

Hierarchical Evolution of Heterogeneous Neural Networks

Daniel Weingaertner, Victor K. Tatai, Ricardo R. Gudwin, Fernando Von Zuben
DCA – FEEC – State University of Campinas (UNICAMP)

CP 6101 – CEP 13083-970 – Campinas, SP – Brazil
{danielw, tatai, gudwin, vonzuben}@dca.fee.unicamp.br

Abstract – This paper describes a hierarchical evolutionary

technique developed to design and train feedforward neural
networks with different activation functions on their hidden
layer neurons (Heterogeneous Neural Networks). At an upper
level, a genetic algorithm is used to determine the number of
neurons in the hidden layer and the type of the activation
function of those neurons. At a second level, neural nets compete
against each other across generations so that the nets with the
lowest test errors survive. Finally, on a third level, a
coevolutionary approach is used to train each of the created
networks by adjusting both the weights of the hidden layer
neurons and the parameters for their activation functions.

I. INTRODUCTION

Multi-Layer Perceptron (MLP) and Radial Basis Function
(RBF) networks are the most common feedforward artificial
neural networks (ANNs) used on classification, recognition
and prediction problems. They have been applied to a variety
of fields, usually producing better results when replacing or
being combined with conventional techniques. Such
capabilities come from the fact that both MLPs and RBFs
show an important attribute: they are universal approximators
with good generalization capabilities [11], [2].

Typically, ANNs are composed of a pre-defined number of
similar neurons in their hidden layer. Despite the existence of
some rules of thumb to indicate this parameter in accordance
with the available training data, such empirical methods are
failure-prone, not warranting their applicability in all cases.
In such context, designing ANNs through simulated
evolution has shown its effectiveness as an automatic
alternative to manual configuration [5]. A prominent
advantage of the evolutionary design over the manual one is
its adaptability to dynamic changes in the environment [16].

Although the neuron’s activation function (AF) has been
shown to be an important parameter for the ANN
configuration — it is the source of non-linearity responsible
for the approximation capabilities — few works have
explored such fact while devising new neural net topologies.
Currently, there are no extensive results reported in the
literature contemplating the actual effectiveness of employing
gaussian or logistic AF’s in all neurons of the hidden layer.
This approach is followed, generally, as a means to simplify
the design tasks.

However, if the AF of each neuron could be automatically
defined, better results regarding the net performance and the
training convergence rate could be achieved. In this work, we
attempt to investigate such supposition by using Genetic
Algorithms (GAs) for the design of heterogeneous neural
networks. The idea is to view each hidden neuron as a peer
with distinguished capabilities (different AF) to be explored

while integrating with others in a same ensemble (neural net).
Such abstraction is based on the cooperative combination of
evolving populations of experts, combining their
qualifications to reach the problem solution [2].

With such objective in mind, we used a hierarchical
approach, known as Hierarchical Coevolutionary Genetic
Algorithm (HCGA), which was initially conceived with two
evolutionary levels [3]. We added one more evolutionary
level to it, so that on the first level a GA is used to build the
ANN’s topology, i.e., to choose both the number of neurons
in the hidden layer and the AF of each neuron. It is worth
noticing here that those AF’s can also be RBF’s. On a second
level, neural nets compete against each other across
generations so that the nets with the lowest test error survive.
Finally, on the third level, a coevolutionary approach is used
to train each of the above-created networks by adjusting the
weights of the neurons in the hidden layer and the parameters
of their AF’s. The weights of the neurons on the output layer
are optimized using the Least Mean Square method.

In the remainder of the paper, we introduce the use of
evolutionary techniques for the configuration of neural nets,
present our framework to the automatic design of
heterogeneous neural networks, show results from our
experiments, compare this approach to a previous version [1],
identify possible work extensions, and address some final
considerations.

II. EVOLUTIONARY ALGORITHMS APPLIED TO
NEURAL NETWORKS

GA’s have been used in conjunction with neural networks
in three major undertakings [5]: data pre-processing, weight
optimization, and neural net topology determination. The
second item has been hampered mainly because of the
Competing Conventions Problem. As weight adjustment with
GA’s relies heavily on recombination, there may be many
equivalent symmetric solutions to the same optimization
problem, delaying the convergence process. This can be
alleviated by using more appropriate crossover operators
which try to avoid individuals presenting the same cyclic
genetic order on the elements of their chromosomes.

Another strategy centers upon the integration between
evolutionary programming (EP) and ANNs. Liu and Yao [16]
have presented an EP-based algorithm for the tuning of
ANNs with different activation function nodes. The weights
are adjusted by means of a combination of the
Backpropagation (BP) algorithm with a random search
algorithm. For simplicity, the authors chose to use only the
logistic and the Gaussian AF’s, as they represent two broad
classes of activation functions with complementary features.

The resulting generalized neural net (GNN), as they call it,
resembles very much what we name here as heterogeneous
neural networks (HNN), albeit our approach gears towards
the employment of a hierarchical coevolutionary-genetic
algorithm (HCGA) and is open to other types of AF’s.

Iyoda and Von Zuben [6] have also attempted to analyze
the impact of configuring ANNs with different AFs at the
hidden layer by proposing an evolutionary hybrid
architecture inspired by another constructive method
(Projection Pursuit Learning - PPL). Such approach also
incorporates distinct composition functions in the output
layer (additive and/or multiplicative), leading to a higher
efficiency on the combination of the mapping efforts realized
by the hidden neurons. Their algorithm relies only on a
classical GA, not directly promoting the cooperation among
the units.

Finally, it is worth mentioning the prominent evolutionary
methodology developed by Moriarty and Miikkulainen [3],
[4], denominated SANE. SANE relates to a “symbiotic
adaptive neuro-evolution system” in which a population of
homogeneous neurons is coevolved to compose a neural net
intended to be deployed on dynamic environments. This
hierarchical solution attempts to optimize the neural topology
by two means. First, since neurons are recognized as
functional building blocks, their ensemble can be more
accurately evaluated. Second, since no neuron is evaluated
only by its own capabilities, but rather by the qualities of the
groups in which it takes part, evolutionary pressure exists to
evolve several complementary neuron types.

III. THE HCGA2 APPROACH

In this section, we first present the main design decisions
taken during the conception of the HCGA2 approach and then
assess its adequacy and performance through a series of
benchmarking results over well-known pattern classification

problems.

A. Heterogeneous Neural Networks

Figure I shows the heterogeneous neural network (HNN)
model used on the HCGA2. It resembles a typical
feedforward neural net; the main difference lies on the hidden
layer, as its neurons may have distinct AF’s (hj(x)). Such
functions are chosen from a delimited candidate set, which is
presented in Table I, and comprehends a broad parcel of
those usually employed on the construction of ANN’s.

It is important to emphasize that there is also a Radial
Basis Function (RBF-Green [13]) that can be used together
with the non-RBF functions, in a novel approach that we
expect to increase the HNN’s approximation capacity. On the
RBF-Green function we can adjust up to three parameters: P
- the vector with the RBF’s center coordinates; V - the RBF’s
variance vector; and w – a pondering weights vector. To
reduce the GA’s search space, we only evolve the P values
and one value for σ. No pondering weights are used.

TABLE I

SET OF HIDDEN NEURONS ACTIVATION FUNCTIONS

Name Activation Function

Linear xh =1

Signal Step

=
>+
<−

=
0 if

0 if 1
0 if 1

2

xlastValue
x
x

h

Hyperbolic Tangent
bxbx

bxbx

ee

ee
h −

−

+
−=3

Gaussian
2

2

2
4

2

1 σ

πσ

x

eh
−

=

RBF-Green ∑
=

−−=
n

i

x

i e i
iwh

1

2

1

5

2

2
µ

σ

As illustrated (Figure I), x and represent, respectively, the
input vector of the training/testing patterns and the resulting
net output. The output neurons have all an additive linear
combination as aggregation function. There are two sets of
weighted connections, namely, V and W. The later is
optimized during a supervised configuration process, through
stimulus-response pairs, by means of the Least Mean Square
(LMS) method. The adjustment of the weights in W is
defined in order to solve the following optimization problem:

W
min ||y – s||2, (1)

where ||·|| is the Euclidian norm and

y = HW =

)(...)()(

....

)(...)()(

)(...)()(

2

2222

1121

pmpp

m

m

xxx

xxx

xxx

hhh

hhh

hhh

1

1

1

W

(2)

r

Figure 1: Architecture of the heterogeneous neural network to be evolved
by the hierarchical approach. The shadowed area indicates the
components to be optimized by the coevolutionary process: neurons with
different activation functions and the associated weights.

x1

xn

. .
 .

 vm0

 vm1

 vmn

1

hm(x)

...

. .
 .

 v20

 v21

 v2n

1

h2(x)

...

1 v10

 v11

 v1n

h1(x)

...
 1

1

. .
 .

...

1

 w10

 w11

 w1m

 w12
 +

...

 wr0

 wr1

 wr2
 +

 wrm

Given the training set { }p
iii 1),(=sx , the LMS will then try to

minimize the sum of the squared errors produced by each of
the p input-output patterns. The H matrix is obtained, in this
case, after the definition of m transfer functions chosen
among the candidates given by Table I and applied to the p
patterns thereupon. The optimal solution for the output
weights is given by

HTHW = HTs � W = (HTH)-1HTs, (3)

where (HTH)-1HT is the pseudo-inverse of H, which shall only
exist if H has a non-deficient rank.

B. HCGA2 Architecture

The shadowed box in Figure I indicates the components of
the HNN to be optimized directly by the HCGA2. As
depicted in Figure II, we conceived a hierarchical
coevolutionary architecture composed of three levels. In an
upper level, a conventional GA (NNdGA) is used to build the
neural network description (NNd) or net topology, i.e., to
choose the number of neurons in the hidden layer and their
AFs (possibly distinct). Each gene in the chromosome
represents one AF from Table I. Similar NNd’s are not
allowed in order to reduce the possibility of equivalent
symmetric solutions (Competing Conventions Problem).

Associated to each NNd, there is a second level GA
(HNNGA) whose population consists of HNN’s with the
hidden layer built according to the NNd. Those HNN’s take
their hidden layer neurons at random from the bottom level
GAs (NeuronGAs). Neural nets compete across generations
and are refined using the iterated LMS optimization process
applied to their output weights. The fitness of the HNNs is
inversely proportional to the Root Mean Squared Error
(RMSE), that is, corresponds to the percentage of correctly
classified patterns. The NNd receives the fitness of the best
ranked HNN of its HNNGA.

At the bottom level, a coevolutionary approach was
selected to train the networks by adjusting both the AF
parameters of the hidden layer neurons and the input weights.

In order to promote the cooperative behavior among the
neurons that participate in a given net (aiming at the
optimized sharing and division of responsibilities), each unity
receives its fitness according to the average fitness of the
networks wherein it engages. Each neuron on the hidden
layer can be viewed as a distinct evolving species that is
allotted to a separate GA (NeuronGA) customized to
represent its attributes and that will probably specialize in a
complementary manner to the other NeuronGAs.

The chromosomes associated with the HNNs are codified
as follows: each gene represents a logical link to a given
neuron pertaining to a certain bottom level NeuronGA. The
same neuron is allowed to integrate various neural nets. All
HNN’s in a HNNGA have the same architecture (since they
were built after the same NNd) and differ by the hidden layer
neurons they take from the NeuronGAs. Typically, the
codification of the neuron chromosomes in the NeuronGAs
comprehend two slots: one for the input weights and another
for the neuron’s AF parameters. The mutation and crossover
operators may actuate on both slots at the same time, and
they know how to manage the differences between them
(scale, data type, etc.).

The evolution of the HNN’s architecture and of the hidden
layer weights are alternated. This process can avoid the
moving target problem resulting from the simultaneous
evolution of both architectures and weights [15]. The number
of generations considered for benchmarking purposes relates
to the NNdGA cycles. The initial populations of all GA’s
(NNdGA, HNNGA and NeuronGA) are set in a random
manner (zero-average and uniform distribution).
Configuration parameters can be found on Table II and
Appendix A is dedicated to a more detailed explanation of
the HCGA2 algorithm.

C. Results

The two pattern classification problems considered here
were obtained from the PROBEN1 benchmarking repository
[9], allowing the comparison of our proposal with others. The

Figure II: Hierarchical coevolution of heterogeneous neural networks. The small geometrical forms represent neurons with
different AFs. The NeuronGAs provide the neurons to the HNNs. The fitness of the best HNN is set on the corresponding NNd.

database of patterns in this repository is, for each problem,
divided into three different partitionings of the same data set.
This allows network simulation with the same set but with
patterns in a different order each time. The data sets are
divided into training, validation and test patterns. The
training patterns were used in the network refinement through
the LMS process; the validation patterns were used to
compute the HNN’s fitness, and the test patterns were used to
test the best HNN at the end of each NNdGA cycle. It is
important to remark that the test result is not used by the
HCGA2 (not even to indicate when to stop the training phase,
as done in many ANN training algorithms), thus working as
an independent result.

The first problem, Card, refers to the task of approving or
not the delivery of credit cards to particular customers, taking
into account their profiles. The database has 690 samples of
possible customers (patterns), with 51 input parameters (net
input attributes) and two possible output responses (yes or
no). 44% of the customers have good profiles and there are
some absent data referring to some attributes, hindering the
classification process. There are 345 training patterns, 172
validation patterns and 172 test patterns.

The Heart problem lies in the area of predicting cardiac
diseases by observing some clinical cases (patients’ health
conditions). In this repository, there is a collection of 920
patient samples (patterns) each composed of 35 inputs
(personal data) and two outputs (prone to cardiac problems or
not). Some attributes are also missing, making the decision
even harder. The sets are divided into 460 training patterns,
230 validation patterns and 230 test patterns.

The experiments were implemented in the Java language
(JDK 1.2) and, on an IBM 9076SP (with four IBM/RS6000
Power2 Super Chip 160 MHz processors). It took about 25
min. to process each NNdGA cycle, confirming the high
computational costs we expected during training. But after
obtaining the evolved net, no extra computational costs are
present. Besides, the ease of use is a real advantage, since the
designer does not need to know which AF’s to use, how
many neurons to put in the hidden layer, etc.

Each experiment was run five times. Table III shows the
meDQ� SHUFHQWDJH� � �� DQG� VWDQGDUG� GHYLDWLRQ� � �� RI� WKH�

participation of each AF type in the best networks evolved
for each problem. C# stands for the Card data set and H# for
the Heart data set. As can be noted, some types of neurons

appeared more frequently than others, but not in a significant
manner that would allow us, for example, to caracterize a
tendency for these classification problems.

By observing the fitness of the best evolved network along
the generations we notice that it does not converge too fast,
indicating that our HNN population is able to maintain
diversity and escape from local maxima even though we use
an elitist selection approach. The average fitness of all
networks does also not oscillate much, because the changes
in the neurons during their evolution is smooth, due to the use
of the geometrical crossover [17] and inductive mutation
[14]. The test data correct classification percentage, despite
some big punctual oscillations, does not change significantly,
indicating that the best network does not loose much of its
generalization capacity.

TABLE III

PERCENTAGE OF NEURONS OF EACH TYPE ON THE BEST
NETWORK, FOR EACH DATA SET.

 Linear Signal
Step

Hyperbolic
Tangent

Gaussian RBF-Green

 18,92% 14,95% 13,52% 27,14% 25,43% C1
 8,77 7,59 10,55 5,59 20,66

 25,23% 19,90% 16,82% 20,10% 17,95%
C2

 7,46 13,914 9,90 9,90 12,66

 21.80% 14,14% 18,06% 24,64% 21,36%
C3

 21.32 13,68 14,52 15,72 14,26

 12,82% 9,95% 20,43% 23,29% 33,50%
H1

 10,92 10,41 17,40 18,29 7,33

 18,30% 21,28% 20,25% 20,03% 20,14%
H2

 7,39 9,33 7,02 7,83 6,36

 18,79% 18,01% 26,22% 25,26% 11,73%
H3

 12,03 13,32 18,22 5,79 4,83

Table IV compares the results achieved by many neural
network architectures [7]-[8] and our HCGA approach for the
same data sets. HCGA2 performs better than most other
approaches in most of the cases, showing its great
generalization capabilities when applied to classification
problems. For instance, the HCGA2 improvement over the
second best ANN for the Card3 problem reaches nearly 20%,
taking into account the classification error rate. Another
advantage over most other ANNs is the easiness of use, since

TABLE II

SYSTEM CONFIGURATION PARAMETERS

Parameter Meaning NNdGA HNNGA NeuronGA

MAX_GENERATIONS Maximum number of generations 200 5 1
POPULATION_SIZE Number of elements in the GA 20 30 30
RANDOM_PERCENT Percentage of new randomly initialized elements to be inserted in the population 20% 20% 20%
ELITIST_SELECTION Percentage of best elements copied to next generation (elitist selection) 10% 10% 10%
CROSSOVER_CHANCE Percentage of elements to be created by crossover between the best elements 25% 25% 25%
MUTATION_CHANCE Chance of mutation occurrence 1% 1% 1%
MIN_HIDDEN_NEURONS Minimum number of neurons allowed in the net hidden layer 5 -- --
MAX_HIDDEN_NEURONS Maximum number of neurons allowed in the net hidden layer 15 -- --
MAX_UNUSED_CYCLES Maximum number of cycles a neuron may survive without belonging to any network -- -- 3

no parameter adjustments have to be done (we simply used
the default GA parameters for all tests).

TABLE IV

COMPARED RESULTS BETWEEN HCGA2 AND OTHER ANNs.

 Correctly classified patterns

card1 card2 card3
best best best

MLP 86.0 86.0 1.03 81.0 81.0 0.86 81.0 81.0 1.19
RBF 88.0 87.0 0.67 82.0 81.0 0.70 83.0 83.0 0.70
CasCor 84.0 78.0 2.48 79.0 77.0 1.87 82.0 80.0 1.97
Tower 84.8 2.41 78.4 2.91 79.6 2.26
Pyramid 86.0 1.87 79.0 2.97 79.0 3.45
DistAl 84.4 2.32 84.1 4.10 82.9 3.54
Upstart 90.7 2.03 86.1 1.96 83.7 2.53
Tiling 80.2 2.74 79.1 2.48 79.1 2.08
PercCasc 87.6 2.12 86.8 2.97 84.1 2.11
HCGA2 87.2 86.4 0.97 84.9 83.4 1.68 86.6 84.2 1.61

heart1 heart2 heart3
best best best

MLP 80.0 80.0 0.96 82.0 82.0 1.14 76.0 76.0 1.12
RBF 82.0 82.0 1.20 82.0 81.0 1.72 79.0 79.0 0.48
CasCor 82.0 79.0 1.96 80.0 77.0 1.66 74.0 72.0 1.97
Tower 78.7 2.73 77.8 3.11 70.8 3.36
Pyramid 79.5 2.93 78.2 2.69 76.0 2.38
DistAl 79.1 4.03 80.9 2.92 82.6 2.71
Upstart 84.1 2.48 81.5 2.06 80.8 2.65
Tiling 76.5 1.98 71.7 2.02 77.4 2.18
PercCasc 82.7 2.64 82.6 3.03 81.0 2.02
HCGA2 80.4 79.0 1.36 82.2 80.8 1.35 79.1 75.7 2.44

D. Comparison with HCGA1

The first version of this algorithm, developed by Coelho et
al. [1], showed good results on classification problems, as
well as on prediction problems, but had some problems that
we have solved on this version.

First of all, the HNNs now have the possibility of
augmenting and prunning [12] the number of neurons at the
hidden layer at each generation, giving space to the arousal of
“extend-shrink” behaviors. Another advantage of the new
HCGA2 is the separation of HNN’s with different
architectures into different GAs, so that the neurons from the
NeuronGAs will always work with the same peers,
facilitating the neuron’s specialization. The creation of one
NeuronGA for each position in the net’s hidden layer, instead
of one NeuronGA for each neuron AF type, as in HCGA1,
also brings advantages. In this way, even neurons with the
same AF are encouraged to specialize into different regions
of the search space (due to coevolutionary forces). What
happened in HCGA1 was that a HNN containing neurons
with the same AF would have them to perform almost the
same task, since they were part of the same NeuronGA.

Table V shows a comparison of the RMSE between the
best HNN of HCGA1 and HCGA2. The difference to the
results in Table IV is that, in HCGA1, the validation patterns
were added to the training patterns, the test patterns were
used for validation and no independent test was made. Thus,
to be able to compare both versions, we had to run on the
same conditions. It is clear that HCGA2 has much better

results, surpassing the first version by as much as 40% for the
card1 set and by almost 25% for the heart3 set.

TABLE V

COMPARED RESULTS BETWEEN HCGA1 AND HCGA2

 Best network’s root mean squared error

 card1 card2 card3 heart1 heart2 heart3

HCGA1 0.0988 0.1205 0.1105 0.1174 0.1435 0.1870
HCGA2 0.0582 0.1047 0.0756 0.1087 0.1087 0.1435

E. Future Work

Some improvements could be undertaken as future work.
First of all we should test the performance of the HCGA2 on
other kinds of problems, like temporal series prediction,
function interpolation, etc. Likewise, we can extend the
algorithm by using configurable splines and/or polinomials as
AF’s of the hidden layer neurons, instead of setting a
predefined number of AF’s. It would be also possible to use
an ANN as AF, creating a nested structure for the HNN. Still
we could add more levels to the HCGA2 hierarchy, in order
to co-evolve two or more neural networks that work together
on a certain upper level problem.

IV. CONCLUSION

This work has examined the suitability of merging together
in a same framework various promising approaches proposed
recently for the configuration of neural net architectures,
particularly those involving coevolution. The resulting model
(HCGA2) comprehends a new hierarchical-based
evolutionary scheme devoted to the progressive assembling
of heterogeneous neural structures. This blending strategy
was assessed through a series of benchmarking tests over
classification problems. The findings obtained so far
corroborate other results already presented in the literature,
showing that HCGA2 constitutes a promising design strategy
on the direction of fully automatic adjustment of an extended
set of neural networks parameters.

A. Acknowledgments

This research was partially sponsored by CAPES and
FAPESP, through MSc. scholarships to the first and second
authors respectively. Also the third and fourth authors would
like to thank CNPq for their support. The computational
resources necessary to run the experiments were provided by
CENAPAD (National Center of High Performance
Computation in São Paulo), a project from UNICAMP /
FINEP - MCT.

V. REFERENCES

[1] A. L. V. Coelho, D. Weingaertner and F. J. Von Zuben, “Evolving
Heterogeneous Neural Networks for Classification Problems”, Procs.
of Genetic and Evolutionary Computation Conference (GECCO-
2001), pp.266-273, Morgan Kaufmann Publishers, July 2001.

[2] B. Whitehead and T. Choate, “Cooperative-Competitive Genetic
Evolution of Radial Basis Function Centers and Widths for Time
Series Prediction”, IEEE Trans. on Neural Networks, Vol. 7:4, pp.
869-880, 1996.

[3] D. E. Moriarty, and R. Miikkulainen, “Efficient Reinforcement
Learning through Symbiotic Evolution”. Machine Learning, Vol. 22,
pp.11-33. Kluwer Academic Publishers, Boston, 1996.

[4] D. E. Moriarty, and R. Miikkulainen, “Hierarchical Evolution of
Neural Networks”. Proceedings of the IEEE International Conference
on Evolutionary Computation, pp.428-433, 1998.

[5] D. Whitley, “Genetic Algorithms and Neural Networks”, In: Periaux,
J. and Winter, G. eds., Genetic Algorithms in Engineering and
Computer Science. John Wiley & Sons Ltd., 1995.

[6] E. Iyoda and F. Von Zuben, “Evolutionary Hybrid Composition of
Activation Functions in Feedforward Neural Networks”, Procs.
IJCNN, article #396, 1999.

[7] J. Ribeiro and G. Vasconcelos, “An Experimental Evaluation of the
Cascade-Correlation Network in Pattern Recognition Problems”, Proc.
of ICONIP, pp.1133-1136, Springer-Verlag, New Zeland, 1997.

[8] J. Ribeiro and G. Vasconcelos, “Constructive Neural Networks for
Pattern Classification and Verification”, Proc. of ICONIP, Springer-
Verlag, 1999.

[9] L. Prechelt, “PROBEN1: A Set of Neural Benchmarking Rules”, TR
21/94, Universtät Karlsruhe, 1994.

[10] Q. Zhao, “A Coevolutionary Algorithm for Neural Net Learning”,
Procs. of ICNN, Vol.1, pp.432-437, 1997.

[11] R. Parekh, J. Yang and V. Honavar, “Constructive Neural Network
Learning Algorithms for Multi-Category Real-Valued Pattern
Classification”,TR 97-06, Dep. of Computer Science, Iowa State
University, 1998.

[12] R. Reed, “Pruning Algorithms – A Survey”, IEEE Trans. on Neural
Networks 4:5, pp.740-747, 1993.

[13] S. S. Haykin, “Neural Networks: A Comprehensive Foundation” ,
Prentice Hall, 1998.

[14] T. Bäck, D. B. Fogel and T. Michalewicz, editors, “ Evolutionary
Computation 1: Basic Algorithms and Operators” , Institute of Physics
Publishing, 2000.

[15] X. Yao, “A review of evolutionary artificial neural networks”, Int. J.
Intell. Syst., Vol. 8:4, pp. 539-567, 1993.

[16] Y. Liu and X. Yao, “Evolutionary Design of Artificial Neural
Networks with Different Nodes”, Procs. of the Third IEEE
International Conf. on Evolutionary Computation (CEC96), pp. 670-
675, Japan, May 1996.

[17] Z. Michalewicz, G. Nazhiyath and M. Michalewicz, “A note on the
usefulness of geometrical crossover for numerical optimization
problems”, Proc. 5th Ann. Conf. on Evolutionary Programming, MIT
Press, 1996.

VI. APPENDIX A (HCGA2 ALGORITHM)

1) Generate an initial population of NNdGA_POPULATION_SIZE
NNds for the NNdGA. These NNds contain the number of
neurons in the HNN’s hidden layer (ranging from
MIN_HIDDEN_NEURONS to MAX_HIDDEN_NEURONS) and the type
of each neuron’s AF.

2) For each NNd, create a genetic algorithm (HNNGA) that
will be used to train the HNNs.

a. Create one GA (NeuronGA) for each neuron on the
NNd, and initialize it with a population of
NeuronGA_POPULATION_SIZE neurons, which have all the
same AF (determined by the NNd).

b. Generate HNNGA_POPULATION_SIZE initial HNNs taking
the neurons of their hidden layer from the
NeuronGAs. Those neurons will be taken randomly,
one from each NeuronGA, in order to create networks
hat are equivalent to the NNd. One neuron may be
used by more than one HNN.

3) Run each HNNGA for HNNGA_MAX_GENERATIONS.
a. Apply mutation (HNNGA_MUTATION_CHANCE) to the

HNNGA population. Add to the population: 1)
HNNGA_CROSSOVER_CHANCE HNNs generated by two
points crossover; 2) HNNGA_RANDOM_PERCENT
randomly generated HNNs.

b. Adjust the weights of the output layer neurons of each
HNN using the LMS method.

c. Use the validation input/output patterns to compute
the Root Mean Squared Error (RMSE) of each HNN
and set their fitness as being (1.0-RMSE).

d. Send the HNNs’ fitness to the neurons in their hidden
layer. The fitness of the neurons will be the average
fitness of all networks they participate in.

e. HNNGA_ELITIST_SELECTION best HNN’s will pass to the
next generation. The population will be completed by
tournament selection between the remaining HNN’s.

f. Run NeuronGA_MAX_GENERATIONS evolutionary cycles
for each NeuronGA.

i) Set fitness on unused neurons. They receive as
fitness the average fitness of the NeuronGA,
divided by the number of cycles they are unused.
After NeuronGA_MAX_UNUSED_CYCLES the fitness is
set to zero.

ii) Generate a new neuron population by taking: 1)
the neurons that belong to the best ranked HNNs
(regardless of their fitness); 2) the

NeuronGA_ELITIST_SELECTION best neurons; 3)
NeuronGA_CROSSOVER_CHANCE neurons generated
by geometrical crossover [17]; 4)
NeuronGA_RANDOM_PERCENT randomly generated
neurons; and complete the population with
tournament selection between the remaining
neurons. Finally, apply uniform mutation [14]
(NeuronGA_MUTATION_CHANCE) to the population.

4) Take as fitness for each NNd the fitness of the best HNN
evolved by its HNNGA.

5) If the NNdGA has run for NNdGA_MAX_GENERATIONS, return
the best ranked HNN of the NNd with highest fitness.

6) Apply mutation (NNdGA_MUTATION_CHANCE) to the NNds.
Add to the population: 1) NNdGA_CROSSOVER_CHANCE NNds
generated by two points crossover; 2)
NNdGA_RANDOM_PERCENT randomly generated HNNs.

a. Crossover is done between the best ranked NNds. The
NeuronGAs corresponding to the exchanged neurons
also have to be exchanged and all HNNs of the
HNNGAs have to be updated, in order to reflect the
changes in the NNds.

b. Mutation can add or remove a neuron, as well as
change the type of its AF. Again, the NeuronGA’s
and the HNN’s in the HNNGA’s have to be adapted
to reflect the changes.

7) The NNdGA_ELITIST_SELECTION best NNd’s will pass to the
new generation. The population will be completed by
tournament selection between the remaining NNd’s.

8) Go to step 2).

