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Abstract – This paper describes a hierarchical evolutionary 

technique developed to design and train feedforward neural 
networks with different activation functions on their hidden 
layer neurons (Heterogeneous Neural Networks). At an upper 
level, a genetic algorithm is used to determine the number of 
neurons in the hidden layer and the type of the activation 
function of those neurons. At a second level, neural nets compete 
against each other across generations so that the nets with the 
lowest test errors survive. Finally, on a third level, a 
coevolutionary approach is used to train each of the created 
networks by adjusting both the weights of the hidden layer 
neurons and the parameters for their activation functions. 

I. INTRODUCTION 

Multi-Layer Perceptron (MLP) and Radial Basis Function 
(RBF) networks are the most common feedforward artificial 
neural networks (ANNs) used on classification, recognition 
and prediction problems. They have been applied to a variety 
of fields, usually producing better results when replacing or 
being combined with conventional techniques. Such 
capabilities come from the fact that both MLPs and RBFs 
show an important attribute: they are universal approximators 
with good generalization capabilities [11], [2]. 

Typically, ANNs are composed of a pre-defined number of 
similar neurons in their hidden layer. Despite the existence of 
some rules of thumb to indicate this parameter in accordance 
with the available training data, such empirical methods are 
failure-prone, not warranting their applicability in all cases. 
In such context, designing ANNs through simulated 
evolution has shown its effectiveness as an automatic 
alternative to manual configuration [5]. A prominent 
advantage of the evolutionary design over the manual one is 
its adaptability to dynamic changes in the environment [16]. 

Although the neuron’s activation function (AF) has been 
shown to be an important parameter for the ANN 
configuration — it is the source of non-linearity responsible 
for the approximation capabilities — few works have 
explored such fact while devising new neural net topologies. 
Currently, there are no extensive results reported in the 
literature contemplating the actual effectiveness of employing 
gaussian or logistic AF’s in all neurons of the hidden layer. 
This approach is followed, generally, as a means to simplify 
the design tasks. 

However, if the AF of each neuron could be automatically 
defined, better results regarding the net performance and the 
training convergence rate could be achieved. In this work, we 
attempt to investigate such supposition by using Genetic 
Algorithms (GAs) for the design of heterogeneous neural 
networks. The idea is to view each hidden neuron as a peer 
with distinguished capabilities (different AF) to be explored 

while integrating with others in a same ensemble (neural net). 
Such abstraction is based on the cooperative combination of 
evolving populations of experts, combining their 
qualifications to reach the problem solution [2]. 

With such objective in mind, we used a hierarchical 
approach, known as Hierarchical Coevolutionary Genetic 
Algorithm (HCGA), which was initially conceived with two 
evolutionary levels [3]. We added one more evolutionary 
level to it, so that on the first level a GA is used to build the 
ANN’s topology, i.e., to choose both the number of neurons 
in the hidden layer and the AF of each neuron. It is worth 
noticing here that those AF’s can also be RBF’s. On a second 
level, neural nets compete against each other across 
generations so that the nets with the lowest test error survive. 
Finally, on the third level, a coevolutionary approach is used 
to train each of the above-created networks by adjusting the 
weights of the neurons in the hidden layer and the parameters 
of their AF’s. The weights of the neurons on the output layer 
are optimized using the Least Mean Square method. 

In the remainder of the paper, we introduce the use of 
evolutionary techniques for the configuration of neural nets, 
present our framework to the automatic design of 
heterogeneous neural networks, show results from our 
experiments, compare this approach to a previous version [1], 
identify possible work extensions, and address some final 
considerations. 

II. EVOLUTIONARY ALGORITHMS APPLIED TO 
NEURAL NETWORKS 

GA’s have been used in conjunction with neural networks 
in three major undertakings [5]: data pre-processing, weight 
optimization, and neural net topology determination. The 
second item has been hampered mainly because of the 
Competing Conventions Problem. As weight adjustment with 
GA’s relies heavily on recombination, there may be many 
equivalent symmetric solutions to the same optimization 
problem, delaying the convergence process. This can be 
alleviated by using more appropriate crossover operators 
which try to avoid individuals presenting the same cyclic 
genetic order on the elements of their chromosomes. 

Another strategy centers upon the integration between 
evolutionary programming (EP) and ANNs. Liu and Yao [16] 
have presented an EP-based algorithm for the tuning of 
ANNs with different activation function nodes. The weights 
are adjusted by means of a combination of the 
Backpropagation (BP) algorithm with a random search 
algorithm. For simplicity, the authors chose to use only the 
logistic and the Gaussian AF’s, as they represent two broad 
classes of activation functions with complementary features. 



The resulting generalized neural net (GNN), as they call it, 
resembles very much what we name here as heterogeneous 
neural networks (HNN), albeit our approach gears towards 
the employment of a hierarchical coevolutionary-genetic 
algorithm (HCGA) and is open to other types of AF’s. 

Iyoda and Von Zuben [6] have also attempted to analyze 
the impact of configuring ANNs with different AFs at the 
hidden layer by proposing an evolutionary hybrid 
architecture inspired by another constructive method 
(Projection Pursuit Learning - PPL). Such approach also 
incorporates distinct composition functions in the output 
layer (additive and/or multiplicative), leading to a higher 
efficiency on the combination of the mapping efforts realized 
by the hidden neurons. Their algorithm relies only on a 
classical GA, not directly promoting the cooperation among 
the units. 

Finally, it is worth mentioning the prominent evolutionary 
methodology developed by Moriarty and Miikkulainen [3], 
[4], denominated SANE. SANE relates to a “symbiotic 
adaptive neuro-evolution system” in which a population of 
homogeneous neurons is coevolved to compose a neural net 
intended to be deployed on dynamic environments. This 
hierarchical solution attempts to optimize the neural topology 
by two means. First, since neurons are recognized as 
functional building blocks, their ensemble can be more 
accurately evaluated. Second, since no neuron is evaluated 
only by its own capabilities, but rather by the qualities of the 
groups in which it takes part, evolutionary pressure exists to 
evolve several complementary neuron types. 

III. THE HCGA2 APPROACH 

In this section, we first present the main design decisions 
taken during the conception of the HCGA2 approach and then 
assess its adequacy and performance through a series of 
benchmarking results over well-known pattern classification 

problems. 

A. Heterogeneous Neural Networks 

Figure I shows the heterogeneous neural network (HNN) 
model used on the HCGA2. It resembles a typical 
feedforward neural net; the main difference lies on the hidden 
layer, as its neurons may have distinct AF’s (hj(x)). Such 
functions are chosen from a delimited candidate set, which is 
presented in Table I, and comprehends a broad parcel of 
those usually employed on the construction of ANN’s. 

It is important to emphasize that there is also a Radial 
Basis Function (RBF-Green [13]) that can be used together 
with the non-RBF functions, in a novel approach that we 
expect to increase the HNN’s approximation capacity. On the 
RBF-Green function we can adjust up to three parameters: P 
- the vector with the RBF’s center coordinates; V - the RBF’s 
variance vector; and w – a pondering weights vector. To 
reduce the GA’s search space, we only evolve the P values 
and one value for σ. No pondering weights are used. 

TABLE I 

SET OF HIDDEN NEURONS ACTIVATION FUNCTIONS 

Name Activation Function 
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As illustrated (Figure I), x and  represent, respectively, the 
input vector of the training/testing patterns and the resulting 
net output. The output neurons have all an additive linear 
combination as aggregation function. There are two sets of 
weighted connections, namely, V and W. The later is 
optimized during a supervised configuration process, through 
stimulus-response pairs, by means of the Least Mean Square 
(LMS) method. The adjustment of the weights in W is 
defined in order to solve the following optimization problem: 

W
min ||y – s||2, (1) 

where ||·|| is the Euclidian norm and  

y = HW = 
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Figure 1: Architecture of the heterogeneous neural network to be evolved 
by the hierarchical approach. The shadowed area indicates the 
components to be optimized by the coevolutionary process: neurons with 
different activation functions and the associated weights. 
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Given the training set { }p
iii 1),( =sx , the LMS will then try to 

minimize the sum of the squared errors produced by each of 
the p input-output patterns. The H matrix is obtained, in this 
case, after the definition of m transfer functions chosen 
among the candidates given by Table I and applied to the p 
patterns thereupon. The optimal solution for the output 
weights is given by 

HTHW = HTs � W = (HTH)-1HTs, (3) 

where (HTH)-1HT is the pseudo-inverse of H, which shall only 
exist if H has a non-deficient rank. 

B. HCGA2 Architecture 

The shadowed box in Figure I indicates the components of 
the HNN to be optimized directly by the HCGA2. As 
depicted in Figure II, we conceived a hierarchical 
coevolutionary architecture composed of three levels. In an 
upper level, a conventional GA (NNdGA) is used to build the 
neural network description (NNd) or net topology, i.e., to 
choose the number of neurons in the hidden layer and their 
AFs (possibly distinct). Each gene in the chromosome 
represents one AF from Table I. Similar NNd’s are not 
allowed in order to reduce the possibility of equivalent 
symmetric solutions (Competing Conventions Problem). 

Associated to each NNd, there is a second level GA 
(HNNGA) whose population consists of HNN’s with the 
hidden layer built according to the NNd. Those HNN’s take 
their hidden layer neurons at random from the bottom level 
GAs (NeuronGAs). Neural nets compete across generations 
and are refined using the iterated LMS optimization process 
applied to their output weights. The fitness of the HNNs is 
inversely proportional to the Root Mean Squared Error 
(RMSE), that is, corresponds to the percentage of correctly 
classified patterns. The NNd receives the fitness of the best 
ranked HNN of its HNNGA. 

At the bottom level, a coevolutionary approach was 
selected to train the networks by adjusting both the AF 
parameters of the hidden layer neurons and the input weights. 

In order to promote the cooperative behavior among the 
neurons that participate in a given net (aiming at the 
optimized sharing and division of responsibilities), each unity 
receives its fitness according to the average fitness of the 
networks wherein it engages. Each neuron on the hidden 
layer can be viewed as a distinct evolving species that is 
allotted to a separate GA (NeuronGA) customized to 
represent its attributes and that will probably specialize in a 
complementary manner to the other NeuronGAs. 

The chromosomes associated with the HNNs are codified 
as follows: each gene represents a logical link to a given 
neuron pertaining to a certain bottom level NeuronGA. The 
same neuron is allowed to integrate various neural nets. All 
HNN’s in a HNNGA have the same architecture (since they 
were built after the same NNd) and differ by the hidden layer 
neurons they take from the NeuronGAs. Typically, the 
codification of the neuron chromosomes in the NeuronGAs 
comprehend two slots: one for the input weights and another 
for the neuron’s AF parameters. The mutation and crossover 
operators may actuate on both slots at the same time, and 
they know how to manage the differences between them 
(scale, data type, etc.). 

The evolution of the HNN’s architecture and of the hidden 
layer weights are alternated. This process can avoid the 
moving target problem resulting from the simultaneous 
evolution of both architectures and weights [15]. The number 
of generations considered for benchmarking purposes relates 
to the NNdGA cycles. The initial populations of all GA’s 
(NNdGA, HNNGA and NeuronGA) are set in a random 
manner (zero-average and uniform distribution). 
Configuration parameters can be found on Table II and 
Appendix A is dedicated to a more detailed explanation of 
the HCGA2 algorithm. 

C. Results 

The two pattern classification problems considered here 
were obtained from the PROBEN1 benchmarking repository 
[9], allowing the comparison of our proposal with others. The 

Figure II: Hierarchical coevolution of heterogeneous neural networks. The small geometrical forms represent neurons with 
different AFs. The NeuronGAs provide the neurons to the HNNs. The fitness of the best HNN is set on the corresponding NNd. 



database of patterns in this repository is, for each problem, 
divided into three different partitionings of the same data set. 
This allows network simulation with the same set but with 
patterns in a different order each time. The data sets are 
divided into training, validation and test patterns. The 
training patterns were used in the network refinement through 
the LMS process; the validation patterns were used to 
compute the HNN’s fitness, and the test patterns were used to 
test the best HNN at the end of each NNdGA cycle. It is 
important to remark that the test result is not used by the 
HCGA2 (not even to indicate when to stop the training phase, 
as done in many ANN training algorithms), thus working as 
an independent result. 

The first problem, Card, refers to the task of approving or 
not the delivery of credit cards to particular customers, taking 
into account their profiles. The database has 690 samples of 
possible customers (patterns), with 51 input parameters (net 
input attributes) and two possible output responses (yes or 
no). 44% of the customers have good profiles and there are 
some absent data referring to some attributes, hindering the 
classification process. There are 345 training patterns, 172 
validation patterns and 172 test patterns. 

The Heart problem lies in the area of predicting cardiac 
diseases by observing some clinical cases (patients’ health 
conditions). In this repository, there is a collection of 920 
patient samples (patterns) each composed of 35 inputs 
(personal data) and two outputs (prone to cardiac problems or 
not). Some attributes are also missing, making the decision 
even harder. The sets are divided into 460 training patterns, 
230 validation patterns and 230 test patterns. 

The experiments were implemented in the Java language 
(JDK 1.2) and, on an IBM 9076SP (with four IBM/RS6000 
Power2 Super Chip 160 MHz processors). It took about 25 
min. to process each NNdGA cycle, confirming the high 
computational costs we expected during training. But after 
obtaining the evolved net, no extra computational costs are 
present. Besides, the ease of use is a real advantage, since the 
designer does not need to know which AF’s to use, how 
many neurons to put in the hidden layer, etc. 

Each experiment was run five times. Table III shows the 
meDQ� SHUFHQWDJH� � �� DQG� VWDQGDUG� GHYLDWLRQ� � �� RI� WKH�

participation of each AF type in the best networks evolved 
for each problem. C# stands for the Card data set and H# for 
the Heart data set. As can be noted, some types of neurons 

appeared more frequently than others, but not in a significant 
manner that would allow us, for example, to caracterize a 
tendency for these classification problems. 

By observing the fitness of the best evolved network along 
the generations we notice that it does not converge too fast, 
indicating that our HNN population is able to maintain 
diversity and escape from local maxima even though we use 
an elitist selection approach. The average fitness of all 
networks does also not oscillate much, because the changes 
in the neurons during their evolution is smooth, due to the use 
of the geometrical crossover [17] and inductive mutation 
[14]. The test data correct classification percentage, despite 
some big punctual oscillations, does not change significantly, 
indicating that the best network does not loose much of its 
generalization capacity. 

TABLE III 

PERCENTAGE OF NEURONS OF EACH TYPE ON THE BEST 
NETWORK, FOR EACH DATA SET. 

  Linear Signal 
Step 

Hyperbolic 
Tangent 

Gaussian RBF-Green 

 18,92% 14,95% 13,52% 27,14% 25,43% C1 
 8,77  7,59  10,55 5,59  20,66  

 25,23% 19,90% 16,82% 20,10% 17,95% 
C2 

 7,46  13,914   9,90  9,90  12,66  

 21.80% 14,14% 18,06% 24,64% 21,36% 
C3 

   21.32  13,68           14,52         15,72           14,26  

 12,82% 9,95% 20,43% 23,29% 33,50% 
H1 

 10,92  10,41  17,40  18,29   7,33  

 18,30% 21,28% 20,25% 20,03% 20,14% 
H2 

 7,39  9,33  7,02  7,83  6,36  

 18,79% 18,01% 26,22% 25,26% 11,73% 
H3 

 12,03  13,32  18,22  5,79  4,83  

Table IV compares the results achieved by many neural 
network architectures [7]-[8] and our HCGA approach for the 
same data sets. HCGA2 performs better than most other 
approaches in most of the cases, showing its great 
generalization capabilities when applied to classification 
problems. For instance, the HCGA2 improvement over the 
second best ANN for the Card3 problem reaches nearly 20%, 
taking into account the classification error rate. Another 
advantage over most other ANNs is the easiness of use, since 

TABLE II  

SYSTEM CONFIGURATION PARAMETERS 

Parameter Meaning NNdGA HNNGA NeuronGA 

MAX_GENERATIONS Maximum number of generations 200 5 1 
POPULATION_SIZE Number of elements in the GA 20 30 30 
RANDOM_PERCENT Percentage of  new randomly initialized elements to be inserted in the population 20% 20% 20% 
ELITIST_SELECTION Percentage of best elements copied to next generation (elitist selection) 10% 10% 10% 
CROSSOVER_CHANCE Percentage of elements to be created by crossover between the best elements 25% 25% 25% 
MUTATION_CHANCE Chance of mutation occurrence 1% 1% 1% 
MIN_HIDDEN_NEURONS Minimum number of neurons allowed in the net hidden layer 5 -- -- 
MAX_HIDDEN_NEURONS Maximum number of neurons allowed in the net hidden layer 15 -- -- 
MAX_UNUSED_CYCLES Maximum number of cycles a neuron may survive without belonging to any network -- -- 3 



no parameter adjustments have to be done (we simply used 
the default GA parameters for all tests).  

TABLE IV 

COMPARED RESULTS BETWEEN HCGA2 AND OTHER ANNs. 

 Correctly classified patterns 

card1 card2 card3  
best   best   best   

MLP 86.0 86.0 1.03 81.0 81.0 0.86 81.0 81.0 1.19 
RBF 88.0 87.0 0.67 82.0 81.0 0.70 83.0 83.0 0.70 
CasCor 84.0 78.0 2.48 79.0 77.0 1.87 82.0 80.0 1.97 
Tower 84.8  2.41 78.4  2.91 79.6  2.26 
Pyramid 86.0  1.87 79.0  2.97 79.0  3.45 
DistAl 84.4  2.32 84.1  4.10 82.9  3.54 
Upstart 90.7  2.03 86.1  1.96 83.7  2.53 
Tiling 80.2  2.74 79.1  2.48 79.1  2.08 
PercCasc 87.6  2.12 86.8  2.97 84.1  2.11 
HCGA2 87.2 86.4 0.97 84.9 83.4 1.68 86.6 84.2 1.61 

heart1 heart2 heart3  
best   best   best   

MLP 80.0 80.0 0.96 82.0 82.0 1.14 76.0 76.0 1.12 
RBF 82.0 82.0 1.20 82.0 81.0 1.72 79.0 79.0 0.48 
CasCor 82.0 79.0 1.96 80.0 77.0 1.66 74.0 72.0 1.97 
Tower 78.7  2.73 77.8  3.11 70.8  3.36 
Pyramid 79.5  2.93 78.2  2.69 76.0  2.38 
DistAl 79.1  4.03 80.9  2.92 82.6  2.71 
Upstart 84.1  2.48 81.5  2.06 80.8  2.65 
Tiling 76.5  1.98 71.7  2.02 77.4  2.18 
PercCasc 82.7  2.64 82.6  3.03 81.0  2.02 
HCGA2 80.4 79.0 1.36 82.2 80.8 1.35 79.1 75.7 2.44 

D. Comparison with HCGA1 

The first version of this algorithm, developed by Coelho et 
al. [1], showed good results on classification problems, as 
well as on prediction problems, but had some problems that 
we have solved on this version. 

First of all, the HNNs now have the possibility of 
augmenting and prunning [12] the number of neurons at the 
hidden layer at each generation, giving space to the arousal of 
“extend-shrink” behaviors. Another advantage of the new 
HCGA2 is the separation of HNN’s with different 
architectures into different GAs, so that the neurons from the 
NeuronGAs will always work with the same peers, 
facilitating the neuron’s specialization. The creation of one 
NeuronGA for each position in the net’s hidden layer, instead 
of one NeuronGA for each neuron AF type, as in HCGA1, 
also brings advantages. In this way, even neurons with the 
same AF are encouraged to specialize into different regions 
of the search space (due to coevolutionary forces). What 
happened in HCGA1 was that a HNN containing neurons 
with the same AF would have them to perform almost the 
same task, since they were part of the same NeuronGA. 

Table V shows a comparison of the RMSE between the 
best HNN of HCGA1 and HCGA2. The difference to the 
results in Table IV is that, in HCGA1, the validation patterns 
were added to the training patterns, the test patterns were 
used for validation and no independent test was made. Thus, 
to be able to compare both versions, we had to run on the 
same conditions. It is clear that HCGA2 has much better 

results, surpassing the first version by as much as 40% for the 
card1 set and by almost 25% for the heart3 set. 

TABLE V 

COMPARED RESULTS BETWEEN HCGA1 AND HCGA2 

 Best network’s root mean squared error 

 card1 card2 card3 heart1 heart2 heart3 

HCGA1 0.0988 0.1205 0.1105 0.1174 0.1435 0.1870 
HCGA2 0.0582 0.1047 0.0756 0.1087 0.1087 0.1435 

E. Future Work 

Some improvements could be undertaken as future work. 
First of all we should test the performance of the HCGA2 on 
other kinds of problems, like temporal series prediction, 
function interpolation, etc. Likewise, we can extend the 
algorithm by using configurable splines and/or polinomials as 
AF’s of the hidden layer neurons, instead of setting a 
predefined number of AF’s. It would be also possible to use 
an ANN as AF, creating a nested structure for the HNN. Still 
we could add more levels to the HCGA2 hierarchy, in order 
to co-evolve two or more neural networks that work together 
on a certain upper level problem.  

IV. CONCLUSION 

This work has examined the suitability of merging together 
in a same framework various promising approaches proposed 
recently for the configuration of neural net architectures, 
particularly those involving coevolution. The resulting model 
(HCGA2) comprehends a new hierarchical-based 
evolutionary scheme devoted to the progressive assembling 
of heterogeneous neural structures. This blending strategy 
was assessed through a series of benchmarking tests over 
classification problems. The findings obtained so far 
corroborate other results already presented in the literature, 
showing that HCGA2 constitutes a promising design strategy 
on the direction of fully automatic adjustment of an extended 
set of neural networks parameters. 
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VI. APPENDIX A (HCGA2 ALGORITHM) 

1) Generate an initial population of NNdGA_POPULATION_SIZE 
NNds for the NNdGA. These NNds contain the number of 
neurons in the HNN’s hidden layer (ranging from 
MIN_HIDDEN_NEURONS to MAX_HIDDEN_NEURONS) and the type 
of each neuron’s AF. 

2) For each NNd, create a genetic algorithm (HNNGA) that 
will be used to train the HNNs. 

a. Create one GA (NeuronGA) for each neuron on the 
NNd, and initialize it with a population of 
NeuronGA_POPULATION_SIZE neurons, which have all the 
same AF (determined by the NNd). 

b. Generate HNNGA_POPULATION_SIZE initial HNNs taking 
the neurons of their hidden layer from the 
NeuronGAs. Those neurons will be taken randomly, 
one from each NeuronGA, in order to create networks 
hat are equivalent to the NNd. One neuron may be 
used by more than one HNN. 

3) Run each HNNGA for HNNGA_MAX_GENERATIONS. 
a. Apply mutation (HNNGA_MUTATION_CHANCE) to the 

HNNGA population. Add to the population: 1) 
HNNGA_CROSSOVER_CHANCE HNNs generated by two 
points crossover; 2) HNNGA_RANDOM_PERCENT 
randomly generated HNNs. 

b. Adjust the weights of the output layer neurons of each 
HNN using the LMS method. 

c. Use the validation input/output patterns to compute 
the Root Mean Squared Error (RMSE) of each HNN 
and set their fitness as being (1.0-RMSE). 

d. Send the HNNs’ fitness to the neurons in their hidden 
layer. The fitness of  the neurons will be the average 
fitness of all networks they participate in. 

e. HNNGA_ELITIST_SELECTION best HNN’s will pass to the 
next generation. The population will be completed by 
tournament selection between the remaining HNN’s.  

f. Run NeuronGA_MAX_GENERATIONS evolutionary cycles 
for each NeuronGA.  

i) Set fitness on unused neurons. They receive as 
fitness the average fitness of the NeuronGA, 
divided by the number of cycles they are unused. 
After NeuronGA_MAX_UNUSED_CYCLES the fitness is 
set to zero. 

ii) Generate a new neuron population by taking: 1) 
the neurons that belong to the best ranked HNNs 
(regardless of their fitness); 2) the 

NeuronGA_ELITIST_SELECTION best neurons; 3) 
NeuronGA_CROSSOVER_CHANCE neurons generated 
by geometrical crossover [17]; 4) 
NeuronGA_RANDOM_PERCENT randomly generated 
neurons; and complete the population with 
tournament selection between the remaining 
neurons. Finally, apply uniform mutation [14] 
(NeuronGA_MUTATION_CHANCE) to the population. 

4) Take as fitness for each NNd the fitness of the best HNN 
evolved by its HNNGA. 

5) If the NNdGA has run for NNdGA_MAX_GENERATIONS, return 
the best ranked HNN of the NNd with highest fitness. 

6) Apply mutation (NNdGA_MUTATION_CHANCE) to the NNds. 
Add to the population: 1) NNdGA_CROSSOVER_CHANCE NNds 
generated by two points crossover; 2) 
NNdGA_RANDOM_PERCENT randomly generated HNNs. 

a. Crossover is done between the best ranked NNds. The 
NeuronGAs corresponding to the exchanged neurons 
also have to be exchanged and all HNNs of the 
HNNGAs have to be updated, in order to reflect the 
changes in the NNds. 

b. Mutation can add or remove a neuron, as well as 
change the type of its AF. Again, the NeuronGA’s 
and the HNN’s in the HNNGA’s have to be adapted 
to reflect the changes. 

7) The NNdGA_ELITIST_SELECTION best NNd’s will pass to the 
new generation. The population will be completed by 
tournament selection between the remaining NNd’s.  

8) Go to step 2). 
 


