EA978 – Lista 2 – Álgebra Linear

Data de Entrega: 12/03/2009

1 Revisão

Um espaço vetorial é constituído por um conjunto \mathcal{V} de vetores, juntamente com operações de adição (+) e multiplicação por escalar de um conjunto \mathcal{K} , que satisfaz as seguintes propriedades:

- 1. Associatividade em adição: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ para \vec{u} , \vec{v} e \vec{w} elementos de \mathcal{V} .
- 2. Existência de elemento neutro: há um elemento $\vec{0} \in \mathcal{V}$, tal que, para cada $\vec{v} \in \mathcal{V}$, $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$.
- 3. Existência de elemento inverso: para cada $\vec{v} \in \mathcal{V}$, existe $\vec{u} \in \mathcal{V}$ tal que $\vec{v} + \vec{u} = \vec{0}$.
- 4. Comutatividade: para cada $\vec{v}, \vec{u} \in \mathcal{V}, \vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- 5. Associatividade em multiplicação por escalar: para cada $a, b \in \mathcal{K}$ e cada $\vec{v} \in \mathcal{V}$, $a.(b.\vec{v}) = (a.b).\vec{v}$.
- 6. Existência de elemento neutro em multiplicação por escalar: se $\vec{1}$ é a unidade de \mathcal{K} , então, para cada $\vec{v} \in \mathcal{V}, \vec{1}.\vec{v} = \vec{v}$.
- 7. Distributividade em multiplicação por escalar:
 - Para cada $a \in \mathcal{K}$ e cada $\vec{v}, \vec{u} \in \mathcal{V}, a.(\vec{v} + \vec{u}) = a.\vec{v} + a.\vec{u}.$
 - Para cada $a, b \in \mathcal{K}$ e cada $\vec{v} \in \mathcal{V}$, $(a+b) \cdot \vec{v} = a \cdot \vec{v} + b \cdot \vec{v}$.

Sejam $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m \in \mathcal{V}$. Qualquer vetor \vec{v} em \mathcal{V} da forma

$$\vec{v} = a^1 \vec{x}_1 + a^2 \vec{x}_2 + \ldots + a^m \vec{x}_m,$$

onde $a^i \in \mathcal{K}$, é chamado uma **combinação linear** de $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m$. Podemos representar uma combinação linear como produto de matrizes EA = V, onde as colunas de E correspondem aos vetores \vec{e}_i e os vetores-coluna V e A correspondem, respectivamente, ao vetor \vec{v} em questão e o respectivo vetor coordenada.

Os vetores $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m \in \mathcal{V}$ são **linearmente dependentes** sobre \mathcal{K} , ou simplesmente dependentes, se existem escalares $a^1, a^2, \dots, a^m \in \mathcal{K}$, nem todos nulos, tais que

$$a^1 \vec{x}_1 + a^2 \vec{x}_2 + \ldots + a^m \vec{x}_m = \vec{0}.$$

Em caso contrário, dizemos que os vetores são linearmente independentes sobre \mathcal{K} , ou simplesmente independentes. Os vetores linearmente independentes formam uma matriz que é equivalente a uma **matriz escalonada**. Entende-se como matriz escalonada quando o número de zeros precedendo o primeiro elemento não-nulo de uma linha aumenta linha por linha até que sobrem somente linhas nulas.

Um conjunto mínimo de vetores $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$, linearmente independentes e capazes de gerar todos os vetores de $\vec{v} \in \mathcal{V}$ através de combinações lineares, é conhecido por **gerador** de \mathcal{V} . A seqüência $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ é chamada uma **base** de \mathcal{V} e o número de elementos na seqüência corresponde à **dimensão** de \mathcal{V} . Neste caso, os n escalares a^1, a^2, \dots, a^n são completamente determinados pelo vetor \vec{v} e pela base $\{\vec{e}_i\}$. Chamamos estes escalares as **coordenadas** de \vec{v} em relação à base $\{\vec{e}_i\}$ e a seqüência (a^1, a^2, \dots, a^n) ,

vetor coordenada de \vec{v} em relação a $\{\vec{e}_i\}$. Quando a base é formada pelos vetores fixos na origem $(0,0,0,0,\ldots,0)$ em um extremo

$$\vec{e}_1 = (1, 0, 0, 0, \dots, 0, 0)$$

$$\vec{e}_2 = (0, 1, 0, 0, \dots, 0, 0)$$

$$\vec{e}_3 = (0, 0, 1, 0, \dots, 0, 0)$$

$$\dots$$

$$\vec{e}_n = (0, 0, 0, 0, \dots, 0, 1)$$

dizemos que ela é uma base canônica. Neste caso, as coordenadas são conhecidas por coordenadas cartesianas.

Sejam \mathcal{V} e \mathcal{U} espaços vetoriais sobre o conjunto de escalares \mathcal{K} . Uma função ou transformação \mathcal{F} de \mathcal{V} em \mathcal{U} é uma correspondência que associa um único vetor de \mathcal{U} para cada vetor em \mathcal{V} . Ela é uma transformação linear se satisfaz:

- 1. Para qualquer $\vec{v}, \vec{w} \in \mathcal{V}, \mathcal{F}(\vec{v} + \vec{w}) = \mathcal{F}(\vec{v}) + \mathcal{F}(\vec{w})$; e
- 2. Para qualquer $k \in \mathcal{K}$ e qualquer $\vec{v} \in \mathcal{V}$, $\mathcal{F}(k\vec{v}) = k\mathcal{F}(\vec{v})$.

2 Exercícios

- 1. Quais conjuntos de vetores são linearmente independentes? Justifique.
 - (2,1,0,6), (1,9,9,0), (0,0,1,1) e (0,0,0,1)
 - (9,0,9,6), (0,6,6,1), (3,0,3,2) e (3,3,0,1)
- 2. Encontre a dimensão do subespaço vetorial gerado por
 - (3,1,4), (1,0,0) e (-3,4,4)
 - (3,0) e (-3,0)
 - (-8,-1,-3,4), (0,3,2,2) e (8,1,3,6)
- 3. Determine se cada um dos seguintes conjuntos forma uma base de R^3
 - (1,-1,2) e (-1,3,4)
 - (2,4,1), (1,2,1) e (3,4,2)
 - (8,0,-8), (1,3,-1), (3,2,-3) e (6,2,4)
- 4. Para os conjuntos que formam uma base de R^3 no item anterior, transforme-os numa base canônica. (Dica: $M^{-1}.M = I$, correspondendo as colunas da matriz-identidade I aos vetores ortonormais.)
- 5. Dadas as duas bases:

$$\{\vec{e}_1 = (1,0,1) \mid \vec{e}_2 = (0,2,2) \mid \vec{e}_3 = (1,2,-1)\}\$$

 $\{\vec{f}_1 = (1,1,0) \mid \vec{f}_2 = (1,-1,0) \mid \vec{f}_3 = (0,0,1)\}\$

- Encontre o vetor coordenada de $\vec{v} = (-1, 5, 8)$ em relação a cada base.
- Encontre a transformação linear P cujas colunas são respectivamente os vetores coordenadas dos $\vec{e_i}$ em relação à base $\{\vec{f_i}\}$, ou seja, FP=E, onde as colunas de F e E são respectivamente os vetores $\vec{f_i}$ e os vetores de $\{\vec{e_i}\}$.
- 6. Dada uma base $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ do espaço \mathcal{V} e dados quaisquer vetores $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ em \mathcal{U} . Qual é a transformação linear $\mathcal{F}: \mathcal{V} \to \mathcal{U}$ tal que $\mathcal{F}(\vec{e}_1) = \vec{u}_1, \ \mathcal{F}(\vec{e}_2) = \vec{u}_2, \dots, \ \mathcal{F}(\vec{e}_n) = \vec{u}_n$. Esta transformação é única? Justifique.

- 7. Escreva as seguintes transformações em notação matricial, se possível. Quais são lineares?
 - $\mathcal{F}(x,y) = (3x y, -5x + 2y)$
 - $\mathcal{F}(x, y, z) = (x, y + 4, z + 3)$
 - $\bullet \ \mathcal{F}(x,y) = x^2 + y$