
Dsplaays eqDispla
The Origins of the Teapot
Frank Crow, Xerox PARC (from conversa-
tions with Martin Newell and Jim Blinn)

Figure 2. The original
sketch of the Teapot.

Figure 1. Digitizing circa 1971.

In the early 1970s at the Univer-
sity of Utah, there was substantial
activity in the development of ren-

dering algorithms. However, there
was a constant shortage of data for
interesting shapes to be displayed
with these algorithms. Tiring quickly
of spheres, cubes, tubes, and other
easily generated shapes, interesting
efforts were often mounted to cap-

ture more elaborate data.

8

One set of efforts took the form of
developing automated methods for
capturing physical measurements.
3-D digitizers using mechanical
means, photogrammetry, and even
lasers were developed. However,
much of the interesting data was
completely handcrafted. In 1971
Ivan Sutherland had his computer
graphics class digitize his VW bee-
tle (see Figure 1). This took weeks,
during which time the VW could be
seen here and there in Salt Lake
City covered with paint used for
reference marks.
In a similar spirit, Martin Newell,

in 1975, noticed the pleasing shape
of the teapot he kept on his desk.
Taking some square-grid graph
paper, he made a rough sketch of
the profile of the teapot as seen
from the side (see Figure 2), captur-
ing the essence of the shape, but not
the precise dimensions (differences
can be seen around the spout and
the knob on the lid). From the
sketch he guessed at the location of
suitable control points for cubic
Bezier splines,'2 and then measured
these points using the graph paper

grid.

Figure 3. Bezier approximation to
a quarter-circle.

Having the control points for a

profile of the teapot, it remained to
develop a three-dimensional sur-

face. The lid, rim, and body of the
teapot were treated as surfaces of
revolution, while the spout and han-
dle were developed as three-
dimensional tubes.
From Figure 2 it can be seen that

the body and rim are formed from
three Bezier segments sketched
along the right side of the profile.
Four points are needed to define a

cubic segment. The rim is defined
by points forming a leftward-leaning
trapezoid sitting above the horizon-
tal gridline marked "3." The upper
body is defined by four points hug-
ging the profile while running from
gridline 3 to gridline 1. The lower
body is then defined by the remain-
ing four points running down to the
bottom.
Once you have a set of Bezier con-

trol points which generate a close
approximation to a circle, a surface
of revolution can be built by
replicating the circle, scaled and
translated, for each of the control
points on the profile. For the teapot
this produces a mesh of control
points with each vertical path con-

taining the control points for three
Bezier segments and each horizon-

0272-1716/87/0100-0008$01.00 01987 IEEE

(o0.) (2.1) (l)

pl ((x- 1)2.(y+ 1)/2)

midpoint

p2

(1,y/2)

(1.0)

IEEE CG&A

Figure 4. Teapot patch boundaries
(rim and body removed for
clarity).

tal path containing four Bezier seg-
ments, each approximating a
quarter-circle. The patch structure
of the surface is then implicit in
that patch corners occur where a
control point lies on segment
boundaries on both vertical and
horizontal paths.
To approximate a quarter-circle,

we know that the polygon formed
by the four control points for a
Bezier cubic (the control polygon)
must obey some constraints (see
Figure 3). It must be symmetric
about its midpoint. The line seg-
ments at the ends must be at right
angles to one another. Finally, the
midpoint of the resulting curve
should lie on the circle defined by
the endpoints and the slopes at the
endpoints. From these constraints
the coordinates of the inner knots
can be derived.

Let's look at the quarter-circle
from (0,1) to (1,0). Its midpoint lies
at (sqrt(2)/2, sqrt(2)/2). Using the
standard de Casteljau subdivision
construction3 to find the mid
point of the curve, we can work
back to find the control points that
will give us the right midpoint.
Recall that the midpoint of the
curve is the midpoint of the line,
pl-p2. pl and p2 are themselves
constructed from the midpoints of
lines connecting midpoints of edges
of the control polygon.
We know that the first and last

edges of the control polygon must
be perpendicular to one another.
Since the polygon must also be sym-
metric, we can find the control
point coordinates as follows:
The four control points must be

(0,1), (x,1), (1,y), (1,0), where x = y.
Let's look just at the x coordinate.

Working backwards from the
midpoint:

sqrt(2)/2 = (plx+p2x)/2,
plx = (x/2+(x+1)/2)/2 = (2x+1)/4,

and
p2, = ((x+1)/2+1)/2 = (x+3)/4.

Substituting gives:
sqrt(2)/2 = (pl,+p2j)/2 = (3+4)/8.

Then, solving for x:
x = 4/3(sqrt(2)-1),

or roughly 0.5523.

Figure 5. Teapot control points
(rim and body removed for
clarity).

The spout and handle, each
formed from four patches, were
made by guessing at the positions of
control points to form the inner and
outer profiles as seen in Figure 2
The x and y coordinates of the con-
trol points were then digitized from
the sketch. For the handle, a second
set of profiles was specified by
providing a near and a far z-
coordinate for each digitized point.
The pairs of profiles are defined by
a constant displacement as can be
seen in Figure 5. The control points
for the spout were similarly
defined, except that the displace-
ment was varied to allow a tapering
shape. In Figure 2 a top-view sketch
of the spout can be seen above its
profile sketch. This formed the
basis for the displacements in z.
The top view also shows how the tip
of the spout is turned in upon itself.
Once the data were generated, a

line-drawing program, similar to
the code provided in this issue, was
used to display the resulting
patches on an early storage tube
display.
The teapot itself, and the original

Figure 6. The original teapot from
Newell's desk.

data, are somewhat taller than the
shape we recognize today. As can
be seen from notes on the original
sketch, the original data showed the
bottom of the rim to be three units
above the origin. The rim in the cur-
rent data is 2.4 units above the ori-
gin, or 80 percent as high. The
original data was scaled a number
of times in its early life. Jim Blinn
recalls that the current shape was
felt to be the most esthetic at some
point. Figure 6, an illustration from
Martin Newell's PhD dissertation,
shows the teapot in its original
form.
The teapot's first major appear-

ance was in a paper at SIGGRAPH
76 (reprinted in the October 1976
issue of the Communications of the
ACM). Much of the teapot's fame
comes from this use and subse-
quent, ever more spectacular,
images by Jim Blinn. Blinn found
the shape to be a particularly good
test object. It has both positive and
negative curvature on the surface.
The neck of the knob on the lid is a
saddle shape, a particularly difficult
form for some algorithms to render.
Note also that the handle and spout
both intersect the surface of the
body, forcing intersecting surfaces
to be handled properly.
The original data had only 28

patches. The additional four patches
in the data used here add a bottom
to the teapot. Since the real teapot
served primarily to hold water, it
seemed only proper that its numeri-
cally defined analog should be
equally capable.
Martin Newell's teapot now resides

in the Computer Museum in Bos-
ton, where it is displayed next to its
computer-generated likeness. It is
unlikely that it will ever again need
to hold water.

January 1987 9

References on Bezier curves and surfaces
1. James D. Foley, Andries van Dam. Fun-
damentals of Interactive Computer
Graphics (Chapter 13). Addison-Wesley,
Reading, Mass., 1982.

2. William M. Newman, Robert F. Sproull.
Principles of Interactive Computer
Graphics, 2nd Ed. (Chapter 21).
McGraw-Hill, New York, 1973.

3. Wolfgang Boehm, Gerald Farin, Jurgen
Kahmann. "A Survey of Curve and Sur-
face Methods in CAGD," Computer-
Aided Geometric Design, Vol. 1, No. 1.
July 1984, pp. 1-60.

The Computer Museum and
the Teapot

The original ceramic teapot that
inspired Martin Newell's computer
creation is now on display at The
Computer Museum in Boston,
Massachusetts, where it is in a
prominent display in one of the
four galleries that showcase the
most extensive collection of histor-
ically significant computer tech-
nology ever assembled. These
galleries focus on "The Vacuum
Tube Era," "The Transistor Era,"
"The Integrated Circuit Era," and
"The Computer and the Image."
The museum began with the

effort to rescue the Whirlwind-
the world's first real-time, parallel,
vacuum tube computer with a core
memory. This led to the opening of
the museum in 1979 by Digital
Equipment Corporation in its Marl-
boro, Massachusetts, facility. The
museum became an independent
nonprofit institution in 1982 and
moved to its present facilities on
Museum Wharf in 1984.

Today, the visitor can wander
through the museum and see a col-
lection of photomurals, timelines,
and vintage computers installed in
re-creations of their original set-
ting. Dozens of interactive exhibits,
including a gallery of personal
computers and state-of-the-art
graphics display processors, invite
the visitor to do more than look.
Such special exhibits as the cur-
rent "On One Hand...Pocket Calcu-
lators Then and Now" supplement
the permanent exhibits.

The museum also sponsors a
variety of special events and con-

tests. Recent ones include a con-
test to find the earliest personal
computer and "The First Interna-
tional Core War Tournament." The
personal computer contest
brought 137 new machines to the
museum's collection, including
one thought to be the first commer-
cial personal computer, the
Kenback-1 (1971). In the tourna-
ment 29 programs paired off in bat-
tle for supremacy within a com-

puter in the game created by A.K.

Dewdney and described in his
Computer Recreations column in
the May 1984 issue of Scientific
American.

The Computer Museum Report,
a quarterly publication, provides
fascinating and informal looks into
the history of computing as well as
details of activities at the museum.
In 1986 the report carried articles
by such distinguished authors as
J. Presper Eckert on the genesis of
the Eniac, Daniel Bricklin on the
origins of VisiCalc, and Stephen
Wozniack on his career in elec-
tronics and the development of
the Apple 1.
The Computer Museum is

located at Museum Wharf, 300
Congress Street, Boston. Its hours
are 10 a.m. to 6 p.m. Tuesday
through Sundayand until9p.m.on
Friday. Membership in The Com-
puter Museum brings you The
Computer Museum Report, free
admission, invitations to previews,
and a 10 percent discount at the
museum's store. Write to the Mem-
bership Coordinator or call (617)
426-2800.

Pascal Code to Display Wire Frame Model

{ The following Pascal procedure, "Display Patches," will draw a wire frame representation of the Besier patch data in
the arrays "Ducks" and "Patches." The loading of the data into the arrays is not shown. The following global declarations
are assumed:

CONST
Degree = 3; { The degree of the Bezier spline used }
Duck}Count = 306; { The number of control points, "Ducks" }
Patch-Count = 32; { The number of surface patches }

TYPE
Duck-Type = RECORD X , Y, Z : Real ; END; { Each duck is a three-vector }
DuckJndex-Type = 1 .. Duck-Count;
Duck}Array-Type = ARRAY [1.. Duck-Count] OF Duck-Type;
Patch-Type = ARRAY [0 .. Degree , 0.. Degree] OF Duck1ndex-Type; { Each patch points to 16 ducks }
PatchArray-Type = ARRAY [I .. Patch-Count] OF Patch-Type;
VAR
Ducks
Patches

: Duck}Array_Type; { store ducks here I
: Patch-Array_Type; { which ducks go with which patches }

{ The procedure "Display-Patches' and its support procedures are given below. Note that the parameter "Steps" controls
the granularity of the subdivision of each patch for display. Try a value of 6 to start, then experiment. The procedures
"Move" and "Draw" should be replaced with the graphics procedures appropriate for your system. }

10 IEEE CG&A~~~

a-

IEEE CG&A10

PROCEDURE Blend-Vector (DO, Dl , D2 , D3: Duck-Type ; T: Real ; VAR Result: DuclkType);
BEGIN { Calculate vector cubic Besier spline value at parameter T }
Result.X := DO.X*(I-T)*(I-T)*(I-T) + Dl.X*3*T*(l-T)*(l-T) + D2.X*3*T*T*(1-T) + D3.X*T*T*T
Result.Y := DO.Y*(l-T)*(l-T)*(l-T) + Dl.Y*3*T*(l-T)*(l-T) + D2.Y*3*T*T*(1-T) + D3.Y*T*T*T
Result.Z := DO.Z*(l-T)*(1-T)*(l-T) + Dl.Z*3*T*(l-T)*(l-T) + D2.Z*3*T*T*(1-T) + D3.Z*T*T*T;
END ; { procedure blend-vector }

PROCEDURE Display-Curve (DO, DI, D2, D3: Duck-Type; Steps: Integer);

VAR { Find "Steps+l" points on the spline and }
T, Step: Real; { draw "Steps" line segments }
Temp : Duck-Type;

BEGIN
Step := I / Steps
T := Step;
Move (DO.X, DO.Y, DO.Z); { move to start of spline }
WHILE T < I + Step / 2 DO
BEGIN
Blend-Vector (DO, DI, D2, D3, T, Temp);
Draw (Temp.X, Temp.Y, Temp.Z); { draw line segment to next point }
T := T + Step;
END ; { while t < }

END ; { procedure display-curve }

PROCEDURE Display-Patch (VAR Patch: Patch-Type ; Steps: Integer);

VAR
T :Real;
Step: Real;
DO, DI, D2, D3: Duck}Type; { ducks for a particular constant U or V value }

BEGIN
Step := 1 / Steps
T := 0;
WHILE T < 1 + Step / 2 DO
BEGIN { splines of constant U }

Blend-Vector (Ducks [Patch[O, 0]], Ducks [Patch[O, 1]], Ducks [Patch[O, 2]], Ducks [Patch[O, 3]], T, DO)
Blend-Vector (Ducks [Patch[l, 0]], Ducks [Patch[l, 1]], Ducks [Patch[l, 2]], Ducks [Patch[l, 3]], T, DI)
Blend-Vector (Ducks [Patch[2, 0]], Ducks [Patch[2, 1]], Ducks [Patch[2, 2]], Ducks [Patch[2, 3]], T, D2)
Blend-Vector (Ducks [Patch[3, 0]], Ducks [Patch[3, 1]], Ducks [Patch[3, 2]], Ducks [Patch[3, 3]], T, D3)

Display-Curve (DO, Dl, D2, D3, Steps);
{ splines of constant V }

Blend-Vector (Ducks [Patch[O, 0]], Ducks [Patch[l, 0]], Ducks [Patch[2, 0]], Ducks [Patch[3, 0]], T, DO);
Blend Vector (Ducks [Patch[o, l]], Ducks [Patch[l, 1]], Ducks [Patch[2, 1]], Ducks [Patch[3, 1] T, D1);
Blend-Vector (Ducks [Patch[O, 2]], Ducks [Patch[l, 2]], Ducks [Patch[2, 2]], Ducks [Patch[3, 2]], T, D2);
Blend-Vector (Ducks [Patch[O, 3]], Ducks [Patch[l, 3]], Ducks [Patch[2, 3]], Ducks [Patch[3, 3]], T, D3);
Display-Curve (DO, DI, D2, D3, Steps)
T := T + Step;
END ; { while t < }

END ; { procedure display-patch }

PROCEDURE Display-Patches (Steps: Integer);
VAR { "Steps" tells how much to divide up the patches }
Index: Integer

BEGIN
FOR Index := I TO Patch-Count DO
BEGIN
Display-Patch (Patches[Index], Steps);
END ; { for index }

END ; { procedure display-patches } { by Charles W. Grant, Lawrence Livermore National Laboratory }

January 1987 11~~~
11January 1987

Shaded texture mapped teapot. Texture
map was generated by Fourier synthesis.

Martin Newell's original
wireframe teapot.

Tea scene
from Martin Newell's

PhD thesis, University of
Utah, 1974. Environment

mapped teapot.

These three images are (a) texture map, (b)
Teapot with environment map, and (c) tex-
ture mapped on Z - buffer at bottom of
screen, 2 bytes/pixel so twice as wide.

IEEE CG&A

Teapot Data - Patch Definitions

Patch 16 Indices Into
Number Table of z,y,z Values

rim -
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 4 17 18 19 8 20 21 22 12 23 24 25 16 26 27 28
3 19 29 30 31 22 32 33 34 25 35 36 37 28 38 39 40
4 31 41 42 1 34 43 44 5 37 45 46 9 40 47 48 13

body -
5 13 14 15 16 49 50 51 52 53 54 55 56 57 58 59 60
6 16 26 27 28 52 61 62 63 56 64 65 66 60 67 68 69
7 28 38 39 40 63 70 71 72 66 73 74 75 69 76 77 78
8 40 47 48 13 72 79 80 49 75 81 82 53 78 83 84 57
9 57 58 59 60 85 86 87 88 89 90 91 92 93 94 95 96

10 60 67 68 69 88 97 98 99 92 100 101 102 96 103 104 105
11 69 76 77 78 99 106 107 108 102 109 110 111 105 112 113 114
12 78 83 84 57 108 115 116 85 111 117 118 89 114 119 120 93

handle -
13 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
14 124 137 138 121 128 139 140 125 132 141 142 129 136 143 144 133
15 133 134 135 136 145 146 147 148 149 150 151 152 69 153 154 155
16 136 143 144 133 148 156 157 145 152 158 159 149 155 160 161 69

spout -
17 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
18 165 178 179 162 169 180 181 166 173 182 183 170 177 184 185 174
19 174 175 176 177 186 187 188 189 190 191 192 193 194 195 196 197
20 177 184 185 174 189 198 199 186 193 200 201 190 197 202 203 194

lid -
21 204 204 204 204 207 208 209 210 211 211 211 211 212 213 214 215
22 204 204 204 204 210 217 218 219 211 211 211 211 215 220 221 222
23 204 204 204 204 219 224 225 226 211 211 211 211 222 227 228 229
24 204 204 204 204 226 230 231 207 211 211 211 211 229 232 233 212
25 212 213 214 215 234 235 236 237 238 239 240 241 242 243 244 245
26 215 220 221 222 237 246 247 248 241 249 250 251 245 252 253 254
27 222 227 228 229 248 255 256 257 251 258 259 260 254 261 262 263
28 229 232 233 212 257 264 265 234 260 266 267 238 263 268 269 242

bottom -
29 270 270 270 270 279 280 281 282 275 276 277 278 271 272 273 274
30 270 270 270 270 282 289 290 291 278 286 287 288 274 283 284 285
31 270 270 270 270 291 298 299 300 288 295 296 297 285 292 293 294
32 270 270 270 270 300 305 306 279 297 303 304 275 294 301 302 271

12

Teapot Data - Vertices
2z Z

Value Value Value
Vertex
Number

1.4 0.0 2.4
1.4 -0.784 2.4

0.784 -1.4 2.4
0.0 -1.4 2.4

1.3376 0.0 2.63125
1.3376 -0.749 2.53125
0.749 -1.3375 2.53125

0.0 -1.3375 2.53125
1.4375 0.0 2.53125
1.4375 -0.805 2.53125
0.805 -1.4375 2.53125

0.0 -1.4375 2.53125
1.5 0.0 2.4
1.5 -0.84 2.4

0.84 -1.5 2.4
0.0 -1.5 2.4

-0.784 -1.4 2.4
-1.4 -0.784 2.4
-1.4 0.0 2.4

-0.749 -1.3375 2.53125
-1.3376 -0.749 2.53125
-1.3375 0.0 2.53125
-0.805 -1.4375 2.53125

-1.4375 -0.805 2.53125
-1.4375 0.0 2.53125

-0.84 -1.5 2.4
-1.5 -0.84 2.4
-1.5 0.0 2.4
-1.4 0.784 2.4

-0.784 1.4 2.4
0.0 1.4 2.4

-1.3375 0.749 2.53125
-0.749 1.3375 2.53125

0.0 1.3375 2.53125
-1.4375 0.805 2.53125
-0.805 1.4375 2.53125

0.0 1.4375 2.53125
-1.5 0.84 2.4

-0.84 1.5 2.4
0.0 1.5 2.4

0.784 1.4 2.4
1.4 0.784 2.4

0.749 1.3375 2.53125
1.3375 0.749 2.53126
0.805 1.4375 2.53126

1.4375 0.805 2.53125
0.84 1.5 2.4
1.5 0.84 2.4

1.76 0.0 1.875
1.75 -0.98 1.875
0.98 -1.75 1.875
0.0 -1.75 1.875
2.0 0.0 1.35
2.0 -1.12 1.35

1.12 -2.0 1.35
0.0 -2.0 1.35
2.0 0.0 0.9
2.0 -1.12 0.9

1.12 -2.0 0.9
0.0 -2.0 0.9

-0.98 -1.75 1.875
-1.75 -0.98 1.875
-1.75 0.0 1.875
-1.12 -2.0 1.35
-2.0 -1.12 1.35
-2.0 0.0 1.35

-1.12 -2.0 0.9
-2.0 -1.12 0.9

-2.0 0.0 0.9
-1.75 0.98 1.875

71
72
73
74
7S
76
77
78

T9
80

81
82
83
84
85
86
87

88

89
90
91
92
93
94
95
96
97

98
99
100
101
102
103

104
10l
106
107
108
109
110
111

112
113

114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140

2 Z
Value Value Value

-0.98 1.75 1.875
0.0 1.75 1.875
-2.0 1.12 1.35

-1.12 2.0 1.35
0.0 2.0 1.35
-2.0 1.12 0.9

-1.12 2.0 0.9
0.0 2.0 0.9

0.98 1.75 1.875
1.75 0.98 1.875
1.12 2.0 1.35
2.0 1.12 1.35

1.12 2.0 0.9
2.0 1.12 0.9
2.0 0.0 0.45
2.0 -1.12 0.45

1.12 -2.0 0.45
0.0 -2.0 0.45
1.5 0.0 0.225
1.5 -0.84 0.225

0.84 -1.5 0.225
0.0 -1.5 0.225
1.5 0.0 0.15
1.5 -0.84 0.15

0.84 -1.6 0.15
0.0 -1.5 0.15

-1.12 -2.0 0.45
-2.0 -1.12 0.45
-2.0 0.0 0.45

-0.84 -1.5 0.225
-1.5 -0.84 0.225
-1.5 0.0 0.225

-0.84 -1.5 0.15
-1.5 -0.84 0.15
-1.5 0.0 0.15
-2.0 1.12 0.45

-1.12 2.0 0.45
0.0 2.0 0.45
-1.5 0.84 0.225

-0.84 1.5 0.225
0.0 1.5 0.225
-1.5 0.84 0.15

-0.84 1.5 0.15
0.0 1.5 0.15

1.12 2.0 0.45
2.0 1.12 0.45

0.84 1.5 0.225
1.5 0.84 0.225

0.84 1.5 0.15
1.5 0.84 0.15
-1.6 0.0 2.025
-1.6 -0.3 2.025
-1.5 -0.3 2.25
-1.5 0.0 2.25
-2.3 0.0 2.025
-2.3 -0.3 2.025
-2.5 -0.3 2.25
-2.5 0.0 2.25
-2.7 0.0 2.025
-2.7 -0.3 2.025
-3.0 -0.3 2.25
-3.0 0.0 2.25
-2.7 0.0 1.8
-2.7 -0.3 1.8
-3.0 -0.3 1.8
-3.0 0.0 1.8
-1.5 0.3 2.25
-1.6 0.3 2.025
-2.5 0.3 2.25
-2.3 0.3 2.025

Vertex
Number

141
142
143
144
145
146
147
148
149
1SO
151

152
153
154
155

156
157

158
159

160
161
162
163
164
165
166
167

168
169
170

171

172
173
174
175

176

177

178

179

180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

2 3/ z

Value Value Value

-3.0 0.3 2.25
-2.7 0.3 2.025
-3.0 0.3 1.8
-2.7 0.3 1.8
-2.7 0.0 1.575
-2.7 -0.3 1.575
-3.0 -0.3 1.35
-3.0 0.0 1.35
-2.5 0.0 1.125
-2.5 -0.3 1.125

-2.65 -0.3 0.9375
-2.65 0.0 0.9375
-2.0 -0.3 0.9
-1.9 -0.3 0.6
-1.9 0.0 0.6
-3.0 0.3 1.35
-2.7 0.3 1.575

-2.65 0.3 0.9375
-2.5 0.3 1.125
-1.9 0.3 0.6
-2.0 0.3 0.9
1.7 0.0 1.425
1.7 -0.66 1.425
1.7 -0.66 0.6
1.7 0.0 0.6
2.6 0.0 1.425
2.6 -0.66 1.425
3.1 -0.66 0.825
3.1 0.0 0.825
2.3 0.0 2.1
2.3 -0.25 2.1
2.4 -0.25 2.025
2.4 0.0 2.025
2.7 0.0 2.4
2.7 -0.25 2.4
3.3 -0.25 2.4
3.3 0.0 2.4
1.7 0.66 0.6
1.7 0.66 1.425
3.1 0.66 0.825
2.6 0.66 1.425
2.4 0.25 2.025
2.3 0.25 2.1
3.3 0.25 2.4
2.7 0.25 2.4
2.8 0.0 2.475
2.8 -0.25 2.475

3.525 -0.25 2.49375
3.525 0.0 2.49375

2.9 0.0 2.475
2.9 -0.15 2.475

3.45 -0.15 2.5125
3.45 0.0 2.5125
2.8 0.0 2.4
2.8 -0.15 2.4
3.2 -0.15 2.4
3.2 0.0 2.4

3.525 0.25 2.49375
2.8 0.25 2.475

3.45 0.15 2.5125
2.9 0.15 2.475
3.2 0.15 2.4
2.8 0.15 2.4
0.0 0.0 3.15
0.0 -0.002 3.15

0.002 0.0 3.15
0.8 0.0 3.15
0.8 -0.45 3.15

0.45 -0.8 3.15
0.0 -0.8 3.15

January 1987 13

Vertex
Number

1
2
3
4
5
6
T
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

January 1987 13

I V Z
Value Value Value

Vertex
Number

0.0 0.0 2.85
0.2 0.0 2.7
0.2 -0.112 2.7

0.112 -0.2 2.7
0.0 -0.2 2.7

-0.002 0.0 3.15
-0.45 -0.8 3.15
-0.8 -0.45 3.15
-0.8 0.0 3.15

-0.112 -0.2 2.7
.0.2 -0.112 2.7
-0.2 0.0 2.7
0.0 0.002 3.15
-0.8 0.45 3.15

-0.45 0.8 3.15
0.0 0.8 3.15
-0.2 0.112 2.7

-0.112 0.2 2.7
0.0 0.2 2.7

0.45 0.8 3.15
0.8 0.45 3.15

0.112 0.2 2.7
0.2 0.112 2.7
0.4 0.0 2.55
0.4 -0.224 2.55

0.224 -0.4 2.55
0.0 -0.4 2.55
1.3 0.0 2.55
1.3 -0.728 2.55

0.728 -1.3 2.55
0.0 -1.3 2.55
1.3 0.0 2.4

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Iz y z

Value Value Value
Vertex
Number

1.3 -0.728 2.4
0.728 -1.3 2.4

0.0 -1.3 2.4
-0.224 -0.4 2.55

-0.4 -0.224 2.55
-0.4 0.0 2.55

-0.728 -1.3 2.55
-1.3 -0.728 2.55
-1.3 0.0 2.55

-0.728 -1.3 2.4
-1.3 -0.728 2.4
-1.3 0.0 2.4
-0.4 0.224 2.55

-0.224 0.4 2.55
0.0 0.4 2.55
-1.3 0.728 2.55

-0.728 1.3 2.55
0.0 1.3 2.55
-1.3 0.728 2.4

-0.728 1.3 2.4
0.0 1.3 2.4

0.224 0.4 2.55
0.4 0.224 2.55

0.728 1.3 2.55
1.3 0.728 2.55

0.728 1.3 2.4
1.3 0.728 2.4
0.0 0.0 0.0
1.5 0.0 0.15
1.5 0.84 0.15

0.84 1.5 0.15
0.0 1.5 0.15

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

Iz y z
Value Value Value

1.5 0.0 0.075
1.5 0.84 0.075

0.84 1.5 0.075
0.0 1.5 0.075

1.425 0.0 0.0
1.425 0.798 0.0
0.798 1.425 0.0

0.0 1.425 0.0

-0.84 1.5 0.15
-1.5 0.84 0.15
-1.5 0.0 0.15

-0.84 1.5 0.075
-1.5 0.84 0.075
-1.5 0.0 0.075

-0.798 1.425 0.0

-1.425 0.798 0.0

-1.425 0.0 0.0

-1.5 -0.84 0.15
-0.84 -1.5 0.15
0.0 -1.5 0.15
-1.5 -0.84 0.075

-0.84 -1.5 0.075
0.0 -1.5 0.075

-1.425 -0.798 0.0

-0.798 -1.425 0.0

0.0 -1.425 0.0

0.84 -1.5 0.15
1.5 -0.84 0.15

0.84 -1.5 0.075
1.5 -0.84 0.075

0.798 -1.425 0.0

1.425 -0.798 0.0

Note that the data for the 306 The "Vertex Numbers" and the given to assist visual inspection
vertices needs to be stored in the "Patch Numbers" printed in the and interpretation of the dataonly.
array "Ducks" and the data for the tables are NOT to be stored in
32 patches in the array "Patches." these arrays. These numbers are

Environment mapped
teapot.

Map of control points for teapot.

Bump-mapped teapot.

IEEE CG&A

Vertex
Number

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
245
236
237
238
239
240
241
242

14

a b

c d

Kindly supplied to CG&A by The Computer Museum, these pictures are (a) owned by
Omnibus Computer Graphics, (b) a picture done by Rob Cook when he was at Lucasfilm
in 1982, (c) another Robert Cook image with a plant by Alvy Ray Smith when he was at
Lucasfilm, and (d) a picture showing work by Martha Everson.

b

These two images, also owned by Omnibus, show (a)an interesting development of the teapot, and (b) the teapot
in a complete table setting.

A composite of renderings by llrner Whitted
(red bottle and glass), Loren Carpenter, Jeff

Shaded and texture mapped with specular reflectance by James Lane (teapot and cup), and James Blinn
F. Blinn while at the University of Utah in 1976-77. (green chalice) in 1977.

15January 1987

James Blinn's shaded teapot with
painted texture map and specular
reflectance from his 1976-77 Utah
period.

A teapot texture mapped
with a painted picture by
Lance Williams, done at

NYIT, 1977.

James Blinn's black/white shaded teapot with 1-bit
halftone dithering.

Teapot with specular reflectance (aliasing), by
James Blinn.

IEEE CG&A6b

Shaded 3-bit teapot with threshholding, by
James Blinn when he was at Utah during

1976-77.

Teapot rendered by Loren Carpenter and
Jeff Lane at Boeing, 1977.

The following images are all by James Blinn. Map of
control points for a teapot on a surface.

Shaded teapot antialiased.

January 1987 17

A shaded teapot with painted texture map.

Shaded grid texture mapped on teapot.

Shaded antialiased teapot with environment
mapping (not ray traced), and grid mapped with
specular reflectance.

Shaded and bump mapped.

IEEE CG&A18

Einstein thought experiment acceleration
versus gravity (for The Mechanical Uni-
verse 1985), Computer Graphics Lab at the
Jet Propulsion Laboratory.

Greeks finding the area of an irregular shape
(Mechanical Universe, 1985) CGL, Jet Propul-

sion Laboratory.

Kepler and the teapot (for Mechanical Universe)
CGL, Jet Propulsion Laboratory.

January 1987 19

