
A Simulator using Classifier Systems with Neural Networks
for Autonomous Robot Navigation

Lubnen N. Moussi, Fernando J. Von Zuben, Ricardo R. Gudwin, Marconi K. Madrid

DSCE/DCA – FEEC – UNICAMP
Av. Albert Einstein, 400 – Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil

E-mails: lubnen@dsce.fee.unicamp.br , vonzuben@dca.fee.unicamp.br, gudwin@dca.fee.unicamp.br, madrid@dsce.fee.unicamp.br

Abstract: This paper presents a simulator that was developed

to assist in the process of implementing high-level autonomous
robot navigation algorithms and in the related experimenta-
tions. Classifier systems are designed here, using neural net-
works as classifiers, to perform autonomous navigation. We
propose a powerful simulator using classes and objects to be
easily updated and extended. The simulator carries a class com-
posed of methods for differential wheels steering, for detecting
collision, and for sensor readings. Another class allows the speci-
fication of geometric shaped objects, which can also be detected
as obstacles in the environment. In addition, operators are
available to deal with credit assignment, genetic algorithms, and
inference of the classifiers. By designing and constructing the
simulator, we create conditions to explore the potentialities of
neural networks as classifiers.

I. INTRODUCTION

Classifier systems (CS) [2] were originally proposed as
learning devices associated with an evolutionary algorithm
for rule discovery. Each classifier corresponds to a proposi-
tional rule, usually encoded as a chromosome of bits. Popula-
tions of classifiers operate in parallel, being evaluated indi-
vidually by a credit assignment mechanism, according to the
system performance after taking a sequence of decisions
(proposed by the classifiers selected to act on the environ-
ment). This original version of CS was proposed by Holland
[4] with the purpose of modeling natural evolutionary proc-
esses, presenting flexibility of operation and mechanisms of
structural adaptation that few intelligent systems have shown
till now.

CS using neural networks as classifiers have been demon-
strated to perform properly when applied to mobile autono-
mous robot navigation [6]. Moussi et al. [6] used a prototype
of a computational simulator, and here a more elaborated
simulator will be presented, including additional conclusions
derived from the new experiments. The results will indicate
that it would be worth to proceed with a deeper investigation
about new perspectives for classifier systems.

A brief explanation of classifier systems and the role of
neural networks in this context are presented in section II.
Section III is dedicated to the Simulator, conceived as a
modular structure to implement high level planning for mo-
bile robots. The software platform adopted here was MAT-
LAB, a dedicated programming environment, with all facili-
ties to deal with applied mathematics. Within MATLAB, we
explore the availability of classes and objects, and the possi-
bility of generating code using the C++ language. In Section
IV, we enumerate distinctive aspects related to the use of
neural networks as classifiers, including the increment in the

role of each classifier. The universal approximation capabil-
ity of neural networks [5] improves the flexibility of each
classifier, without reducing the learning ability. When com-
pared with traditional rule base classifiers, a significant re-
duction in the number of classifiers may be observed, without
degrading the performance of the system as a whole, because
each classifier may become responsible for multiple tasks,
not necessarily associated with similar operating points of the
navigator.

Section V outlines the concluding remarks and points out
relevant considerations for the studies to come.

II. CLASSIFIER SYSTEMS WITH

NEURAL NETWORKS

Classifier systems with neural networks are implemented
replacing the rule base classifiers, in conventional classifier
systems, by neural networks. Some additional references for
conventional classifier systems are Goldberg [3] and Rich-
ards [8], which give detailed explanations of concepts and
parameter initialization mechanisms. In what follows, we will
present the most relevant basic concepts.

A. Conventional Classifier Systems (CS)

Classifier systems (CS) are indicated for non-stationary
environments with the presence of noise and irrelevant data.
They are implemented to operate continuously and in real
time, and they pursue implicit goals with sparse rewards.
Originally, they refer to a methodology for creating and up-
dating rules (the classifiers), which encode alternative spe-
cific actions according to features of the problem in hand.

The Classifier System is composed of a population of
classifiers or rules. Associated to each classifier there is a
“strength”, used to express the energy or power of each clas-
sifier during the evolution process (Table 1).

The classifiers are composed of an antecedent and a con-
sequent part. The antecedent part of the classifier is a string
of fixed size composed of elements of the ternary alphabet set
{0,1,#}. The symbol “#” known as the “don’t care” symbol,
can assume value “1” or “0”, during the comparison with the
message from the environment. The consequent part of the
classifier is generally given by a string of fixed size com-
posed of elements of the binary alphabet set {0,1}.

The Classifier System communicates with the environ-
ment through its message detectors or input interface (Fig-
ure 1). These detectors are responsible for the preprocessing
of messages, i.e., strings of 0s and 1s. The system acts on the
environment through its effectors or output interface (Fig-

ure 1), which decodes the system proposed actions. The ap-
propriate reward applied to the active classifier is determined
by the nature of the chained consequences of each action
(environment’s feedback).

The matching of the classifier’s antecedent part with the

environment’s message defines which classifiers will com-
pete. The competition in this case is based on the strength of
the selected classifiers. In the example of Table 1, classifiers
B and D have a higher probability of winning the competi-
tion, once selected to compete, due to the level of strength
they have.

Another important concept is the “specificity” of each
classifier, which is a measure inversely proportional to the
quantity of symbols “#” on the classifier’s antecedent part.

TABLE 1 – SET OF CLASSIFIERS

Hypothesis Classifiers or Rules Strength
A 1#1## : 11 8,5
B 1110# : 01 15,2
C 11111 : 11 5,9
D ##0## : 10 19,0

For example, classifiers A and D are less specific, being

able to match a greater number of messages from the envi-
ronment. Suppose that each bit from the message 10100, of
size S = 5, characterizes an information from the environ-
ment. Classifier A would match with this message and other
7 messages. However, classifier C could match only the
message 11111.

The classifier’s consequent part is separated from the an-
tecedent part by the symbol “ : ” and its value determines the
action to be applied to the environment through the “effec-
tors”. For example, in the case of classifiers A and C, the
sequence 11 could mean “go ahead”, determining one among
4 possible movements of an autonomous agent in an unex-
plored environment.
Classifier Systems are divided into three interactive distinct
sub-systems: the Rule and Message Sub-System, the appor-
tionment of Credit Sub-System and the Rule Discovery Sub-
System (Figure 2).

A.1 Rule and Message Sub-System

When the message detectors perceive the presence of any
message from the environment, this message is sent to the
Rule and Message Sub-System (see Figure 2).

Figure 2 – Simplified Flow (Classifier System/Environment)

The sub-system encodes the message in a way that the

Classifier System can recognize. From this moment on, all
the classifiers try to match its antecedent part with the mes-
sage (comparison phase). This matching can be made by a
bit-to-bit comparison, according to specific rules, or just by
calculating a variation of the Hamming Distance.

Each individual or classifier that matches with the envi-
ronment message will be sent to the Apportionment of Credit
Sub-System.

A.2 Apportionment of Credit Sub-System

During this phase, all classifiers that match with the en-
vironment message will participate in a competition. The
winner will be allowed to act on the environment.

Several taxes are collected from all individuals of the
population: life tax, participation in the competition, and
action on the environment.

The environment will reply in response to the action
proposed by the winner classifier, providing a feedback to the
Classifier System (see Figure 2). It is the responsibility of the
Apportionment of Credit Sub-System to incorporate the value
calculated, based on the feedback of the environment, to the
strength of the active classifier at that moment.

Once the feedback is received from the environment and
the credit is attributed to the winner classifier, a new message
will be provided by the environment, describing its actual
state. Then, once again the message is worked by the Rule
and Message Sub-System. The process continues for one
epoch of iterations. At the end of each epoch, the Classifier
System will take part in another process of evolution, with
the discovery of new rules.

A.3 Rule Discovery Sub-System

At the end of each epoch of iterations, the genetic opera-
tors are applied to produce the next generation of rules. The
objective of the evolutionary process is to search for a Classi-
fier System capable of having an effective interaction with
the environment.

Basically, the genetic algorithm chooses the classifiers
with greater strength and promotes the reproduction between
them, applying the genetic operators of crossover and muta-
tion. The generated children will be introduced into the popu-

Figure 1 – Classifier System and Environment Interaction

CLASSIFIER
SYSTEM

ENVIRONMENT

DETECTORS

EFFECTORS FEEDBACK

 Classifier System

Rule and Message
 Sub - System

Apportionment of Credit
 Sub - System

Messages

Winning Action

Rule Discovery
 Sub - System

D
 e

 t
 e
 c
 t
 o
 r
 s
 E
 f

 f
 e
 c
 t
 o
 r
 s
 Feedback

Matched Classifiers

Evaluation
Neural

Network

Input
Message

Output
Message

Action
Neural

Network

lation at the next generation, replacing the weakest individu-
als [8].

B. Classifier Systems with Neural Networks (CSNN)

In classifier systems with neural networks (CSNN), each
classifier is replaced by two neural networks (see figure 3).
The antecedent will be represented by a neural network that
evaluates the degree of matching with the input message, and
the consequent with a neural network that indicates the ac-
tion.

The output of the Evaluation Neural Network replaces the
matching and specificity of the conventional classifier, and
the output of the Action Neural Network will perform the
same role associated with the consequent of a rule.

The remaining mechanisms are similar to those associated
with the conventional CS, and in Section IV we will point out
relevant differences between the two approaches.

Figure 3 - Neural Networks replacing each classifier.

III. THE SIMULATOR

A. Why simulate?

Though not revealing all the details of a real world applica-
tion, computer simulation may be effective in indicating the
potentialities of several approaches for autonomous naviga-
tion, in terms of both theoretical and practical considerations.
Simulation may also reduce experimentation time, in the
sense that it’s possible to run the simulation model faster then
the real model. Schultz & Grefenstette [9] and Ramsey et al.
[7] have shown that knowledge acquired from learning proc-
esses under computer simulation is robust and might be ap-
plicable to the real world if the simulation is more general,
incorporating noise and a diversified set of environmental
conditions.

B. Preliminary decisions

First of all, the authors are conscious about the existence of
software packages for simulation of autonomous navigation.
As an example, we mention “Webots 3.0.1”, from Cyberbot-
ics, and directed to the simulation of differential wheels steer-
ing robots in a VRML environment [10]. However, it’s not
compatible (or probably not directly usable) with Borland’s
or Microsoft’s C++ IDE series, what means that we could not
have access to many libraries, including MATLAB’s. Be-

sides, we were interested in revealing the details of the robots
project, i.e. the type of guidance, the type and characteristics
of the sensors, and so on.

Back to our simulator, we aimed at employing a familiar
and easy-to-use language, that is well accepted and that pre-
sents a powerful graphical interface. So we choose MAT-
LAB. It works with classes, which is required for our modu-
lar approach, developing a simulator that can be extended to
many types of robot guidance, detectors and algorithms for
navigation. A restriction one might point out is the fact that
MATLAB is an interpreted language, what usually means a
bad, or, at least, not so good performance. Fortunately, the
amount of computation necessary to simulate the navigation
under the control of a classifier system is not so intense, and a
conventional computer, with a processor with clock of 300
MHz or higher proved to be enough. Better performance will
be required when we start putting more than one robot in the
environment. Besides the availability of higher capacity
processors, we can consider compiling MATLAB’s function
in C++.

C. The simulator

The simulator deals with a 2D environment with any to-
pology. We consider differential wheels steering robots as
objects of the class RobotMove, with a circular shape, accord-
ing to one of ours goals of simulating the Khepera scientific
robot. The robot can have any number of sensors, such that
position, aperture and maximum range can be specified. The
modular approach allows the use of other forms of guidance
and sensors. One method of great relevance for the Robot-
Move class is RobotDetect, used to check sensor detection
and robot collision.

Figure 4 - Illustration of a RobotMove Object

D. Details

Let’s take a closer look at the characteristics of the simula-
tor.

1) RobotMove Class: The syntax to create an object Ro-
botMove is: u = RobotMove(Axis,XIn,YIn,TetaIn,DataSensor);

where Axis defines the axis, XIn and YIn stand for x and y
coordinates of the center of the robot, Tetain is its angular
orientation and DataSensor is a line vector defining the ro-
bot’s sensors. Let’s consider the following data for the sen-
sors: DataSensor = [35 10 100 0 10 100 -35 10 100], which represents
a robot like the one shown in Figure 4. We can notice the

area of perception of three sensors according to the vector
DataSensor, the first one 35 degrees to the left of the robot
heading, the second in the direction of the movement and the
third 35 degrees to the right. All of the sensors have an aper-
ture of 10 degrees and maximum range of 100 pixels. The
RobotMove Class utilizes a private method Sensor to define
the sensor type, which can detect, through the Detect method
to be explained in what follows, objects in three ranges: near,
middle distance and far.

DWS method handles the mathematics for differential
wheels steering, which, in this model, considers the kinemat-
ics without acceleration, assumption that fits our purposes by
now. Its input parameters are the robot current position and
orientation data, the time interval dt that will be elapsed and
the right and left wheels velocities. The output parameters
will give the new robot coordinates and data for plotting.

set method is utilized to settle new properties to the object
and to update the position. set has to be used after calling
DWS. There is one occurrence that might require some care,
depending on dt and velocities of the wheels: when the object
overlaps, that is, invades obstacles or the environment con-
tour. In reality, the difference between touching and invading
is subtle. It depends on the experiment requirements. Any-
way, visually we might observe invasion, and if it is not to
occur, we should decrease dt.

Data2plot method gives access to the object properties.
This method for the RobotMovel is relevant in the case we
have more them one RobotMovel object for one of them
being able to detect the other. It’s done by means of Detect
that will call Data2plot of the other robot to get its data for
detection.

Detect is the method that will verify whether the Robot-
Move object touched (that could be invaded) an object, which
also could be another robot, or the environment contour. It
also gets the sensors readings. It requires as input all the
objects plus the environment contour to be detected. Detect
requires the method Data2plot of the object to be detected.

2) GeometricForm class: this class permits the creation of
geometric shaped objects and their plotting in the robots

environment. By now we developed two types of objects:
with a circular and with a rectangular shape. The NewCoor-
dinates method calculates the new properties for the object in
a new position defined by its new center. After defining new
properties we have to settle them using the set method, which
will also show the object in the new position. The Data2plot
method will be used by the Detect method of the RobotMove.
Figure 5 presents the environment with the robot of Figure 4,
a rectangular contour, a central rectangle and two circular
objects. The grid is present to indicate the environment meas-
urements.

3) Functions: we implemented four functions: GeneticAl-

gorithm, Actuator, Evaluator and PunishmentReward that
handle almost all the learning algorithm for the autonomous
navigation. These functions are ready to be implemented as
methods of the RobotMove class; they will be of relevance as
methods when we start to use more then one robot in the
environment. GeneticAlgorithm applies a basic Genetic Algo-
rithm to classifiers with greater strength to create a new gen-
eration that will replace the weakest individuals in the current
population. Actuator takes the Neural Network of Action of
the winner classifier to process the information from the
sensors, getting its output as guidance values. A multilayer
perceptron with one intermediate layer is considered, with the
number of neurons in the first layer being automatically ad-
justed in accordance with the number of sensors and the
number of regions of detection. The number of neurons in the
intermediate layer is an input parameter. In the third layer,
there is one output for the evaluation network, and, for the
action network, as many outputs as are the number of vari-
ables required to control the robot.

Evaluator and PunishmentReward do the credit assignment

and message classification, based on the criteria presented by
Richards [8]. There are three main differences outlined in
what follows.

The first difference is that the winner doesn’t pay the bid

tax; only its bid is deducted from its strength. The second is
that when there is no change in the sensor’s detected values,
the winner will not be rewarded. We had to make it before
implementing Richard’s approach, because the winners were
getting their strength growing apparently very fast. It looks as
not being required any more, as some trials had shown. The
third is because Richards [8] introduces a new classifier when
it doesn’t occur matching, and this classifier has its antece-
dent equal to the sensors codified values, and the consequent
is generated randomly. As we will see in the next section, the
specificity is in CSNN a rather abstract concept. Anyway, to
generate a Neural Network with a very high specificity, re-
lated to the other classifiers, is not a straightforward proce-
dure. But this new classifier represents an automated way of
putting knowledge inside the system, and certainly we will
incorporate a similar procedure in our algorithm.

Figure 5 - The environment with a robot and some objects.

4) The controller: a MATLAB script is used as a controller

for the process, as presented in Figure 6. Parameter initiali-
zation is related to all required parameters for configuring the
type of experimentation being held. Environment definition
creates the figure that will bear the environment with its ob-
jects, and defines the environment contour. Objects defini-
tions settle all the objects that will be used. Of course, an
object can be settled at any time, not just at this point. Ro-
botMove definition will settle the robots in the environment.
Classifier initialization will generate the initial set of classifi-
ers, usually by means of a random process. With the actuator,
the main cycle is started: it calls the method Actuator to ob-
tain the control variables to the robot; in the first passage, the
actuator is useless, since nothing happened yet. The location
of the robot will be based on the outputs obtained by the
neural networks of the Actuator method. Afterwards the
method set for the RobotMove will settle its new data and plot
in the new position. It’s also useless in the first passage of the
main cycle. Next, we have to check if the action was success-
ful by verifying the absence of a collision and getting the new
sensors readings. All of this is done calling the method De-
tect. PunishmentReward will evaluate the action proposed by
the winner, beginning at the second passage. The Genetic
Algorithm is triggered by one of two occurrences, whichever
comes first: a given number of collisions and a given number
of cycles since the last time it was called. Calling Classifica-
tion we obtain the classification, using as input the sensors
data got by Detect. And so we start a new iteration with the
system going back to the Actuator step.

IV. NEURAL NETWORKS AS CLASSIFIERS: THE

MAIN CONSEQUENCES

The introduction of neural networks to replace the rule
base classifiers in classifiers systems modifies its behavior in
ways that must be understood to be able to explore its poten-
tials and/or even to allow the increment in performance. Here
we will talk about some of these differences that we have
detected.

A. Matching

In conventional classifier systems (CS), matching is a dis-
tinct occurrence. It happens or not. In classifier system with
neural networks (CSNN), matching is a real number, an out-
put of the Evaluation Neural Network. So we’ll have to spec-
ify the matching occurrence by choosing the range of values
that will define it. At the beginning, we considered that all
classifiers could match any message, and that the output of
the evaluation network would define the classifier specificity.
This fact allows weak classifiers to win the auction, when its
specificity turned to be negative, while its strength had be-
come negative. The product of them produces a positive
number to formulate the classifier bid. So we established that
only positive output determines the matching. For simplicity,
we still considered the same number for matching and speci-
ficity, but we think that it will be worth to introduce one more

neuron in the output layer of the network to define the classi-
fier specificity.

B. Specificity

In CS, specificity is a characteristic of the classifier. In
CSNN it is an output of the evaluation network, having as
input the codification of the data provided by the sensors. It
means that the same classifier may have different specificity
for different messages. That is, specificity in CSNN is not a
characteristic of the classifier. It represents a generalized
concept, meaning that a classifier will be more specific for a
pattern of messages and less specific for other, expressing a
more complex behavior.

C. Consequent

In CS, a classifier can be associated with different mes-
sages, depending on its specificity. The same occurs in
CSNN, but in a rather sophisticated manner, as we saw in the
items above. Now, looking at the action that this classifier
will produce, we see that in conventional CS it is always the
same for all the messages it attends, because the action is
related to its consequent. However, for the CSNN it is a func-
tion of inputs, as the consequent represents an action net-
work, with different input for different messages.

D. Number of classifiers required to solve a stationary envi-
ronment

In the CS this number corresponds to the number of re-
quired situations for the command of the actuators, because
even having general classifiers, their consequent will give the
same output for the different messages. One case that can be
solved by just one classifier would happen in a circular
movement in a non-symmetric region. In this movement the

 Parameters Initialization

Environment Definition

Objects Definition

RobotMovel Definition

Classifiers Initialization

Actuator

RobotMove positioning

Sensors readings and collision detection

Reward or Punishment

Genetic Algorithm trigger

Classification

Figure 6 – Steps of the controller

sensors will produce different readings that will have to
match a general classifier with enough strength to compen-
sate its low specificity. This classifier will produce always
the same output (for instance - turn right 10 degrees) in ac-
cordance with its consequent.

In the CSNN, it is theoretically possible for just one classi-
fier to solve a more complex then a circular movement, re-
quiring different outputs from the action network. In one way
this possibility points to a promising feature. Consider the
fact that neural networks are universal approximators [5]. It
sounds reasonable to expect a better solution then the ob-
tained by the CS. But we have to consider that, in this case,
we will have only one winner, diminishing the significance of
the credit assignment process, once the networks achieve the
required training. We think that it would be better to generate
the solution with more classifiers participating, even if their
number remain lesser then the required by conventional CS.
Notice that we are dealing with no stationary environments
and we have to maintain the strength of the classifiers.

E. Initial knowledge and external knowledge injection

No doubt that autonomous robots utilizing learning tech-
niques demand less design effort when compared to expert
systems, where all the rules should be defined by someone,
normally an expert. But it is a good practice to reduce the
learning effort introducing some available knowledge in the
initialization and even during the training, mostly when this
activity is not very difficult. In conventional CS, it is easier
then in the CSNN because in that system the mapping from
sensors data to antecedent + consequent is direct. So, initial-
ize the classifiers with external knowledge or even introduce
knowledge as suggested by Richards [8] when there is no
matching is always easier in the CS.

V. SOME PRELIMINARY RESULTS AND CONCLUSIONS

We have just finished the software and have obtained some
preliminary results. In the experiments, the robot has a fixed
speed, and modifying one of its wheels speed changes its
orientation. It has to run avoiding obstacles.

There is a noticeable dependency on the initial conditions.
There are some ways of minimizing it, as increasing the
number of classifiers, at the cost of increasing the computa-
tional effort. As next steps, we intend to introduce knowledge
automatically and to use reinforcement learning [1].

Some experiments showed that just one classifier could
handle simple environment demands. The robot converges to
a circular-like movement, in a non-symmetric region of the
environment. Now we are going to investigate whether this
possibility is consequence of the use of neural networks or is
caused by the balance of reward and punishment we are us-
ing.

In some cases we had two classifiers working after the
learning phase, and the robot presents a trajectory that covers
all the environment area. We are going to contrast this case
with the one cited above. We are also devising ways to check

the quality of the learned behavior, maybe including more
obstacles or adopting a non-stationary environment.

In some non-succeeded experiments, we observed a behav-
ior in which the robot was caught in a kind of trap. It indefi-
nitely stayed repeating the same sequence of steps towards a
collision. And we noticed few classifiers being responsible
for that repeated action. The treatment of this behavior will
probably involve the evaluation of the classifier that deter-
mines the collision. If it is a generic classifier, then it is pos-
sible that in some steps it gets rewards because there is no
collision and in just one step, when the collision occurs, it is
punished. This generic classifier with bad and good responses
is not being rejected by the credit assignment and will require
a specific treatment.

As we mentioned before, the results of this paper is part of
a broader project, and the preliminary results described here
may indicate future steps. All of our efforts are intended to
provide useful insights in order to abbreviate the implementa-
tion of real-world autonomous navigation based on learning
evolutionary algorithms.

VI. BIBLIOGRAFY

[1] Ackley, D., and Littman, M. “Interactions Between Learning and Evolu-
tion”, Artificial Life II, SFI Studies in the Sciences of Complexity, vol.
X, edited by C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen,
Addison-Wesley, 1991.

[2] Booker, L. B., Goldberg, D. E., and Holland, J. H. “Classifier Systems
and Genetic Algorithms”, Artificial Intelligence, 40: 235-282, 1989.

[3] Goldberg, D.E. “Genetic Algorithms in Search, Optimization and Ma-
chine Learning”, Addison-Wesley, 1989.

[4] Holland, J. H. “Adaptation in Natural and Artificial Systems”, Univer-
sity of Michigan Press, An Arbor, MI, 1975.

[5] Hornik, K., Stinchcombe, M., and White, H. “Multi-layer feedforward
networks are universal approximators”, Neural Networks, 2(5): 359-366,
1989.

[6] Moussi, L.N., Gudwin, R.R., Von Zuben, F.J., Madrid, M.K. Neural
networks in classifier systems (NNCS): An application to autonomous
navigation. in V.V. Kluev & N.E. Mastorakis (eds.) Advances in Signal
Processing, Robotics and Communications, Electrical and Computer
Engineering Series, WSES Press, pp. 256-262, 2001.

[7] Ramsey, C.L., Schultz, A.C., and Grefenstette, J.J. “Simulation-assisted
learning by competition: Effects of noise differences between training
model and target environment”, Proceedings of the Seventh Interna-
tional Conference on Machine Learnig, Austin, TX, Morgan Kaufmann ,
pp. 211-215, 1990.

[8] Richards, R.A. “Zeroth-Order Shape Optimization Utilizing a Learning
Classifier System”, Ph.D. Thesis, Mechanical Eng. Dept., Stanford Uni-
versity, 1995. http://www.stanford.edu/~buc/SPHINcsX/book.html

[9] Schultz, A.C., and Grefenstette, J.J. “Using a Genetic Algorithm to
Learn Behaviors for Autonomous Vehicles”, Navy Center for Applied
Research in Artificial Intelligence, Navy Research Laboratory, Wash-
ington, DC, Proceedings of the AIAA Guidance, Navigation and Control
Conference, Hilton Head, SC, August 10-12, 1992.

[10] Webots Release 3.0.1 (for evaluation purpose only), from Cyberbotics
Ltd., www.cyberbotics.com.

ACKNOWLEDGMENTS: The authors acknowledge FAPESP, the re-

search agency for the state of São Paulo, CNPq, the Brazilian National
Research Council (grants 300910/96-7 and 300123/99-0) and CAPES for
their support to this work.

