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Abstract

[n this note we elaborate on the concept and use of context adaptation. The underlying idea hinges upon a nonlinear
transformation of an actual reference unit universe of discourse into a subset of reals, say [a. b]. that is implied by actually
available data (current context). Assuming a collection of fuzzy sets .o/ = {4,. 4>,....4,} defined over [0, 1], the context
adaptation gives rise to a new frame of cognition .o/ = {4, 44....,4,} expressed over [a,b]. Owing to the inherent
nonlinearity of the developed mapping, different elements (fuzzy sets) of .«/ can be “stretched” or “expanded” according to
the given experimental data. Proposed is a neural network as a relevant optimization tool. (€;1997 Elsevier Science B.V.
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1. Introduction

The frame of cognition [4] constitutes a fundamen-
tal concept of fuzzy information processing. It can be
readily encountered in almost if not all basic constructs
involving fuzzy sets. Fuzzy controllers, fuzzy model-
ing, and fuzzy clustering are just a few representative
examples that are dwelled upon the fundamental con-
cept of set membership.

As formed by a family of fuzzy sets, the frame of
cognition provides us with a way of linguistic space
quantization. The linguistic terms play an instrumen-
tal role in encoding both numerical and nonnumer-
ical information that takes place prior to its further
processing. It is obvious that linguistic terms (fuzzy
sets) are not universal. When speaking about comfort-
able speed we confine ourselves to a certain context
and interpret this term accordingly. When the context
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changes so is the meaning of the term. Nevertheless,
an order of the terms forming the frame of cognition
is retained. For instance, in the frames

</ = {low speed. comfortable speed. high speed},
/" ={low’ speed. comfortable’ speed. high' speed},

the order of the terms standing there is preserved no
matter how much the meaning attached to the terms
tend to vary. The membership functions of the ele-
ments of .</ and ./ could be very distinct, though.
As illustrated in Fig. 1, the same notion of comfort-
able speed in ./ is more specific than its linguistic
counterpart encountered in <7’

The issue we are interested in pursuing in this study
addresses a key question about the generality of lin-
guistic terms. By solving this fundamental problem of
representation of fuzzy notions we will be at position
of constructing relevant membership functions based
upon experimental data being currently used.
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Fig. 1. Examples of two frames of cognition .o/ and .=/’

In the existing literature one can envision some dif-
ferent attempts aimed at handling this problem:

(1) The earliest approach emerges in the form of
a linear scaling of the numerical variables prior to
their linguistic encoding (fuzzification). As outlined
in the literature, these changes do not concern directly
the universe of discourse. Nevertheless the procedure
lends itself to a linear scaling of the universe. The
methods of this category were characteristic to fuzzy
controllers (scaling factors); they were first reported
in [5], cf. also [1].

(2) In [3] proposed was an idea of linear and
polynomial-based modification of the universe of dis-
course — the discussion was focused on the design of
fuzzy controllers.

(3) In [2] discussed was the idea of context adap-
tation in which the universe of discourse is changed
according to the actual values of the vanable under
consideration; one of the particular alternatives aris-
ing therein exploits exponential filtering.

To put the problem into a certain perspective and
emphasize again its vital importance, let us briefly re-
view a simple example emerging in the realm of fuzzy
controllers that definitely calls for the study in context
adaptation. As far as the design of the fuzzy controller
is concerned, the key point made therein is that the
rules of the controller are expected to be universal to
a high extent. This means that the controller utilizing
the same collection of prudently established control
rules need to perform equally well when applied to a
broad range of problems (systems) exhibiting a simi-
lar pattern of dynamic behavior. What makes the con-
troller adaptive are the mechanisms of context adap-
tation that apply exclusively to the input and output
variables of the controller fully retaining the domain
control knowledge, see Fig. 2.

In other words, context adaptation provides us with
a useful tool of calibration of all the variables thus
making the rules sensitive to the variety of the con-
ditions formulated by the control environment. It is
really what makes a human being so successful in ad-
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Fig. 2. Fuzzy controller and context adaptation.
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Fig. 3. An effect of underutilization of linguistic terms (and rules)
in the control protocol — only 42 fully exploited.

justing himself to a variety of situations — we do not
learn from scratch but adapt to the changeable envi-
ronment. To an average driver driving a different make
of a car may require some adaptation but does not in-
volve excessive learning.

This need for a prudent calibration is additionally
illustrated in Fig. 3; note that the lack of the adapta-
tion mechanism could easily make the controller idle
by restricting its activity to a fairly narrow range of
the control protocol thus making only a few rules to
become fully responsible for the performance of the
entire controller.

2. Problem statement

Let us consider a collection of generic fuzzy sets
(linguistic terms)

o = {4, Ar... A}

defined in [0, 1]. As usual, cf. [4], we require that
&/ satisfies some obvious requirements of semantic
integrity. Essentially, we insist on unimodality and
normality of the membership functions of the generic
fuzzy sets. Moreover, we request that 4;” s do not fully
overlap.

Given a data set of experimental outcomes (arising
e.g., as a result of expert polling), they can be arranged
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Fig. 4. Examples of nonlinear mappings between the universes of discourse.

in the form of (¢ + 1)-tuples, namely

(dly (ll]], ['“27‘ M -7,“171))’
(d2, (pa1, M2z, e ),

(@n. (N1 BN2s - M),

where d; denotes a given element of the universe
of discourse whose membership grades to some
linguistic categories under discussion are equal to
Hi1s He2s - - - » tim» Tespectively. Our intent is to accom-
modate these data to the highest extent by adapting the
context of .«/. The essence of this process is to non-
linearly map the unit interval of the generic universe
of discourse (unit interval) onto the current one being
an interval [a, b] in R whose bounds are specified as

b= max d;.
1<k<N

a= min dy,

I<k<N
This makes the generic membership functions adjusted
to the current situation conveyed by the available data
— thus the context in which the frame of cognition
2/ has been originally developed becomes modified
(adapted) to the new environment. Due to the inher-
ently nonlinear character of this mapping, see Fig. 4,
context adaptation expands some subregions of the
unit interval while contracts the others — this feature
is definitely not accessible through a straightforward
linear mapping (linear scaling).

3. The optimization algorithm

The calibration of the universe of discourse is car-
ried out in two main steps:

(i) Identification of a position of the collected
membership values in the unit interval by locating
the available membership vectors with respect to the
linguistic labels of the original frame of cognition.

(11) Construction of a nonlinear mapping involv-
ing the locations derived in (i)

The first step concemns a specification of an ele-
ment in the unit interval such that the given vector
Ui, oy ..., Hy, (the first index pertaining to the data
point has been suppressed) matches the vector of the
membership values in ./ to the highest extent. This
leads to the optimization task of the form

min || A(x) — p|| = {[A(x0) — |,
xe[0, 1

where
A(x) = [A1(x)Ax(x) ... A:(x)]
and

=[]

while || - || is a certain normalized distance function
computed between the corresponding membership
values.

The result of this processing phase is concisely sum-
marized in the form of the pairs of the corresponding
elements defined in [0, 1] and [a, 4], respectively,

(xr. dy, f1)
(x2, da, f2).

(xn. dy, fV).
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Each of these discrete associations, (x4, d;), is
equipped with the resulting relevance factor (coefhi-
cient) f; determined as

‘, = l - ] A J - .
S min |A(x) — pfl

If fi = 1 then the associated correspondence is re-
garded as highly essential.

The second step of the optimization algorithm de-
partures from the pairs of data summarized in the
above form and constructs the nonlinear mapping

@ [0,1] — [a,b].

To properly address the core issue of context adapta-
tion, we impose several straightforward requirements
on the above mapping such as:

e Continuity.

e Monotonicity. We require that ¢ is nondecreasing
(we allow it to remain constant over some regions
of the universe of discourse). This requirement as-
sures us that the meaning of the mapped linguis-
tic terms is not changed (the semantics becomes
retained). Eventually, we may request that ¢ is
nondecreasing — by imposing this requirement we
consistently reverse the meaning of the linguistic
terms of .«/.

e Boundary conditions. The boundary conditions
@(0) = a and (1) = b allow us to fully accom-
modate currently available experimental data.

In light of the above properties ¢ is a one-to-one
mapping.

Finally, once this nonlinear transformation has been
constructed, we locate the original fuzzy sets of .</ in
the actual universe of discourse ([a. b]) by computing

Al = @(A;),
namely,
A(y) = @(Aix)),

i = 1,2,... c. When collected together these new
fuzzy sets form the required frame of cognition ./’

4. Neural network realization of the nonlinear
mapping

The nonlinear mapping is realized through a neural
network with its structure shown in Fig. 5.
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Fig. 5. Architecture of a neural network.

The network is composed of “#” nodes situated in
the hidden layer and a single node placed at the output
layer. The neurons in the hidden layer implement a se-
ries of receptive fields equipped with two-parametric
sigmoid nonlinearities. The connections of these ele-
ments are fixed and equal to 1. Formally, speaking we
obtain

]

1 + C:‘J (x—m, )"

i=1.2,.. .. n where m; € [0, 1] %; > 0, are the modal
values and spreads of the corresponding fields. The
neuron forming the output layer is described as
h—-a
P+

Concisely. the network can be written down as a single
input-single output mapping of the form

v = NN(x).

The learning of the network is supervised and guided
via a gradient-based optimization of a specified per-
formance index. As the training method is standard
to a high degree, the details are not discussed here.
Moreover. the proposed method easily generalizes to
multidimensional case.

5. Numerical experiments

As a numerical illustration of the algorithm we con-
sider a data set summarized in Table 1.
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d Membership
2.00 1.00 0.30 0.10 0.00 0.00
4.30 0.80 0.50 0.40 0.04 0.00
4.70 0.70 0.65 0.42 0.06 0.00
5.60 0.30 0.98 0.60 0.20 0.05
7.90 0.10 1.00 0.40 0.00 0.00
8.20 0.00 0.00 0.70 0.60 0.20
9.80 0.00 0.00 0.96 0.50 0.30
12.60 0.00 0.00 1.00 0.30 0.20
13.60 0.00 0.10 1.00 0.20 0.05
14.10 0.12 0.56 0.87 0.67 0.20
16.30 0.10 0.10 0.25 0.80 0.92
18.10 0.00 0.05 0.20 0.40 1.00

Table 2

A list of associations of ele-
ments in [0,1] and [g, b]
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This family of data consists of the elements situated
in a segment of real numbers [2, 18.1] that are assigned
to five linguistic categories. The fuzzy sets of .7 de-
fined in [0, 1] are defined using Gaussian membership
functions

G(x; m,0) = exp(—(x — m)* /o).
More specifically,

A1(x) = G(x; 0, 0.02),

Ax(x) = G(x; 0.25, 0.02),
A3(x) = G(x; 050, 0.02).
Aa(x) = G(x; 0.75, 0.02),
As(x) = G(x; 1.00, 0.02).

First the experimental data are associated with the
corresponding elements of the unit interval so that
(1) becomes minimized — these results are given in
Table 2.

The learning of the mapping has been completed
using standard gradient-based technique assuming the
form

20

param = param — §————.
¢ param

a € (0,1), where Q is a sum of squared errors ob-
served between the experimental data and the out-
puts produced by the network. The confidence factors
standing in (2) are not involved in the learning proce-
dure and all data are treated uniformly. The vector of

x y
0.1260 2.0000
0.3200 43000
0.3700 4.7000
0.4500 5.6000
0.5100 7.9000
0.5800 8.2000
0.6700 9.8000
0.8400 12.6000
0.8600 13.6000
0.9300 14.1000
0.9900 16.3000
1.0000 18.1000
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Fig. 6. Performance index () versus “n”.

parameters, param, to be adjusted concerns the con-
nections between the hidden and output layer as well
as the parameters of the sigmoid functions (spreads
and modal values). As the learning was highly sensi-
tive to the changes of the latter, the learning rate used
in the training was kept at a low level — the experi-
ments were completed for « = 0.0005. The values of
Q for several sizes of the hidden layer are visualized
in Fig. 6.

As clearly visible, a significant improvement occurs
at n = 5; subsequently this case is discussed in detail.
To visualize the character of learning Fig. 7 shows the
changes of Q as they occur in the first 400 learning
epochs.
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learning epochs.
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Fig. 8. Results of nonlinear mapping provided by the network.

The form of the nonlinear mapping produced by the
network is illustrated in Fig. 8 — this is shown vis at vis
the experimental data (Table 2). Subsequently, Fig. 9
displays the membership functions resulting from the
process of context adaptation — to ease a comparison
the original membership functions defined in the unit
interval are included as well, Fig. 9(ii).

As a continuation of this example, we proceed with
the same linguistic terms and adapt them by consid-
ering the data contained in Table 3.

Observe that the experimental results call for a de-
creasing characteristics of the mapping to be gener-
ated by the neural networks. The learning rate is the
same as before, the first 400 learning epochs are in-
cluded in Fig. 10 while Fig. 11 illustrates the rela-
tionship y = NN(x). Fig. 12 illustrates the nonlinear
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Fig. 9. Frames of cognition and membership functions of their

elements (i) .o/’ and (ii) /.

Table 3
A list of associations of ele-
ments in [0, 1] and [a, b]

X y

0.126 18.1
0.32 16.3
0.37 14.1
0.45 13.6
0.51 12.6
0.58 9.8
0.67 8.2
0.84 7.9
0.86 5.6
0.93 4.7
0.99 43
1.0 2
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> 20

15

0 ———
0.00 0.25 0.50 0.75 1.00
X

Fig. 11. Nonlinear mapping produced by the neural network.

adaptation effect by showing how much the original
Gaussian membership functions have been affected by
some local deformation of the original universe of
discourse.

6. Conclusions

The primary intent of this note was to pose the
problem of nonlinear context adaptation and come up
with its relevant optimization framework.

The importance of the addressed idea is evident
at the conceptual level. By raising the problem of
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Fig. 12. Frame of cognition .o/’

calibrating fuzzy sets we have tackled the issue of
attaching meaning of generic linguistic terms whose
semantics should be sustained across a broad range
of cases.

The direct application aspects have not been dis-
cussed. They could be quite easily envisioned in
adaptation of rule-based control schemes (in fact, the
one example along this line has been proposed in
group elevator traffic control [2]) and fuzzy model-
ing. These will be thoroughly analyzed in a separate
study.
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