
4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

A COMPUTATIONAL TOOL TO MODEL INTELLIGENT SYSTEMS

José A. S. Guerreroa Antônio S. R. Gomesb Ricardo R. Gudwinc

DCA-FEEC-UNICAMP
Caixa Postal 6101-13.083-970-Campinas, SP-Brasil

{jasga,asrgomesb,gudwinc}@dca.fee.unicamp.br

Abstract: This paper presents the implementation of a
computational tool for modeling intelligent systems under the
paradigms of computational semiotics. It uses, as a modeling
artifact, the framework given by object networks and
mathematical objects (Gudwin 1996). Several aspects of the
system dynamics, characteristic topology and selection
mechanisms are tackled in detail, aiming at a robust
architecture for object network simulation in real-world
applications.

Keywords: Computational Semiotics, Modeling Intelligent
System, Object Network.

1 INTRODUCTION
The role of Semiotics within intelligent systems development
and implementation is being recently studied as an important
foundation paradigm able to provide a future basis for a general
theory of intelligent systems (Albus 1997).

Within many possible interactions between Semiotics and
Intelligent Systems, we detach Computational Semiotics, i.e.,
the attempt of emulating the semiosis cycle within a digital
computer. The main paradigm behind computational semiotics
is "semiotic synthesis", i.e. the ability to use sign-processes and
semiosis cycles from an engineering point of view, as a design
platform for development of intelligent systems. Among other
things, using computational semiotics paradigms we are
targeting the construction of autonomous intelligent systems
able to perform intelligent behavior, including perception,
world modeling, value judgement, and behavior generation
(Albus 1991). There is a claim that most part of intelligent
behavior should be due to semiotic processing within
autonomous systems, in the sense that an intelligent system
should be comparable to a semiotic system. Mathematically
modeling such semiotic systems is currently being the target
for a group of researchers studying the interactions encountered
between semiotics and intelligent systems.

The key issue in this study is the implementation of a
computational tool in order to enable us to model intelligent
systems and to study semiotic processes on computers. In this
work we adopted a theoretic tool known as object networks.

Object networks were first introduced by Gudwin (Gudwin
1996), and have been used as formal background for the

development of Computational Semiotics (Gudwin and
Gomide 1997a, Gudwin and Gomide 1997b, Gudwin and
Gomide Sep. 1997) in computer systems. More recently, object
networks were also used within the context of computational
intelligence, soft computing (Gudwin and Gomide Oct. 1997,
Gudwin and Gomide 1998a), and computing with words
(Gudwin and Gomide 1998b).

2 A COMPUTATIONAL MODEL FOR
OBJECT NETWORKS

An object network is a mathematical tool structured in several
sub-elements, such as objects, places, ports, relationships
between places and the network operation mechanism itself. Its
formal specifications and comparisons with other modeling
tools can be found in (Gudwin, 1996). Other modeling tools
using objects in Petri-nets-like structure can be seen e.g. in
(Ceska & Janousek 1996, 1997), or in (Newman et. al. 1998)

2.1 Objects
Objects are the elements that define the dynamic behavior of
the network. They are the fundamental actors in the process of
creation, elimination and modification of information that is
encoded through existing objects. There are two types of
objects. The first, acts solely as information containers (figure
1), exhibiting passive behavior. The second type, known as
active, also contains information as a passive object, but it also
includes a set of internal transforming functions that operate
over its internal data (figure 2). Actually, active objects are
responsible for generation, destructive or non-destructive
assimilation, and modification of its own state.

internal
state

Figure 1. The conceptual passive object.

Interactions between objects are regulated by a mechanism
called triggering, and are performed by active objects. This
mechanism, its behavior, and its formal definition are described
in depth in (Gudwin 1996, Gudwin and Gomide 1998a,
Gudwin and Gomide 1998b, Gudwin and Gomide May 1998).

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999
Every object is instantiated from a predefined class. A class
represents a general description of how each object of this class
should behave, what kind of internal data it has, and how its
private ports are connected to its internal data.

Function

private port
private port

internal
state

output
state

input
state

input output

Figure 2. The conceptual active object.

2.2 Object Networks
An object network is a special type of object system (Gudwin
1996) in which additional constraints concerning interactions
are included. To distinguish an object network from an object
system let us assume places and arcs (links) whose roles are
similar to those used in Petri nets context (Murata 1989). An
object, in a given place, can only interact with objects in places
connected through arcs.

An object network can be put in a graphical form, with places
being represented by circles, arcs by arrows and instances of
objects by tokens, as in figure 3.

place1 place2 place4

place3passive
objects

link1

link2

link3

link4

active
objects

Figure 3. Example of an object network.

As for an objects system, the basic behavior in an object
network is the triggering of active objects. The reader is
referred to the work of Gudwin (Gudwin 1996, Gudwin and
Gomide 1997a, Gudwin and Gomide 1997b, Gudwin and
Gomide 1998a, Gudwin and Gomide 1998b, Gudwin and
Gomide May 1998) for details about the formal definitions.

2.2.1 Places

Places are the components of an object network where objects
are located. Each place is registered to a unique class, and
every stored object should belong to this class. In this sense,
there are passive and active places, named after their class type,
as described in section 2.1.

Places are represented graphically by circles, where passive
places are depicted by single line circles, and active places by
double line circles, as illustrated in figure 4. Each place can
have one or more ports, which allow the interchange of objects
with adjacent places.

passive place

ports

active place

objects

Figure 4. Place types.

2.2.2 Ports and arcs

Ports are interfaces of communication between places in object
networks. According to the topology of the network these ports
can be classified in input ports, when another place sends
objects for this place through this port, or output ports, when
this place sends objects to another place through this port, as
shown in figure 5.

out outin in

Figure 5. Classification of ports according to the topology
of the object network.

According to the semantics involved there are two different
types of ports (figure 6):

• private ports: these ports have different behavior
depending on whether they are being input or output ports.
Input private ports are used to feed active objects staying
within an active place, to allow their triggering. Output
private ports are used to deploy generated or transformed
objects to other places. So, private ports are connected
either to a domain or to a co-domain of an internal
transforming function. These ports are part of the internal
class definition and can exist solely on active classes, e.g.,
active places.

• public ports: these ports are used to put objects to, or get
objects from a place. So, the use of this port is managed by
a place container, instead of by an internal object. Public
ports are a part of the place definition, independently of
the class type it may host.

The number of private ports a place may have will depend on
the internal functions their objects carry on. A place can have
any number of public ports.

Arcs (figure 7) are used to create links between places,
connecting input ports to output ports. Links are unaware of the
kind of ports they connect, but some combinations are not
considered valid.

• private to private, because it implies a racing condition
between the supplier and the consumer.

• public to public, because this is meaningless, due to the
fact that there is no transforming function, just an inert
pipe. The correct way to do this is by an intermediate
active place that takes the object from the source place and
throws it into the destination place.

private port

inputs outputs

object
1

object
2

1 2 1 2

private port

public port

private port

private port

public port

2

1

1

2

1

1

place

 Figure 6. Classification of ports, according to the semantic
involved.

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

privatepublic

Figure 7. Graphical symbology adopted for arcs

Active places must have, by its own definition, at least one
private port. They may or may not have public ports. Passive
places, on the other hand, must have at least one public port
and no private ports.

3 COMPUTATIONAL MODEL
The work described in this section is based on the current
development of a computational tool, or a set of tools, that can
supply researchers with an easy-to-use interface to model
intelligent systems. This set of tools is a possible
implementation of the concepts described in section 2. Our aim
here is to construct a software tool1 with the following features:

• Robustness, through an independent specification
language that isolates the object network model from the
host programming language.

• Processing performance, through automatic generation of
stubs for each user defined class. These stubs are compiled
together with the user code. External classes (in this case
Java classes) can be incorporated by the network engine
and manipulated as typical object network classes.

• Scalability, with support to SMP2 capable computers
through multi-thread architecture.

• Easy-to-use interface, provided by a graphical user
interface and a specification language for each component
on the object network.

• Portability, because it is totally implemented in Java (Sun
Microsystems, 1998, 1999a, 1999b), it runs on any
hardware/operating system that supports the Java Virtual
Machine (Gosling et.al., 1999).

3.1 Design issues
 This section will describe implementation aspects. Figure 8
shows how software objects interact with each other into the
Java Virtual Machine. Each box represents a distinct thread.

The object network controller (Net Manager) is the first
software object instantiated on the Java VM. Its main functions
are:

• To define classes;

• To instantiate places;

• To control the iteration sequence;

• To provide the external communication interface with the
client thread.

Each network place has a special management unit, named
place manager, responsible for every transaction performed,

1 The main simulation engine module is named MTON (Multi-
Threaded Object Network).
2 SMP stands for Symmetric Multi Processing (Tanenbaum
1992).

including the communication with adjacent places and the
controller.

Place 1

Place 2

Place 3

Place 4

Net Manager

Figure 8. Diagram for the network from figure 3. Each box
runs on its own thread. Arrows indicate communicating

messages between distinct units.

From the user viewpoint, the interface with the external client,
such as the graphical user interface, is also implemented in a
message passing protocol (figure 9). This protocol links the
client thread with the object network controller.

Net Manager

Controller

Client
Application

Figure 9. External communication between client and the
MTON subsystem.

3.2 Object Network Specification Language
The design requirements for a robust specification and
independence of platform specific issues led us to a definition
of an Object Network Specification Language (ONSL). This
language provides basic building blocks for each component of
an object network:

classes network
• variables
• functions
• private input/output ports

• places
• arcs
• kernel

Basically, there are two fundamental class types. The first is
named internal class and contains, in its internal definition,
only ONSL classes. The second type works as a shell,
importing an external native language class (in this case a Java
class) to the MTON environment. This type of class is called
external class, and is extremely useful because it reuses
previously available Java classes.

Figure 10 represents the network definition sample file
corresponding to the object network shown in figure 3.

3.3 Object Network Compiler (ONC)
The Object Network Compiler (ONC) is the tool that processes
ONSL input files, performing syntactic and semantic analysis,
generating the specific Java stub for each user defined class.

The abstract Java class NetObject is the basic ancestor for all
network objects, and provides the common behavior for all of
them (figure 11). Stubs are generated based on the ONSL
definition. They connect the standard internal interface of the
NetObject base class with the user defined class particularities

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999
by providing abstract methods, that are overridden in user
classes.

import Samplenet.xFloat;

class C1 is xFloat ;

class C2 {
var v1 type C1 ;
var v2 type C2 ;
function f1 from v1 to v2 match from v1 ;
input 1 to v1 ;
output 1 to v2 ;

}

network Samplenet {
place Place1 type C1 ports (0,2) ;
place Place2 type C2 ;
place Place3 type C2 ;
place Place4 type C1 ports (2,0) ;
arc Link1 from Place1(public 1)

to Place2(private 1) ;
arc Link2 from Place1(public 2)

to Place3(private 1) ;
arc Link3 from Place2(private 1)

to Place4(public 1) ;
arc Link4 from Place3(private 1)

to Place4(public 2) ;
kernel Place1 o1,o2 ;
kernel Place2 o3 ;
kernel Place3 o4 ;

}

 Figure 10. Sample ONSL definition file.

NetObject

MTON engine

stub_C2 stub_C1

C2 C1

ONSL compiler
generated

user specific

InternalNetObject ExternalNetObject

<<abstract>>

<<abstract>> <<abstract>>

<<abstract>><<abstract>>

Figure 11. Java class structure.

3.4 Network Dynamics
One of the most crucial features of an object network is its
parallelism capability, in which every object may execute
concurrently with the rest of the network. The MTON
architecture was designed with the assignment of a running
thread to each place on the network. To do so, it implements a
message passing sub-system to support its internal
communication protocol.

Every object on the network may be triggered by any input
combination that satisfies its input domain requirements, but
this is a great problem because there are some dependency
implications, when an object is activated. The first question is:
from the many available functions within an object, which
internal function should be selected? Only one internal function
can be activated at the same time (Gudwin 1996). The second
problem is more complex: which objects available on neighbor
places, connected through incoming arcs, should be used to
activate the chosen internal function? This problem can either
be split into two other problems : the selection of the best
objects, according to some goals, and a policy to avoid
conflicts when the selected objects are desired also by other
active objects. To implement this policy, we assign the
following properties to available objects:

• shareable+leave(s/l): several objects can read this object
simultaneously. It will remain the same on its place.

• shareable+clean(s/c): like a shareable, but the last
consumer will automatically destroy it.

• exclusive+leave(e/l): just one object can read this object. It
will remain the same on its place.

• exclusive+clean(e/c):just one object (the consumer) can
read this object, after which it will be destroyed.

Actually, this problem is a little bit harder than explained,
because the algorithm has to provide: (a) the objects to be
activated, (b) the internal functions to be triggered, and (c) the
objects to be consumed. This process needs to avoid any kind
of conflicts that may arise between different objects. Notice
that there is no sense in choosing a function when there is no
object available to feed it, or if the same object is requested at
the same time by different objects. In order to solve the whole
problem we devised an algorithm to evaluate all dependencies
among each object, searching for valid actions.

We use the following concepts:

• access mode: rules of use, and the consequences of them,
when an object is used by another object;

• combination: a combination of possible incoming objects
that satisfies the type requirements for a specific internal
transforming function of a given class;

• local combination: This is a combination with the
addition of a matching interest and access modes. Note
that it does not take into account the rest of the network to
avoid conflicts;

• global (or valid) combination: it is just like a local
combination, but it takes into account all external
relationships this decision may involve. Actually, this is a
valid combination that can occur in a given context. In a
given network situation we argue that the set of global
combinations is a subset of the set of local combinations;

We start by building local combinations and evaluating their
feasibility in order to reach global combinations. This process
is performed by a matching procedure, in which each internal
function of each object expresses its interest in using a given
local combination. This interest is expressed either by a fitness
value or a more elaborated solution, e.g. using possibility and
necessity measures.

The proposed algorithm is based on an initial set of hypotheses:

1. Every internal function has one internal matching sub-
function;

2. There are several possible sets of global combinations, but
just one of them, with the best performance, must be
found;

3. The searching for global combinations can be done on
computing every internal matching interest of every
function of every object on every place for each of their
local combinations;

Best Matching Search Algorithm (BMSA-1):

1. Determine the set of local combinations for each place,
including its objects.

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

2. Eval the matching interest of every previous local
combination.

3. Group all previous sets from each place in one global set.

4. Create a list containing all consumable objects on the
network, with no repetition (This is just the union of all
objects used on the local combinations from step 1).

5. While number of remaining objects ≠ 0 and number of
remaining local combinations ≠ 0 do:

• From the list of local combinations get the highest
matching value, and move its local combination to the
list of global combinations.

• For each input object in this local combination do:

• if the access mode is exclusive remove it from the list
of consumable objects and remove all local
combinations that are using it from the respective list.

• if the access mode is shareable remove all local
combinations that use this object in exclusive mode.

• if the access mode is self clean mark this object.

After the creation of the list of global combinations every
object is contacted to perform its scheduled task.

3.5 Graphical User Interface
The MTON architecture is supported by a graphic user
interface, which offers to the user tools for design and
simulation, providing an easier way to work on object networks
issues. The editor module is directly attached to the ONSL,
e.g., every element in an object network can be designed on it.
The simulator module enables the user to verify the dynamic
behavior of the network in different situations. A screenshot of
the editor module is shown in figure 12.

Figure 12. Sample screenshot of the graphical user
interface.

4 CONCLUSIONS
With the implementation of the proposed software architecture,
we upgrade the status of object networks from a purely
conceptual tool to a useful, easy-to-use application tool, suited
for the development of intelligent systems. With it, it becomes
easier to use object networks as a modeling tool, in the
development of intelligent systems.

Up to the time of writing this article, we were not aware of any
other computational tool that could be compared with the work
presented in this paper. This is the first computational
implementation of a generic tool to design and build fully

workable object networks. So, it is hard to assess specific
features of the proposed system against other works. Object
Networks were designed with the specific purpose to serve as a
tool to help designing and building intelligent systems using
the Computational Semiotics paradigm as a background. Until
now, the use of object networks was restricted either to
theoretical examples or specific illustration examples,
hardcoded into standard computer languages. Now, with the
introduction of MTON, we are able to develop, build and test
general applications using the object network paradigm. Due to
space limitations, though, we are not able to show here the set
of tutorial examples we developped to illustrate the potential
use of object networks. We have developped reference
examples regarding fuzzy systems, neural networks, genetic
algorithms and hybrid systems mixing them, together with a lot
of other examples that are available in order to guide new users
with the first steps in using MTON. Most of these examples,
with the full workable system are publicly available. Just
contact one of the authors. In the near future our research group
will be providing the software for free in a dedicated web site.

Despite we are not able to compare MTON with other software
tools implementing object networks (because it is actually the
first one to do it), we are aware that other modeling tools do
exist and are actually used in order to model some kinds of
systems. One of these other modeling tools, that would be (in
thesis) compared with object networks is Coloured Petri Nets
(CPN) (Jensen, 1990). There is a computational tool to
develop CPN's, called design/CPN (Meta Software Corporation
1993), which is widely used by the Coloured Petri Nets
community. We understand, though, that a comparison among
design/CPN and MTON would be not fair to design/CPN,
because the object network paradigm enhances significatively
over the CPN model (Gudwin, 1996).

At the same time MTON is the consolidation of object
networks theory, it is also being used as a prototype for the
enhancement of the own object network idea. As soon as new
real applications are constructed by its means, we are able to
analyze the demand for new capabilities, which can be
incorporated, both to the mathematical/conceptual tool and to
the application tool we developed. More than this, it is a
testbed for computational semiotics, where its models and
structures can be instantiated, tested and evaluated. So, more
than a simple application tool, MTON is actually a research
tool, where the steps to the future are going to be traced.

We see a lot of improvements that are required, though, from
what has already been done. Basically, there are two categories
of improvements. The first is related to the software system
being deployed, considering new technological solutions, in
order to achieve efficiency and reliability.

Among other things we suggest:

• Extension of the simulation engine from multiprocessor
systems to a network distributed engine, where each place
may run on a different machine. The way to that will be
crossed by CORBA (Common Object Request Broker
Architecture) and RMI (Remote Method Invocation)
distributed computing architectures.

• New selection functions for scheduling the triggering
objects. The concept of matching may be extended to a
more general one.

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999
• Introduction of software engineering analysis and design

concepts to bring well-known tools to the arena of object
networks.

The second is represented by the enhancements that can be
made to the mathematical/conceptual model of object
networks. These include enhancements like:

• Hierarchical modeling, in which each object within an
object network can be modeled by an object network itself.

• A connection of object networks with semantic networks,
allowing a better representation of the types of objects
used and their relation to each other.

• The use of fielded and fuzzy objects (Gudwin, 1996) in its
structure.

As we see it, the current implementation is just a step in the
ambitious goal of creating a general theory of intelligent
systems.

5 REFERENCES
Albus, J.S. (1991). "Outline for a Theory of Intelligence",

IEEE Transactions on Systems, Man, and Cybernetics,
vol 21, no.3.

Albus, J.S. (1997). “Why Now Semiotics? - From Real-Time
Control to Signs and Symbols”- Proceedings of the
1997 International Conference on Intelligent System
and Semiotics, pp. 3-7.

Ceska M.; Janousek V. “Object Orientation in Petri Nets.
Object Oriented Modeling and Simulation” –
Proceeding of the 22nd Conference of the ASU,
University Blaise pascal, Clermont-Ferrand, france
1996, pp. 69-80.

Ceska M.; Janousek V. “A Formal Model for Object Oriented
Petri Nets Modeling”. Advances in Systems Science
and Applications, 1997.

Gosling, J.; Joy B.; Steele G., 1999, Java™ Language
Specification,
http://java.sun.com/docs/books/jls/html/index.html

Gudwin, R.R. (1996). “A Contribution to the Mathematical
Study of Intelligent Systems” – PhD Thesis – DCA-
FEEC-UNICAMP. (in portuguese)

Gudwin, R.R. and Gomide, F.A.C. (1997a), Computational
Semiotic: An Approach for the Study of Intelligent
Systems – Part I: Foundations – (Technical Report RT
– DCA 09 – DCA-FEEC-UNICAMP, 1997).

Gudwin, R.R. and Gomide, F.A.C (1997b)., Computational
Semiotic: An Approach for the Study of Intelligent
Systems – Part II: Theory and Application – (Technical
Report RT – DCA 09 – DCA-FEEC-UNICAMP, 1997).

Gudwin, R.R. and Gomide, F.A.C., Sep 1997, “An Approach to
Computational Semiotics” – (Proceedings of the
ISAS´97 – Intelligent Systems and Semiotics: A
Learning Perspective – International Conference –
Gaithersburg, MD).

Gudwin, R.R. and Gomide, F.A.C., Oct. 1997, A
Computational Semiotic Approach for Soft Computing –
(Proceedings of the IEEE SMC´97 – IEEE International

Conference on Systems, Man and Cybernetics –
Orlando, FL, USA.)

Gudwin, R.R. and Gomide, F.A.C.,1998a, “Object Network: A
Formal Model to Develop Intelligent Systems” in
Computational Intelligence and Software Engineering,
J. Peters and W. Pedrycz (eds.) – World Scientific.

Gudwin, R.R. and Gomide, F.A.C., 1998b, “Object Network: A
Computational Framework to Compute with Words” in
Computing with words in Information/Intelligent
Systems, L.A. Zadeh and J. Kacprzyk (Eds.) – Springer-
Verlag.

Gudwin, R.R. and Gomide, F.A.C., May 1998, “Object
Networks – A Modeling Tool" – Proceedings of
FUZZY-IEEE98, WCCI’98 - IEEE World Congress on
Computational Intelligence, Anchorage, Alaska, USA,
pp. 77-82.

Jensen, K. (1990). “Coloured Petri Nets: A High Level
Language for System Design and Analysis” – Lecture
Notes in Computer Science 483 – Advances in Petri
Nets, pp. 342-416.

Meta Software Corporation, 1993, Design/CPN Tutorial for X-
Windows, http://www.daimi.aau.dk/designCPN

Murata, T. (1989) “Petri Nets: Properties, Analysis and
Applications” – Proceedings of the IEEE, vol. 77, n. 4.

Newman A.; Shatz, S.M.; Xie, X. (1998). “An Approach to
Object System Modeling by State-Based Object Petri
Nets” – International Journal of Circuits, Systems and
Computer.

Sun Microsystems, 1998, JavaCC Documentation,
http://www.suntest.com/JavaCC/DOC/

Sun Microsystems, 1999a, Java™ Plataform 1.2 API
Specification,
http://java.sun.com/products/jdk/1.2/api/index.html

Sun Microsystems, 1999b, Java™ Development Kit 1.2,
Documentation,
http://java.sun.com/products/jdk/1.2/docs/index.html

Tanenbaum, A.S., 1992, Modern Operating Systems – Prentice
Hall, Inc.

