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Abstract:  We show in this paper an original version of a classifier system using neural networks as its
classifiers. The main point is to determine whether neural networks, as universal approximators, can en-
rich classifier systems performance. To give a proper answer to this inquiry, the research was divided into
two phases. The results presented here are related to the first one: an initial incursion characterized by the
application of  such classifier system to an autonomous vehicle control in a computational environment,
and compare its performance with that produced by a conventional classifier system. This is done in a
rather qualitative manner, where the main objective is to provide evidences that neural networks can
really enrich a classifier system performance. We also present important aspects related to the second and
final phase of the research: the exploration of well-developed learning methods and concepts of ensemble
theory to improve the performance of the classifier system.
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1 Introduction
Classifier systems (CS) [Booker et al., 1989] are
learning systems based on propositional rules
operating in parallel, and also on credit assign-
ment and rule discovery. They were developed
originally by Holland and his team [Holland,
1975] with the purpose of modeling natural
evolutionary processes and presenting adapta-
tion and learning characteristics.
However, propositional rules represents a limi-
tation to classifier systems: many authors dem-
onstrated their inefficacy in intelligent systems
implementation [Simon, 1996]. Classifier sys-
tems present flexibility of operation and mecha-
nisms of structural adaptation that few intelli-
gent systems have shown till now.
Some relevant questions arise. Is it possible to
avoid propositional rules and at the same time
take advantage of all the qualities that these
systems carry with them? Can neural networks
substitute the propositional rules of the classifier
systems? To answer these questions in a prag-
matic way, we conceived a research project
divided into two phases. First, we developed a
prototype of a hybrid classifier system that
substitutes propositional rules by neural net-
works. This prototype has to be tested in some
practical application that permits a comparison
with a conventional classifier system. After that,
depending on the results, it will be possible to
proceed a deeper analysis of this new version of
classifier systems, trying to evaluate its applica-
tion scope and also computational aspects in-
volved. The present paper documents the exe-
cution of the first phase of this project and raises
relevant questions to go towards the second one.
We conceived, as the practical application, an
autonomous vehicle control in a computation-

ally simulated environment. The results ob-
tained were encouraging.  The approach of this
paper is original, at least to the extent we know.
There are, of course, some applications that
could be considered similar, as, for example,
Evolutionary Reinforcement Learning (ERL)
[Ackley & Littman, 1991], but the similarities
are restricted to punctual aspects. As a matter of
fact, we think to apply some of Akcley and
Littman ideas related to their ERL in future
NNCS developments.
In this article, we initially present basic con-
cepts for conventional classifier systems, fol-
lowed by  the implementation of a new version
with Neural Networks (NNCS). Afterwards, we
discuss the details of the practical implementa-
tion, the simulations executed and finally our
conclusions and relevant considerations for the
studies to come.

2 Classifier Systems
There are few references to classifier systems in
the literature. Some of the most important are:
the book that launched its proposal [Holland,
1975], the article of Booker et al. [Booker et al.,
1989], the book of Goldberg [Goldberg, 1989]
and the thesis of Richards [Richards, 1995],
which gives a  detailed explanation of classifier
systems.
Among other advantages, the classifier systems
possess the following characteristics: they are
indicated to operate in environments that typi-
cally exhibit new and successive events, accom-
panied by noise and irrelevant data; they are
appropriate in situations were there exists the
necessity to act in a continuous manner and
frequently in real time; they possess the ability
to be guided by implicit or non exact goals, as
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Figure 1: Basic Components of the
Classifier System

well as they promote learning based on sparse
rewarding. It is important to stand out that few
other computational tools exhibit a so vast list
of application possibilities.
These characteristics are possible because the
classifier systems discover new categories and
concepts by means of the regularities found in
the environment, as they are relevant for the
accomplishment of the desired goals. In the
same manner, the classifier systems utilize the
flow of information met in the way to the goal
to refine their model of the environment and
doing so they associate appropriated control
actions with the situations met along the search.

2.1 Classifier Systems Architecture
The classifier system is based on a hierarquical
architecture, where the lower level is presented
in figure 1.

  
Classifier 

List  

Input 
Interface 

Output 
Interface 

 
Message 

List  

This architectural level operates in the following
way: the input interface collects information
from the environment through sensors and codi-
fies them into messages that will be put in the
message list. Observe that not only the input
interface sends message to the message list, but
also the classifiers. One message in the mes-
sages list is a string of characters composed of
two parts: the initial characters identify who had
sent the message and the others identify occur-
rences in the environment, detected by the sen-
sors.
The message example shown bellow corre-
sponds to an arbitrary situation extracted from
the application environment.

1 0 0 1 1 0 1 0 0 1 0

The first two bits ‘10’ identify the input inter-
face as the message’s actor. The following nine
bits describe the existence of obstacles inside
the vehicle’s visual field, each bit corresponding
to a sub-region. Bit 0 corresponds to absence of
obstacles, and bit 1 indicates presence of obsta-
cle.
The classifier list is composed of classifiers
(rules), which are string of characters divided in
three parts. In the first part there are the charac-
ters that identify the type of consequent (it will
be shown in the sequence). In the second there

are the characters that constitute its condition
(or antecedent). In the third there are the char-
acters that correspond to the consequent (or
action) of the classifier, witch is the message
that will be sent to the message list, if the classi-
fier is selected to become active.

0 1 # 1 # 0 # 1 0 # # 0 1

In the example above, the first two bits, by an
arbitrary convention, indicate that the conse-
quent is a message for the output interface. The
following nine bits correspond to the condition,
where the character “#” , means don’t care. It
occurs a matching when the condition of a clas-
sifier equals a message of the message list. Each
symbol # can take either value 0 or 1, favoring
the matching.
In the third part, the consequent may be of two
types: a message that will be used by the classi-
fiers in the next cycle, or a message for the
output interface to provide a determined action.
The classifiers that match one or more messages
from the message list have the chance to post
new messages. Following the example, the
message posted is shown bellow:

0 1 0 1

This message is then send to the message list
that receives messages from the input interface
and from the classifier list. The output interface
monitors constantly the message list, and, when
it finds output messages, it takes those messages
from the list executing the instructions deter-
mined by them. And more, the output interface
is able to solve possible impasses created by
conflicting messages.
This initial loop differs in nothing from the
propositional rules mechanism. It assumes that
the classifier list represents a set of rules that
possesses the required knowledge to process the
information from the environment. However,
differing from a usual rules base, where the
knowledge is acquired from one expert, in this
technique the rules (classifiers) in the classifier
list are usually determined by an evolutionary
mechanism.
The classifiers can be generated initially by a
random process, not discharging the possibility
of introducing initial knowledge. So, the task is
to discover which classifiers can produce ap-
propriate behavior, generate new classifiers and
discharge those that are or come to be inappro-
priate, considering the environment variability.
This mechanism of rule learning is implemented
by the joint application of the credit assignment
algorithm and the genetic algorithm (GA), that
actuate in a higher hierarchical level.
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Figure 2: Vehicle and its visual field.

Figure 3: Simulation Environment

2.2 Credit Assignment
For each classifier, stipulate a value of strength,
which is the measure of confidence in a classi-
fier in face of a given situation. Classifiers that
match some message in the message list will
make a bid to acquire them, and the one that
offers greater bid will have greater probability
to post its message. The following lines illus-
trate the details of the implementation.

Bid of classifier C:
B(C,t) = b.R(C).s(C,t)
R(C) - specificity of the classifier condition
(condition’s length minus number of symbols #,
divided by condition’s length)
b  - constant lesser then 1 (for example,
1/8 or 1/16)
s(C,t) - strength of classifier C at instant t
B - bid, it determines the probability that
the classifier posts its message
Strength of classifier C: 
s(C,t) = s(C,t) - B(C,t)
Reward: If the action generated by the classifier
turns to be appropriated, it will receive its bid
back, plus a reward R:
s(C,t+1) = s(C,t) + B(C,t) + R

One of the most famous algorithms for the im-
plementation of credit assignment is the so
called  Bucket Brigade [Booker et al., 1989]. It
utilizes the idea that classifiers can post mes-
sages that will generate new messages, com-
posing a sequence of messages to generate an
action and, because of this, all those messages
contributing to the action have their credit back
plus a reward if the action turned to be success-
ful, or nothing otherwise.
In this work, we’ll not use the Bucket Brigade
in all its complexity, but a simpler version based
on the same principles.

2.3 Genetic Algorithm (GA)
The process of rules discovery in the classifier
systems utilizes a genetic algorithm.
Basically, the GA selects the classifiers with
greater strengths to reproduce, generating new
individuals by their recombination and muta-
tion. The new classifiers generated take the
places of the weaker ones, modifying the classi-
fier set of the system  [Holland, 1975].

3 The application and its environment
The mobile vehicle, as in figure 2, has a circular
form, with a diameter of 50 pixels and visual
field divided into 9 regions. The objective of the
navigation is to avoid collision against obsta-
cles. Notice that, as the initial composition of
the classifier list is defined at random, no initial
knowledge about how to attain the objective is
available.

The environment is a reticulate of 700x700
pixels. The circular marks represent pilasters

without dimension (zero diameter), as seen in
figure 3.

4 NNCS –Neural Networks in Classifier
System

4.1 Why to use neural networks
The inclusion of neural networks to compose
the classifiers has implications associated with
their characteristics of universal approximators
and the possibility to manipulate real numbers.
In other words, it represents more than a mere
substitution of numeric methods because neural
networks provide new possibilities to enrich CS
performance, by means of more sophisticated
behaviors then the normally got without them.
The neural network architecture adopted is the
multiplayer perceptron [Haykin, 1999], with a
proper number of neurons at the hidden layer to
provide the necessary approximation capability.
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Figure 5: Vehicle Trajectory

4.2 Neural networks as classifiers
Each classifier will be taken as an array that
codifies the weights of two neural networks: one
for evaluation and the other for action, as in
figure 4. The evaluation neural network substi-
tutes the matching in the conventional CS. Its
hole is to determine the degree of interest for a
message in the message list. The action neural
network generates a new message that is posted
in the message list. Both networks process the
same input, which comes from the input inter-
face.
The remaining aspects of the mechanism are
exactly the same as in the normal CS.
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Figure 4: Neural networks for evaluation and action. 
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4.3 Configuration of the NNCS
The neural networks are multiplayer perceptrons
with one intermediate layer of two neurons.
The output layer of the evaluation network has
only one neuron, which provides the specificity
level. The output layer of the action network has
one or two neurons, depending whether we
consider only the vehicle orientation or also its
speed. The activation function for the interme-
diate layer is the hyperbolic tangent and the
output layer has linear activation.
The input to the neural networks are messages
from the input interface plus polarization. Each
message is an array of 9 bits. So, Evaluation
Neural Network, and Action Neural Network
will have 23 or 26 weights.
Some simulations may also have velocity and
orientation as input, adding two positions to the
input array. At the beginning, the weights of the
neural networks are generated randomly, and
then evolved based on a genetic algorithm.
The GA uses two-point crossover. Since they
are real numbers, it’s considered the sum, dif-
ference or mean of the values between the
points, to get a larger range of values. Mutation
for the initial tests is the inversive, however
inductive mutation should provide more diver-
sity for the values of weights.
The GA selects the ‘n’ better classifiers and the
Roulette Wheel algorithm [Goldberg, 1989] is
applied to form the pars. Two criteria are
adopted to start the GA: number of iterations or
number of collisions, which occurs first.

- Number of collisions: a lot of colli-
sions may indicate the necessity of
better classifiers, and the GA will im-
plement the search.
- Number of iterations: the absence of
collisions doesn’t mean that the be-
havior can’t be made better.

It’s important to observe that the configuration
chosen for this first prototype of NNCS is the
simplest possible, developed solely with the
intention of attesting competence to achieve the
goals.

5 Simulation results
To verify the functionality of NNCS, we con-
sidered just orientation or orientation and ve-
locity as control variables. The objective is: to
run without colliding with any obstacle.
So, the objective will be fulfilled if, after a
learning stage, the vehicle could move without
collisions for a great number of iterations. This
behavior normally will be characterized by the
vehicle movement describing orbits of a great
variety of types, surrounding one or more pi-
lasters.

Figure 5 illustrates vehicle movement, where
the vehicle finally finds its equilibrium in an
almost circular orbit around the pilaster to the
left of the environment center. The straight lines
represent de vehicle being placed back to the
center after a collision.
The simulation results are divided into 7 steps.

5.1 Initial Step: Parameters adjustment
Here, the main objective is to get the parameters
adjusted to obtain velocities and orientation
deviations with values appropriate for the envi-
ronment. Only one classifier was allowed to
post message, the one with higher evaluation. It
was observed the occurrence of elliptical tra-
jectories with a center displacement, resulting in
helicoids. With  the conventional CS, for the
same circumstances, only circular orbits were
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Figure 6: Speed versus number of iterations.
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Figure 7: Iterations between collisions.
After this learning phase, no additional

collision was observed.

The bars represent
number of iterations
between collisions and
the horizontal axis shows
the number of times it
occurred.

observed. This difference may be consequence
of using real numbers but also of substituting
classifiers by neural networks. We noticed diffi-
culties in learning, fact attributed to the use of
only one winner to bid, reducing the exposition
of the classifiers.

5.2 Step 2: 5 winners
The 5 classifiers with better matching were
selected to bid. We used the following formula
for calculating the bid in the initial step:
 B = 0.1*strength
And here we changed it to:

B = matching*strength
were matching corresponds to the output of the
evaluation neural network and will be utilized to
measure the classifier specificity; greater its
value, more specific the classifier. Bids and
strengths can have positive and negative values.
Figure 6 presents the results of one test. It can
be noticed positive and negative velocities, and
also with very high values, fact not of concern
at this time. By iteration 1100, the vehicle enters
a central orbit, running backwards. The vehicle
has no sensor looking backwards, but it can
learn, even so, by the environment symmetry.

Figure 7 presents a graphic considering the
number of iterations between collisions, dis-
played by each bar. It can be seeing, at the be-
ginning, about 53 iterations without collisions.
It’s obvious that it was not learned, illustrating
the possibility of occurring innate knowledge,
which anyway is just casual and even not de-
sired, because it prevents the system to learn
new abilities.
This experiment was observed until iteration
6000, maintaining a central orbit, sometimes
with some modifications on its trajectory, de-
scribing more complex orbits, combining ellip-
ses with helicoids.

5.3 Step 3: Velocity as input and orienta-
tion controlled by displacement
As velocity varies with time, we decided to feed
it back as an additional input to the classifiers.
On the other hand, orientation is not required to
be considered as input to the classifiers, because
we use the control action associated with dis-
placement of the current orientation, and not
orientation itself.

5.4 Step 4:  Velocity (v) and orientation
displacement (dteta) inside a range of values
We verified wether it’s possible to make pa-
rameters adjustment to obtain absolute values of
v and dteta inside a range, without degrading the
performance. We tried to obtain both of them
with their maximum around 25, that we consid-
ered appropriate for this phase. We got, without
great difficulties, v between –30 and 40, with its
major part between –10 and 20. It doesn’t look
easy to get better values by this approach. See
figure 8.
Another approach, to be considered in the next
phase, is to pennalize the classifiers giving val-
ues outside the required range. That is, to con-
sider the obtention of values inside the range
will be another goal of the system.
Now, how to avoid negative values for velocity,
preventing the use of back sensors? One of the
possible solutions is the adoption of a post-
processing device to impose a specific range of
values to the neural network output.
Another possibility, instead of velocity we could
consider acceleration, and negative acceleration
being implemented as the brakes of the vehicle.
It’s a quite more sophisticated mathematical
model that is not considered in this introductory
study.

5.5 Step 5: Only dteta as a control variable
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Figure 8: Speed versus iterations.

Vertical axis     : Speed in pixels by iteration
Horizontal axis: Number of iterations

To get simpler situations to observe and so
being able to get deeper understanding of what
is fundamental for the learning process, we
eliminated velocity variations. So, the vehicle
mission is just  to run with fixed velocity.
With that, the actuator will have just one neuron
in its output layer.
Learning becomes more evident, but the per-
formance varies significantly along training. We
have two points to consider.

- The learning mechanism must be desi-
gend do discover and maintain  appro-
priate classifiers. The method in use
based on bid (penalization) and reward
looks like not being sufficient.

- Also, the GA gives results in opposing
directions: new knowledge generates
new behaviors that have to be evalu-
ated and classified.

In the next step we introduce reinforcement
learning, trying to solve the first point. For the
second, the solution is related to finding more
adequate periods to put the GA in action.

5.6 Step 6: Additional reinforcement in
learning
It would be ideal to implement the Bucket Bri-
gade now, but we decided for a structurally
more simplified algorithm, which would point
to its future implementation viability. The prin-
ciple is to penalize a sequence of actions that
leads to a collision.
In average, the vehicle at 15 pixels per iteration
requires 5 iterations to reach a pilaster. We will
consider the last three actions as responsible for
the collision, because in this meantime the vehi-
cle had the chance to avoid it.
Making this, it was observed improvement in
learning.

5.7 Step 7: Pilasters moving

Moving the pilasters determines a more varied
information flow coming from the environment.
This resulted in the necessity of a greater num-
ber of iterations to acquire a good level of per-
formance.

6 NNCS – Final considerations
The results of this work, by its nature, are
qualitative.
We achieved the objective of implementing all
the functions of conventional CS utilizing
NNCS. As  expected, the process of weight
adjustment is time-consuming, but not superior
to the requirements to adjust parameters in con-
ventional CS.
The results are surprising, as we utilized very
simple techniques in all the steps. It’s clear that
doing so the solution was very dependent on the
initial conditions.
In the cases where the environment was main-
tained stationary, only the vehicle moving, or
when the pilasters were moving periodically, we
observed, in a great part of the experiments, the
search for an state of equilibrium.
With CS, the mentioned equilibrium manifests
itself in very simple periodic movements. With
NNCS the equilibrium is rather sophisticated,
because, besides utilizing real values for the
actuators outputs, the neural networks may be
producing non-linear soft mappings.
So, orbits of many types were observed: with
variable eccentricity; helicoids; periodic or
apparently periodic, with long periods.

7 NNCS – Next steps
In what follows, we enumerate important points
to better understand the results of utilizing
NNCS:
o To verify a manner of not suddenly altering

vehicles velocity and orientation.
o As seeing in step 1, it can occur negative

matching. It’s worth to study a more ade-
quate manner to make the bid in this case
and to deduct it from the strength. One pos-
sible solution for the previous point is to
consider not occurring matching if the
evaluation is negative.

o To implement variations based on the
Bucket Brigade algorithm.

o To study how to explicity apply apply
Evolutionary Reinforcement Learning in
NNCS.

o To develop specific genetic operators, as
the chromosomes are weights of neural
networks, and so providing better results
for the GA actuation.

o Better genetic operators may facilitate the
criteria definition for the frequency of GA
activation, based on the necessity of new
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knowledge as well as to improve the quality
of the knowledge basis just acquired.

o To verify what are in common with # (don’t
care) on the CS with the ever occurrence of
matching on the NNCS.

o Is there any kind of building blocks in the
NNCS?

o To consider the vehicle movement dynam-
ics.

o To vary acceleration instead of velocity,
with negative acceleration being considered
as the brakes of  the vehicle.
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