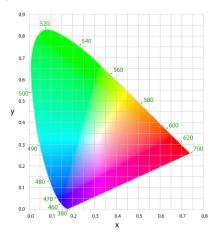
Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EA978 — $1^{\underline{o}}$ Semestre de 2009

EA978 – Sistemas de Informações Gráficas Segunda Avaliação 14/05/2009 – 14:00 às 15:50h

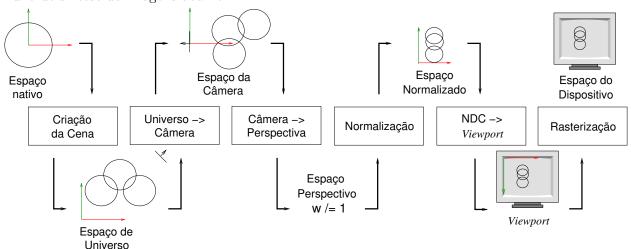

Profa. Wu, Shin - Ting

RA:			
Nome: _			
Ass.:			

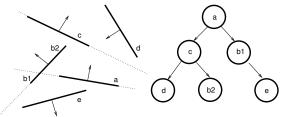
Questão	Valor	Nota
1	2.5	
2	2.5	
3	3.0	
4	2.0	
Soma	10.0	

Questão 1: Modelos de Cor

- 1. (0.5 pt) Qual é a cor que um observador médio perceberia em uma área iluminada por dois holofotes: um de luz azul e outro de luz amarelo? Justifique a sua resposta, explicando o processo de formação da cor percebida.
- 2. (0.5 pt) Qual é a cor que um observador médio perceberia de um feixe de luz branca após passar por dois filtros: um magenta e outro amarelo? Justifique a sua resposta, explicando o processo de formação da cor percebida.
- 3. (0.5 pt) Quais são as coordenadas de cromaticidade e a luminância Y da mistura das duas cores: (0.2,0.2,100) e (0.4,0.55,50)? Mostre no diagrama de cromaticidade a crominância das duas cores e da mistura.



- 4. (0.5 pt) Indique no diagrama de cromaticidade o lugar geométrico das cores espectrais e da linha púrpura. É possível derivar a luminância de uma cor pelo diagrama de cromaticidade? Justifique.
- 5. (0.5 pt) A quais grandezas físicas representam os vetores (1,0,0), (0,1,0), (0,0,1) e (1,1,1) do espaço de cor RGB de um monitor CRT?
- Questão 2: Modelo de Iluminação Local. Considere uma superfície com $k_a = (0.5, 0.5, 0.0)$, $k_d = (0.5, 0.5, 0.0)$, $k_s = (0.8, 0.8, 0.8)$ e n = 30; e uma luz branca de intensidade igual a (1.0, 1.0, 1.0) localizada em (0, 4, -2, 1). Considere ainda uma luz ambiente ("branca") de intensidade igual a (0.01, 0.01, 0.01).
 - 1. (0.5 pt) Segundo o modelo (empírico) de iluminação de Phong: $I(x, y, z) = k_a I_a(x, y, z) + k_d I_l \cdot (\mathbf{L} \cdot \mathbf{n}) + k_s I_l (\mathbf{V} \cdot \mathbf{R})^n$ e $\mathbf{R} = 2(\mathbf{L} \cdot \mathbf{n})\mathbf{n} \mathbf{L}$. A qual grandeza física corresponde cada um dos parâmetros deste modelo. Se necessário, utilize ilustração com vetores.


- 2. (0.5 pt) De acordo com o modelo de Phong, qual seria a cor da superfície? E qual seria a cor que um observador localizado em (2,3.5,-0.5,1) veria no ponto (1,2,-1,1) da superfície cujo vetor normal é (0,1,0,0)? Justifique as suas respostas.
- 3. (1.0 pt) Considere que as coordenadas de cromaticidade dos fósforos do monitor sejam (0.64, 0.33), (0.30, 0.60) e (0.15, 0.06), e que o seu branco seja (0.3127, 0.329, 50). Determine as coordenadas de cromaticidade da cor do ponto. Mostre explicitamente o desenvolvimento dos seus cálculos.
- 4. (0.5pt) Se a luz da fonte fosse (0,0,1.0) e a luz ambiente (0,0,0.01), qual seria a cor do ponto percebida pelo observador? Justifique.

Questão 3: Rasterização. Considere que sejam disponíveis as seguintes implementações: algoritmo de modelo de iluminação de Phong-Blinn; algoritmo de tonalização de Phong; algoritmo de varredura de polígono; algoritmo de recorte; algoritmo de pintor; e uma estrutura BSP.

1. (0.5 pt) Explique a função de cada um dos itens (algoritmo ou estrutura de dados) no fluxo de síntese de imagens abaixo

- 2. (1.0 pt) Relacione cada um dos algoritmos e a estrutura BSP a um dos blocos/espaços do fluxo de síntese de imagens, procurando responder as seguintes perguntas: em qual espaço a árvore BSP é construída e em qual momento ela pode ser utilizada, em qual momento o algoritmo de tonalização de Phong é aplicado, em qual espaço o algoritmo de recorte deve ser aplicado, em qual momento o algoritmo de pintor é aplicado, em qual momento o modelo de iluminação local é aplicado, e em qual momento é aplicado o algoritmo de varredura. Justifique sucintamente a sua correspondência.
- 3. (0.5 pt) Como se pode sequenciar as facetas organizadas em uma árvore BSP em relação a um observador? Utilize a seguinte árvore como ilustração na sua explicação.

4. (1.5 pt) Dados 2 triângulos representados em viewport

	Vértice 1	Vértice 2	Vértice 3
Triângulo 1	P_{11} =(-1.0, -1.0, -1.0, -1.0)	P_{12} =(1.0, 2.0, -0.2, 1.0)	P_{11} =(3.0, 3.0, -0.3, 1.0)
	$N_{11} = (1.0, 1.0, 0.0, 0.0)$	$N_{12} = (1.0, 0.0, 1.0, 0.0)$	N_{13} =(0.0,1.0,0.0,0.0)
Triângulo 2	P_{11} =(2.0, 5.0, -0.5, 1.0)	P_{12} =(4.0, 8.0, -0.4, 1.0)	P_{11} =(8.0, 3.0, -0.7, 1.0)
	$N_{11} = (1.0, 0.5, 0.5, 0.0)$	$N_{12} = (1.0, 0.0, 0.0, 0.0)$	$N_{13} = (0.2, 0.8, 0.5, 0.0)$

Rasterize o Triângulo 2 com o algoritmo de varredura, determinando as coordenadas (x,y,z) e os vetores normais das amostras. Mostre explicitamente a construção e o uso de tabela de arestas para "converter" o triângulo em amostras, linha por linha, como também o processo de estimação dos vetores normais em cada amostra.

Questão 4: Dada uma imagem em níveis de cinza representados por 6 bits.

25	23	24	25	26	26
20	23	24	25	20	26
22	31	29	29	20	31
22	31	29	29	20	31
21	23	24	25	21	22
21	23	24	25	29	22

- 1. (0.5 pt) Esboce o histograma da imagem. Classifique a imagem quanto ao contraste e à intensidade. Justifique a sua classificação com base no histograma.
- (1.0 pt) Aplique o algoritmo de corte mediano para quantizar a imagem em 4 níveis de cinza. Mostre explicitamente como você obteve as células de quantização e os respectivos níveis de quantização.
- 3. (0.5 pt) Qual é o mecanismo aplicado nos algoritmos de *dithering* para atenuar o efeito de contornos falsos em decorrência da quantização em 2 níveis de cinza sem sacrificar a resolução espacial?

Boa Avaliação!