 MMU Configurator toolbar
	3.19.4 MMU Configurator pages
	3.19.4.1 General page
	3.19.4.2 Program MATT page
	3.19.4.3 Data MATT page
	3.19.4.4 Saving MMU configurator generated code
	Saving generated C code
	Saving generated assembly code
	Saving generated TCL script

	3.19.5 Opening MMU Configurator view

	3.20 Multicore debugging
	3.20.1 Multicore Suspend
	3.20.2 Multicore Resume
	3.20.3 Multicore Terminate
	3.20.4 Multicore Restart

	3.21 Multicore Groups
	3.21.1 Creating multicore group
	3.21.2 Modifying multicore group
	3.21.3 Editing multicore group
	3.21.4 Using multicore group debugging commands
	3.21.5 Multicore breakpoint halt groups

	3.22 Multicore reset
	3.22.1 On demand reset

	3.23 Path mappings
	3.23.1 Automatic path mappings
	3.23.2 Manual path mappings
	3.23.2.1 Adding path mapping to workspace

	3.24 Redirecting standard output streams to socket
	3.25 Refreshing data during runtime
	3.26 Registers view
	3.26.1 Opening Registers view
	3.26.2 Viewing registers
	3.26.3 Changing register values
	3.26.4 Exporting registers
	3.26.5 Importing registers
	3.26.6 Changing register data display format

	3.27 Register Details view
	3.27.1 Viewing register details offline
	3.27.2 Loading register dump file in offline Register Details view
	3.27.3 Customizing Register Details pane

	3.28 Remote launch
	3.28.1 Remote Launch view

	3.29 Stack crawls
	3.29.1 One Frame mode
	3.29.2 Global preference

	3.30 Symbolics
	3.31 System Browser view
	3.31.1 Opening System Browser view

	3.32 Target connection lost
	3.33 Target initialization files
	3.33.1 Selecting target initialization file

	3.34 Target Tasks view
	3.34.1 Exporting target tasks
	3.34.2 Importing target tasks

	3.35 Variables
	3.35.1 Opening Variables view
	3.35.2 Adding variable location to view
	3.35.3 Manipulating variable values
	3.35.3.1 Fractional variable formats

	3.35.4 Adding global variables
	3.35.5 Cast to Type

	3.36 Watchpoints
	3.36.1 Setting watchpoint
	3.36.2 Creating watchpoint
	3.36.3 Viewing watchpoint properties
	3.36.4 Modifying watchpoint properties
	3.36.5 Disabling watchpoint
	3.36.6 Enabling watchpoint
	3.36.7 Remove watchpoint
	3.36.8 Remove all watchpoints

	4 Debugger Shell
	4.1 Executing previously issued commands
	4.2 Using code hints
	4.3 Using auto-completion
	4.4 Command-line debugger shell
	4.5 Debugger Shell commands
	4.5.1 about
	4.5.2 alias
	4.5.3 bp
	4.5.4 cd
	4.5.5 change
	4.5.6 cls
	4.5.7 cmdwin::ca
	4.5.8 cmdwin::caln
	4.5.9 config
	4.5.10 copy
	4.5.11 debug
	4.5.12 dir
	4.5.13 disassemble
	4.5.14 display
	4.5.15 evaluate
	4.5.16 finish
	4.5.17 fl::blankcheck
	4.5.18 fl::checksum
	4.5.19 fl::device
	4.5.20 fl::diagnose
	4.5.21 fl::disconnect
	4.5.22 fl::dump
	4.5.23 fl::erase
	4.5.24 fl::image
	4.5.25 fl::protect
	4.5.26 fl::secure
	4.5.27 fl::target
	4.5.28 fl::verify
	4.5.29 fl::write
	4.5.30 funcs
	4.5.31 getpid
	4.5.32 go
	4.5.33 help
	4.5.34 history
	4.5.35 jtagclock
	4.5.36 kill
	4.5.37 launch
	4.5.38 linux::displaylinuxlist
	4.5.39 linux::loadsymbolics
	4.5.40 linux::refreshmodules
	4.5.41 linux::selectmodule
	4.5.42 linux::unloadsymbolics
	4.5.43 loadsym
	4.5.44 log
	4.5.45 mc::config
	4.5.46 mc::go
	4.5.47 mc::group
	4.5.48 mc::kill
	4.5.49 mc::reset
	4.5.50 mc::restart
	4.5.51 mc::stop
	4.5.52 mc::type
	4.5.53 mem
	4.5.54 next
	4.5.55 nexti
	4.5.56 oneframe
	4.5.57 pwd
	4.5.58 quitIDE
	4.5.59 radix
	4.5.60 redirect
	4.5.61 refresh
	4.5.62 reg
	4.5.63 reset
	4.5.64 restart
	4.5.65 restore
	4.5.66 run
	4.5.67 save
	4.5.68 setpc
	4.5.69 setpicloadaddr
	4.5.70 stack
	4.5.71 status
	4.5.72 step
	4.5.73 stepi
	4.5.74 stop
	4.5.75 switchtarget
	4.5.76 system
	4.5.77 var
	4.5.78 wait
	4.5.79 watchpoint

	5 Debugger Script Migration
	5.1 Command-line syntax
	5.2 Launching debug session
	5.3 Stepping
	5.4 Settings of config command

	Index

