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Abstract
This paper presents the introductory concepts related to
the modeling tool called object networks. Inspired by both
(Fuzzy) Petri nets and object oriented technology, this
modeling tool has been recently addressed as a formal
framework for Computational Semiotics, and also as a
meta-theoretical approach to the integration of different
paradigms within Computing with Words and
Computational Intelligence. In a general sense, it is
proposed as a tool for modeling, analysis and design of
intelligent systems.

1. Introduction

Petri nets  are a general-purpose mathematical tool for
describing relations existing between conditions and
events. They are a very suitable tool for modeling and
analysis of information processing systems that are
characterized as being concurrent, asynchronous,
distributed, parallel, nondeterministic, fuzzy and/or
stochastic [1]. As a graphical tool, Petri nets can be used
as a visual-communication aid similar to flow charts,
block diagrams and networks. Tokens are used in these
nets to simulate the dynamic/concurrent activities of
systems. As a formal tool, state equations, algebraic
equations and other mathematical models are used to
analyze properties and characteristics of the modeled
systems.

To extend its representation power and enhance its
functionality, lots of different models were derived from
the main definition of a Petri Net. Examples of those
extensions are the predicate-transition [2] nets and the
coloured Petri Nets [3,4], also known as high-level Petri
Nets. More recently, object-oriented versions of Petri-nets
[5,6,7,8,9,10] were developed. But none of them disrupt
with the main idea in a Petri Net structure that is the
existence of a set of places, a set of transitions and a set of
arcs connecting places-transitions and transitions-places.
Object networks introduce two distinguished
characteristics when compared to Petri Nets. In the object

net approach, there is no set of transitions. There are only
a set of places and a set of arcs connecting them. The
second difference (that was already suggested by some
object-oriented versions of Petri Nets) is that tokens are
individualized by objects. So, the tokens are not all equal.
But, more than this, some objects, called active objects,
i.e., objects that have a positive number of methods,
perform the job of transitions. In this sense, objects within
an object network can act both as a token and/or as a
transition. And, as new objects can be created, object
networks can have a variable number of transitions, what
is not allowed in the definitions of Petri Nets. This is why
we don’t call our model an extended Petri Net, but only
that it is “inspired” in a Petri Net.

Other authors tried to define Petri Nets with a variable
structure, as the case of the adaptive design Petri nets [11]
and the self-modifying Petri nets [12,13]. In the first case
a sequence of Petri nets is generated, giving the illusion
(as in the movies) of a network that adapts itself. In the
second one, the arc parameters depend on the number of
tokens in other places. These were earlier tries, but none
of them give up with the idea of having a fixed set of
places and transitions. They were intrinsic static
structures. And the problem of using static structures is
the inability to model systems with learning and adaptive
characteristics.

In the study of intelligent systems, the field of Fuzzy
Petri Nets emerged as a way of providing an interesting
way of knowledge representation [14] and rule-based
decisionmaking [15] . The generalized fuzzy Petri net
[16], made also a connection to the field of neural
networks using a type of logic based neuron. This
suggests that the type of computations that can be
performed by Petri nets-like structures is a fundamental
issue in finding a modeling tool for intelligent systems,
that could embrace aspects of different paradigms within
computational intelligence [17] and computing with
words [18].

Object networks were first introduced by Gudwin [19],
in the context of intelligent systems modeling, analysis



and design. They were used as a formal background for
the development of Computational Semiotics [20,21,22],
an emulation of the semiose loop (the elementary semiotic
processing) in computer systems. More recently, object
networks were also used within the context of
computational intelligence and soft computing [23,24],
and computing with words [25].

In this paper, we review the fundamental concepts
concerning object networks. In section 2, we elaborate on
the concept of object, and in section 3 we introduce the
object network. We focus on the main conceptual aspects,
giving only a concise formal representation. For the
reader interested in the complete mathematical
definitions, we suggest the work of Gudwin
[19,20,21,24,25].

2. Objects

The main element in the modeling tool to be addressed
here is the object, and its extensions, generic object and
fuzzy object. We address objects in two different views.
In the first, we present the conceptual object, i.e., the
conceptual specification of objects. Next, we present a
resumed formal model that implements this specification,
and analyze the interaction among objects to compose
object systems. In the next section, we address a
particular kind of object system, the object network.

2.1 The Conceptual Object

Our concept of object [26] is closely related to its
intuitive physical meaning. Ontologically, an object is an
entity of the real world and is characterized by its
properties. The properties are its attributes [27] . Based on
a frame of reference, it is possible to find attributes
distinguishing different objects. Thus attributes describe
the objects. This view of objects does not consider that, in
addition to its existence, the objects also “act” in real
world. Therefore, a mathematical concept of object must
model its active aspect.

The conceptualization of object cannot, in principle, be
made in an independent way. Although we can imagine
the existence of an object by itself, we should also
consider its capability to interact with different objects. In
other words, to introduce the main concepts about objects,
we have to discuss object systems. An object system is a
set of interacting entities. The object components, which
allow interaction, are shown in figure 1.

Each active object is assumed to have two types of
interfaces: input and output interfaces, as in figure 1. The
input interface is composed by a collection of gates (input
gates). Within an object we find its internal states. These
states are divided in four regions. The first is a copy of the

input interface whereas the second comprises internal
variables. The third region is a copy of the output
interface whereas the fourth region is a set of
transformation (internal) functions. The output interface is
composed by a collection of output gates.
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Figure 1 – The Conceptual Object

The interaction among objects is regulated by a
mechanism called triggering, and is performed by active
objects. In this mechanism, some objects are first bound
to the active object, through the input gates, starting what
is called the assimilation phase. In this phase, the active
object copies the internal states of binding objects to its
internal states. After assimilation, the bounded objects can
be destroyed or released back to the system. If they are
destroyed, then we have a destructive assimilation (or
consumption). Otherwise, we have a non-destructive
assimilation. In the second phase of triggering, the active
object uses one of the transformation functions to change
its internal states. Both, input and output, are parts of the
internal states. This is called the transformation phase.
After the transformation phase, some of the internal states
of the active object are copied into the output interface.
Next, another set of objects is bound to the output gates,
and their internal states are changed to those present in the
output interface. This last phase is called either generation
phase or regeneration phase, depending on the objects that
are bound to output gates. If the bounded objects already
exist, then this process is called regeneration because it
alters the internal states of bounded objects. However, this
last phase can also create a new object, not part of the
object system. In this case, the last phase creates this new
object, fills its internal states with the information of the
output interface, and releases it to the system. This
process is called generation.

The triggering mechanism may allow different kinds of
behavior, as illustrated in figure 2. In this example, object
o6 is the active object performing the triggering process.



Objects o1, o2 and o3 are the objects to be assimilated in
the triggering. Objects o1 and o4 are regenerated, and o5 is
generated. Note that o1 is, at the same time, assimilated
and regenerated. Object o2, after assimilation, is released
back to the system but o3 is destroyed.
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Figure 2 – Object Interact ions

To control the triggering process, there is a special
function associated with each object called the selection
function. This function decides which objects are to be
bound to input gates, which objects are to be bound to
output gates, and which internal function is to be used in
the triggering process. The control strategy of an object
system is dictated by the selection functions.

Note, however, that the selection functions do have
some restrictions. These restrictions concern the
transformation functions requirements, as well as some
problems involving synchronization. Each transformation
(internal) function requires a minimum set of objects to
start the triggering procedure. Therefore, the selection
function must consider the simultaneous availability of all
objects needed to enable a transformation function. The
synchronization problems that may appear are related to
multiple active objects binding the same object. For
assimilation bindings, there should be a guarantee that
only one active object is performing a destructive
assimilation. If some assimilated object is also being
regenerated, it must be regenerated by only one active
object. And cannot be destructively assimilated in this
case. In this sense, there should be a global policy for the
selection functions, assuring that those constraints are
satisfied.

With an appropriate implementation of selection
functions, objects can become autonomous entities, i.e.,
independent of an external synchronization mechanism.
Synchronism, despite being useful sometimes, is not a
requirement in object systems. The behavior of real
objects, with asynchronous and parallel activities can be
modeled. Note that both assimilated and (re)generated
objects are not necessarily passive. This allows adaptive
and self-organizing systems to be modeled by object
systems.

2.2 The Formal Object

This subsection introduces a resumed formal definition
for objects and related concepts. The focus here is on the
main issues and definitions only. For a more in depth
coverage the reader is referred to the work of Gudwin
[19,20,21,24,25].

Definition 1 – Variable: Let T be a countable set  (a
“time” set) with a generic element t, and X ⊆ U. A
variable x of type X is a function x : T → X . Note that a
function is also a relation and hence it can be expressed
by a set. Thus, x ⊂ T × X.

Definition 2 – Class: A class C is a set whose elements  ci

are tuples of  the type:

(v1, v2 , ... , vn , f1, f2 , ... , fm ) , n ≥ 0, m ≥ 0

where vi  ∈ Vi , and fj are functions

fj : 
p P

p

q Q

q

j j

V V
∈ ∈
× ×→ .

Here×means the Cartesian product,
Pj  ⊆ {1, ... , n} and Qj  ⊆ {1, ... , n}.

Definition 3 – Object: Let C be an non-empty class and c
be a variable of type C. Thus c is an object of class C.

Observe that, by definition, an object is a multi-
temporal entity, i.e., the definition of an object comprises
all its time history. A more intuitive definition concerns
an instance of an object, viewed as the value of an object
at a particular instant of time, i.e., a tuple:

(v1, v2 , ... , vn , f1, f2 , ... , fm ).

Definition 4 - Set Variable: Let N be an enumerable set,
with a generic element n and X ⊆ U a subset of U. We
define a set variable x of type X as a function x:N → 2X.

Definition 5 - Generic Object: Let C be a non-empty
class. Let c be a set variable of type C. The set variable c
is called a generic object of class C.

Definition 6 - Case of a Generic Object: Let c be a
generic object of class C. An object c’ of type C is said to
be a case of generic object c if ∀n ∈ N, c’(n) ∈ c(n).

Definition 7 - Fuzzy Object: Let N be an enumerable  set

with a generic element n, X a class, 
~
X  a fuzzy set

defined onto X and 2
~X  the set of all fuzzy sets onto X.

We define a fuzzy object x of type X as a function

x : N → 2
~X  .



Definition 8 - Object System
A set of objects (or generic objects, or fuzzy objects) ci

is an object system if the ci’s are related to each other in
the sense that each instance of such objects, at a given
instant, is a function of the instances of all objects at the
previous time instant:

ck (t+1) = f (c1(t), ... , cn(t) ).

This is only a concise definition of an object system.
The complete definition is far more involved. The reader
is referred to the work of Gudwin [19,20,21,24,25] for
details.

3. Object Network

An object network is a special type of object system in
which additional restrictions concerning interactions are
included. To distinguish object network and object system
let us assume places and arcs whose roles are similar to
those used in Petri nets context. Objects in places can only
interact with objects in places connected through arcs.
Thus, at each instant, the objects defined should be at one
place. For each place there is a set of places connected
with, through input arcs. These places are called the input
gates of the place. Analogously, each place has a set of
places connected with it by means of output arcs, called
output gates. For each field of output interface of objects
in this place there should exist one corresponding output
gate. With those conditions we can see that, for each
place, there should be only objects of the same class.
Remember that objects can be of two types: passive and
active. Passive objects do not have functions in its tuples
and are only used to store information. Active objects do
have functions in its tuples, and perform the task of
transitions in the object network. Each place can only
have objects of the same class. In this sense, we can say
that there are passive and active places if the objects that
can be put in a place are passive or active, respectively.
Apart of those special characteristics, an object network is
similar to an object system.

Object networks can be put in a graphical form, with
places being represented by circles and arcs by lines.
Passive places are indicated by circles. Active places are
indicated by double circles, and instances of objects by
black tokens, as in figure 3.

Observe that, differently than in Petri nets, the tokens
are instances of objects that have individuality, i.e., they
are not a marking on the place, but are related to objects
with attributes and eventually transforming functions.
Again, active objects, which perform the role of
transitions, are also mobile and changeable. This gives an
object net great power of representation, allowing

modeling of systems that are not suitable to be modeled
by Petri nets, e.g., adaptive systems.

As for an object system, the basic behavior in an object
network is the triggering of active objects. Triggering an
active object corresponds to the generation of new
instances of objects in places directly connected to the
place where the active object is through output arcs.

Passive Places

Active Place

Instances of
Objects

γ - Selection
Function

(v1 , ... , vn , f1 , ... , fm )
(v1 , ... , vn )

f’s - Transformation
Functions

Figure 3 : Example of an Object Network

To be triggered, an object must first have an enabling
scope, that is, a set of object instances put in the input
gates, enabling one of the object functions. To select an
enabling scope, there is a selection function that selects,
from the object instances available, those that are to be
used for triggering. After triggering, object instances may
be put in one ore more output gates of the place where the
active object is. This is also determined by the selection
function. The object instances used as an enabling scope
may (or not) be destroyed for the next time instant.

3.1 The Formal Object Network

An object network ℜ is a tuple

ℜ = (Σ, Π, Ξ, A, η, fpi, fpo, & , ξ, γ ),

such that:
1)- an objects system Ω = { (ci , γi ) } is determined by

choosing ci ∈ & and γi ∈ γ, 0 ≤ i ≤ δ,
2)-for each object ci ∈ &  with a function fj being

triggered at n, being this object at n at a place π = ξ(n,ci ),
the objects si

k belonging to the generative scope Si

indicated by γi (n) should have a localization function
defined by:

ξ(n+1,si
k ) = πk

where  πk should be such that η ( fpoπ (k’) ) = (π,πk )
and k’ is the index of the k-th field of the input interface
specific to function fi of ci referred at the output interface
of ci .

In this definition we have that:



a) Σ = {Ci } is a set of classes
b) Π = { πi }  is a set of places πi

c) Ξ =  Ξ (π) is a mapping of classes Π → Σ, such that
∀π ∈ Π for each field vi  of input interface of objects from
class Ξ(π), being vi an object from class C, ∃πk, πk ∈
F(π), such that  Ξ(πk ) = C, and for each field vi of output
interface of objects from class Ξ(π), being vi an object
from class C, ∃πk, πk ∈ V(π), such that  Ξ(πk ) = C.

d) A is a set of arcs A = {ai }
e)η is a node function η : A → Π × Π
f) fpi = {fpi i } is a set of attribute functions for input

gates, where each fpii : {1, ... , ∂i }  → A is the attribute
function for input gates of objects which are at a place πi .

g) fpo = {fpoi }is a set of attribute functions for output
gates, where each fpoi = { 1, ... , ρi } → A  is the attribute
function for output gates of objects that are at a place πi .

h) & = {ci }, is a set of objects where ci are objects
from a class Ci , Ci ∈ Σ,  0 ≤ i ≤ δ, δ > 0.

i) ξ is the localization function ξ : N × & → Π, which
relates to each object c ∈ &, for each instant n, a place π.

j) γ = { γi } , 0 ≤ i ≤ δ, δ > 0, is a set of selection
functions, where each element γi is a selection function γi :
N → 2& x B  × 2&  × Θi for an object ci . These functions
selects, for each instant n, a set of objects to be
assimilated by object ci  (its enabling scope Hi ), a set of
objects to be generated by object ci (its generative scope
Si) and the index for the internal function to be executed
by the object. These selections have as restrictions that:

∀(c,b) ∈ Hi ,
ξ(n,c) = π, π ∈ F(ξ(n,ci ) ),
if b = 1, (∀k ≠ i)((c,1) ∉ Hk ),

∀c ∈ Si ,
ξ(n+1,c) = π, π ∈ V(ξ(n,ci ) ),
(∀k ≠ i)(c ∉ Sk ) and
(∀k)((c,1) ∉ Hk ).

If ci is a passive object or, for a given n, ∃/ Hi ≠ ∅ or
/∃ Si ≠ ∅ then γi (n) = ( ∅, ∅, 0 ). The third index being 0

does mean that no internal function is going to be
executed, i.e., the object is not going to trigger.

As additional definitions we have:
k) F(π) is a mapping Π → 2Π  , defined by

F(π) = ∪ πk where k ∈ K, K = {k |  ∃ aj ∈ A such that
η(aj) = (πk,π) }.

l) V(π) is a mapping Π → 2Π , defined by
V(π) = ∪ πk where k ∈ K, K = {k  | ∃ aj ∈ A such that
η(aj) = (π,πk) }.

m) X(π) is a mapping of connections Π → 2Π, such
that X(π) = F(π) ∪ V(π).

n) ii is the input interface of an object from class Ξ(πi).

o) oi is the output interface of an object from class
Ξ(πi).

p) ∂i  is the number of fields in ii and ρi the number of
fields in oi .

q) Θi = { 0, ... , mi }, where mi is the number of
function for object ci

4. Conclusions

In this paper, we presented the main issues of a tool
aimed to be used in modeling, analysis and design of
intelligent systems. We covered the tool description and
main concepts only, referring the interested reader for
other publications providing a more in depth coverage.
This is a very promising tool for the task of building a
unified mathematical representation for intelligent
systems, considering the preliminary results obtained so
far [19-25]. Along with the theory of Computational
Semiotics, it may provide, in the future, a substrate for a
theory of intelligent systems.

It is important to say, however, that there is still a lot to
do to achieve this goal. The tool is defined only for
discrete time. The extension for continuous time would
require a lot of changes in the model, which are not
trivial. The same must be said about object’s internal
functions. In the current development, we assume
instantaneous executing times for such functions, what is
not necessarily the best approach (despite being the
easiest). We have also a problem with hierarchical
objects, a problem that is not totally solved within object
oriented systems [28] theory. Other missing point is the
lack for formal analysis tools. Analysis parameters similar
to those found in Petri nets (e.g. boundedness, liveness,
reachability, coverability, safeness, non-interference, etc)
are still to be developed. Other analysis methods, like the
invariant method [29], may have to be ported to be used
in object networks.

We hope to address such matters in the future.
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