
519

An Autonomous Vehicle Controller Using Agent Networks

Daniel Ojeda1, Lizet Liñero2 and Ricardo Gudwin3

1Universidade Estadual de Campinas
UNICAMP – FEEC – DCA

Caixa Postal 6101, CEP 13083-970
Campinas – SP – Brasil

danof@dca.fee.unicamp.br

2Universidade Estadual de Campinas
UNICAMP – FEEC – DCA

Caixa Postal 6101, CEP 13083-970
Campinas – SP – Brasil

llinero@dca.fee.unicamp.br

3Universidade Estadual de Campinas
UNICAMP – FEEC – DCA

Caixa Postal 6101, CEP 13083-970
Campinas – SP – Brasil

gudwin@dca.fee.unicamp.br

Abstract — This work presents the modeling and
implementation of an autonomous-vehicle intelligent control
system using agent networks. We build the whole model over
a computational tool called Object Networks toolkit
(Ontoolkit – developed by the Computational Semiotics
Group, at the DCA/FEEC/UNICAMP) which is used to
make the design, implementation and tests of the controller.
We further present some results obtained from simulations
in order to demonstrate the working of the system.

I. INTRODUCTION

The problem considered here is a well known problem
in literature, that is, the control of an autonomous vehicle
moving across an unknown enviroment characterized by
obstacles and targets. The main objective here is to
navigate the vehicle across the enviroment,  reaching the
target and avoiding crashes against the obstacles.

Many control metodologies were aplied to solve this
kind of problem [1, 2, 3, 4, 5, 8, 9]. Three main
approaches are used in solving this problem. The first one
is based in a previous knowledge about the  enviroment
(an a priori description of the obstacles and the target). In
this case, the problem is usually solved by searching the
map of the world. A second way of approaching the
problem is by using a reflexive architecture, which
doesn’t use a world model, but only local sensory
information. A third way of approaching the problem is
by using a hybrid architecture, i.e. mixing the previous
two approaches. In this case, we have a world map, but
this is not known a priori, but built using the local
sensory information. The system them uses this map to
base its actions. In [5], an approach like that is used. The
vehicle creates, step by step, a world model using its
sensor system. Based on this model, an heuristic search is
used to determinate the vehicle’s control actions. This
mechanism of control is implemented by means of object
networks [5], a general mechanism for implementing
adaptive discrete event dynamical systems.

Agent networks are a specialization of object networks
specially suited for distributed computational systems
where there is no centralized control system guiding the
coordination between the software components involved.
It can be used, then, as a tool for modelling, analysis,
design and simulation of intelligent systems.

In this work, we follow the same basic approach given
in [5], but now using agent networks instead of object
networks. The main gain here is that, when using object
networks, each implementation needed to be hardcoded,
because the model for object networks is so open that it is
difficult to abstract a generic toolkit to use them. Agent

networks, instead, can be easily embedded into a generic
toolkit, and so are preferrable as a tool of design and
development. To implement the system presented here,
we used a dedicated computational tool called Object
Networks toolkit (ONtoolkit), which is covered in details
in [6, 7].

In the next sections, we present the main concepts
regarding the vehicle model and its dynamical model.
Further, we present the agent network we propose to
control the vehicle, detailing on how it coordinates its
actions. Finally we present the results, conclusions and
the references used here.

II. VEHICLE MODEL

The enviroment for the vehicle is composed by
obstacles made of different materials, modeled as
rectangles with some physical properties. These
properties are: hardness, taste and energy flow. Hardness
is related to the difficulty of trespassing the obstacles. A
hardness of 1.0 is equivalent to solid (no-trespassing)
obstacles. Taste is related to the sensory feeling the
vehicle gets when its contact sensors touches the
obstacles. They can be positive or negative feelings. And
finally, energy flow is the property of an obstacle to be a
source or sink of energy for the vehicle. The vehicle has
two kinds of sensors (see Fig. 1):
• remote information sensors - RIS (a simplification

for a kind of vision mechanism) and
• contact sensors – CS (which are a source of feelings

when the vehicle is put in contact to obstacles).

Actuators are of two kinds:
• RIS Position Actuators (determinates a position for

the RIS attention region, relative from a point within
the vehicle – an angle and length) and

ρ ϕ
1

2

3

4

Note:

1,2,3,4 – CS
A- RIS
ϕ - RIS direction
ρ - RIS length

Enviroment

A

Fig. 1. Autonomous-vehicle sensors.



520

• Vehicle Movement Actuators (given by a wheel steer
angle and a velocity for the vehicle).

The variables of interest for vehicle control are the
position (x, y, ψ) inside the enviroment, and the wheel
steer angle with regard to vehicle longitudinal axis (θ),
(see Fig. 2). Other important parameters are the vehicle
nominal velocity (v), the friction constant  (µ) and the
length between the vehicle’s axles (D).

Vehicle dynamics can be expressed using two equation
systems. The first, when θ is zero. The second when θ is
diferent from zero.

For θ equals to zero, we have:

( )2cos.).1()()1( πψµ +−+=+ vkxkx (1)

( )2.).1()()1( πψµ +−+=+ senvkyky (2)

ψ(k+1) = ψ(k) (3)

For θ different from zero, we have:

( ) ( )
( )( ) ( )2.
)(

cos1.

2cos.
)(

.)()1(

πψ
θ

ψ

πψ
θ

ψ

+∆−

−+∆+=+

sen
sen

D
sen
senDkxkx

(4)

( ) ( )
( )( ) ( )2cos.
)(

cos1.

2.
)(

.)()1(

πψ
θ

ψ

πψ
θ

ψ

+∆−

++∆+=+

sen
D

sen
sen
senDkyky

(5)

ψψψ ∆+=+ )()1( kk (6)

Where:

∆ ψ =
−( ) . . ( )1 µ θv s e n

D
(7)

Analysing equations, we see that besides variables,
there are parameters and inputs for the system. The
parameter D is always constant. The parameter µ is
derived from the hardness of obstacles touching the
vehicle. If the vehicle is moving forward (positive
nominal velocity), we determine the hardness of the
objects touching the front (left and right) points of the
vehicle, taking the maximum value of them. We then
assure that, if the hardness of one of them is equal to1,
the vehicle will not move in this direction (which
indicates a collision with an unbridgeable object).

y

x

Ψ

Enviroment

θ

Figura 2. Interest variables of the autonomous vehicle.

The only possible move, in this case will be to move
backward, leaving the collision situation. If the vehicle is
moving backward, the procedutre is the same, but
considering the hardness of the objects located on the
back (left and rigth) points of the vehicle. This allows
also the detection of collisions when moving backwards,
forcing the vehicle to move forward in order to leave the
collision condition. Finally, v and θ are related to the
nominal velocity and the wheel steer angle - the vehicle’s
motor control actions.

III. INTELLIGENT CONTROL SYSTEM

The control system implemented through the agent
networks is ilustrated in Fig. 3. The main system goal is
to generate control actions for the vehicle in order to let it
navigate safelly on the environment, avoiding obstacles
and reaching the target.

The sensed inputs are:

X, y, ψ Vehicle position
Ax,ay,aψ Vehicle position at previous instant
Mx,my Desired target coordinate
Av Vehicle nominal velocity at previous instant
Aθ Wheel steer angle at previous instant
Aϕ Angle between the RIS and the vehicle at

previous instant
Aρ Length between the vehicle and the RIS at

previous instant
C CS values
S RIS values

The control outputs are:

V Vehicle nominal velocity to be applied
θ Wheel steer angle to be applied
ρ Length to be applied between the vehicle

and the RIS
ϕ Angle to be applied between the RIS and the

vehicle

We now further proceed with a general description of the
network operation. The system is composed by 7
modules, divided into two main activities. The first
activity is the sensory perception and world modelling
activity, which comprises the IIS – Input Interface
Module, the PEMM – Perception and Environment
Modelling Module and the VCM – Visual Control
Module. The second activity is the Behavior Generation
activity, which comprises the PAGM – Points and Arcs
Generation Module, the PGOM – Plan Generation and
Optimization Module, the MCM -  Motor Control Module
and the OIM – Output Interface Module. These modules
run independently to each other, being coordinated by the
main agent network procedure (the BMSA algorithm,
explained in detail in [Guerrero 2000]). We may,
although, visually inspect the agent network in order to
understand its behavior. At the beginning of each control
cycle, the IIS is activated to get information from the
enviroment, making it available for the whole system
operation. After the sensed information get into the
system, the VCM is activated. This module is responsible
for performing a visual search and detecting views with



521

parts of objects from the world. Once some visual input is
detected, the PEMM updates the general world model,
making a fusion between the new evidence collected and
the existing world model. Starting the Behavior
Generation activities, the PAGM prepares the creation of
plans, by generating feasible points and arcs of
movement, based on sensorial input and the world model.
Using these points and arcs, the PGOM builds up and
optimize a trajectory to be followed by the vehicle in it’s
way to the target, resulting in a movement plan. Once the
movement plan is obtained, the MCM puts itself to track
the plan. It is important to notice, however, that the plan
can be modified and/or updated at every time. This work
is also a responsibility of the MCM. Finally, the OIM
merges the outputs from the MCM and the VCM,
generating the control outputs that are sent to the
actuators.

We now proceed with a detailed explanation of each
of the modules:

1) Input Interface Module (IIM): This module can be
viewed in Fig. 4. It is responsible for taking sensorial

information from the enviroment and making it available
to the rest of the system. The InputVector class stablishes

a socket comunication channel between the agent

network and the simulation or real enviroment, and starts
receiving objects of the StatusPacket class. The

StatusPacket class formats in a convenient way, the data
collected from enviroment by means of sensors.

The auxiliary class Killer is responsible for destroying
the StatusPacket objects after they are used by the other
network modules, at every control cycle.

2) Perception and Enviroment Modelling Module
(PEMM): This module is responsible for processing the
information supplied by the IIM and updating the
enviroment model. It is shown in details in Fig. 5.

 
Fig. 4. Input Interface Module

Fig. 3. Intelligent control system for the autonomous vehicle implementd like an agent network.



522

Fig. 5. Perception and Enviroment Modelling Module

The FindPatterns class observes the visual sensory
information encoded in StatusPacket, detecting the
presence of objects in the visual field of the RSI sensors.
This information is provided in terms of an 8x8 matrix of
viewed colors from where it performs a very simple
pattern recognition procedure. The objects found by
FindPaterns are stored into the Objects place. The
ModelA class contains a collection of objects which
constitutes the world model The MergeObjects class
manages the fusion of objects in the Objects place with
the objects within ModelA, performing an update of the
world model, that is stored back in ModelA. This fusion is
performed by means of three simple rules which
considers vertical alignment, horizontal alignment and
inclusion.

3) Points and Arcs Generation Module (PAGM): This
module is presented in Fig 6. It prepares the room for
building up plans, by generating a collection of points
and arcs that will be used further to integrate feasible
plans of motion for the vehicle. It has a somewhat
complex behavior. Given one point as a startup, a cloud
of points is generated around the given point. This
process is perfomed by the GenPointSug class. The
startup point may have 4 different origins. It may be the
current location of the target, or the current vehicle
position, or a valid points or a point belonging to the
enviroment model. The EvaluatePoint class determinates
the validity of every point using the following equation:

).(min )(4.0 idto
ii

egeval −= (8)

Where:
gi: object(i) taste
dto(i): length to object i.

Fig 6. Points and Arcs Generation Module

The valid points are further sent to the CPV place. Arcs
are then build up from valid points and then evaluated in
order to verify:
• if the line linking the source point to the target point

intersects with any object of the world model, or
• if there is an intersection with another valid arc

already stored in CAV, or
• if its length is below a minimum value considered to

be irrelevant.
If an arc does not satify any of these conditions, then it is
considered valid, and it is sent to the CAV place.

4) Plans Generation and Optimization Module
(PGOM): This module is shown in Fig. 7. In this module,
the valid arcs stored in CAV are integrated into plans,
which are first generated and further optimized. The
GenerateTrajectory agent tries to build a plan made by a
trivial arc containing the current vehicle location and the
target. If this arc is not possible, it takes the arcs where
the first point is the current vehicle location, building a
kind of a tree, having as root the current vehicle location.
It then tries to connect each of the leaves extremities to
the target. If it is not possible, it considers extending the
tree by adding up new arcs that can be connected to the
tree. The procedure do now allow the intercross of arcs.
After expanding the tree, its extremities are checked
again on its way to the target. This procedure continues
over and over, increasing the tree size, which grows along
the free space, until a feasible path can be built to the
target. When this happens, the procedure stops and a plan
is generated. The plan is a sequence of arcs connecting
points from the current vehicle position to the target. It is
sent to the PL place. The trajectory optimization is done
in two steps. In the first step, the OptimizeTrajectory
agent excludes trajectory redundant points. Redundant
points are those that, if excluded, still maintain a valid
plan. This partially optimized trajectory is sent to PL1
place.

After that, the OptimizeTrajectory2 agent tries to make
a new optimization. In this step a cloud of new random
points is generated around each point of the plan, except
the vehicle position and the target. A collection of new
plans is made out of these points, and they are tested in
order to generate the final plan, possibly with some
improvements over the prior plan (e.g. a better
trajectory). Finally, the optimized trajectory is send to
PL2 place.

Fig 7. Plan Generation and Optimization Module



523

Fig 8. Motor Control Module.

5) Motor Control Module (MCM): This module can be
viewed in Fig. 8. Its responsibility is to effectivelly track
the plan obtained in the previous stage, generating the
control signals Wheel Steer Angle and Velocity. To do
that, it calculates the polar coordinates of the next point in
the plan (based on the vehicle position), and then turn the
wheel angle pointing to the point, arbitrating a positive
velocity for the vehicle. In some situations, it may be
necesssary to make some maneuvering in order to reach
the point. In this case, the MotorControl agent should
perform such maneuver. When the vehicle position is
close to a point on the plan, this point is taken out of the
plan and the vehicle is pushed to the next point. The new
plan is updated then in PL2. The final Vehicle Velocity
and Wheel Steer Angle is pushed to the CM place.

6) Visual Control Module (VCM): This module is
detailed in Fig. 9. It is responsible for the motion of the
RIS sensor. Its action is fundamental for the correct
functioning of  the PEMM module. The
GenerateInducedCV class calculates the center of mass of
the visual sensor image and then suggests a motion in that
direction, realizing a positional adjustment
(compensation) regarding the motion of the vehicle. After
the visual control coordinates (ρ, ϕ) are calculated, they
are sent to ICV place. The GenerateRandomCV agent
generates the visual control coordinates (ρ, ϕ) in a
random way, between some previously defined values
and sends them to the RCV place.

Fig. 9. Visual Control Module.

The VisualControl agent sends then the control action to
CV. If the system is focusing over some object, the
control action in ICV is chosen. Otherwise, it will take
the random control in RCV.

7) Output Interface Module (OIM): This module is
viewed in Fig. 10.

It is responsible by integrating the motor control and the
visual control signals, generating the final control action
going to the vehicle’s actuators. CV and CM are the
places containing the visual control and motor control
values, respectively. The GenerateControl agent
integrates both controls, obtaining the control action that
is sent to the ControlPacket place. The Actuator agent
then builds up a socket channel that sends the
ControlPacket object to the environment.

All the modules above described maintain a constant
coordination wich allows the correct system operation.
Some of them operate in a sequencial way and others at
the same time (in parallel). This coordination is ensured
by the BMSA algorithm ruling out the whole agent
network. The final behavior is tuned by the matching
functions, which evaluate which objects are going to be
used at each time.

The autonomous vehicle controller was implemented
as an agents network, using for it, the computational tool
ONtoolkit [Guerrero 1999, Guerrero 2000]. To a better
and more detailed explanation of “what “ and “how” an
agent network works, we refer the reader to [Guerrero
2000].

IV. RESULTS

To validate and verify the operation of this controller,
we used a virtual enviroment simulator, connected to the
Ontoolkit by means of TCP/IP network sockets. Some of
the simulations are summarized in Figures 11 and 12. In
the majority of cases, the autonomous vehicle reaches the
target in a satisfactory way, without crashing with the
enviroment obstacles. In some minor cases, some
maneuvering was necessary, but performed smoothly.

Fig. 10. Output Interface Module.



524

V. CONCLUSIONS

The main contribution of this work is to validade the
ONtoolkit as a viable tool for the developmen of
intelligent systems. In this particular case, we developed
an intelligent control system for an autonomous vehicle
navigating in an unknown environment. The success
obtained here shows the potential of the tool and gave us
some feedback on how to improve it as a tool, since some
minor requirements for future versions were annotated.

VI. REFERENCES

[1] Beom, H.R.; Cho, H.S. “A Sensor-Based
Navigation for a Mobile Robot Using Fuzzy
Logic and Reinforcement Learning”, IEEE
Transactions on Systems, Man and Cybernetics,
vol. 25, n. 3, March 1995.

[2] Brooks, R.A. “Intelligence Without Reason”
Proceedings of the Twelfth International
Conference on Artificial Intelligence, Vol. 1,
1991, pp. 569-595.

[3] Chen, C.X.; Trivedi, M.M. “Task Planning and
Action Coordination in Integrated Sensor-Based
Robots”, IEEE Transactions on Systems, Man
and Cybernetics, vol. 25, n.4, April 1995.

[4] Fan, K.C.; Lui, P.C. “Solving Find Path Problem
in Mapped Environments Using Modified A*
Algorithm” - IEEE Transactions on Systems,
Man and Cybernetics - vol. 24, n. 9, September
1994.

[5] Gudwin, R.R.  “Contribuições ao Estudo
Matemático de Sistemas Inteligentes”, Tese de
Doutorado, DCA-FEE-UNICAMP, Maio 1996.

[6] Guerrero, J.A.S; Gomes, A.S.R; Gudwin, R.R.
“A Computational Tool to Model Intelligent
Systems”, Anais do 4o SBAI – Simpósio
Brasileiro de Automação Inteligente, Setembro
1999.

[7] Guerrero, J.A.S.  “Rede de Agentes: Uma
Ferramenta Para o Projeto de Sistemas
Inteligentes”, Tese de Mestrado, DCA-FEE-
UNICAMP, Fevereiro 2000.

[8] Oliveira, M; Figueiredo, M.; Gomide, F. “A
Neurofuzzy Aproach to Autonomous Control”,
Proceedings  of the erd International Conference
on Fuzzy Logic, Neural Nets and Soft
Computing, August 1994, pp. 597-598.

[9] Taylor, C.J.; Kriegman, D. “Vision-Based Motion
Planning and Exploration algorithms for Mobile
Robots”,IEEE Transactions on Robotics and
Automation, Vol. 14, No 3, June 1998.

(a) (b)
Fig. 11. Simulation – case A. (a)  Virtual enviroment definition. (b) Simulation result

(a) (b)
Fig. 12. Simulation – case B. (a)  Virtual enviroment definition. (b) Simulation result


