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ABSTRACT : The aim of this paper is to introduce the theoretical foundations of an approach for
intelligent systems development. Derived from semiotics, a classic discipline in human sciences, the
theory developed provides a mathematical framework for the concept of knowledge and for knowledge
processing. As a result, a new perspective to study and to develop intelligent systems emerges. In part
I, we focused on the essentials of such a theory. It included the background needed from semiotics,
describing the relationship between semiotics, intelligent systems and cognition. A taxonomy of the
elementary types of knowledge was proposed, followed by another classification considered by the
point of view of its application in a cognitive system. In addition, a mathematical definition of objects
and object networks, were proposed. Here, in part II, we proceed introducing the issues concerning
knowledge modeling and system development. The elementary types of knowledge are modelled using
the concepts of objects and object networks. Based on the idea of applied knowledge, a general
architecture for an intelligent system is suggested. An example concerning control of an autonomous
vehicle is addressed to illustrate the use of computational semiotics in developing intelligent systems,
and to show how intelligent systems can be implemented. Finally, the conclusions and further work
are addressed.

1. Introduction
The formal body of theory introduced in Part I is considered with the purpose of consolidating

the definition of computational semiotics.  We use the concepts introduced informally in Part I, and
the formal model of object and object network to model each type of knowledge described earlier.

In Part I, we repeatedly used the term “structure”, or “mathematical structure”, without a
further explanation of what would be the meaning of these words. The basic mathematical structure
used here to represent the diverse types of knowledge is the mathematical object and object networks.
Rhematic and dicent knowledge are modeled as passive objects whereas argumentative knowledge is
modeled by active objects. To restrict the activity of active objects, we use object networks to assure
that argumentative knowledge is applied only when necessary.

2. Representation  of Rhematic Knowledge

2.1 Specific Sensorial Rhematic K nowledge
This is the most elementary knowledge type. It comprises a model of input interface,

restrictions of input interface to specific input times, free projections of input interface in its sub-
dimensions, or projections followed by restrictions. Its model is given by the mathematical object. For
a set N of discrete instant times, and a sensorial space S = S1 × S2 × ... × Sk , the model for a specific
sensorial rhematic knowledge is given as a passive object o, o : N → S.

DEFINITION 1 - Temporal Restriction for Objects

Let N be a set of time instants, S a class and o:N→S an object of type S. Let N’ ⊆ N . The
temporal restriction of object o to N’, denoted by o ⇓ N’ corresponds to the object o’:N→S such that if
(n,s) ∈ o and n ∈ N’, (n,s) ∈ o’. Otherwise, (n,s) ∉o’.
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Example: N = { n1 , n2 , n3 }, S = ℜ3 , o = { (n1 , (0,0,0) ) , (n2 , (0,1,0) ) , (n3 , (1,2,2) ) }.

N’ = { n 2 , n3 } → o’ =  { (n2 , (0,1,0) ) , (n3 , (1,2,2) ) }.

Examples of the many types of  specific sensorial rhematic knowledge are as follows:

Consider a system with inputs x1, x2 and x3 ∈ X = {0,1,2} , and the set of time instants T = { t1 , t2 , t3
}. Suppose that at t1 , x1 = 0, x2 = 0 and x3 = 0. At t2 ,  x1 = 0, x2 = 1 and x3 = 0. And, at t3 , x1 = 1, x2

= 2 and x3 = 2. The sensorial rhematic knowledge corresponding to input interface in this case is
represented by the object o = { (t1 , (0,0,0) ) , (t2 , (0,1,0) ) , (t3 , (1,2,1) ) }. Assume the induction
formulae α = [ 1, (2,3), (2,2) ]. Object  o(α) = { (t1 , (0,0) ) , (t2 , (0,1) ) , (t3 , (1,2) ) } is also an
example of specific sensorial rhematic knowledge. Object o’, defined by  o restricted to T’ =  { t1 , t3 },
o’ = { (t 1 , (0,0,0) ) , (t3 , (1,2,1) ) } is also an example of a specific sensorial rhematic knowledge, as
well as object o’’, given by o(α)  restricted to T’, o’’ = { (t1 , (0,0) ) , (t3 , (1,2) ) }. The object
o’’’ = o ⇓ T’’, T’’ = {t 2 }, o’’’ = { (t 2 , (0,1,0) )  } is also an example.

In many situations, objects similar to o’’’ are used to represent knowledge coming from
sensors. In fact, this is very common. Note that, in this case, they do not carry its temporal history and
can be easily stored.

2.2 Generic Sensorial Rhematic K nowledge
A generic sensorial rhematic knowledge is an abstraction of a specific sensorial rhematic

knowledge. It is capable of representing, at the same time, many specific sensorial rhematic
knowledge. To convey this characteristic, the mathematical object is not sufficient by itself. To handle
it, we need to introduce first the following definitions:

DEFINITION 2 -Set Variable

Let N be an enumerable set, with a generic element n and X ⊆ U a subset of U. We define a set
variable x of type X as a function x : N → 2X .

Examples: Let N = {1,2,3} and  X = {1,2,3,4} . An example of a set variable x of type X is :

x = { (1, {1,2} ) , (2, {2,3,4} ) , (3, {1,3} ) }

Assume now X2 = X × X. Thus, a set variable x’ of type X2 is, for example,

x’ = { (1, { (1,2),(2,3),(2,4),(3,3) } ) ,  (2, {(2,3),(4,1),(1,1)} ) , (3,  {(1,3),(2,1) }) }

Note in the last example, that the value of x for each n ∈ N corresponds to a relation. In this case, if
we set R1 = { (1,2),(2,3),(2,4),(3,3) }, R2 = {(2,3),(4,1),(1,1)} and R3 =  {(1,3),(2,1) }, we get, for
short, x’ = { (1,R1 ) , (2,R2 ), (3, R3 ) }.

DEFINITION 3 - Generic Object

Let C be a non-empty class. Let c be a set variable of type C. The variable c is called a generic
object of class C.

DEFINITION 4 - Case of a Generic Object

Let c be a generic object of class C. An object c’ of type C is said to be a case of generic object
c, if ∀n ∈ N, c’(n) ∈ c(n).

DEFINITION 5 - Fuzzy Object

Let N be an enumerable  set, with a generic element n, X a class, 
~
X  a fuzzy set defined onto X

and 2
~X  the set of all fuzzy sets onto X. We define a fuzzy object x of type X as a function x : N →

2
~X  .
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If X is a passive class,  X = X1 × ... × Xm , 
~
X  will be, in general,  a m-ary fuzzy relation. In

some cases, it will be interesting to use not a generic fuzzy relation, but a fuzzy relation formed by the

cartesian product of different fuzzy sets. In this case, 
~
X  may be represented by a tuple of m fuzzy

sets. If X is an active class, 
~
X would consider as fuzzy only the fields that are not functions. The m-

ary fuzzy relation, in this case, will be represented by the (fuzzy) cartesian product of all elements that
are not functions.

Note that a fuzzy object can represent any (standard) object o = { (n,x)  | ∀n ∈ N, x ∈ X} if we
take, for each n ∈ N, a fuzzy set that is a singleton in x ∈ X.

Since a passive object corresponds to a fuzzy relation, it is possible to define operations
involving fuzzy objects. The same occur with active objects, because the operations are related with
non-function fields only.

DEFINITION 6 - Union of  Fuzzy Objects

Let x’ and x’’ be two fuzzy objects of type X, defined in N such that ∀n ∈ N, if x’(n) is
defined, x’’(n) is also defined. The union x of x’ and x’’ is a fuzzy object such that ∀n ∈ N, x(n) =
x’(n) S x’’(n), where S is a matrix operator which applies a triangular co-norm, element to element in
the m-ary relational matrices. Operator S applies only to non-function fields of the corresponding
tuples.

DEFINITION 7 - Intersection of Fuzzy Objects

Let x’ and x’’ be two fuzzy objects of type X, defined in N, such that ∀n ∈ N, if x’(n) is
defined, x’’(n) is also defined. The intersection x of x’ and x’’ is a fuzzy object such that ∀n ∈ N, x(n)
= x’(n) T x’’(n), where T is a matrix operator which applies a triangular norm, element to element in
the m-ary relational matrices. Again, operator T applies  only to the non-function fields of the tuples.

The basic structure of generic sensorial rhematic knowledge is the passive generic object or,
more generally, a passive fuzzy object. Note that if we define a set of specific sensorial rhematic
knowledge, it is possible to build a generic object such that these specific knowledges are cases of such
generic object. If these cases are weighted by values between 0 and 1, we have a fuzzy object.

There are different ways and methods to specify a relation, i.e., there are different ways and
methods to specify a generic object. For example, we can define a distance measure in a metric space
and, given a point in this space, build a relation composed by all the points within a certain distance
from that point. This criteria is known, in cognition sciences, as the prototype method (Cohen &
Murphy, 1984). In this case, a specific sensorial rhematic knowledge is used as a prototype, and given
a distance measure, one can define a generic sensorial rhematic knowledge. Other example uses
discriminating function which, given a point, determines if such point belongs or not to the relation.
This is the method used, e.g. in neural networks such as the multilayer Perceptrons (Lippman, 1987),
using a hard-limiter activation function. A Perceptron emulates a discriminant function, which can be
as precise as determined by the number of neurons and layers in the network. The advantage of
discriminating functions over the prototype method is that in the second, only hyperspheric regions
can be defined whereas using discriminating functions one can define regions of generic topology.
More specifically, in the case of Perceptrons with 3 layers, it was proved that they can discriminate
generic spaces, with precision depending on the number of neurons of the intermediate layer. In
general, a Perceptron with 3 layers can be viewed as a generic approximator for continuous
discriminant functions in compact domains. If the Perceptron’s non-linear activation function is
continuous (e.g. a sigmoidal function) the discriminant function obtained by the Perceptron
characterizes a fuzzy relation.  Thus, instead of a generic object, we obtain the specification of a fuzzy
object.

It is interesting to note, in this case, a parallelism between these observations and the relatively
recent discoveries on the neural morphology of human brain (Verschure, 1993; Edelman &
Mountcastle, 1978; Edelman, 1987). According to these discoveries, the basic structures found in
human cortex are the neuron columns, also known as neural groups. A neural group corresponds to a
group of strongly interconnected neurons that are activated at the same time in the presence of a given
stimuli. The neurons within the group, which may have multiple layers, react at the same time to a
determinate stimuli, contrary to those neighbor neurons that do not belong to the group. A group may
be represented, in a structural way, by a multi-layer Perceptron. If we associate this structure to the
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definition of a generic sensorial rhematic knowledge, one can suggest that those structures may be
working, in human brain, as a way of storing generic sensorial rhematic knowledge.

For the sake of computational implementation, however, it is important to stress that both
generic objects and fuzzy objects can be transformed into objects. Suppose that the values of their
instances (which are sets or fuzzy sets) are represented by discriminating functions, functions which
are approximated by multilayer neural networks. We can generate a standard object whose attributes
are the parameters of such neural network. In this case, we represent a generic object (or a fuzzy
object), by a standard object. To use a generic knowledge in this form, however, the arguments used to
manipulate it must be modified to deal with generic/fuzzy objects in such a representation.

2.3 Specific Object Rhematic K nowledge
Differently from sensorial rhematic knowledge, that can be obtained directly from the system’s

sensors, the object rhematic knowledge is an abstraction over sensorial information. An abstraction
that is capable of concentrating a greater amount of information when compared to sensorial rhematic
knowledge. Basically, the object rhematic knowledge is a model for a bundle of sensorial rhematic
knowledge, that repeats over and over at the sensors, due to some environment (unknown) property.
This model may be obtained, e.g., as an abduction over sensorial knowledge. In this case, the
existence of an object is proposed to explain the sensorial stimulations that the system receives. It is
obvious that such abduction have to be consistent, i.e. the object rhematic must be akin to the sensorial
knowledges collected by the system. How do we implement such abduction ? Basically, sensor space
should be recoded by means of transformations that are invariant in the abducted objects. With that,
given a sensorial rhematic knowledge, we can determinate to which object rhematic knowledge it is
related to. This transformation may map points in sensor space to a new space, called object space.
This space must have a metric such that different stimulations in sensor space , related to a same
object, are near in the object space.

Despite its different origin, specific object rhematic knowledges are structurally similar to
specific sensorial rhematic knowledges. So, we represent them in the same way: by passive
mathematical objects. The only difference is in the object classes. Instead of being defined according
to the sensor space, the object classes can, in principle, be anyone (passive). This happens because the
structure of such classes depends on the transformation which maps sensor space onto object space.

2.4 Generic Object Rhematic K nowledge
Similarly, the way a specific object rhematic knowledge is related with a specific sensorial

rhematic knowledge, generic object rhematic knowledge is akin to generic sensorial rhematic
knowledge. It can be represented by a passive generic object or by a passive fuzzy object. The class of
generic object (or fuzzy object) does not need to have, in principle, any relation with the sensor space.
Again, this happens because classes are generated by transformation of sensorial knowledge, and there
are no restrictions on the image of such transformation. Also, generic (fuzzy) objects can be converted
to standard mathematical objects for computational purposes.

2.5 Occurrence Rhematic K nowledge
Occurrence rhematic knowledge is used to formally describe subsets of object history. An object

temporal trajectory can be seen as a sequence of instances of a class. This sequence can contain sub-
sequences that appear once or repeat itself in the sequence. Occurrence rhematic knowledge
corresponds to the identification and representation of such sub-sequences (which are called
occurrences). Instances may have many fields, and only part of them may be  relevant in the
occurrence characterization. With this, the formal model for occurrences may, in addition to pointing
the sub-sequences, mask only the relevant fields to be characterized. We also consider that sub-
sequences are not necessarily built up of contiguous instances. Any sub-sequence of the original
sequence is allowed. In some cases, we may also want to  correlate occurrences that happen in two or
more different objects. The formal model should allow such a correlation. Therefore, one can
represent occurrences that affect more than one object. To derive a mathematical model comprising
different occurrences, an extension of the object formal model, the meta-object is introduced next.
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DEFINITION 8 - Meta-Object

Let  N be an enumerable set, with a generic element n; V be an enumerable set where each v ∈
V is a variable of type N defined over the occurrence space T, v : T → N; R be a set of restrictions for
the values of variables V (possibly empty) and X be a class. A meta-object x of type X is a function
x : V → X .

Examples : Let T = { 1,2, ... } , N = {1,2,3,4,5,6}, V = { v1 , v2  , v3 }, such that  v1 , v2  , v3  : T → N
, R = ∅, and  X = X1 × X2 , X1 = {1,2,3,4}, X2 = {a,b,c}. An example of a meta-object x’ of type X1 is
x’ = { (v 1 , 1) , (v2 , 3) }. Other example of a meta-object x’’ of type X is x’’ = { (v1 , (1,a) ) , (v2 ,
(3,a) ) }.

DEFINITION 9 - Instance of a Meta-Object

Let x be a meta-object of type X. An instance of x is an object x’ where the variables of x are
substituted for the values provided by specific instances of such variables in the occurrence space.

Examples: Consider the meta-objects x’ and  x’’ as in the example above. An instance of x’, doing  v1

= 1 and v2 = 2 is x’’’ =  { (1 , 1) , (2 , 3) }. Other example, for  v1 = 2 and v2 = 5, x’’’ = { (2 , 1) , (5 ,
3) }. An instance of  x’’, for  v1 = 1 and v2 = 4 is x’’’ = {(1 , (1,a)), (4 , (3,a))}.

DEFINITION 10 - Occurrence of a Meta-Object in an Object

Consider an object o from class X, and a meta-object o’ from class X’. An occurrence o’’ of
meta-object o’ in o is an object o’’ such that o’’ is at the same time a sub-object from an instance of o’
and a temporal restriction of a sub-object of o.

Examples: Assume an object x of type X,  x = { (1,(1,a)) , (2,(3,b)) , (3,(3,a)), (4,(1,c)) , (5,(2,b)),
(6,(3,a)). As in the example above, for v1 = 1 and v2 = 2, we have an instance x’’’ =  { (1,1), (2,3) }
which is a temporal restriction of sub object x ↓ X1 of x to N = {1,2}. This is an occurrence of x’ in x.
Other occurrences for this case do exist, for  v = (v1 , v2 ) = (1,3), v = (1,6), v = (4,6). Not so obvious
is the case for  v = (4,2) and v = (4,3). Meta-object x’’ does also occur in x, but there exist only two
occurrences, for  v = (1,3) and v = (1,6) respectively.

When the restriction R for a meta-object is not empty, domain variables may have restrictions
to its values. One way of representing restrictions is by means of algebraic equations and/or
inequations using domain  variables. In this case the occurrence of meta-objects in objects does
consider such restrictions for the determination of possible instances for the meta-object.

Example: In the example above, assume that v2 = v1 + 1. In this case, there exists only one occurrence
of x’ in x for v = (1,2), because the restriction is violated for the other cases. Note that here, the meta-
object x’’ does not occur in x.

Other example could be v2 > v1. Viewing the inequality as a restriction in the example of definition 6,
we avoid non-intuitive cases v = (4,2) and v = (4,3) as occurrences.

Following the definition, an occurrence do not need to be, necessarily, a meta-object instance,
but any sub-object of the former. With this, from the same meta-object there may be different
occurrences in different objects, whith each object from a different class, but sharing a field of the
instance of the meta-object.

DEFINITION 11 - Occurrence of a Meta-Object in a Generic Object

Let x be a generic object from class X, and x’ a meta-object from class X’. An occurrence x’’ of
the meta-object x’ in x is an object x’’ such that x’’ is an occurrence for any case of x.

DEFINITION 12 - Occurrence of a Meta-Object in a Fuzzy Object

Let o be a fuzzy object from class X, and o’ a meta-object from class X’. An occurrence o’’ of
the meta-object o’ in o is a fuzzy object o’’ such that o’’ corresponds to the intersection of a sub-object
from an instance of o’, described as a fuzzy object by means of singletons, and a temporal restriction
of a fuzzy sub-object of o.



6

Example: Consider the following fuzzy sets
a1 = {1/0.2, 2/0.8, 3/0.6 }, a2 = {1/0.1, 2/0.2, 3/0.9 }, a3 = {1/0, 2/0.15, 3/0.3 },  b1 = { 5/0.3, 6/0.4,
7/0.1 }, b2 = { 5/0.4, 6/0.4, 7/0.8 }, b3 = { 5/0.1, 6/0.9, 7/0.8 }, c1 = { 15/0.2, 18/0.9 }, c2 = { 15/0.3,
18/0.8 }, c3 = { 15/0.7, 18/0.1 }, the fuzzy object x = { (1,(a1,b1,c1)), (2,(a2 ,b2 ,c2)), (3,(a3 ,b3 ,c3)), and
the meta-object x’ = { (v1 , (2,5,15)) , (v2 , (3,7,18)) }. For  v1 = 1 and v2 = 3, there is an instance of
meta-object x’ which is x’’ = { (1 , (2,5,15)) , (3 , (3,7,18)) }. Thus, for a’1 = {1/0, 2/1, 3/0 }, b’1 =
{5/1, 6/0, 7/0 } and c’1 = {15/1, 18/0 }, a’2 = {1/0, 2/0, 3/1 }, b’2 = {5/0, 6/0, 7/1 } and c’2 = {15/0,
18/1 }  we have the representation of  x’’ by the fuzzy object x’’’ = { (1, (a’1 , b’1  , c’1 )) , (3, (a’2 , b’2
, c’2 )) }. An occurrence of x’ in x, in this case, can be found to be x’’’’ = ( x ⇓ {1,3} ) T  x’’’, i.e.,
x’’’’ = { (1, (a’’ 1 , b’’1  , c’’1 )) , (3, (a’’2 , b’’2 , c’’2 )) }, where, taking the minimum as triangular
norm, we have: a’’1 = a1 T a’1 = {1/0, 2/0.8, 3/0 }, b’’1  = b1 T b’1 ={5/0.3, 6/0, 7/0 }, c’’1 = c1 T c’1 =
{15/0.2, 18/0 }, a’’2 = a3 T a’2 = {1/0, 2/0, 3/0.3 }, b’’2 =  b3 T b’2 = {5/0, 6/0, 7/0.8 }, c’’2  = c3 T c’2
= {15/0, 18/0.1 }.

DEFINITION 13 - Generic Meta-Object

Let N be an enumerable set, with generic element n,  V be an enumerable set, where each v ∈
V is a variable of type N,  R be a set of restrictions on the variables of V (possibly empty) and X be a
class. A generic meta-object x of type X is a function x : V → 2X.

DEFINITION 14 - Case of a Generic Meta-Object

Let x be a generic meta-object from class X. A meta-object x’ of type X is a case of generic
meta-object x if ∀v ∈ V, x’(v) ∈ x(v).

DEFINITION 15 - Occurrence of a Generic Meta-Object in an Object

Assume x  as a generic meta-object of type X and x’ an object of type X’. An occurrence x’’ of
x in x’ is an object x’’ such that x’’ is an occurrence of any case of x in x’.

DEFINITION 16 - Occurrence of a Generic Meta-Object in a Generic Object

Let x be a generic meta-object of type X and x’ a generic object of type X’. An occurrence x’’
of x in x’ is a generic object x’’ such that x’’ is the union of all occurrences of any case of x in cases of
x’.

DEFINITION 17 - Occurrence of a Generic Meta-Object in a Fuzzy Object

Let x be a generic meta-object of type X and x’ a fuzzy object of type X’. An occurrence x’’ of
x in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x, viewed as fuzzy object,
and a temporal restriction of a sub-object of x’.

Example: Consider the fuzzy sets a1 = {1/0.2, 2/0.8, 3/0.6 }, a2 = {1/0.1, 2/0.2, 3/0.9 }, a3 = {1/0.1,
2/0.15, 3/0.3 }, b1 = { 5/0.3, 6/0.4, 7/0.1 }, b2 = { 5/0.4, 6/0.4, 7/0.8 }, b3 = { 5/0.1, 6/0.9, 7/0.8 },
c1 = { 15/0.2, 18/0.9 }, c2 = { 15/0.3, 18/0.8 }, c3 = { 15/0.7, 18/0.1 }, the fuzzy object x = {
(1,(a1,b1,c1)), (2,(a2 ,b2 ,c2)), (3,(a3 ,b3 ,c3)), and the generic meta-object x’ = { (v1 , ([2,3],[5,6],15)) ,
(v2 , ([1,2],[6,7],18)) }. For  v1 = 1 and v2 = 3, we have an instance of the generic meta-object x’, x’’ =
{ (1 , ([2,3],[5,6],15)) , (3 , ([1,2],[6,7],18)) }. Thus, for a’1 = {1/0, 2/1, 3/1 }, b’1 = {5/1, 6/1, 7/0 }
and c’1 = {15/1, 18/0 }, a’2 = {1/1, 2/1, 3/0 }, b’2 = {5/0, 6/1, 7/1 } and c’2 = {15/0, 18/1 }  we get a
representation of x’’ by the fuzzy object x’’’ = { (1, (a’1 , b’1  , c’1 )) , (3, (a’2 , b’2 , c’2 )) }. An
occurrence of  x’ in x, in this case, can be found through x’’’’ = ( x ⇓ {1,3} ) T  x’’’, i.e., x’’’’ = { (1,
(a’’ 1 , b’’1  , c’’1 )) , (3, (a’’2 , b’’2 , c’’2 )) }, where, taking again the minimum as a triangular norm,
we have: a’’1 = a1 T a’1 = {1/0, 2/0.8, 3/0.6 },  b’’1  = b1 T b’1 ={5/0.3, 6/0.4, 7/0 },  c’’1 = c1 T c’1 =
{15/0.2, 18/0 }, a’’2 = a3 T a’2 = {1/0.1, 2/0.15, 3/0 },  b’’2 =  b3 T b’2 = {5/0, 6/0.9, 7/0.8 }, c’’2  = c3

T c’2 = {15/0, 18/0.1 }.
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DEFINITION 18 - Fuzzy Meta-Object

Let N be an enumerable set, with a generic element n, V be an enumerable set, where each v ∈
V is a variable of type N, R be a set of restrictions over the variables in V (possibly empty), X a class,
~
X , a fuzzy set defined over X and 2

~X , the set of all fuzzy sets defined on X. A fuzzy meta-object x

of type X is a function x : V → 2
~X  .

DEFINITION 19 - Occurrence of a Fuzzy Meta-Object in an Object

Let x be a fuzzy meta-object of type X and x’ an object of type X’. An occurrence x’’ of x in x’
is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x and a temporal restriction of a
sub-object of x’ described as a fuzzy object.

DEFINITION 20 - Occurrence of a Fuzzy Meta-Object in a Generic Object

Let x be a fuzzy meta-object of type X and x’ a generic object of type X’. An occurrence x’’ of
x in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x and a temporal
restriction of a sub-object of  x’ described as a fuzzy object.

DEFINITION 21 - Occurrence of a Fuzzy Meta-Object in a Fuzzy Object

Let x be a fuzzy meta-object of type X and x’ a fuzzy object of type X’. An occurrence x’’ of x
in x’ is a fuzzy object x’’ such that x’’ is the intersection of a sub-object of x and a temporal
restriction of a sub-object of  x’.

Note that the definitions of ocurrence of fuzzy meta-objects are the same, wherever being in an
object, generic object or fuzzy object. In all cases, the representation of object or generic object is first
converted to a fuzzy object, and the definition for an occurrence of a fuzzy meta-object in a fuzzy
object is used.

The occurrence rhematic knowledge is mathematically represented by meta-objects. More
specifically, this representation uses meta-objects, generic meta-objects or fuzzy meta-objects. A
specific occurrence rhematic knowledge is represented by meta-objects, generic meta-objects or fuzzy
meta-object, where we explicitly set for each vi a specific value in N. This is equivalent to say that the
restrictions in R for those meta-objects should be algebraic equations of attribution. Thus, an specific
occurrence rhematic knowledge is represented by an instance of a meta-object, generic meta-object or
fuzzy meta-object. For generic occurrence rhematic knowledges, this condition is not necessary. The
choice among a meta-objects, a generic meta-objects or a fuzzy meta-objects is according to the
knowledge we want to represent.

In our examples of occurrences, we showed only meta-objects with two variables, i.e., V = {v1 ,
v2 }. But this is not a requirement. The use of meta-objects with two variables is particularly useful to
represent events, i.e. sudden changes between two states. But other types of occurrences do exist, as
e.g. the unitary occurrence, that basically represents a single state. This kind of occurrence is useful,
e.g., to obtain information about some attribute of the object, during its existence. Meta-objects with
more than 2 variables are used to represent tendencies or behaviors, as e.g., an increasing or
decreasing behavior, or a periodic behavior. The formal model herein stated allows the representation
of occurrences with all those subtle differences.

To use meta-objects (and its generic and fuzzy extensions) in the framework of object
networks, we have to convert them to objects. But first, all objects that are to be related to the meta-
objects have to be modified to handle some kind of memory. This is showed in figure 1.
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c5

c4

c1

c2

c1

c4

c3

c1

c3

c2

c2

c1

c1

c8c7c6c5c4c3c2c1

Original object object with memory

t8t7t6t5t4t3t2t1

t8t7t6t5t4t3t2t1

Figure 1 - Assembling Memory in an Object
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Once the related objects are equiped with memory, we can modify the meta-object to become an
object.  This transformation  is shown in figure 2.
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Figure 2 - Transformation of a meta-object into an object

Now, to check the occurrence of a meta-object in an object (and its variations), we use an active
object that is fed both with the modified meta-object and the object with memory. Its active function is
responsible for doing the respective computations.

In real systems, object memory can not be infinite. Therefore, there is a limitation in the use of
occurrence rhematic knowledge in such cases. An alternative strategy for this problem is to use
hierarchical memory, using occurrence knowledge to generate a higher level memory. An example is
shown in figure 3.

aacbcbba
Relevant

Occurrences

Higher level memory at instant t16

Object memory at instant t16

t8t7t6t5t4t3t2

o2

o1

t1

acaacbcb

t16t15t14t13t12t11t10t9

cb

aa
o2o1o1o2o1o1

Figure 3 - Composition of a Higher Level Memory

As it can be seen in the example, a higher level memory has a smaller size. This may leads to
information loss, because higher level memory stores only occurrences considered to be relevant. The
procedure to generate higher level memories can be successively applied, creating many levels, in a
complex  hierarchy.

3. Dicent Knowledge Representation
Essentially, dicent knowledge, is logical knowledge, and as such, it is represented by

expressions involving propositions and logic connectives. Its main characteristic is the association of a
truth value with a given expression. The truth value of a proposition may be found from either the
truth values of other propositions, or by means of rhematic knowledges grounding the proposition.
Propositions can be classified in two main classes: primitive or composed. Primitive propositions can
be further classified as iconic or symbolic. Iconic propositions are expressions composed by rhematic
knowledge grounding the proposition. In this sense, rhematic knowledge is related with dicent
knowledge, because it provides a way for truth value determination. The relationship between
rhematic knowledge and truth values of dicent knowledge can be established in two ways. In the first,
rhematic knowledge is used to determine the truth value of an iconic proposition. In the second, the
truth value of an iconic proposition is used to determine the rhematic knowledge associated, or to
complement pieces of rhematic knowledge currently unknown. In iconic propositions, dicent
knowledge and rhematic knowledge are coupled, in the sense that one may justify the other. Symbolic
propositions are somewhat different from iconic proposition. In symbolic propositions, there is no link
with rhematic knowledge to ground the proposition’s truth value. Thus, truth values of symbolic
propositions can only be determined from truth values of other propositions. In a closed system (i.e. a
system interacting with an environment), it is necessary to have conditional propositions coupling
iconic and symbolic propositions to allow their truth values determination.
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In classic artificial intelligence, iconic propositions are not considered. Therefore, dicent
knowledge and rhematic knowledge are not related and the problem known as the “symbol grounding
problem” arises. This occurs because the grounding given by rhematic knowledge is missing in such
systems. The way this issue is usually handled is to assume the truth values of a particular subset of
propositions (called facts) known, deriving the remaining truth values through conditional
propositions (called rules) and deductive inference. Note that the coupling between rhematic and
dicent knowledge does exist, anyway. What happens in classic AI is that there is no methodology for
the treatment of this coupling. It occurs implicitly, with the statement that the truth values of some
propositions are known. This is equivalent to say that truth values are given by external agents e.g., a
human being or another system able to handle the coupling between rhematic and dicent knowledge.
In the model herein proposed, a methodology to treat the coupling between dicent and rhematic
knowledge emerges, as stated by iconic propositions. Therefore, there is no need, in principle, to
assume (as in classic AI) that the truth values of some propositions are known a priori.

DEFINITION 22 Expression

An expression E is a sequence of symbols e1 , e2 , ... , en .

DEFINITION 23 Iconic Proposition

Let S be a set of structures corresponding to sensorial rhematic knowledges, S = { s1 , ... , sk },
B, a set of structures corresponding to object rhematic knowledges, B = { b1 , ... , bl },  O, a set of
structures corresponding to occurrence rhematic knowledges, O = { o1 , ... , om } and N, the set of
natural numbers. An iconic proposition p is an expression formed in the following manner:

p = a (c1 , ... , cn ) / f , r

where n ∈ {1, 2, 3, ... }, a ∈ O is called the verb, ci ∈ S or ci ∈ B,
i = 1, ... , n are called relata, f is a function f : N  → N × N which maps each field of the verb’s class
to a pair (x1, x2 ), where x1 ∈ {1, ... , n} is the index corresponding to some relatum, and x2 is an
index corresponding to a field of the verb’s class given by x1 , and r is the set of restrictions (possibly
empty), that impose possible restrictions on temporal values to be used in substitutions of the verb’s
variables.

An iconic proposition can be read as “a occurs in c1 , ... , cn according to f and r”. This is
equivalent to say that a may occur in the objects c1 , ... , cn , if we map a’s fields in ci’s fields
according to f, provided that the restrictions in r are fulfilled.

Example: Assume objects o1 and o2 representing two object rhematic knowledges, the meta-object m1

representing an occurrence rhematic knowledge, a function f given by f(1) = (1,2) and f(2) = (2,1), an
empty set of restrictions r = ∅. In addition, suppose that o1’s class is A = A1 × A2 × A3 , o2’s class is B
= B1 × B2 × B3  , m1’s class is C = C1 × C2  , A2 = C1 and B1 = C2 , o1 ↓ A2 = o’1 , o2 ↓ B1 = o’2 ,
m1 (v1 ) = (o’1 (t6 ) , o’2 (t6 ) ), m1 (v2 ) = (o’1 (t8 ) , o’2 (t8 ) ), m1 (v3 ) = (o’1 (t9 ) , o’2 (t9 ) ). Then, a
diagram representing the iconic proposition m1 (o1 , o2 ) / f, r is showed in figure 4.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

v1 v2 v3

o1

o2

m1

Figure 4 - Example of an Iconic Proposition



10

In this case, we say that the meta-object m1 occurs in o1 and o2 or, in an equivalent statement, that the
iconic proposition m1 (o1 , o2 ) / f, r has the truth value “true”.

When the verb is represented by a generic meta-object, we have the situation showed in figure 5.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

v1 v2 v3

o1

o2

m1

v4 v5

Figure 5 - Iconic Proposition using Generic Meta-Objects

In the example of figure 5, the first components of m1 (v1) and m1 (v2), and the second components of
m1 (v3) and m1 (v5) are generic, that is, they may have any value (in A2 in the first case and in B1 in
the second). Thus, only the fields marked in figure have to be equal for the truth value of such
proposition to be “true”.

DEFINITION 24 - Symbolic Proposition

A symbolic proposition is an expression with only one symbol, not attached to any rhematic
knowledge.

DEFINITION 25 - Primitive Proposition

A primitive proposition is either an iconic or a symbolic proposition.

DEFINITION 26 - Truth Value

A truth value is a value in [0,1] which corresponds to the degree of truthness of a given
proposition. We can establish the following association: truth value = 0 → “false”, truth value = 1 →
“true”. Truth values in (0,1)  are neither totally false nor totally true. The truth value 0.5 means total
indetermination.

DEFINITION 27 – Procedure to determine the truth value of an iconic proposition according to
its rhematic knowledge

Assume an iconic proposition p = a (c1 , ... , cn ) / f , r. The truth value V(p) of p, can be found
from the rhematic knowledge associated to it by:

V(p) = v1 T ... T vn

where:

1. if there exist m occurrences oim of  a in ci (according to f and r) which are fuzzy objects,

vi = ( )sup sup
m

imo ,

2. if there exists at least one occurrence oi of a in ci (according to f and r) which is an object or a
generic object,   vi = 1.

3. If does not exist any occurrence of a in ci , vi = 0.
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DEFINITION 28- Proposition

Let P be a set of primitive propositions, L1 a set of unary logic operators and L2 a set of binary
logic operators. An expression R is a proposition if and only if:
1. R is a primitive proposition, or
2. R can be decomposed in R1 l2 R2 , where l2 ∈ L2  and R1 and R2 are propositions,  or
3. R can be decomposed in l1 R1 , where l1 ∈ L1 and R1 is a proposition.

Normally we use L1 = {~ (negation) } and L2 = { ∧ (conjunction), ∨ (disjunction), →
(implication) } The operators are used to calculate the truth value of a proposition, according to the
truth values of its primitive propositions. For instance, usually we have: V(~a) = 1 - V(a), V(a∧b) =
V(a) T V(b), V(a∨b) = V(a) S V(b), V(a→b) = V(~a ∨ b)

Summing up, dicent knowledge can be represented by expressions which, in turn can or cannot
refer to rhematic knowledge. Thus, there is always a truth value associated with rhematic knowledge.
The truth value, in iconic propositions, can be found from the associated rhematic knowledge. In
general, truth values can be determined from the truth values of other propositions (this is done using
argumentative knowledge, to be addressed in next section). Therefore, we can encapsulate dicent
knowledge in a tuple (E,V), where E is an expression representing the dicent knowledge and V is the
corresponding truth value. If necessary, temporal aspects can be included (as in temporal logic), using
objects which map time in tuples of type (E,V).

Next, we show how rhematic and dicent knowledge are used to generate new knowledge, or to
update current knowledge.

4. Argumentative Knowledge Representation
Argumentative knowledge is the most complexed and sophisticated among all types of

knowledge discussed so far. Its complexity is due to its role in transformation, i.e. its characteristic in
being itself not only knowledge, but more than that, knowledge able to perform transformations to
generate new knowledge. The arguments (or argumentative knowledge) embeds what is usually
known as inference, reasoning, learning, adaptation, etc.

An unified study of arguments is still lacking in AI and other areas. Deductive arguments are
deeply rooted in the context of logic. Synthetic arguments were studied in the context of machine
learning  (Bolc, 1987; Michalski et. al. 1983; Michalski et.al. 1986). The field of machine learning
emphasizes mainly inductive arguments (Michalski, 1983), and eventually combinations of inductive
with deductive argument to provide learning by analogy (Carbonell, 1983). Michalski (1987)
introduced the following classification of different types of learning: direct learning , learning by
instruction, deductive learning, learning by analogy, learning trough examples and learning trough
observation and discovery.

In the past, machine learning was heavily supported by knowledge representation based in
predicates and extensions of predicate logic. Here we note a large gap, as far as rhematic knowledge is
concerned. Normally, the emphasis is on dicent knowledge using symbolic propositions only. In
general terms, abduction is not explored, with a few exceptions (Ram & Leake, 1991; Bylander et.al.
1991), mainly due to computational complexity problems (Bylander et.al. 1991).

Recently, contributions to the study of arguments came from the field known as “computational
intelligence” (Zurada et.al, 1994). Three main areas can be distinguished: fuzzy logic and fuzzy
systems, neural networks and evolutive computing. It is interesting to note the similarity among these
three areas of computational intelligence and the three basic types of arguments discussed in this
section. Although not totally precise, we may associate fuzzy logic and fuzzy systems with deductive
arguments, neural networks with inductive arguments and evolutive computing with abductive
arguments. In particular, evolutive computing brought a new impetus to the study of abductive
arguments, making its implementation computationally feasible.

Depending on the knowledge available and on the knowledge types involved, different types of
arguments may be identified, modifying or generating new knowledge,. A complete identification of
all types of arguments is beyond the scope of the present work, however. Here, we formal definitions
for the three basic types of arguments:  deductive, inductive and abductive arguments, respectively.
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4.1 Genericity 1

Within the scope of rhematic and dicent knowledge, different knowledges of the same type can
be classified according to its genericity, i.e. how much is one of them more generic than the other. For
rhematic knowledges, more generic knowledge will be those that collect a greater number of specific
knowledges. For dicent knowledges, a more generic knowledge is the one which allows a greater
number of interpretations with truth value “true”. For example, the conjunction of two propositions is
more specific, the disjunction of two propositions is more generic, than each of them individually, etc.

In set theory, the most generic set is the universal set. The different subsets of the universe set
may be ordered by genericity according to the inclusion relation. If a set A is included in a set B then
A is more specific (less generic) than B. Note, however, that the inclusion relation does provide a
partial order only. Different subsets of universal set having no common elements cannot be ordered by
the inclusion relation. In this case, it makes no sense to speak about genericity. Recalling that a
relation is a set, the concept of genericity can be extended to relations.

The concept of genericity is important because it supports information compactation. A generic
knowledge may represent number of specific instances knowledge. The more generic the knowledge
is, a greater number of specific knowledge it represents. So, in some cases, it is much more interesting
to have only one generic knowledge than many specific instances of knowledge.

In our case, the idea of genericity is important because the classification of arguments is based
on the genericity relation between the knowledge in the premise and the knowledge in the conclusion
of arguments. Arguments in which the knowledge contained in the conclusion is also part of the
premise are called analytic or deductive. Otherwise, they are called synthetic. Synthetic arguments
include in conclusions knowledge which is not part of the premises. If inclusion is done in a
constructive way, e.g., using a distance measure (we include knowledge that is close to some
knowledge in premise), the argument is said to be inductive. If inclusion is destructive, i.e. we
generate many pieces of knowledge (e.g. randomly) and eliminate those not compatible with the
knowledge in the premise, the argument is called abductive. Note that, in this case, inclusion occurs
because it is not in disagreement with the knowledge in premise, i.e., it is a plausible inclusion.
Sometimes, it is very difficult to determine what is a plausible inclusion. In a general way, plausibility
can be determined by a plausibility function and a threshold. If  the value of the plausibility function,
for a given knowledge, is greater than the threshold, then the knowledge is included. Otherwise, it is
not included.

4.2 Formal Model of Argument
An argument can be formally defined as an active object. Objects belonging to the input

interface of sn active object will set the premise set. The objects belonging to the output interface of
active objects will set the conclusions set. The object activation function is a function mapping
premises into conclusions. More formally, we have:

DEFINITION 29 - Argument

Assume an active class A, with tuples of type (a1 , ... , an , f ) and consider an object a : T → A,
a set P with all elements of a’s input interface, a set C with all elements of a’s output interface. The
object a is an argument. The set P is called the premise set of the argument and the set C the
conclusion set.

Arguments can either be pure or hybrid. A pure arguments only has input and output fields in
its tuples (they do not have internal variables). Hybrid arguments does have internal variables as a
result of its integration with rhematic or dicent knowledge. Thus, hybrid arguments are not just
arguments, but structures which simultaneously represent an argument knowledge and some sort of
dicent or rhematic knowledge. The use of pure arguments or hybrid arguments is due to its particular
convenience for some case.

An active object may have more than one function. In this case, it represents not only one, but
as many arguments as the number of functions. However, only one function can be triggered at a time
instant. This means that, in a given instant, only one argument of such an object will be operative.

                                                       
1 The term “genericity” does not exist in the english language. It is introduced here to

characterize a measure of generality.
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DEFINITION 30 - Deductive Argument

Let A be an active class with tuples of type (a1 , ... , an , f ) and assume an argument a : T → A,
the set P of premises of  a and  the set C of conclusions of  a. If, for each instance of a, it is the case
that knowledge in C is included in P, then the argument a is deductive (or alternatively, analytic).

DEFINITION 31 - Synthetic Argument

Consider  an active class A, with tuples of type (a1 , ... , an , f ), an argument a : T → A, the set
P of premises of  a and the set C of conclusions of a. If f is such that for any instance of a, there is a an
element in C which is not contained in P, then the argument is synthetic.

DEFINITION 32 - Inductive Argument

Assume an active class A, with tuples of type (a1 , ... , an , f ), a synthetic argument a : T → A,
the set P of premises of  a and the set C of conclusions of  a. If f is such that some elements of C are
not contained in P, but are generated using elements in P such that they are related to those elements
through a distance measure, then the argument is inductive.

DEFINITION 33 - Abductive Argument

Let A be an active class with tuples of type  (a1 , ... , an , f ). Consider also a synthetic argument
a : T → A, being P the set of premises of  a and C the set of conclusions of a, and pl a plausibility
function, measuring how much a piece of knowledge is not in contradiction with knowledge in P. If f
is such that the knowledge in C but not in P is selected according to pl, then the argument is
abductive2.

Note that the terms “plausibility” and “plausibility function” are not necessarily connected with
the “plausibility measure” as introduced by Dempster-Shafer (Shafer, 1976). The meaning of
plausibility function here is closer to that in (Collins & Michalski, 1989), and indicates how much
plausible (or reasonable) is the knowledge generated by an argument.

The definitions of inductive and abductive arguments are general enough to include many
different types of knowledge. In general, we note a complementarity between these two arguments.
The inductive argument is constructive in the sense that it generates new knowledge from knowledge
contained in its premises. These new knowledge need not be verified further because they are close to
known knowledge which in principle guarantee its plausibility. The abductive argument is destructive.
It does not matter how new knowledge is generated, because it must be verified before to be accpeted.
Unplausible knowledges is not accepted. Note that, since it is not necessary to specify how knowledge
is derived, it can be inductively generated. In this case an abductive argument has inductive
components. The key point in abductive arguments is that knowledge in premises is used to test the
plausibility of the new knowledge to be included in conclusion. If they are also used to generate
conclusion we may say that the argument is at the same time inductive and abductive. Normally,
arguments of such type are important when the distance from the newly generated knowledge to the
knowledge in the premises is not too small (the similarity between those knowledges is small). In
these cases, despite its inductive construction, plausibility can be jeopardized. Thus, testing its
plausibility is a must, resulting in inductive-abductive arguments. In some cases, it is more important
to find the most plausible knowledge. In this case, a plausibility function is used to e.g., eliminate all
except the most plausible knowledge. This is an extreme kind of abduction, used for instance, in
genetic algorithms and by  (Bylander et.al. 1991). Additional examples of different types of arguments
can be found in (Gudwin, 1996).

5. Intelligent Systems Organization
According to Albus (1991), an intelligent system is composed by four interconnected modules,

respectively : sensorial perception (SP), world model (WM), value judgment (VJ) and behavior
generation (BG), as depicted in figure 6:

                                                       
2 In (Bylander et.al., 1991), an alternative definition of abduction can be found. The scope of

Bylander’s definition is, however, more restrictive.
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Figure 6 - Intelligent Systems Modules

The SP module compares input from sensors with predictions from WM. In SP the similarities
and differences between the observations and the predictions are integrated in time and space, in an
attempt to detect  events and to match patterns, objects and relationships from the environment. Data
from a field of sensors, during extended periods of time, suffer a fusion process, generating a
consistent and unique perception of the state of the environment. Algorithms in SP should compute
the distance, shape and orientation, plus surface characteristics and physical and dynamic attributes of
objects and regions of space.

The WM module represents, at each time, the best estimation of environment state as seen by
the intelligent system. In WM there exists a data base about the environment, plus an information
storage and retrieving system operating over this data base. By means of a simulation process, WM is
capable to generate expectations and predictions. Thus, WM is able to accept requests about the past,
the present and the expected future of the environment state. It provides these services to the BG
module to generate plans and to select behaviors. It also serves the SP module to generate correlations,
comparisons with the world model and the recognition of states, objects and events, based on the
world model. In the same way, it serves VJ module to compute values as costs, benefits, risk,
uncertainty, importance and attractiveness, etc. The WM module is kept actualized by means of
information from the SP module.

The VJ module determines what is good or bad, reward and punishment, trivial or important,
probable or improbable. VJ performs a general evaluation of the current environment state and the
predictions provided by the hypothetical plans from BG. It computes factors such as cost, risk and
benefits for both the observed situation and the planned activities. It assigns to state variables
measures of  probability, correctness, credibility and uncertainty. It also assigns measures of
attractiveness or repulsiveness to objects, events and regions of space. Therefore, the VJ module
provides a criteria for decision making, selecting  some actions against others. Without a value
system, no intelligent system can reach its targets.

The BG module is capable of generating plans, goals and targets and executing tasks. Tasks
are recursively decomposed in sub-tasks, and these are scheduled to let the system reach its goals.
Targets are selected and plans generated by means of a cyclic interaction among BG, WM and VJ
modules. The BG module generates plans, WM module predicts the results of these plans and VJ
module evaluates the results. BG selects the best plans and executes them through actuators. It also
supervises the execution of past plans, modifying them  whenever necessary.

Note that there exists a very close relationship between the ideas of Albus and the concepts of
designative, appraisive and prescriptive knowledges discussed in part I (Gudwin & Gomide, 1997).
The SP and WM modules are akin to designative knowledge, i.e. sensorial, object or occurrence
rhematic knowledges, as well as dicent knowledge when used to represent current and past states, and
to predict future behavior. The VJ module is alike appraisive knowledge, usually sensorial rhematic
knowledge, or dicent knowledge, when used to do evaluations about some designative knowledge. The
BG module is related with designative and prescriptive knowledge. The designative knowledge can
canstruct plans and set targets to be reached. The prescriptive knowledge is used to effectively
generate a behavior, sending data to actuators. Therefore, from the perspective of knowledge as
viewed in this paper, an architecture of an intelligent system can be as depicted in figure 7.
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Figure 7 - Architecture for an Intelligent System

As discussed previously, in figure 7 knowledge ise represented by objects (recall that objects
are also used to represent generic objects, fuzzy objects, meta-objects, generic meta-objects and fuzzy
meta-objects) placed in the proper positions. To provide interaction among its components,
argumentative knowledge (in the form of active objects) can be used. The result is an object network
that behaves like an intelligent system in the very same sense of Albus.

For illustrative purposes, a general example of an intelligent system is shown in figure 8.
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Figure 8 - Example of an Intelligent System

In figure 8, the source object at IV (Input Vector) feeds the place SS (Sensorial Space) with
information from the input vector. An inductive argument (IA1) uses this information to modify the
objects in GDK (Generic Designative Knowledge). The objects in GDK are generic objects whose
purpose is to store designative patterns that occur in the input vector. Using a deductive argument
(DA1), the objects at SS are compared with objects in GDK to generate objects at SDK (Specific
Designative Knowledges), that is:. the specific patterns detected at a given time. The objects at GPDK
(Generic Predictive Designative Knowledge) correspond to generic objects which correlate sequences
of objects occurring in SDK to provide predictions. These objects are used to determine a designative
prediction (DP). In other words, a prediction of the objects that should be in SDK using the deductive
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argument DA2. Objects in GPDK are generated and modified according to the sequence of objects in
SDK, using the inductive argument IA2. The partial object network composed by IA1, GDK, DA1,
SDK, IA2, GPDK, DA2 and DP corresponds to the designative module in figure 7.

Analogously, from the object in SS and from a generic appraisive knowledge (in GAK1), the
deductive argument DA4 generates a specific appraisive knowledge in SAK. We assume knowledge in
GAK1 as inborn of the intelligent system (because it is tied to the objectives of the intelligent system).
However, a series of generic appraisive knowledge in GAK2 can be learned, from the correlation of
instances in SDK and SAK. An abductive argument (AA1) observes the instances in SDK and SAK
and modifies GAK2. The designative knowledges in SDK generate specific appraisive knowledge in
SAK using the deductive argument DA5. From the designative predictions in DP, the same generic
appraisive knowledge are used to generate appraisive predictions in AP, using deductive argument
DA3. The partial object network composed by DA4, GAK1, SAK, AA1, GAK2, DA3 and AP
corresponds to the appraisive module of figure 7.  The arguments in DA4 and DA5 correspond to the
arcs connecting the designative and appraisive modules of the figure 7.

The sensorial input in SS is also used, together, with a generic prescriptive knowledge in GPK,
to generate a specific prescriptive knowledge in SPK using the deductive argument in DA6. The
prescriptive knowledge in SPK is then consumed by the output vector (OV) to finish the cycle. The
generic prescriptive knowledge in GPK is always updated using the sensorial input in SS, the specific
appraisive knowledge in SAK, using the inductive argument IA3. Similarly GPK is updated by SS,
the appraisive predictions in AP, and the inductive argument in IA4.  The partial object network
composed by SPK, DA6, GPK, IA3 and IA4 corresponds to the prescriptive module of figure 7. The
arguments in IA3 and IA4 are the arcs connecting the appraisive and prescriptive modules.

As it can be seen, as long as different types of knowledge are used (specially when involving
learning), the intelligent system representation becomes more complicated. In this example, only
sensorial rhematic knowledge (specific and generic), and argumentative knowledges were used.
Networks to implement more sophisticated types of knowledge and other kinds of interrelationships
may become more complicated.

6. Application Example : Autonomous Vehicle Navigation
In this section, we present an application example to illustrate the use of computational

semiotics to develop an intelligent control system for an autonomous vehicle.
Autonomous vehicle navigation is a well known problem in the literature, but many challenges

still remain. For recent papers see (Wang et.al. 1991; Verschure et.a. 1992; Fan & Lui 1994; Spence
& Hutchinson, 1995; Krozel & Andrisani II 1995; Beom & Cho, 1995;  Rao, 1995; Yen & Pfluger,
1995).

Briefly, the problem is as follows . An autonomous vehicle must navigate in an unknown
environment, with obstacles and targets. The question is on how to control the vehicle to avoid
obstacles and to reach the targets.

The different approaches to tackle this problem may be classified in three categories. In the
first (and oldest) the problem is solved using a model of the environment, describing the obstacles and
the targets. The vehicle geometry is not considered in this case, and the least circle involving the
vehicle is added to the obstacles border. With this, the problem is simplified and the issue is to find a
feasible trajectory of a point, using a searching procedure. An example of this approach is found in
(Krozel & Andrisani II, 1995). The vehicle geometry may be considered, whenever the vehicle itself
can navigate in parts of the environment where the least circle cannot (Fan & Lui 1994). More
sophisticated examples include environments with moving obstacles (Spence & Hutchinson, 1995).

The second approach does not use a model of the environment, but a reactive behavior to
sensor stimuli (Brooks, 1991). Brooks approach is based on previously programmed behaviors, which
are actively selected according to sensor stimuli. Chen & Trivedi (1995) introduced a general scheme
for sensor based trajectory planning and the navigation problem. Alternative sensor based approaches
do not plan trajectories, but combines two basic behaviors: obstacle avoidance and target seeking. In
this case, from sensor data, a control action is found via fusion of both behaviors. This is different
than Brook’s approach, where there was not a combination of multiple behaviors, but a selection of
one of them. Examples include (Yen & Pfluger, 1995; Beom & Cho, 1995). The basic behaviors can
be either pre-programmed, or be learned from the interaction between the vehicle and the
environment. Examples addressing learning can be found in  (Verschure et.al. 1991; Oliveira et.al.
1994; Fabro 1996).
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The third approach for navigation problems is an hybrid scheme combining methods of the
first and the second. In this case, sensors are used to construct an incremental world model, from
which a trajectory is planned. An example is found in  (Rao, 1995).

There is an intense debate concerning the different approaches, mainly about the question if a
world model is really necessary to solve the problem satisfactorilly. Brooks (1991) argues that a world
model in not mandatory, and that with some number of adequate behaviors, the problem can be
effectively solved only using the reactive approach. He claims that an emergent behavior arises due to
the integration of the different behaviors with environment stimulation. This emergent behavior
would be, according Brooks, capable to satisfactorily solve the navigation problem. Considering
approaches like from Verschure (1992), where we not only have diverse behaviors, but those
behaviors are even learnt due to the interaction with the environment, and more than one behavior can
be simultaneously active for the determination of a control action (implementing a fusion of
behaviors), there seems to be quite evidence that Brook’s argument is plausible.

Behind this controversy there are basically two decision making models. The first, a logic
model, provides mechanisms to predict alternatives considering not only immediate decisions, but a
sequence of decisions to achieve the goal. Goal achievement is evaluated against a world model. The
second, an intuitive model, follows the same basic principles, but only immediate decisions are
evaluated through heuristics.

It is worth to note that both decision making models can be ultimately seen as search
procedures. The logic model performs search in its whole knowledge space to create a decision tree
and to find the best sequence of decisions. In other words, logic models perceives the problem
globally. Generally speaking, this means that some sort of memory (global information) is used and
decisions are globally derived. The intuitive model performs a more restrictive search, because only
one step is done. In contrast with logic models, the intuitive models perceive the problem locally
(based on local information), which means that memory is not needed and decision are only locally
consistent. In simple situations the intuitive model can be successfully used. But, despite the heuristics
quality, there will always exist cases where only local information is not sufficient. In these cases, it
may be essential to consider global information, a characteristic of the logic model. Hybrid approaches
take advantage of logic and intuitive models to interactively build a world model using heuristics not
only to take the next decision but to evaluate a whole sequence of decisions. If the sequence of
decisions is considered to be suitable, the first decision of this sequence is then used as a control
action. An example of an analogous methodology, but applied in the context of discrete event systems
control, can be found in (Chung & Lafortune, 1992). An intelligent control system following this
philosophy is given in  (Gudwin & Gomide, 1994a).

The approach developed here can be regarded as an hybrid approach. Through its sensor
system, the vehicle interactively creates a world model. The world model (designative knowledge) is
used to determine a heuristics (appraisive knowledge), which in turn is employed to derive the control
action (prescriptive knowledge).

6.1 Problem Description
We assume an autonomous vehicle with a sensor and motor system, within an environment

with objects of several different characteristics. The  vehicle is powered by a rechargeable battery
monitored by the sensor system. Depending on its kind, an object within the environment may charge
or discharge the battery, when in contact with the vehicle. During its movement, the vehicle must
achieve some goals. The current goal may change at any time, depending on which of them is more
important at that moment. The basic goals considered here are: environment characterization,
preservation of  vehicle’s physical integrity and preservation of  battery charge within operational
levels.

We also assume a two level control system. The task of the higher level, is to determine targets.
These targets depend on the goals to be achieved. For instance, it may decide on the environment
characterization goal to permit the vehicle to update its environment model beyond that currently
known. Goal may also be related with battery consumption constraint because along its trajectory, the
vehicle must maintain its battery charge within operational levels.  When the energy level is too low,
the vehicle must contact environment objects  which furnish energy. For this purpose, it is necessary
to discover this sort of objects, and their location as well. The idea is to drive the vehicle to the closest
object of this sort. At the higher hierarchical decision level, the main problem is priority scheduling to
decide, at each moment, what is more important: to explore the environment or to charge the
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batteries. The lower hierarchical level task is to execute direct control to drive vehicle from its current
position to the the target. During its movements, it is necessary to keep the vehicle physical integrity,
by avoiding collisions with rigid objects and those that drain energy from batteries. The intelligent
controler described here will be restricted to the lower level control task only.

6.2 Vehicle Description
We consider a vehicle with three types of sensors: remote information sensor, contact sensor

and battery charge sensor, respectivelly. Actuators position the remote information sensor and the
steering angle of the front wheels and sets vehicle velocity. Additional attributes of the vehicle state
are indirectly determined from sensors and actuators information.

6.2.1 Remote Information Sensor

This sensor is a simplification for a vision system. Basically, it is an array of (8 × 8) sensors
that cover a rectangular area, up to a maximum distance. It can at the same time, provide color and
location information about the environment objects it senses. It does not determine the objects
characteristics. The sensor rectangular area can be focused to any position, limited to a maximum
distance and around the vehicle (see figure 9).

Figure 9 - Example of Focusing Remote Sensors

6.2.2 Contact Sensors

Four contact sensors are located in the 4 extremities of the vehicle. Their purpose is to sense
object intrinsic characteristics. Basically, objects can be classified as pleasant or unpleasant,
depending on the stimuli received from the contact sensors. They provide information about favorable
or disfavorable situations, depending on  the goals.

6.2.3 Battery Charge Sensor

This sensor measures the battery charge level, in percental terms. If batteries are totally
discharged the sensor will measure 0. Whereas, if totally charged, it will measure 100. The batteries
have a slow and linear discharge rate over time. However, when the vehicle touches some specific
kinds of objects, a faster discharge or a faster charge may occur. These characteristics can be
perceived tracing the temporal behavior of this sensor.

6.2.4 Remote Sensors Position Actuators

The position of remote informations sensor is set by position actuators. There are two: the first
sets the angle with respect to the vehicle longitudinal axis (ϕ), and the second, the length (ρ) to be
covered (focused)  (see figure 10).

ϕ

ρ

Figure 10 - Remote Sensors Position Actuators
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6.2.5 Vehicle Movement Actuators

Two movement actuators drive the vehicle. The first provides the traction to drive the vehicle
with a nominal velocity v. Depending on v being positive, negative or zero, the vehicle moves
forward, backward or stops, respectively. The value of v does not refer to the real vehicle velocity, but
the velocity that it would be if friction were null. For non-null friction values, the real velocity is less
than the nominal. Friction is determined according to the environment object properties in which the
vehicle is navigating. The second actuator sets the steering angle θ of the wheels taking the vehicle
longitudinal axis as a reference (figure 12). The steering angle is such that -45° ≤ θ ≤ +45°.

6.3 Environment’s Description
The environment is assumed to be a rectangle delimitated by walls, in which resides many

objects. The objects are characterized by their physical properties: color, hardness, taste and energy
transfer factor. Each object may have a different color, assumed to be detectable by the remote
information sensor. Hardness measures the capacity of the vehicle to cross the objects. Different
grades of hardness are associated with different grades of vehicle mobility. Hardness values may vary
from 0 to 1. Objects with hardness equal to 1 are solid objects which means that vehicle can not
transpose it. The taste of an object models the grade of desire or repulse (pleasure or displeasure)
when the vehicle contact the object. This “taste” is detected by contact sensors, with values varying
from -1 to 1: -1 means displeasure wheras 1 means pleasure. A null value means indifference. Energy
transfer factor models the capacity to furnish to, or to consume energy from the vehicle when in
contact. Positive values of energy transfer factor correspond to increase battery energy and negative
values to decrease energy. This factor is within -1 to 1 range. Hardness, taste and energy transfer
factor have a direct relationship with  vehicle color. Therefore, we assume that, if we determine the
color of an object, then we get at the same time its hardness, taste and energy transfer factor.

6.4 Vehicle Dynamic Model
The vehicle dynamic model is as follows. Starting with the vehicle coordinates, as shown in

figure 11, the remaining parameters are battery load f, friction µ, nominal velocity v, distance between
axis D and the wheel angle θ (figure 12).

x

y

ψ

Figure 11 - Vehicle’s Coordinate System

D

θ

Figure 12 - Distance between Axis and Wheel
Angle

A nonlinear model is adopted as detailed below:
If  θ = 0, then
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 and k is the discrete time.

The parameter D is always constant, but the parameter µ is not. It is determined by the
following procedure. If moving forward (positive nominal velocity), we measure the hardness of
objects in the left and right front of the vehicle (at the point of the contact sensors), and we take the
maximum as the value for µ. This procedure assures that, if one of the points has µ = 1, then the
vehicle will not move forward (there is a solid object there). If there is a frontal collision, the vehicle
can be driven backwards, to move out of the collision situation. If the vehicle is moving backwards,
the procedure to find µ is similar, but considering the hardness of objects in the rear. Thus, in the case
of a back collision, the vehicle can move forward. Non-controllable variable is ∆f, which corresponds
to the energy transfer to the batteries. This variable is calculated in the same way as done for friction.
However, in this case we consider the four points of the rectangle involving the vehicle.  The energy
transfer factor for the four points is calculated and actual ∆f is computed as the mean of these 4
values.

7. Intelligent Control System Development
The controller input is the following tuple:  (x,y,ψ,f,v,θ,ρ,ϕ,c,s), where x,y,ψ (pitch angle) are

the vehicle position, f is the battery load  (in %), v is the nominal velocity in last step, θ is the steering
angle, in the last step, ρ is the distance from the vehicle’s center to the remote sensors in the last step,
ϕ is the angle of remote sensors in the last step, c is a tuple with the 4 contact sensor values  (c1 ,c2 ,c3

,c4 ), with c1 measuring the taste in right rear extremity, c2  in left rear extremity,  c3 in the left front
extremity and c4 in the right front extremity and s is an array with  64 visual sensors  ((s11 , ... , s18

),(s21 , ... , s28 ), ... , (s81 , ... , s88 ) ), where s11 refers to the top left corner and s88 refers to the right
bottom corner of a rectangle with side L, the vehicle visual field. The visual sensors are equally spaced
within the array

The controller output is the following tuple:  (v,θ, ρ,ϕ ), where v ,the nominal velocity and θ,
the steering angle of the wheels, relates to the motor control, and ρ, the distance to the remote sensor
and ϕ, the angle of remote sensors composes the visual control.

The control system was developed using the object network whose architecture is depicted in
figure 13. The detailed description of each part of the network is postponed unitl next section. Before,
we provide a global view of the system to clarify the idea and concepts introduced so far.

The input vector (IV) corresponds to an argument which generates sensor inputs and sends
them to the sensor space (SS). By means of an inductive argument 1 (IA1), the system induces objects
models that are put in the place of the environment model (EM). Using a set of rules (SR) these
models are integrated by deductive argument 1 (DA1), which substitute old models by an updated
integrated model. These steps compose a perception and model formation module. The model stays in
(EM).

Using data from the sensor space (SS) and the environment model (EM), abductive argument 1
(AA1) generates a set of suggestion points (SSP) corresponding to possible vehicle sub-targets.
Deductive argument 2 (DA2) uses the environment model (EM), evaluates if the points in (SSP) are
suitable for vehicle movement, and send its evaluation to (AKP), i.e., the appraisive knowledge about
points. Deductive argument 3 (DA3), using the appraisive knowledge in (AKP), decides to send or not
the points from (SSP) to the place of valid set of points (VSP). Each point in (VSP) generates new
points, due to the abductive argument 1 (AA1), in a way similar to the above. Each two valid points,
generates an arc in the set of suggestion arcs (SSA), through abductive argument 2 (AA2). These arcs
are a part of a plan being elaborated to drive the vehicle. Each arc represents a possible move from an
origin to a destination. This move is evaluated by the deductive argument 4 (DA4), using the
environment model (EM), being further sent to the place of appraisive knowledge about arcs (AKA).
Despite having its origin and destination as valid points, the corresponding arc may be not valid if the
movement crosses an undesirable object of the environment. The evaluation in (AKA) is used by the
deductive argument 5 (DA5) to decide to include or not an arc from (SSA) in the valid set of arcs
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(VSA). From the valid points in (VSP) and the valid arcs in (VSA), deductive argument 6 (DA6)
generates a plan, which is sent to (PL). Inductive argument 2 (IA2) tries to optimize the plan by
changing two arcs for a third if it takes the vehicle to the same place and have a better evaluation.
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IV Input Vector SSA Suggestion Set of Arcs
OV Output Vector AKA Appraisive Knowledge about Arcs
SS Sensorial Space VSA Valid Set of Arcs

DAn Deductive Argument  n PLn Plan n
IAn Inductive Argument n MC Motor Control
AAn Abductive Argument n RVC Random Visual Control
EM Environment Model IVC Induced Visual Control
SSP Suggestion Set of Points VC Visual Control
AKP Appraisive Knowledge about Points CPK Control Prescriptive Knowledge
VSP Valid Set of Points SR Set of Rules

Figure 13 - Object Network for the Autonomous Vehicle Control

The optimized plan is then sent to (PL1). The abductive argument 3 (AA3) generates for each
point composing the plan in (PL1), a set of new points close to the original ones in an attempt to
detect if they are more appropriate, according to the current environment model in (EM). This
argument will next generate a new plan and send it to  (PL2). From this plan, the data from the
sensorial space and from the environment model (EM), deductive argument 7 (DA7) generates an
object with control information consistent with the plan in (PL2). Those steps integrate the motor
control module.

Using data from sensorial space (SS), inductive argument 3 (IA3) generates a suggestion for
visual control, that is, a position for the remote information sensor close to last one, compensated to
take into account the vehicle movement and modified to focus the sensor on a system object. This
suggestion is sent to (IVC). Parallelly, abductive argument 4 (AA4) generates a random suggestion,
and send it to the random visual control place (RVC). Based on data in (SS), deductive argument 9
(DA9) decides if the visual control is trying to focus on an environment’s object or is seeking for a
new object, choosing the control suggestion in (IVC) or (RVC). The selected option is sent then to the
place of visual control (VC). The steps above describe the visual control module.
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Finally, the  visual control (VC) and motor control (MC) are integrated, by the deductive
argument 8 (DA8), to generate the control prescriptive knowledge (CPK). This is then sent to the
output vector (OV), finishing the intelligent control cycle.

8. Control System Implementation
In this section, we present a description of each step that compound the intelligent control

system introduced in last section. To make it easy to understand the steps, they will be presented by
means an object oriented language. This representation has the double characteristic of making it easy
to understand the system and to illustrate how an objects network may be directly translated and
processed in a programming language. The chosen language is C++.

8.1 Input Interf ace Module
This module corresponds to the objects network section presented in figure 14:

IV SS

Figure 14 - Input Interface Module

The class associated to SS, tSS is the following:

class tSS
{double x;
 double y;
 double pitch;
 double ax,
 double ay;
 double apitch;
 double fuel;
 double vel;
 double dpitch;
 double scangle;
 double sclength
 int s[8][8];
 double c[4];
 double mx;
 double my;
};

where we find the following correlation:

x x apitch ψ(t-1) sclength ρ
y y fuel f s s
pitch ψ vel v c c
ax x(t-1) dpitch θ mx x target
ay y(t-1) scangle ϕ my y target

Note that more than the variables in the input model, class tSS has also a memory of values x,y
and ψ, for last step, and the coordinates of the target to be reached.

The class associated to IV, tIV is the following:
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class tIV
{public:
     tSS Generate(void)
  {tSS newd;
       newd = CollectDataSensor();
       return(newd);
     }
};

Class tIV is a class with an unique function, that returns an object of type tSS, filled with the
actual values of sensors. So, at each instant, an object of type tIV that is in IV generates a new object
of type tSS, that is put in SS.

8.2 Percept ion and Environment Modeling Module

This module corresponds to the objects network section presented in figure 15.

SS IA1

EM
SR

DA1

Figure 15 - Perception and Environment Modeling Module

In this module, the environment model is generated. It remains stored in EM, and is widely
used by other system’s modules.

The class associated to EM, tEM is given by:

class tEM
{int x0,y0,x1,y1;
 int color;
 double eval;
};

Class tMA models the attributes of typical objects found in environment. In this class, x0,y0,
x1 and y1 correspond to the geometric coordinates of a rectangle, that determine the position and size
of an environment’s object. The field eval models the characteristic taste of the object, being equal to -
1 if the object is repulsive, 1 if attractive, or 0 if it doesn’t care. Intermediary values correspond to
more or less degrees of attraction/repulsiveness. The value of field eval may be known when the
contact sensors effectively detect an environment object, or when the system previously associated  a
color to a taste, being then determined by induction. The field color models the object color, that is
seen by the visual sensors.

The class associated to IA1, tIA1 is given by:

class tIA1
{public:
 void FindPatterns(tSS ss, place EM);
};

Class tIA1 generates objects with only one function, the function FindPatterns, that has as
input an object of class tSS, and a place (EM), where it put the generated objects. The function
FindPatterns is rather sophisticated. It observes the visual sensors codified in ss and detect the border
of all rectangles that are identifiable from the sensor matrix. Its work is illustrated in figure 16.



24

(b) (c)(a)

Figure 16 - Example of Pattern Recognition

For each point in the matrix, a sweep is done, first in the horizontal direction and then in the
vertical direction, searching for point with the same color of the current point. In cases (a) and (b),
this search is simple. Case (c) illustrates a must of the algorithm: the search in the vertical direction
may be made for each column in the horizontal direction, taking the less distance found. If it is not
done, the point indicated in (c) would return the square of the whole matrix, as the searched point
may cause such interpretation, if the search was made only in one column. For the case presented the
algorithm finds three rectangles, two gray (identified in (a) and (b)) and one black.

The rectangles found by the function would generate then objects of type tEM, that are put in
place EM. Note that the maximum number of rectangles discovered by the function would be 64 (one
for each point), i.e. when each color in the matrix of points is different from its neighbor.

After the generation of those elementary objects in EM, the objects in SR and DA1 are
responsible for its integration, generating a more consistent model. The place of set of rules (SR) has
basically three objects, corresponding to the three rules of integration, that are shown in figure 17.

Figure 17 - Rules for Objects Integration

The rules are very simple. The first one says that if two objects are horizontally aligned, they
are an unique object. The second rule says that if two objects are vertically aligned, they are also an
unique object. And the third rule says that if given object is totally inside another object, it is only a
part of the former. In the three rules, objects may not be perfectly aligned, but there is a tolerance,
either in alignment or in inclusion. This tolerance is necessary,  as the visual sensors are not exact.
Each point in the visual sensor is not really a point, but comprises a whole region, and the sensorial
result is due to the integration of all real points in this region. With this, there is an intrinsic error in
measurement. This is the tolerance used for the integration of objects. Note that the resulting object is
always equal to the internal rectangle, in the alignment, to avoid  an undesirable effect that occur in
the detection of edges. For the inclusion rule, the big rectangle can not be expanded, even if the
internal rectangle overflows the limits of the external rectangle, to avoid the same undesirable effect.

The class associated to SR is tSR:

class tSR
{int verb;
 int rel1;
 int rel2;
 int function;
};
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The attributes of objects of type tSR correspond to the conditional propositions, where the
terms are codified by its indices. Those indices may be recognizable by the argument in DA1. The
semantic corresponds to:

IF verb(rel1,rel2) THEN function(rel1,rel2)

The used rules are the following :
IF halign(rel1,rel2) THEN hadd(rel1,rel2)
IF valign(rel1,rel2) THEN vadd(rel1,rel2)
IF included(rel1,rel2) THEN return(rel1)

The class associated to DA1, tDA1, is given by:

class tDA1
{public:
  tEM MergeObject(tEM o1, tEM o2, tSR r);
};

An object of type tDA1 takes two objects from EM, o1 and o2, plus a rule from SR, r,
consumes the two objects in EM and returns a new object that is put in EM. In the objects network,
this operation is done as much times as necessary, until neither three rules are enabled.

With this, we implement the perception and environment modeling module. The object of type
tSS that is in SS is used by the object in IA1 to generate objects in EM, corresponding to models of
objects from environment that are perceptually captured by the system. As the system is capable of
receiving only partial information from system, those models need to be integrated, for that through
the knowledge of multiple facets of the real object, we reach a model that is more close to the real
object. This task is executed by the rules in SR and by the deductive argument in DA1. All this cycle
is realized as soon as new information arrives by means the argument in IA1.

8.3 Points and Arcs Generat ion Module
This module is a sub-module of control module. It is described separately, due to its

complexity. It corresponds to the network section presented in figure 18.
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Figure 18 - Points and Arcs Generation Module

The classes associated to SSP and VSP are equivalent, being called tP, or class of points.

class tP
{double x;
 double y;
 double p;
 tP *pp;
 int type;
};



26

The attributes of objects of such class correspond basically to the point coordinates (x,y,p),
where p is an angle, corresponding to a possible vehicle movement, if it is at point (x,y). The attribute
pp corresponds to the father point, i.e. the point used as a source for its generation. The abductive
argument in AA! generates suggestion points that are put in SSP. This generation may be in 4
different ways. The way a point is generated is identified by the attribute type. In the first method,  we
take the target coordinates and use them to generate a point. This method is used to generate a point
that should be the final point in every plan, i.e. the own target. Its attribute type is 0 and pp is equal to
NULL (it is not considered). In the second method, the vehicle’s current position is used to generate a
point. This method is used to generate the first point in every plan, i.e. the current position. Its
attribute type is 1 and pp is also NULL. In the third method, the argument starts from a valid point, in
VSP, to generate a new point. The attribute type is 2 and the address of the source point is put in pp.
The fourth method uses points from the environment’s objects models to generate points. Its attribute
type is 3 and pp is NULL. The class associated to AA1 therefore has 4 functions:

class tAA1
{public:
 tP GenerateNewPoint0(tSS src);
 tP GenerateNewPoint1(tSS src);
 tP GenerateNewPoint2(tP src, tEM *em);
 tP GenerateNewPoint3(tEM *em);
};

The function GenerateNewPoint0 is trivial. It simply extract from src the target coordinates,
put NULL in pp and 0 to type.

The function GenerateNewPoint1 is also trivial. It basically extracts from src the parameters
x,y and pitch and put them in x,y and p. The attribute pp is null and type is 1. This concludes the new
point definition. This point is then sent to SSP.

The function GenerateNewPoint2 is fair more sophisticated. From a base point, given by src,
the argument generates randomly an angle from 0 and 2π. This angle corresponds to an axis that
would be used in the generation of the new point, as in figure 19. The function generates then a line,
in the direction of the angle, and verifies if, for each object model in EM that is classified as repulsive,
if is there any collision. If the line does not cross any such object, the environment’s external limits
are considered. Once the algorithm finds the closes collision, the new point will be at 50% of the
distance from the collision point, according to figure 19.

We only consider, however, the objects that are considered repulsive, i.e. the ones which
attribute eval is less than 0. The objects with the attribute eval equal or greater than 0 are not
considered, being ignored by the function.

At last the function determines the point coordinates, identifies than its father point (point src),
and put its address in pp. It also sets type equal to 2. Generates than a new object of type tP that is sent
to SSP.

External
Boundaries

Environment’s
objects

New Points

Original Point

Figure 19 - Generation of New Points
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The function GenerateNewPoint3 takes each object from EM and puts a security border over
the rectangle vertex, as can be seen in figure 20.

O bje ct  M od e l

D

D

Figure 20 - Generation of New Points according to the Environment Model

This security border usually corresponds to the vehicle’s width, for it to travel without danger.
This value is, however, a system parameter, and can even be subject to learning.

The function also returns a value NULL for pp and 3 for type.
The place AKP, corresponding to the place with the appraisive knowledge about points do have

an associated class tEval:

class tEval
{double eval;
};

The class associated to DA2 is called tEvalPoint, as its basic function is to evaluate if a given
point is suitable or not for the vehicle to be.

class tEvalPoint
{public:
   tEval EvalPoint(tP point, tMA *ma);
};

The function EvalPoint takes the point “point” and evaluates if it is a suitable point for the
vehicle to move to, generating an object of type tEval, corresponding to the result of such evaluation.
To provide such evaluation, the function uses the values of  “tastes” associated to environment’s
objects, and the distances from the given point to those objects. The following formulae is used:

( )Eval g e
i

i
dto i= −min . ( . . ( ) )0 4

In this formulae, gi corresponds to the taste of object i, from the model, and dto(i) corresponds
to the distance from the point to object i. The distance to object i is calculated as shown in figure 21.

B B

B

B

A A
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Figure 21 - Distance to Object Computation

If the point is into any of type A regions , then the distance to the object is the distance to the
closest rectangle vertex. If the point is into a type B region, then the distance is the distance to the
closest rectangle line.

The class associated to DA3, tDA3 is given by:
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class tDA3
{double threshold;
 public:
 tP TestPoint(tP point, tEval eval);
};

Function TestPoint is very simple. It verifies if a point evaluation is higher than a threshold,
and if yes, returns the point to the place of valid points (place VSP). Note that either for the
acceptance or rejection of a point as a valid point, we used parameters obtained from an empirical
way. In a more sophisticated system, these parameters may be subject to learning.

The class associated to SSA (Suggestion Set of Arcs) is tA:

class tA
{tP *orig;
 tP *dest;
};

The class associated to AA2 is tAA2:

class tAA2
{public:
   GenerateNewArc1(tP *p);
   GenerateNewArc2(tP *p1, tP *p2);
};

Objects from this class have two functions. Function GenerateNewArc1 has as parameter a
point of type 2, that identifies its parent point in itself. The arc is then generated using as orig the
address of its parent-point and as dest its own address. The function GenerateNewArc2 may have as a
parameter p1, a point of type 1, 2 or 3, and as parameter 2 a point of type 0 or 3. The point generated
has as orig the parameter p1 and as dest the parameter p2.

The class associated to AKA is tEval.
The class associated to DA4 is tEvalArc:

class tEvalArc
{public:
   tEval EvalArc(tA arc, tEM *em);
};

Function EvalArc checks if the orig point is suitable, in the same way as in EvalPoint. After
that it checks if the line from orig to dest crosses any object from environment. If there is such a cross,
the function considers the object’s taste. This procedure is shown if figure 22:

(b)(a)

extended
object

destdest

origorig

Figure 22 - Arc Evaluation

When the point dest is of type 2, we use an extended model for the object, as in case (a) from
figure. When the point dest is of type 3, or is the target, we use case (b) from figure.
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The object in AKA (appraisive knowledge of arcs) holds than and evaluation for an arc in SSA.
This evaluation measures how suitable is the move from orig to dest for the vehicle.

The class associated to DA5 is tDA5:

class tDA5
{double threshold;
 public:
 tA TestArc(tA arc, tEval eval, tA *va, tEM *em);
};

Function TestArc is more sophisticated than its dual TestPoint. Beyond checking if the arc
evaluation is higher that a threshold, it checks many other situations. From a list of valid arcs (va),
obtained from VSA, we test if arc “arc” does not cross any other valid arc (that is already in VSA), if
the distance from its points is greater than a minimum value and if the distance from the destination
point to the objects considered repulsive (in terms of taste) is greater than a minimum value also. Arcs
that satisfy all those conditions are sent then to VSA.

8.4 Plan Generat ion and Optimization Module
The plan generation and optimization module takes the valid points and arcs, put in VSP and

VSA, and generates a plan that is optimized and further transformed into control actions. This
module, with the points and arcs generation module integrates the motor control module. The network
section corresponding to the plan generation and optimization module is shown in figure 23:
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EM

MC
PL2

PL1

PL

VSP
VSA

DA7

IA2

AA3

DA6

Figure 23 - Plan Generation and Optimization Module

The class associated to PL, PL1 and PL2 is tPL:

class tPL
{tP *pl;
 int npl;
};

The class associated to DA6 is tDA6:

class tAD6
{public:
   tPL GeneratePlan(tP *p, tA *a);
};

Function GeneratePlan basically takes the list of arcs in VSA, locate the respective points in
VSP and generates a list of points that corresponds to the sequence of points to be followed by the
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vehicle in its trajectory to the target. To generate that list, it searches the arc that has as its dest the
target, and from its orig, searches another arc that has it as dest, and so successively, until reaching

The inductive argument in IA2 takes this plan, and do a first optimization, deleting points that
are redundant, as is shown in figure 24:

Target

Current Position

Redundant Poin t

Figure 24 - Redundant Points Deletion

Redundant points are those that, if deleted, still allows a safe move, as is indicated by dotted
line in figure.

The class associated to IA2 is tIA2:

class tAI2
{public:
  tPL OptimizePlan1(tPL pl, tEM *em);
};

The function takes the plan in PL and generates a new plan, without the redundant points, that
is put in PL1.

The abductive argument AA3 takes the plan in PL1, and optimizes it, slightly changing its
points, as is shown in figure 25:

Current
Position

Target

Figure 25 -Plan Points Optimization

The argument randomly generates for each point in plan, different from current position and
target, a series of other points, within a limited range. The new plan is tested then, using the
environment model, to check if it is a better plan. If any abducted point is best than the original, it is
changed.

The class associated to AA3 is tAA3:

class tAA3
{public:
   tPL OptimizePlan2(tPL pl, tEM *em);
};

The function OptimizePlan2 takes the plan in PL1 and based in model em, generates a new
plan that is put in PL2.
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The class associated to MC is tMC

class tMC
{double vel;
 double dpitch;
};

The object in MC corresponds to motor control order to be sent to actuators. It is basically
composed by the velocity and wheel’s steering angle. The object in MC is generated by the deductive
argument in DA7.

The class associated to DA7 is tDA7:

class tAD7
{public:
  tCM MotorControl(tPL *pl, tSS ss, tEM *em);
  tPL ActualizePlan(tPL pl);
};

The function MotorControl is rather sophisticated. Usually, to reach a given point, the control
action to be taken is very simple. It is sufficient to find the polar coordinates of the point to be
reached, from the point of view of the vehicle, set a positive velocity and the steering angle equal to
the found angle. But, in situations as in figure 25, there is a need of some maneuvering to reach
target.

Target

Figure 25 - Situation Needing Maneuvering

To check if a given situation needs maneuvering, the argument calculates the optimum
trajectory to reach the target. This optimum trajectory corresponds to set the steering angle to its
maximum (in right or left direction, depending o the target position), and let the vehicle move around
a circle, until it aligns itself to the target. This position is shown in figure 26:

p3

p2

p0
p1

Figure 26 - Vehicle’s Minimum Curve

In figure, vehicle starts from a position p0 moving in the indicated direction, and desires to
reach p1 . The range of the circle that describes the vehicle’s trajectory, given the steering angle is
given by:

R
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2
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π θ

Supposing a maximum angle of π/4, the minimum range is:
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Point p2 is calculated using a distance equal to Rmin and an angle of π/2 from the desired
direction. Point p3 is calculated by:
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Once p3 is calculated, the system supposes that the vehicle is over this point, with a pitch value
corresponding to the direction from there to p1 . It then calculates the position of all the 4 contact
sensors, if the vehicle was at this point, and determines, using the environment model, which will be
the taste sensed if the vehicle was in such position. If the minimum taste of all 4 sensors is acceptable
(something about -0.9), this means that the vehicle does not need to maneuver. If not, it sets a
maneuvering state. In this state, the vehicle checks which contact sensor indicates the worst taste, and
from it, set a sequence of moves from right to left, alternating forward and backward movements, until
the vehicle goes out of maneuvering conditions (i.e., until the taste in p3  becomes acceptable). The
output of MotorControl procedure generates an object that is sent to MC.

The function ActualizePlan, starting from the vehicle’s current position, checks if the first
point in plan was reached, deleting it from the list in such case. The corrected plan is re-sent to PL2.

8.5 Visual Control Module
The visual control module is responsible for the movement of the visual sensor, that is used by

the perception and environment modeling module. Despite being a separate control, its action is
decisive for the perfect work of such module, demanding a coordination among those modules for the
perception to be operational.

The network section responsible for visual control is indicated in figure 27:
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Figure 27 - Visual Control Module

The class associated to IVC, RVC and VC is tVC:
class tCV
{double scangle;
 double sclength;
};

The class associated to IA3 is tIA3:

class tIA3
{public:
   GenerateInducedVisualControl(tSS ss);
};
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The function GenerateInducedVisualControl is rather sophisticated. Based in the image from
the visual sensor, it calculates the center of area of image, and suggests a move equivalent to this
center of area. The procedure is shown in figure 28:

Center of Area

Figure 28 - Center of Area Computation

More than that, the function performs a compensation due to the vehicle’s movement. This
compensation is shown in figure 29:
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Figure 29 - Compensation for Vehicle’s Movement

Basically what we desire here is that, being the vehicle at position (x0 , y0 , ψ0 ), and having
visual control coordinates (ρ0 , ϕ0 ), when the vehicle changes its position to (x1 , y1 , ψ1 ), the visual
control coordinates (ρ1 , ϕ1 ), sets that the visual control focus points to the old position. The
equations for (ρ1 , ϕ1 ), are the following:
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Function output is obtained adding both center of area and compensation for vehicle’s
movement. The result is sent then to IVC.

The class associated to AA4 is tAA4:

class tAA4
{public:
   GenerateAbducedVisualControl(void);
};
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The function GenerateAbducedVisualControl simply generates a random set of coordinates
(ρ1 , ϕ1 ), having as ρ1  a value that is compatible with the vehicle’s limits and a ϕ1 from -π/4 to π/4.
The generated object is sent to RVC.

The deductive argument in DA9 decides from sensor data if it will use the object in IVC or
RVC. If the system is focusing in some object, it uses the object in IVC. If it is searching for an object,
it uses the object in RVC.

The class associated to DA9 is tDA9:

class tAD9
{public:
   tVC VisualControl(tVC ivc, tVC rvc, tSS ss);
};

Function VisualControl does the task of deciding between the two control suggestions, sending
its decision to VC.

8.6 Output Interface M odule
In this module, motor control and visual control are integrated, resulting a prescriptive

knowledge, that is sent to actuators.
The network section corresponding to such module is indicated in figure 29:

CPK

OV

VC

MCDA8

Figure 29 - Output Interface Module

The class associated to CPK (control prescriptive knowledge is tCPK:

class tCPK
{double vel;
 double dpitch;
 double sclength;
 double scangle;
};

The class associated to DA8 is tDA8:

class tDA8
{public:
   tCPK GenerateCPK(tVC vc, tMC mc);
};

The function GenerateCPK takes the objects in VC and MC, corresponding to the partial
determination of visual control and motor control, and integrates them in a single object of type tCPK.
This object is then sent to CPK.

The class associated to OV is tOV:

class tOV
{public:
   void SendToActuators(tCPK cpk);
}

The deductive argument in OV simply takes the object corresponding to the control
prescriptive knowledge in CPK and send the right values to system’s actuators.
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9. Coordination of System Objects
To develop an object network we must specify the object classes and the selection functions for

each object as well. The right choice of selection functions is the key point  to achieve coordination
among the different objects composing the network.

There are many forms in which selection functions can be determined. In some cases (as shown
in part I of the paper), we assign independent selection functions for each active object, expecting the
system to achieve coordinationa autonomously. In other cases, we may enforce some sort of
coordination designing selection functions specifically for this purpose. We discuss this issue next.

The first objects to be triggered are the visual control objects (i.e. those in the visual control
module). Initially, the system uses the random visual control (i.e. the objects in RVC), until an image
capturing an environment object is detected by the visual sensors. At this instant, the system starts a
focusing task (by taking objects from IVC instead form RVC), to get the best position to perceive the
object. During random visual control and focusing, the perceptive system (i.e. the argument in IA1)
remains disabled. When visual control finishes focusing (i.e. the center of area for the image stays
below a given threshold), the perceptive system is enabled. Then, the argument in IA1 generates a
model for the focused object and the argument in DA1 tries to integrate such model to others that are
already in EM. Once perception is terminated, the visual control system returns to random control,
repeating the previous steps. This is the coordination at the level of visual control and perception.

Motor control, has an independent coordination. Initially, from sensorial input, the argument
in AA1 generates origin and target points. These points are checked by the arguments in DA2 and
DA3 going to VSP. After, the argument in AA2 attempts to produce an arc from origin to target. If it
succeeds, a plan is generated in PL. If not the argument in AA1 produces new points starting from the
origin point. First, it uses GenerateNewPoint2, and next GenerateNewPoint3. The argument in AA2
then tries to find an arc from each of these points to the target. If it succeeds, a plan is generated in PL
by the argument in DA6. Otherwise, each of these points are used to generate new points until an arc
to the target is produced, generating a plan in PL. At this time, execution of Points and Arcs
Generation Module ceases, and the arguments in IA2 and AA3 are triggered. IA2 first optimize the
plan, putting  it in PL1 and AA3 performs a second optimization, sending the plan to PL2.

The argument in DA7 works in parallel with the other objects. From a plan in PL2, the
argument produces a motor control and send it to MC. The output interface module is also
independent. At each time instant, it collects the objects in VC and MC and provides the prescriptive
control knowledge, the actual control decision, that is sent to actuators.

It should be stressed that there are four parts of the object network working in parallel. The
first is the visual control and perception, the second, the plan generation, (comprising points and arcs
generation, planning and plan optimization), the third is the generation of motor control, from the
optimized plan, and the fourth is the generation of prescriptive control knowledge. Each of these
parts, however, does have a well established sequence. The selection functions of the objects consider
such a sequence to guarantee that the object network, as a whole, work as desired.

10. Simulation Results
In this section, simulation results are presented to illustrate the performance of the control

system developed within the framework of computational semiotics.
The experiment is depicted in figure 30. The first frame shows the vehicle position when

simulation starts. In second frame, the vehicle chooses a plan, based on its current environment model
(at this time it is none) it chooses a plan, that is, it decides to proceed straight to the target. After the
walls hidding the target are perceived by the visual system, the vehicle looks for an alternative path.
The third frame shows the vehicle at a later time instant, when now it has an updated environment
model, as indicated by the rectangles with dark contours. Using the current model, an alternative plan
is generated, but it will be found to provoke a collision with environment walls currently unknown by
the vehicle. After a number of steps travelling, a good environment model is constructed and the
system easily develop a plan to achieve the target, without any collision with environment’s walls.
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Figure 30 - Simulation Results

The specific environment used in the example may, at first glance, looks simple. But it should
be noted that the main aim of the control system is to find a target without colliding with obstacles
within an unknown environment. For this purpose, the goals to be achieved may become antagonic.
For instance, in figure 30, to effectivelly reach the target, the vehicle must first move in a direction
opposed to the one where the target is, as the sixth frame of figure 30 shows. This is not the case when
there is no obstacle between the current vehicle position and the target. This is critical for sensor
based, pure reactive (intuitive) approaches because if decisions are made based on local information
only, the vehicle can be either trapped, or remain in a dynamic behavior which will never lead it to
the target position. This is shown in figure 31 (Fabro, 1996)

Figure 31 - Simulation using a Pure Reactive System
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Figure 32 - Complete Trajectory using Object Network Control

The complete trajectory due to the objects network based control is shown in figure 32.
A number of different environment topologies have been used in a series of simulations

experiments. The intelligent control here implemented via the object network achieved a quite good
performance reaching the target without collision in all of them.

11. Conclusions
In this paper we completed the formalization of the semiotic concepts introduced in part I and

an application example was detailed not only to clarify the main issues, but also to show the potential
of the aproach proposed.

The main contributions of this work are the following: the elaboration of a semiotic taxonomy
of knowledge, the introduction of a formal model of objects, the development of a new tool, the object
network, as a paradigm for complex systems, the formalization of different types of knowledge by
means of object networks, the identification of object networks as a suitable modeling tool to develop
intelligent systems and an example of an intelligent control for an autonomous vehicle.

Despite these contributions, the approach herein developed clearly have limitations. For
instance, the taxonomy of knowledge types presented is only partial. Originally, Peirce identifies more
than 100 different types of signs, which eventually may imply in many and different types of
knowledge. Nevertheless, the knowledge types organization addressed here does include the most
frequently used in building practival knowledge-based systems.

The scheme presented as a formalization of objects, does not aim at a general theory for
objects, appears as a foundation for such a theory. Some extensions are clearly needed here too, e.g. to
handle the asynchronous interaction among objects.

The object network developed from the formal concept of objects, despite its power, still have
many limitations. For example, analysis tools still are underdeveloped when compared to other
modeling tools (e.g., Petri Nets). Indeed, very few systems have been modeled whith this formalism so
far. We did not provide a formal representation for the types of knowledge not covered here. As new
types of knowledge arise, new formal definitions will be demanded.

For continuing the consolidation of object networks as a key tool for modeling intelligent
systems, it is still necessary to solve a broader class of problems to emphasize its benefits and to
identify opportunities for extensions.
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