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Abstract: This paper presents a simulator that was developed 

to assist in the process of implementing high-level autonomous 
robot navigation algorithms and in the related experimenta-
tions.  Classifier systems are designed here, using neural net-
works as classifiers, to perform autonomous navigation. We 
propose a powerful simulator using classes and objects to be 
easily updated and extended. The simulator carries a class com-
posed of methods for differential wheels steering, for detecting 
collision, and for sensor readings. Another class allows the speci-
fication of geometric shaped objects, which can also be detected 
as obstacles in the environment. In addition, operators are 
available to deal with credit assignment, genetic algorithms, and 
inference of the classifiers. By designing and constructing the 
simulator, we create conditions to explore the potentialities of 
neural networks as classifiers. 

 
I. INTRODUCTION 

Classifier systems (CS) [2] were originally proposed as 
learning devices associated with an evolutionary algorithm 
for rule discovery. Each classifier corresponds to a proposi-
tional rule, usually encoded as a chromosome of bits. Popula-
tions of classifiers operate in parallel, being evaluated indi-
vidually by a credit assignment mechanism, according to the 
system performance after taking a sequence of decisions 
(proposed by the classifiers selected to act on the environ-
ment). This original version of CS was proposed by Holland 
[4] with the purpose of modeling natural evolutionary proc-
esses, presenting flexibility of operation and mechanisms of 
structural adaptation that few intelligent systems have shown 
till now. 

CS using neural networks as classifiers have been demon-
strated to perform properly when applied to mobile autono-
mous robot navigation [6]. Moussi et al. [6] used a prototype 
of a computational simulator, and here a more elaborated 
simulator will be presented, including additional conclusions 
derived from the new experiments. The results will indicate 
that it would be worth to proceed with a deeper investigation 
about new perspectives for classifier systems. 

A brief explanation of classifier systems and the role of 
neural networks in this context are presented in section II. 
Section III is dedicated to the Simulator, conceived as a 
modular structure to implement high level planning for mo-
bile robots. The software platform adopted here was MAT-
LAB, a dedicated programming environment, with all facili-
ties to deal with applied mathematics. Within MATLAB, we 
explore the availability of classes and objects, and the possi-
bility of generating code using the C++ language. In Section 
IV, we enumerate distinctive aspects related to the use of 
neural networks as classifiers, including the increment in the 

role of each classifier. The universal approximation capabil-
ity of neural networks [5] improves the flexibility of each 
classifier, without reducing the learning ability. When com-
pared with traditional rule base classifiers, a significant re-
duction in the number of classifiers may be observed, without 
degrading the performance of the system as a whole, because 
each classifier may become responsible for multiple tasks, 
not necessarily associated with similar operating points of the 
navigator. 

Section V outlines the concluding remarks and points out 
relevant considerations for the studies to come. 

 
II. CLASSIFIER SYSTEMS WITH  

NEURAL NETWORKS 

Classifier systems with neural networks are implemented 
replacing the rule base classifiers, in conventional classifier 
systems, by neural networks. Some additional references for 
conventional classifier systems are Goldberg [3] and Rich-
ards [8], which give detailed explanations of concepts and 
parameter initialization mechanisms. In what follows, we will 
present the most relevant basic concepts. 

A. Conventional Classifier Systems (CS) 

Classifier systems (CS) are indicated for non-stationary 
environments with the presence of noise and irrelevant data. 
They are implemented to operate continuously and in real 
time, and they pursue implicit goals with sparse rewards. 
Originally, they refer to a methodology for creating and up-
dating rules (the classifiers), which encode alternative spe-
cific actions according to features of the problem in hand. 

The Classifier System is composed of a population of 
classifiers or rules. Associated to each classifier there is a 
“strength”, used to express the energy or power of each clas-
sifier during the evolution process (Table 1). 

The classifiers are composed of an antecedent and a con-
sequent part. The antecedent part of the classifier is a string 
of fixed size composed of elements of the ternary alphabet set 
{0,1,#}. The symbol “#” known as the “don’t care” symbol, 
can assume value “1” or “0”, during the comparison with the 
message from the environment. The consequent part of the 
classifier is generally given by a string of fixed size com-
posed of elements of the binary alphabet set {0,1}. 

The Classifier System communicates with the environ-
ment through its message detectors or input interface (Fig-
ure 1). These detectors are responsible for the preprocessing 
of messages, i.e., strings of 0s and 1s. The system acts on the 
environment through its effectors or output interface (Fig-



ure 1), which decodes the system proposed actions. The ap-
propriate reward applied to the active classifier is determined 
by the nature of the chained consequences of each action 
(environment’s feedback). 

 
 
 
 
 
 
 
 
The matching of the classifier’s antecedent part with the 

environment’s message defines which classifiers will com-
pete. The competition in this case is based on the strength of 
the selected classifiers. In the example of Table 1, classifiers 
B and D have a higher probability of winning the competi-
tion, once selected to compete, due to the level of strength 
they have. 

Another important concept is the “specificity” of each 
classifier, which is a measure inversely proportional to the 
quantity of symbols “#” on the classifier’s antecedent part. 

TABLE  1 – SET OF CLASSIFIERS 

Hypothesis Classifiers or Rules Strength 
A 1#1##   : 11 8,5 
B 1110#   : 01 15,2 
C 11111   : 11 5,9 
D ##0##   : 10 19,0 

 
For example, classifiers A and D are less specific, being 

able to match a greater number of messages from the envi-
ronment. Suppose that each bit from the message 10100, of 
size S = 5, characterizes an information from the environ-
ment. Classifier A would match with this message and other 
7 messages. However, classifier C could match only the 
message 11111. 

The classifier’s consequent part is separated from the an-
tecedent part by the symbol “ : ” and its value determines the 
action to be applied to the environment through the “effec-
tors”. For example, in the case of classifiers A and C, the 
sequence 11 could mean “go ahead”, determining one among 
4 possible movements of an autonomous agent in an unex-
plored environment. 
Classifier Systems are divided into three interactive distinct 
sub-systems: the Rule and Message Sub-System, the appor-
tionment of Credit Sub-System and the Rule Discovery Sub-
System (Figure 2). 

A.1 Rule and Message Sub-System 

When the message detectors perceive the presence of any 
message from the environment, this message is sent to the 
Rule and Message Sub-System (see Figure 2). 

 

 

 

 

 

 
Figure 2 – Simplified Flow (Classifier System/Environment) 

 
The sub-system encodes the message in a way that the 

Classifier System can recognize. From this moment on, all 
the classifiers try to match its antecedent part with the mes-
sage (comparison phase). This matching can be made by a 
bit-to-bit comparison, according to specific rules, or just by 
calculating a variation of the Hamming Distance. 

Each individual or classifier that matches with the envi-
ronment message will be sent to the Apportionment of Credit 
Sub-System. 

A.2 Apportionment of Credit Sub-System 

During this phase, all classifiers that match with the en-
vironment message will participate in a competition. The 
winner will be allowed to act on the environment. 

Several taxes are collected from all individuals of the 
population: life tax, participation in the competition, and 
action on the environment. 

The environment will reply in response to the action 
proposed by the winner classifier, providing a feedback to the 
Classifier System (see Figure 2). It is the responsibility of the 
Apportionment of Credit Sub-System to incorporate the value 
calculated, based on the feedback of the environment, to the 
strength of the active classifier at that moment. 

Once the feedback is received from the environment and 
the credit is attributed to the winner classifier, a new message 
will be provided by the environment, describing its actual 
state. Then, once again the message is worked by the Rule 
and Message Sub-System. The process continues for one 
epoch of iterations. At the end of each epoch, the Classifier 
System will take part in another process of evolution, with 
the discovery of new rules. 

A.3 Rule Discovery Sub-System  

At the end of each epoch of iterations, the genetic opera-
tors are applied to produce the next generation of rules. The 
objective of the evolutionary process is to search for a Classi-
fier System capable of having an effective interaction with 
the environment. 

Basically, the genetic algorithm chooses the classifiers 
with greater strength and promotes the reproduction between 
them, applying the genetic operators of crossover and muta-
tion. The generated children will be introduced into the popu-

Figure 1 – Classifier System and Environment Interaction 
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lation at the next generation, replacing the weakest individu-
als [8]. 

B. Classifier Systems with Neural Networks (CSNN) 

In classifier systems with neural networks (CSNN), each 
classifier is replaced by two neural networks (see figure 3). 
The antecedent will be represented by a neural network that 
evaluates the degree of matching with the input message, and 
the consequent with a neural network that indicates the ac-
tion. 

The output of the Evaluation Neural Network replaces the 
matching and specificity of the conventional classifier, and 
the output of the Action Neural Network will perform the 
same role associated with the consequent of a rule. 

The remaining mechanisms are similar to those associated 
with the conventional CS, and in Section IV we will point out 
relevant differences between the two approaches. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 - Neural Networks replacing each classifier. 
 

III. THE SIMULATOR 

A. Why simulate? 

Though not revealing all the details of a real world applica-
tion, computer simulation may be effective in indicating the 
potentialities of several approaches for autonomous naviga-
tion, in terms of both theoretical and practical considerations. 
Simulation may also reduce experimentation time, in the 
sense that it’s possible to run the simulation model faster then 
the real model. Schultz & Grefenstette [9] and Ramsey et al. 
[7] have shown that knowledge acquired from learning proc-
esses under computer simulation is robust and might be ap-
plicable to the real world if the simulation is more general, 
incorporating noise and a diversified set of environmental 
conditions. 

B. Preliminary decisions 

First of all, the authors are conscious about the existence of 
software packages for simulation of autonomous navigation. 
As an example, we mention “Webots 3.0.1”, from Cyberbot-
ics, and directed to the simulation of differential wheels steer-
ing robots in a VRML environment [10]. However, it’s not 
compatible (or probably not directly usable) with Borland’s 
or Microsoft’s C++ IDE series, what means that we could not 
have access to many libraries, including MATLAB’s. Be-

sides, we were interested in revealing the details of the robots 
project, i.e. the type of guidance, the type and characteristics 
of the sensors, and so on. 

Back to our simulator, we aimed at employing a familiar 
and easy-to-use language, that is well accepted and that pre-
sents a powerful graphical interface. So we choose MAT-
LAB. It works with classes, which is required for our modu-
lar approach, developing a simulator that can be extended to 
many types of robot guidance, detectors and algorithms for 
navigation. A restriction one might point out is the fact that 
MATLAB is an interpreted language, what usually means a 
bad, or, at least, not so good performance. Fortunately, the 
amount of computation necessary to simulate the navigation 
under the control of a classifier system is not so intense, and a 
conventional computer, with a processor with clock of 300 
MHz or higher proved to be enough. Better performance will 
be required when we start putting more than one robot in the 
environment. Besides the availability of higher capacity 
processors, we can consider compiling MATLAB’s function 
in C++. 

C. The simulator 

The simulator deals with a 2D environment with any to-
pology. We consider differential wheels steering robots as 
objects of the class RobotMove, with a circular shape, accord-
ing to one of ours goals of simulating the Khepera scientific 
robot. The robot can have any number of sensors, such that 
position, aperture and maximum range can be specified. The 
modular approach allows the use of other forms of guidance 
and sensors. One method of great relevance for the Robot-
Move class is RobotDetect, used to check sensor detection 
and robot collision. 

 

 
 

Figure 4 - Illustration of a RobotMove Object 

D. Details 

Let’s take a closer look at the characteristics of the simula-
tor. 

1) RobotMove Class: The syntax to create an object Ro-
botMove is: u = RobotMove(Axis,XIn,YIn,TetaIn,DataSensor);  

where Axis defines the axis, XIn and YIn stand for x and y 
coordinates of the center of the robot, Tetain is its angular 
orientation and DataSensor is a line vector defining the ro-
bot’s sensors. Let’s consider the following data for the sen-
sors: DataSensor = [35 10 100 0 10 100 -35 10 100], which represents 
a robot like the one shown in Figure 4. We can notice the 



area of perception of three sensors according to the vector 
DataSensor, the first one 35 degrees to the left of the robot 
heading, the second in the direction of the movement and the 
third 35 degrees to the right. All of the sensors have an aper-
ture of 10 degrees and maximum range of 100 pixels. The 
RobotMove Class utilizes a private method Sensor to define 
the sensor type, which can detect, through the Detect method 
to be explained in what follows, objects in three ranges: near, 
middle distance and far. 

DWS method handles the mathematics for differential 
wheels steering, which, in this model, considers the kinemat-
ics without acceleration, assumption that fits our purposes by 
now. Its input parameters are the robot current position and 
orientation data, the time interval dt that will be elapsed and 
the right and left wheels velocities. The output parameters 
will give the new robot coordinates and data for plotting.  

set method is utilized to settle new properties to the object 
and to update the position. set has to be used after calling 
DWS. There is one occurrence that might require some care, 
depending on dt and velocities of the wheels: when the object 
overlaps, that is, invades obstacles or the environment con-
tour. In reality, the difference between touching and invading 
is subtle. It depends on the experiment requirements. Any-
way, visually we might observe invasion, and if it is not to 
occur, we should decrease dt. 

Data2plot method gives access to the object properties. 
This method for the RobotMovel is relevant in the case we 
have more them one RobotMovel object for one of them 
being able to detect the other. It’s done by means of Detect 
that will call Data2plot of the other robot to get its data for 
detection. 

Detect is the method that will verify whether the Robot-
Move object touched (that could be invaded) an object, which 
also could be another robot, or the environment contour. It 
also gets the sensors readings. It requires as input all the 
objects plus the environment contour to be detected. Detect 
requires the method Data2plot of the object to be detected. 

 

2) GeometricForm class: this class permits the creation of 
geometric shaped objects and their plotting in the robots 

environment. By now we developed two types of objects: 
with a circular and with a rectangular shape. The NewCoor-
dinates method calculates the new properties for the object in 
a new position defined by its new center. After defining new 
properties we have to settle them using the set method, which 
will also show the object in the new position. The Data2plot 
method will be used by the Detect method of the RobotMove. 
Figure 5 presents the environment with the robot of Figure 4, 
a rectangular contour, a central rectangle and two circular 
objects. The grid is present to indicate the environment meas-
urements. 

 
3) Functions: we implemented four functions: GeneticAl-

gorithm, Actuator, Evaluator and PunishmentReward that 
handle almost all the learning algorithm for the autonomous 
navigation. These functions are ready to be implemented as 
methods of the RobotMove class; they will be of relevance as 
methods when we start to use more then one robot in the 
environment. GeneticAlgorithm applies a basic Genetic Algo-
rithm to classifiers with greater strength to create a new gen-
eration that will replace the weakest individuals in the current 
population. Actuator takes the Neural Network of Action of 
the winner classifier to process the information from the 
sensors, getting its output as guidance values. A multilayer 
perceptron with one intermediate layer is considered, with the 
number of neurons in the first layer being automatically ad-
justed in accordance with the number of sensors and the 
number of regions of detection. The number of neurons in the 
intermediate layer is an input parameter. In the third layer, 
there is one output for the evaluation network, and, for the 
action network, as many outputs as are the number of vari-
ables required to control the robot. 

 
Evaluator and PunishmentReward do the credit assignment 

and message classification, based on the criteria presented by 
Richards [8]. There are three main differences outlined in 
what follows. 

 
The first difference is that the winner doesn’t pay the bid 

tax; only its bid is deducted from its strength. The second is 
that when there is no change in the sensor’s detected values, 
the winner will not be rewarded. We had to make it before 
implementing Richard’s approach, because the winners were 
getting their strength growing apparently very fast. It looks as 
not being required any more, as some trials had shown. The 
third is because Richards [8] introduces a new classifier when 
it doesn’t occur matching, and this classifier has its antece-
dent equal to the sensors codified values, and the consequent 
is generated randomly. As we will see in the next section, the 
specificity is in CSNN a rather abstract concept. Anyway, to 
generate a Neural Network with a very high specificity, re-
lated to the other classifiers, is not a straightforward proce-
dure. But this new classifier represents an automated way of 
putting knowledge inside the system, and certainly we will 
incorporate a similar procedure in our algorithm. 

 

Figure 5 - The environment with a robot and some objects. 



 
4) The controller: a MATLAB script is used as a controller 

for the process, as presented in Figure 6. Parameter initiali-
zation is related to all required parameters for configuring the 
type of experimentation being held. Environment definition 
creates the figure that will bear the environment with its ob-
jects, and defines the environment contour. Objects defini-
tions settle all the objects that will be used. Of course, an 
object can be settled at any time, not just at this point. Ro-
botMove definition will settle the robots in the environment. 
Classifier initialization will generate the initial set of classifi-
ers, usually by means of a random process. With the actuator, 
the main cycle is started: it calls the method Actuator to ob-
tain the control variables to the robot; in the first passage, the 
actuator is useless, since nothing happened yet. The location 
of the robot will be based on the outputs obtained by the 
neural networks of the Actuator method. Afterwards the 
method set for the RobotMove will settle its new data and plot 
in the new position. It’s also useless in the first passage of the 
main cycle. Next, we have to check if the action was success-
ful by verifying the absence of a collision and getting the new 
sensors readings. All of this is done calling the method De-
tect. PunishmentReward will evaluate the action proposed by 
the winner, beginning at the second passage. The Genetic 
Algorithm is triggered by one of two occurrences, whichever 
comes first: a given number of collisions and a given number 
of cycles since the last time it was called. Calling Classifica-
tion we obtain the classification, using as input the sensors 
data got by Detect. And so we start a new iteration with the 
system going back to the Actuator step. 

 
IV. NEURAL NETWORKS AS CLASSIFIERS: THE 

MAIN CONSEQUENCES 

The introduction of neural networks to replace the rule 
base classifiers in classifiers systems modifies its behavior in 
ways that must be understood to be able to explore its poten-
tials and/or even to allow the increment in performance. Here 
we will talk about some of these differences that we have 
detected. 

A. Matching 

In conventional classifier systems (CS), matching is a dis-
tinct occurrence. It happens or not. In classifier system with 
neural networks (CSNN), matching is a real number, an out-
put of the Evaluation Neural Network. So we’ll have to spec-
ify the matching occurrence by choosing the range of values 
that will define it. At the beginning, we considered that all 
classifiers could match any message, and that the output of 
the evaluation network would define the classifier specificity. 
This fact allows weak classifiers to win the auction, when its 
specificity turned to be negative, while its strength had be-
come negative. The product of them produces a positive 
number to formulate the classifier bid. So we established that 
only positive output determines the matching. For simplicity, 
we still considered the same number for matching and speci-
ficity, but we think that it will be worth to introduce one more 

neuron in the output layer of the network to define the classi-
fier specificity. 

B. Specificity 

In CS, specificity is a characteristic of the classifier. In 
CSNN it is an output of the evaluation network, having as 
input the codification of the data provided by the sensors. It 
means that the same classifier may have different specificity 
for different messages. That is, specificity in CSNN is not a 
characteristic of the classifier. It represents a generalized 
concept, meaning that a classifier will be more specific for a 
pattern of messages and less specific for other, expressing a 
more complex behavior. 

C. Consequent 

In CS, a classifier can be associated with different mes-
sages, depending on its specificity. The same occurs in 
CSNN, but in a rather sophisticated manner, as we saw in the 
items above. Now, looking at the action that this classifier 
will produce, we see that in conventional CS it is always the 
same for all the messages it attends, because the action is 
related to its consequent. However, for the CSNN it is a func-
tion of inputs, as the consequent represents an action net-
work, with different input for different messages. 

D. Number of classifiers required to solve a stationary envi-
ronment  

In the CS this number corresponds to the number of re-
quired situations for the command of the actuators, because 
even having general classifiers, their consequent will give the 
same output for the different messages. One case that can be 
solved by just one classifier would happen in a circular 
movement in a non-symmetric region. In this movement the 

  Parameters Initialization 

Environment Definition 

Objects Definition 

RobotMovel Definition 

Classifiers Initialization 

Actuator 

RobotMove positioning 

Sensors readings and collision detection 

Reward or Punishment 

Genetic Algorithm trigger 

Classification 

Figure 6 – Steps of the controller 



sensors will produce different readings that will have to 
match a general classifier with enough strength to compen-
sate its low specificity. This classifier will produce always 
the same output (for instance - turn right 10 degrees) in ac-
cordance with its consequent. 

In the CSNN, it is theoretically possible for just one classi-
fier to solve a more complex then a circular movement, re-
quiring different outputs from the action network. In one way 
this possibility points to a promising feature. Consider the 
fact that neural networks are universal approximators [5]. It 
sounds reasonable to expect a better solution then the ob-
tained by the CS. But we have to consider that, in this case, 
we will have only one winner, diminishing the significance of 
the credit assignment process, once the networks achieve the 
required training. We think that it would be better to generate 
the solution with more classifiers participating, even if their 
number remain lesser then the required by conventional CS. 
Notice that we are dealing with no stationary environments 
and we have to maintain the strength of the classifiers. 

E. Initial knowledge and external knowledge injection 

No doubt that autonomous robots utilizing learning tech-
niques demand less design effort when compared to expert 
systems, where all the rules should be defined by someone, 
normally an expert. But it is a good practice to reduce the 
learning effort introducing some available knowledge in the 
initialization and even during the training, mostly when this 
activity is not very difficult. In conventional CS, it is easier 
then in the CSNN because in that system the mapping from 
sensors data to antecedent + consequent is direct. So, initial-
ize the classifiers with external knowledge or even introduce 
knowledge as suggested by Richards [8] when there is no 
matching is always easier in the CS. 

 
V. SOME PRELIMINARY RESULTS AND CONCLUSIONS 

We have just finished the software and have obtained some 
preliminary results. In the experiments, the robot has a fixed 
speed, and modifying one of its wheels speed changes its 
orientation. It has to run avoiding obstacles. 

There is a noticeable dependency on the initial conditions. 
There are some ways of minimizing it, as increasing the 
number of classifiers, at the cost of increasing the computa-
tional effort. As next steps, we intend to introduce knowledge 
automatically and to use reinforcement learning [1]. 

Some experiments showed that just one classifier could 
handle simple environment demands. The robot converges to 
a circular-like movement, in a non-symmetric region of the 
environment. Now we are going to investigate whether this 
possibility is consequence of the use of neural networks or is 
caused by the balance of reward and punishment we are us-
ing. 

In some cases we had two classifiers working after the 
learning phase, and the robot presents a trajectory that covers 
all the environment area. We are going to contrast this case 
with the one cited above. We are also devising ways to check 

the quality of the learned behavior, maybe including more 
obstacles or adopting a non-stationary environment. 

In some non-succeeded experiments, we observed a behav-
ior in which the robot was caught in a kind of trap. It indefi-
nitely stayed repeating the same sequence of steps towards a 
collision. And we noticed few classifiers being responsible 
for that repeated action. The treatment of this behavior will 
probably involve the evaluation of the classifier that deter-
mines the collision. If it is a generic classifier, then it is pos-
sible that in some steps it gets rewards because there is no 
collision and in just one step, when the collision occurs, it is 
punished. This generic classifier with bad and good responses 
is not being rejected by the credit assignment and will require 
a specific treatment. 

As we mentioned before, the results of this paper is part of 
a broader project, and the preliminary results described here 
may indicate future steps. All of our efforts are intended to 
provide useful insights in order to abbreviate the implementa-
tion of real-world autonomous navigation based on learning 
evolutionary algorithms. 
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