
Freescale Semiconductor
Application Note

Document Number: AN3031
Rev. 1, 04/2010

Contents

Introduction . 1

Basic Temperature Sensor Reading 2
2.1 Using Typical Parameters Provided by the
Data Sheet . 3

Optimizing the Temperature Sensor 5
3.1 Calibration: . 5
3.2 Bold Digital Filtering. 6

Processor Expert Floating-Point Implementation 6
4.1 Averaging ADC Readings . 7
4.2 Using the Approximate Transfer Function 8

Fixed-Point Approximation . 8
5.1 Calculating VDD . 8
5.2 Fixed-Pointed Calculations 13
5.3 Initialization Flowcharts . 15

Temperature Sensor for the
HCS08 Microcontroller Family
by: Donnie Garcia

MCD Applications, Austin, Texas
Rafael Peralez
RTAC Americas, Guadalajara, Mexico
1 Introduction
This document explains how to use the temperature
sensor available in the analog-to-digital converter
(S08ADCV1) peripheral of the HCS08 family of
devices. Devices in this family use the high performance
HCS08 core and are ideal for a range of applications such
as:

• Small appliances
• Security systems
• Handheld devices
• Control systems

This document provides information on how to perform
a basic temperature reading, shows example code that
demonstrates a temperature reading, and examines
methods for optimizing the accuracy of this temperature
sensor.

1

2

3

4

5

© Freescale Semiconductor, Inc., 2006, 2010. All rights reserved.

Basic Temperature Sensor Reading
The outstanding HCS08 ADC peripheral contains numerous features:
• Linear successive approximation algorithm with 10-bit resolution
• Up to 28 analog inputs
• Output formatted in 10- or 8-bit right-justified format
• Single or continuous conversion (automatic return to idle after single conversion)
• Configurable sample time and conversion speed/power
• Conversion complete flag and interrupt
• Input clock selectable from up to four sources
• Operation in wait or stop modes for lower noise operation
• Asynchronous clock source for lower noise operation
• Selectable asynchronous hardware conversion trigger
• Automatic compare with interrupt for less-than, greater-than, or equal-to programmable value

The automatic compare with interrupt and operation in low-power modes features add unique functionality
to this ADC peripheral. ADC also contains an on-chip temperature sensor connected to one of the ADC
channel inputs. This allows the MCU to monitor the board temperature and take action such as:

• Enter a low power mode to reduce excess battery drain at high temperatures
• Adjust calibration tables for temperature dependant sensors
• Shut down system loading to prevent damage to mechanical components

2 Basic Temperature Sensor Reading
The SO8ADC module has a P-N transistor junction with temperature dependent properties acting as an
embedded temperature sensor. The voltage across this junction rises or lowers with temperature allowing
silicon to act as a temperature sensor. Figure 1 shows the typical ADC readings of the temperature sensor
output across a range of temperatures.
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor2

Basic Temperature Sensor Reading
Figure 1. Typical ADC Temperature Readings

The graph shows that the temperature sensor output is linear and dependant on VDD. The temperature
sensor output voltage is highest at cold temperatures and lowest at hot temperatures. For VDD = 3 V, the
readings range from 277d at –40°C down to 176d at 130°C. An approximate transfer function
demonstrated in the following sections represents this behavior.

The temperature sensor reading most accurately represents the temperature of the die and, due to
proximity, the leads and the PCB board connected to it. For many applications, the desired temperature
may differ from the die’s temperature. For example, the die temperature can differ from the temperature
of a room’s air flow. Using calibration methods can make approximations of this delta.

Some conditions will require special considerations, such as if the PCB board and the parameter that the
application measures have different temperatures. These scenarios have many different solutions. Resolve
this scenario by thermally connecting the IC to the target with epoxy or placing the IC as near as possible
to the monitored element.

Calibration aids in modifying the issue of temperature offset. Correct calibration will ensure that the target
element’s temperature, as opposed to the die, will correlate to the resulting temperature sensor voltage
readings. In this way, you can understand and account for the offset due to location. The following sections
further discuss calibration benefits.

2.1 Using Typical Parameters Provided by the Data Sheet
Use the typical parameters provided by the HCS08 data sheet to perform a temperature reading. An
approximate transfer function describes the temperature sensor.

1.9 V
2.4 V
3.0 V
3.6 V

500

450

400

350

300

250

200

150

100

50

0
–60 –40 –20 0 20 40 60 80 100 120 140

Temp (Degrees C)

A
D

C
 (

D
ec

im
al

)

Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 3

Basic Temperature Sensor Reading
Eqn. 1

Where:
VTEMP is the voltage of the temperature sensor channel at the ambient temperature
VTEMP25 is the voltage of the temperature sensor channel at 25°C and VDD = 3 V
m is the hot or cold voltage versus temperature slope in V/°C

The parameter m is different for the hot or the cold slope of the equation.
• Hot slope parameter m applies to readings greater than 25°C
• Cold slope parameter m applies to readings less than 25°C

In the electrical characteristics section of some data sheets, typical parameters are provided for VTEMP25
and m (both hot and cold slope). These parameters perform a temperature reading according to the
flowchart shown in Figure 2. For this example, parameters from the MC9S08QG8 data sheet were used.

Figure 2. Temperature Reading Flowchart

As shown in this implementation, software initializes the ADC; next, an ADC reading of the temperature
sensor is completed. Based on this reading, a decision is made to use the cold or the hot slope parameter.
Finally, the calculation is performed.

Floating-point math facilitates the temperature calculations. The software files accompanying this
application note show both a floating point and a non-floating point implementation of this flowchart using
C code. Both implementations have benefits and drawbacks.

Temp 25
VTEMP VTEMP25–

m
---⎝ ⎠
⎛ ⎞–=

Initialize

m = 1.646 m = 1.769

Calculate

Yes No

Cold Slope Hot Slope

Temp 25
VTEMP VTEMP25–

m
---⎝ ⎠
⎛ ⎞–=

VTEMP VTEMP25≥

?

Is
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor4

Optimizing the Temperature Sensor
3 Optimizing the Temperature Sensor
You can receive the most accuracy from the temperature sensor in many ways.

1. Analog-to-digital Configuration
Configure the analog-to-digital for long sample time and a maximum of 1MHz ADC CLK. Use
a MCU low power mode to do an analog-to-digital reading. Wait or preferably stop mode
reduces the effect of internal MCU noise on the temperature sensor reading.

2. Averaging ADC readings as demonstrated in the Processor Expert example.
Averaging is the most basic of digital filtering techniques and can reduce the effect system
noise on ADC readings. This smooths the temperature sensor input and increases the effective
resolution of the analog-to-digital converter.

3. Determine a current reading of VDD by using the bandgap voltage to calculate VDD.
Using a current value of VDD more accurately represents VTEMP25 and VTEMP. This leads to a
better result for the approximate transfer function.

4. A floating-point implementation results in more accurate math when using the approximate
transfer function if you can spare the code space.

3.1 Calibration
Along with the methods listed, there are other ways to improve accuracy. Ideally, the final application
would use the data shown in Figure 1. You could store this data in the MCU as a look-up table. With this
method, each ADC reading of the temperature sensor would correlate to a temperature. For example, the
data in the graph shows that at 3 V and 0°C the ADC will read 254d. At a constant voltage, you can use
the data shown in the graph to get the best temperature accuracy. Unfortunately, this method requires a
great deal of effort. You will have to correlate the final application at many temperatures, and this takes
time. Also, each of the test points must reside in code space. Although this calibration results in the best
results, it is very costly.

A very suitable alternative is to calibrate at a smaller sample of test points. Calibrating at 25°C results in
a typical temp sensor Accuracy of ±4.5°C. This method involves determining the VTEMP25 parameter from
the approximate transfer function (Equation 1) and using this parameter in the temperature calculation.
The unit that created the data from Figure 1 VTEMP25 (3 V) is 0.703125V. Using this parameter as VTEMP25
results in more accurate temperature readings.

Calibrating at three points, –40, 25, and 105°C results in a typical temp sensor accuracy of ±2.5°C. This
method requires that you calculate the cold and hot slope (m) for the approximate transfer function. Use
the data from Graph 1 to solve for m(hot) and m(cold) as shown here:

m cold()
VTEMP40 VTEMP25–()–

40–() 25–
--= m cold() 0.001668=

m hot()
VTEMP105 VTEMP25–()

105 25–
---= m hot() 0.001758=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 5

Processor Expert Floating-Point Implementation
These calculated parameters differ slightly from the typical parameters provided by the data sheet and
result in a more accurate temperature sensor reading.

3.2 Digital Filtering
The handling of the ADC readings generated by the temperature sensor is a very important part of
generating an accurate temperature reading. In the calibration methods discussed, the calculated VTEMP
readings are dependant on the ADC readings. Along with averaging, you can apply other digital filtering
methods to the ADC readings to make improvements to the data sample. Implement a simple software
filter to reduce the affect of jumpy ADC readings. Use a digital filter to apply weighting to each of the
temp sensor readings. For example, divide each reading by two and add the previous output divided by 2
to make the current output. The result would be a weighted average that places equal weight on the present
reading and the contributions of all the previous readings. In pseudo C code, this is implemented using
shifts to do the divides:

Sharp change in temperature sensor readings smooths with this method. Using digital filtering reduces the
impact of erroneous temperature readings. This is one implementation of a digital filter. In other
implementations, you can change the parameters to set the weight of the current reading to a different
value.

Additional software could look for erroneous temperature sensor ADC readings. If previous readings
differ greatly from the current reading, you could ignore the current reading as bad data.

4 Processor Expert Floating-Point Implementation
This implementation demonstrates a quick and straightforward process to determine a temperature
reading. For this example, the DEMOQG8 board and Processor Expert complete a temperature reading.
The CodeWarrior project, QG8_Floating-Point_Temp, demonstrates this implementation. When using the
method from QG8_Floating-Point_Temp code example, the expected accuracy of the temperature sensor
is typically ±8°C. In this example, use Processor Expert to initialize and complete the ADC reading for
this project. Figure 3 shows the ADC bean parameters.

Output Current_Reading 1» Output 1»+=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor6

Processor Expert Floating-Point Implementation
Figure 3. ADC Bean Parameters

The Bean Inspector view displays the ADC configuration necessary to perform a temperature reading. The
bean allows the Temp Sensor to be selected as one of the channels. Processor Expert initializes the ADC
for long sample time and 10 bits of resolution. The selected conversion time configures an ADC input
clock of 1 MHz or lower. As shown in Figure 3, select the asynchronous clock as the source clock input
to the ADC and the longest conversion time, 46 μs. This configuration sets an ADCCLK prescaler of 8,
creating an ADCCLK below 1 MHz. Later, we will discuss the importance for generating an accurate
reading from the temperature sensor with these parameters.

4.1 Averaging ADC Readings
The Processor Expert ADC Bean easily allows for the averaging of analog conversions. As shown in
Figure 3, selecting the number of conversions enables averaging. For this example, we set 64 conversions.
Averaging is an excellent way to filter some of the errors involved in using the ADC. The averaging of
ADC readings can filter noise caused by external system activity. Averaging results in a steady reading that
more accurately represents the temperature. The most basic digital filtering done on the temperature sensor
readings involves averaging results.
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 7

Fixed-Point Approximation
4.2 Using the Approximate Transfer Function
In the Processor Expert Basic_Temp example code, floating-point math is enabled. This allows you to
perform the mathematical equations shown in the C code below. This code represents the previous
flowchart (see Figure 2).

Vtemp = Vtemp * 0.0029296875 ; //Convert the ADC reading into voltage
if (Vtemp => .7012){ ; //Check for Hot or Cold Slope

Temp1 = 25 – ((Vtemp – .7012)/.001646) ; //Cold Slope)
}else {

Temp1 = 25 – ((Vtemp–.7012)/.001749) ; //Hot Slope)

In this floating-point implementation, the compiler uses 32-bit IEEE floating-point support selected during
the creation of this project. The generated assembly code manages the floating-point math necessary to
perform the computations. Files created with the project provide all of the subroutines for floating-point
computations. Using the floating-point support provided by CodeWarrior simplifies the use of the
approximate transfer function.

5 Fixed-Point Approximation
Use a fixed-point method to reduce code size with a small degradation in accuracy. The following example
explains how to use a fixed-point method to create a temperature reading. See the example provided in the
Fixed_Point_Basic_Temp folder associated with this application note.

When using fixed-point operations, keep in mind the precision used for all the operations. A number can
represent different things for our application; for instance, the number 1000 in our application can mean
100.0, 10.00, 1.000, 0.1000, or even smaller numbers. At every step of our application, we decide the
precision used for each number, so we know where the decimal point is for the variables.

Remember the important step of adding comments to each operation to simplify the understanding of what
we do, for either us or other people that can use our code. The amount of code size and execution speed
saved in these implementations is significant. This allows this implementation to help give a much better
performance of a design working with an 8-bit machine.

5.1 Calculating VDD

As described previously, you used this equation to complete a temperature reading:

The value of VTEMP25 given in the data sheet is also the typical value calculated for VDD = 3 V. If the
system voltage can vary or it is not set to 3 V, then one important step in calculating temperature is
determining the value of VDD. Determine the value of VTEMP25 by using the value of VDD.

Temp 25
VTEMP VTEMP25–

m
--⎝ ⎠
⎛ ⎞–=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor8

Fixed-Point Approximation
Knowing that the value of VDD equals the maximum return value for the ATD, with a 10-bit resolution
ATD conversion like the one possibly used for the MC9S08QG8, 0x3FF hexadecimal (1023 decimal) will
represent the VDD. We can easily determine the value of the supply voltage with the following equations:

Eqn. 2

Where:
• ADCRBG results from the ATD conversion of the Bandgap channel stored in the ADC result

register.
• ADCRVDD is the analog to digital conversion of VDD.

Because we can make a conversion for the Bandgap channel and get a value for ADCRBG, we can solve
with the following expression with a one-variable equation:

Eqn. 3

We can determine the precision needed here because we want a fixed-point representation of the value.
The floating-point variables represent a value in a predefined format by an IEEE standard where we have
a sign bit, eight bits for the exponent and 23 bits for the fraction, but at the end is a 32 bit (or 64 bit) variable
with a special interpretation. The standard was intended to represent values from ±2-126 to (2-2-23) × 2127
(approximately from 10-44.85 to 1038.53) when using 32-bit format. However, our application has a very
limited range of possible values (and many of the applications we see in embedded systems are the same).
In cases like this application note, we can choose the way to represent the value in a fixed-point way that
helps the MCU to perform all the operations in an easier, smaller, and faster way by having a couple of
digits after the decimal point for most of the operations and in each of the operations.

The first approach has a representation of the supply voltage with one value after the decimal point with
the intention of adding precision to the final result. The easiest way is to have the original value multiplied
times 10. From Equation 3, we can tell that:

VDD 1023 ADCRVDD
= =

VBG 1.2volts ADCRBG= =

VDD
VBG

ADCRVDD
ADCRBG

----------------------------=

VDD

ADCRVDD
VBG×

ADCRBG
--=

VDD
1023 1.2volts×

ADCRBG
---------------------------------------=

VDD 10× 1023 1.2×()
ADCRBG

------------------------------ 10×=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 9

Fixed-Point Approximation
The value of 1023 × 1.2 × 10 will always stay fixed; this code’s operation will be something like:

Eqn. 4

The division then performs with 16-bit fixed-point operations that are much cheaper and faster than
floating-point operations. This gives a fixed-point result with one decimal value interpretation and the rest
as the integer part. For instance, for a conversion value of ADCRBG = 409 we have the following result:

In the code, VDD will have a calculated value of 30, and we know that the interpretation for that value is
one integer and one decimal value (3.0 in our case). The same kind of equations can lead to calculate a
representation of in an equivalent ADC conversion value and use it directly in the original equation. It is
possible to make the conversion in the other way where the result from the Temperature Channel would
convert to a voltage value and then perform the operation. They have similar steps in either case. At the
beginning of the execution, we can calculate all the values needed for the conversion. In addition, every
time a new conversion finishes after this, it will perform the conversion to a temperature value faster. In
the software files, the equations meant to determine the ATD conversion value for 0.7012 volts (which is
the typical VTEMP25). To simplify the writing of further expressions we will use:

Because the example uses everything in values equivalent to ATD conversion values, we have to find a
representation of VTEMP25. Knowing the value of VDD from the previous equations, we can tell that:

Replacing VDD with (10 × VDD, the value in our code) and replacing with the typical values, we have the
following equation:

VDDCODE
12276

ADCRBG
-------------------------=

VDD 10× 1023 1.2×
ADCRBG
------------------------- 10× 12276

409
--------------- 30= = =

VDD
30.0
10

---------- 3.00 volts = =

VDDCONV
10 VDD×=

VDD

VTEMP25

ADCRVDD

ADCRTEMP25
--------------------------------------=

ADCRTEMP25

ADCRVDD
VTEMP25×

VDD
--=

ADCRTEMP25

ADCRVDD
VTEMP25 10××

VDDCONV

--=

ADCRTEMP25
1023 0.7012 10××

VDDCONV

--=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor10

Fixed-Point Approximation
Again, the divided value is fixed and the code with the result of the operation (approximately 7173)
replaces it. For the previous example where VDD = 3 V and replacing VDD with VDDCONV = 30, we have:

Eqn. 5

The equivalency between VTEMP25 and its conversion to a digital value as ADCRTEMP25 helps make a direct
subtraction between the result of the Temperature Sensor channel conversion and ADCRTEMP25. From the
original equation, we need a useful value for m to perform the operations directly with fixed-point.
Because of the precision used for each of the operations and the small value of m, (either 1.769 or 1.646
millivolts) we need to have a big multiplier.

If we perform the operations without any multiplier, we will have:

Eqn. 6

However, if we keep these values, we will see a smaller result of the multiplication than the minor value
allowed for VDD. This means that a fixed-point approximation is impossible if we do not multiply for a
fixed value to make the previous division possible. Because of the small value, we multiply everything by
100(or 10 or 1,000 because the idea is to use a value that helps to improve the precision with 16-bit
operations). The result will be:

Eqn. 7

ADCRTEMP25
7173

VDDCONV

------------------------=

ADCRTEMP25
7173
30

------------=

ADCRTEMP25 239≈

VDD

m

ADCRVDD

ADCRm
---------------------------=

ADCRm
ADCRVDD

m×

VDD

ADCRVDD
m× 10×

VDDCONV

--= =

ADCRm
1023 0.001646× 10×

VDDCONV

---=

ADCR100m
ADCRVDD

m× 100×

VDD

ADCRVDD
m× 10× 100×

VDDCONV

---= =

ADCR100m
1023 0.001646× 10× 100×

VDDCONV

-- 1684
VDDCONV

-------------------- 40°C– Temp 25°C< <↔≈=

ADCR100m
1023 0.001769× 10× 100×

VDDCONV

-- 1810
VDDCONV

-------------------- 25°C Temp 85°C< <↔≈=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 11

Fixed-Point Approximation
After this point, we have a representation of each of the values needed for the conversion. In order to know
where the decimal point for our operations lies, recall if those values were previously multiplied:

Where ADCRT = analog to digital conversion of the Temperature sensor channel

If we replace ADCRm with ADCR100m (100 × ADCRm), we have to multiply all the expression times 100
to keep the same units. If we do that, we will have the following result:

Eqn. 8

Here is a full example using all the previous equations in the way possibly written into the code. The only
value we have is the Bandgap conversion which is 380. Calculate the value of the supply voltage as the
first step. Knowing that the Bandgap voltage is typically 1.2 volts, we can say that:

From Equation 4, we have;

CalcVDD = 12276/ADCR;

CalcVDD = 32; /* we know that this means 3.2 volts */

After this, we have to determine the value of ADCRTemp25. From Equation 5, we have that

ADCRTemp25 = 7173/CalcVDD;

ADCRTemp25 = 224/* this value is the direct equivalency to its ATD conversion in our system*/

As the final step, calculate the two possible used temperature slopes. From Equation 7,

TempSlopeCold = 1684/CalcVDD;

TempSlopeCold = 52/* this value is times 100*/

TempSlopeHigh = 1810/CalcVDD;

TempSlopeHigh = 56/* this value is times 100 */

Temp 25 Temp Temp25–
m

--–=

Temp 25
ADCRT ADCRTEMP25–

ADCRm
--–=

Temp 25
ADCRT ADCRTEMP25–

ADCR100m
--
⎝ ⎠
⎜ ⎟
⎛ ⎞

100×–=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor12

Fixed-Point Approximation
Calculate all these values at the start of the code. After this, we only need to make the conversion of the
Temperature Sensor channel in the MC9S08QG8 and then apply it to the formula. For two values in the
conversion, ADCR = 235 and ADCR = 210 we will have the following results:

In this example, we see that the result with fixed-point and floating-point is almost the same. Because we
determine the precision in each operation, we can make it with determine positions for each operation and
can establish the accuracy of the result. The good thing about this implementation is the smaller code size
and a faster execution time because everything uses fixed-point and has 16-bit operations.

The bandgap channel (channel 27 of the ADC peripheral in the MC9S08QG8) has a typical value of 1.2 V.
We can start an ADC conversion for the bandgap channel and use the result (ADCR) in Equation 9 to
determine the value of VDD.

Eqn. 9

5.2 Fixed-Point Calculations
To use fixed point, multiply VDD (calculated in Equation 9) by 10. Knowing the supply voltage value
(CalcVDD), make an equivalency of the value of VTEMP25 (VADCTEMP25). Using this method, you can also
calculate the value to use for slope (m). See Equation 10.

Temp 25 235 224–() 100×
52

--–=

Floating-point Equation

Example 1:

Fixed-point Equation

Temp 25 20–=

Temp 5°C=

VTEMP 235 0.003125× 0.7343= =

Temp 25 0.7343 0.7012–
0.001646

---------------------------------------–=

Temp 25 20.155– 4.845°C= =

Example 2: Temp 25 210 224–() 100×
56

--–=

Temp 25 25–()–=

Temp 50°C=

VTEMP 210 0.003125× 0.6562= =

Temp 25 0.6562 0.7012–
0.001769

---------------------------------------–=

Temp 25 25.4–()– 50.4°C= =

ADCR = 235

ADCR = 210

In this example, VDD = 3.2 volts for the VTEMP conversion

VDD
1023 1.2 Volts×

ADCR
--=
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 13

Fixed-Point Approximation
CalcVDD = VDD × 10 Eqn. 10

After calculating the VTEMP25 value in an ADC conversion (VADCTEMP25), start a conversion in the
temperature sensor channel and use Equation 11 to approximate the temperature. Use fixed-point values
to perform all the needed operations using the result of the ADC conversion (ADCR).

. Eqn. 11

Remember the real value multiplied by 1000 equals the value used for the temperature slope; also, you
used a VDD multiplied by 10 in all your calculations. You must multiply the subtraction by 100 to have the
same order in the final result. This gives the final equation (Equation 12).

Eqn. 12

Also, the VDD is calculated with only one decimal value and can add errors for some scenarios of the
calculation. For instance, if VDD = 2.97 volts, the calculated VDD will be 2.9 and all the results carry the
same error. Fix this and add more precision by having two decimal digits; it is up to the user to determine
the way to obtain the best results according to the application. In this case, the finished project is an
example on how to implement this.

VTEMP25 = 0.7012 Volts

(1023 × .7012 Volts)
VDD

(1023 × 7.012 Volts)
CalcVDD

7173
CalcVDD

VADCTEMP25 = = ≈

(1000 × m) × 1023
CalCVDD

mADC =

mADC =
1.769 × 1.023

CalcVDD
1809

CalcVDD
↔ Temp ≥ 25°C=

mADC =
1.646 × 1.023

CalcVDD
1685

CalcVDD
↔ Temp < 25°C=

Temperature = 25 –
ADCR – VADCTEMP25

mADC
1000

Temperature = 25 –
(ADCR – VADCTEMP25) × 100

(mADC)
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor14

Fixed-Point Approximation
5.3 Initialization Flowcharts

Init parameters

ADC bandgap
conversion
complete?

TempSlopeLow = 1000 * .001646 * 1023/CalcVDD

CalcVDD = 1023 * Bandgap Voltage * 10/ADCR

VADCTEMP25 = VTEMP25 * 1023 * 10/CalcVDD

TempSlopeLow = 1000 * .001769 * 1023/CalcVDD

No

Yes

Return

Get temperature

ADC temp sen.
conversion
complete?

Temperature = 25 – ((ADCR – VTEMP25) * 100/m)

No

Yes

Return
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 15

Fixed-Point Approximation
1 Using calibrated parameters to calculate temperature does not affect code size or execution times.

Uncalibrated Calibrated (3 Points) Uncalibrated Calibrated (3 Points)

Floating-Point Fixed-Point

Code Size 2295bytes1 698 bytes1

of cycles 46361

Typical Accuracy ± 8degs C ± 2.5degs C ±18degs C ±12degs C

Ease of implementation Easiest Difficult Easy Most Difficult
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor16

THIS PAGE IS INTENTIONALLY BLANK
Temperature Sensor for the HCS08 Microcontroller Family, Rev. 1

Freescale Semiconductor 17

Document Number: AN3031
Rev. 1
04/2010

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2010. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Basic Temperature Sensor Reading
	2.1 Using Typical Parameters Provided by the Data Sheet

	3 Optimizing the Temperature Sensor
	3.1 Calibration
	3.2 Digital Filtering

	4 Processor Expert Floating-Point Implementation
	4.1 Averaging ADC Readings
	4.2 Using the Approximate Transfer Function

	5 Fixed-Point Approximation
	5.1 Calculating VDD
	5.2 Fixed-Point Calculations
	5.3 Initialization Flowcharts

